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ABSTRACT

We consider the problem of clustering in the learning-augmented setting. We are
given a data set in d-dimensional Euclidean space, and a label for each data point
given by a predictor indicating what subsets of points should be clustered together.
This setting captures situations where we have access to some auxiliary informa-
tion about the data set relevant for our clustering objective, for instance the labels
output by a neural network. Following prior work, we assume that there are at
most an α ∈ (0, c) for some c < 1 fraction of false positives and false negatives in
each predicted cluster, in the absence of which the labels would attain the optimal
clustering cost OPT. For a dataset of size m, we propose a deterministic k-means
algorithm that produces centers with an improved bound on the clustering cost
compared to the previous randomized state-of-the-art algorithm while preserv-
ing the O(dm logm) runtime. Furthermore, our algorithm works even when the
predictions are not very accurate, i.e., our cost bound holds for α up to 1/2, an im-
provement from α being at most 1/7 in previous work. For the k-medians problem
we again improve upon prior work by achieving a biquadratic improvement in the
dependence of the approximation factor on the accuracy parameter α to get a cost
of (1 +O(α))OPT, while requiring essentially just O(md log3 m/α) runtime.

1 INTRODUCTION

In this paper we study k-means and k-medians clustering in the learning-augmented setting. In both
these problems we are given an input data set P of m points in d-dimensional Euclidean space and
an associated distance function dist(·, ·). The goal is to compute a set C of k points in that same
space that minimize the following cost function:

cost(P,C) =
∑︂
p∈P

min
i∈[k]

dist(p, ci).

In words, the cost associated with a singular data point is its distance to the closest point in C, and
the cost of the whole data set is the sum of the costs of its individual points.

In the k-means setting dist(x, y) := ∥x − y∥2, i.e., the square of the Euclidean distance, and in the
k-medians setting we set dist(x, y) := ∥x−y∥, although here instead of the norm of x−y, we can in
principle also use any other distance function. These problem are well-studied in the literature of al-
gorithms and machine learning, and are known to be hard to solve exactly (Dasgupta, 2008), or even
approximate well beyond a certain factor (Cohen-Addad & Karthik C. S., 2019). Although approxi-
mation algorithms are known to exist for this problem and are used widely in practice, the theoretical
approximation factors of practical algorithms can be quite large, e.g., the 50-approximation in Song
& Rajasekaran (2010) and the O(ln k)-approximation in Arthur & Vassilvitskii (2006). Meanwhile,
the algorithms with relatively tight approximation factors do not necessarily scale well in practice
(Ahmadian et al., 2019).

To overcome these computational barriers, Ergun et al. (2022) proposed a learning-augmented set-
ting where we have access to some auxiliary information about the input data set. This is motivated
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by the fact that in practice we expect the dataset of interest to have exploitable structures relevant to
the optimal clustering. For instance, a classifier’s predictions of points in a dataset can help group
similar instances together. This notion was formalized in Ergun et al. (2022) by assuming that we
have access to a predictor in the form of a labelling P = P1 ∪ · · · ∪ Pk (all the points in Pi have
the same label i ∈ [k]), such that there exist an unknown optimal clustering P = P ∗

1 ∪ · · · ∪ P ∗
k ,

an associated set of centers C = (c∗1, . . . , c
∗
k) that achieve the optimally low clustering cost OPT (∑︁

i∈[k] cost(Pi, {c∗i }) = OPT), and a known label error rate α such that:

|Pi ∩ P ∗
i | ≥ (1− α)max(|Pi|, |P ∗

i |)

In simpler terms, the auxiliary partitioning (P1, . . . , Pk) is close to some optimal clustering: each
predicted cluster has at most an α-fraction of points from outside its corresponding optimal cluster,
and there are at most an α-fraction of points in the corresponding optimal cluster not included in
predicted cluster. The predictor, in other words, has at most α false positive and false negative rate
for each label.

Observe that even when the predicted clusters Pi are close to a set of true clusters P ∗
i in the sense

that the label error rate α is very small, computing the means or medians of Pi can lead to arbitrarily
bad solutions. It is known that for k-means the point that is allocated for an optimal cluster should
simply be the average of all points in that cluster (this can be seen by simply differentiating the
convex 1-mean objective and solving for the minimizer). However, a single false positive located
far from the cluster can move this allocated point arbitrarily far from the true points in the cluster
and drive the cost up arbitrarily high. This problem requires the clustering algorithms to process the
predicted clusters in a way so as to preclude this possibility.

Using tools from the robust statistics literature, the authors of Ergun et al. (2022) proposed a ran-
domized algorithm that achieves a (1 + 20α)-approximation given a label error rate α < 1/7 and
a guarantee that each predicted cluster has Ω

(︁
k
α

)︁
points. For the k-medians problem, the authors

of Ergun et al. (2022) also proposed an algorithm that achieves a (1 + α′)-approximation if each
predicted cluster contains Ω

(︁
n
k

)︁
points and a label rate α at most O

(︂
α′4

k log k
α′

)︂
, where the big-Oh

notation hides some small unspecified constant, and α′ < 1.

The restrictions for the label error rate α to be small in both of the algorithms of Ergun et al. (2022)
lead us to investigate the following question:

Is it possible to design a k-means and a k-medians algorithm that achieve (1 + α)-approximate
clustering when the predictor is not very accurate?

1.1 OUR CONTRIBUTIONS

In this work, we not only give an affirmative answer to the question above for both the k-means
and the k-medians problems, our algorithms also have improved bounds on the clustering cost,
while preserving the time complexity of the previous approaches and removing the requirement on
a lower bound on the size of each predicted cluster.

For learning-augmented k-means, we modify the main subroutine of the previous randomized algo-
rithm to get a deterministic method that works for all α < 1/2, which is the natural breaking point
(as explained below). In the regime where the k-means algorithm of Ergun et al. (2022) applies, we
get improve the approximation factor to 1 + 7.7α. For the larger domain α ∈ [0, 1/2), we derive a
more general expression as reproduced in table 1. Furthermore, our algorithm has better bound on
the clustering cost compared to that of the previous approach, while preserving the O(md logm)
runtime and not requiring a lower bound on the size of each predicted cluster.

Our k-medians algorithm improves upon the algorithm in Ergun et al. (2022) by achieving a
(1 + O(α))-approximation for α < 1/2, thereby improving both the range of α as well as the
dependence of the approximation factor on the label error rate from bi-quadratic to near-linear. For
success probability 1− δ, our runtime is O( 1

1−2αmd log3 m
α log k log(k/δ)

(1−2α)δ log k
δ ), so we see that by

setting δ = 1/poly(k), we have just a logarithmic dependence in the run-time on k, as opposed to a
polynomial dependence.
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Work, Problem Approx. Factor Label Error Range Time Complexity
Ergun et al. (2022), k-Means 1 + 20α ( 10 logm√

m
, 1/7) O(md logm)

Algorithm 1, k-Means 1 + 5α−2α2

(1−2α)(1−α) [0,1/2) O(md logm)

1 + 7.7α [0, 1/7)

Ergun et al. (2022), k-Medians 1 + Õ((kα)1/4) small constant O(md log3 m+
poly(k, logm))

Algorithm 2, k-Medians 1 + 7+10α−10α2

(1−α)(1−2α) [0, 1/2)
Õ
(︂

1
1−2αmd

log3 m log2 k
δ

)︁
Table 1: Comparison of learning-augmented k-means and k-medians algorithms. We recall that m is
the data set size, d is the ambient dimension, α is the label error rate, and δ is the failure probability
(where applicable). The success probability of the k-medians algorithm of Ergun et al. (2022) is
1− poly(1/k). The Õ notation hides some log factors to simplify the expressions.

Upper bound on α. Note that if the error label rate α equals 1/2, then even for three clusters there
is no longer a clear relationship between the predicted clusters and the related optimal clusters - for
instance given three optimal clusters P ∗

1 , P
∗
2 , P

∗
3 with equally many points, if for all i ∈ [3], the

predicted clusters Pi consist of half the points in P ∗
i and half the points in P ∗

(i+1) mod 3, then the
label error rate α = 1/2 is achieved, but there is no clear relationship between P ∗

i and Pi. In other
words, it is not clear whether the predicted labels give us any useful information about an optimal
clustering. In this sense, α = 1/2 is in a way a natural stopping point for this problem.

1.2 RELATED WORK

This work belongs to a growing literature on learning-augmented algorithms. Machine learning
has been used to improve algorithms for a number of classical problems, including data structures
(Kraska et al., 2018; Mitzenmacher, 2018; Lin et al., 2022), online algorithms (Purohit et al., 2018),
graph algorithms (Khalil et al., 2017; Chen et al., 2022a;b), computing frequency estimation (Du
et al., 2021) , caching (Rohatgi, 2020; Wei, 2020), and support estimation (Eden et al., 2021). We
refer the reader to Mitzenmacher & Vassilvitskii (2020) for an overview and applications of the
framework.

Another relevant line of work is clustering with side information. The works Balcan & Blum (2008);
Awasthi et al. (2014); Vikram & Dasgupta (2016) studied an interactive clustering setting where
an oracle interactively provides advice about whether or not to merge two clusters. Basu et al.
(2004) proposed an active learning framework for clustering, where the algorithm has access to a
predictor that determines if two points should or should not belong to the same cluster. Ashtiani et al.
(2016) introduced a semi-supervised active clustering framework where the algorithm has access to
a predictor that answers queries whether two particular points belong in an optimal clustering. The
goal is to produce a (1 + α)-approximate clustering while minimizing the query complexity to the
oracle.

Approximation stability, proposed in Balcan et al. (2013), is another assumption proposed to cir-
cumvent the NP-hardness of approximation for k-means clustering. More formally, the concept
of (c, α)-stability requires that every c-approximate clustering is α-close to the optimal solution in
terms of the fraction of incorrectly clustered points. This is different from our setting, where at most
an α fraction of the points are incorrectly clustered and can worsen the clustering cost arbitrarily.

Gamlath et al. (2022) studies the problem of k-means clustering in the presence of noisy labels,
where the cluster label of each point created by either an adversarial or a random perturbation of the
optimal solution. Their Balanced Adversarial Noise Model assumes that the size of the symmetric
difference between the predicted cluster Pi and optimal cluster P ∗

i is bounded by α|P ∗
i |. The algo-

rithm uses a subroutine with runtime exponential in k and d for a fixed α ≤ 1/4. In this work, we
have different assumptions on the predicted cluster cluster Pi and the optimal cluster P ∗

i . Moreover,
our focus is on efficient algorithms practical nearly linear-time algorithms that can scale to very
large datasets for k-means and k-medians clustering.
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2 k-MEANS

Algorithm 1 Deterministic Learning-augmented k-Means Clustering

Require: Data set P of m points, Partition P = P1 ∪ . . . Pk from a predictor, accuracy parameter
α
for i ∈ [k] do

for j ∈ [d] do
Let ωi,j be the collection of all subsets of (1− α)mi contiguous points in Pi,j .
Ii,j ← argminZ∈ωi,j

cost(Z,Z) = argminZ∈ωi,j

∑︁
z∈Z z2 − 1

|Z| (
∑︁

z′inZ z′)
2

end for
Let ˆ︁ci = (Ii,j)j∈[d]

end for
Return {ˆ︁c1, . . . ,ˆ︁ck}

We briefly recall some notation for ease of reference.

Definition 1. We make the following definitions:

1. The given data set is denoted as P , and m := |P |. The output of the predictor is a partition
(P1, . . . Pk) of P . Further, mi := |Pi|.

2. There exists an optimal partition (P ∗
1 , . . . , P

∗
k ) and centers (c∗1, . . . , c

∗
k) such that∑︁

i∈[k] cost(P
∗
i , c

∗
i ) = OPT, the optimally low clustering cost for the data set P . Further-

more, m∗
i := |P ∗

i |. For each cluster i ∈ [k], denote the set of true positives P ∗
i ∩ Pi = Qi.

Recall that |Qi| ≥ (1− α)max(|Pi|, |P ∗
i |), for some α < 1/2.

3. We denote the average of a set X by X . For the sets Xi and Pi we denote their projections
onto the j-th dimension by Xi,j and Pi,j , respectively.

Before we describe our algorithm, we recall why the naive solution of simply taking the average of
each cluster provided by the predictor is insufficient. Consider Pi, the set of points labeled i by the
predictor. Recall that the optimal 1-means solution for this set is its mean, Pi. Since the predictor is
not perfect, there might exist a number of points in Pi that are not actually in P ∗

i . Thus, if the points
in Pi \ P ∗

i are significantly far away from P ∗
i , they will increase the clustering cost arbitrary if we

simply use Pi as the center. The following well-known identity formalizes this observation.

Lemma 2 (Inaba et al. (1994)). Consider a set X ⊂ Rd of size n and c ∈ Rd,

cost(X, c) = min
c′∈Rd

cost(X, c′) + n · ∥c−X∥2 = cost(X,X) + n · ∥c−X∥2.

Ideally, we would like to be able to recover the set Qi = Pi ∩ P ∗
i and use the average of

Qi as the center. We know that |Qi \ P ∗
i | ≤ αm∗

i . By lemma 3, it is not hard to show

that cost(P ∗
i , Qi) ≤

(︂
1 + α

1−α

)︂
cost(P ∗

i , P
∗
i ) =

(︂
1 + α

1−α

)︂
cost(P ∗

i , c
∗
i ), which also implies a(︂

1 + α
1−α

)︂
- approximation for the problem.

Lemma 3. For any partition J1 ∪ J2 of a set J ⊂ R of size n, if |J1| ≥ (1− λ)n, then |J − J1|2 ≤
λ

(1−λ)n cost(J, J).

Since we do not have access to Qi, the main technical challenge is to filter out the outlier points in
Pi and construct a center close to Qi. Minimizing the distance of the center to Qi implies reducing
the distance to c∗i as well as the clustering cost.

Our algorithm for k-means, algorithm 1, iterates over all clusters given by the predictor and finds a
set of contiguous points of size (1 − α)mi with the smallest clustering cost in each dimension. At
the high level, our analysis shows that the average of the chosen points, Ii,j , is not too far away from
that of the true positives, Qi,j . This also implies that the additive clustering cost of Ii,j would not
be too large. Since we can analyze the clustering cost by bounding the cost in every cluster i and
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dimension j, for simplicity we will not refer to a specific i and j when discussing the intuition of
the algorithm. The proofs of the following lemmas and theorem are included in the appendix.

Note that there can be multiple optimal solutions in the optimization step. The algorithm can either
be randomized by choosing an arbitrary set, or can also be deterministic by always choosing the first
optimal solution. Lemma 4 shows that the optimization step guarantees that Ii,j has the smallest
clustering cost with respect to all sets of size (1− α)mi in Pi,j .
Lemma 4. For all i ∈ [k], j ∈ [d], let ω′

i,j be the collection of all subsets of (1 − α)mi points in
Pi,j . Then

cost(Ii,j , Ii,j) = min
Z′∈ω′

i,j

cost(Z ′, Z ′).

Since we know that |Qi,j | ≥ (1 − α)mi, it can be shown from lemma 4 that the cost of the set Ii,j
is smaller than that of Qi,j . More precisely,

cost(Ii,j , Ii,j) ≤
(1− α)mi

|Qi|
cost(Qi,j , Qi,j). (1)

With this fact, we are ready to bound the clustering cost by bounding |Ii,j −Qi,j |2,

|Ii,j −Qi,j |2 ≤ 2|Ii,j − Ii,j ∩Qi,j |2 + 2|Ii,j ∩Qi,j −Qi,j |2.

Using lemma 3, we can bound |Ii,j − Ii,j ∩Qi,j |2 and |Ii,j ∩Qi,j − Qi,j |2 respectively by
cost(Ii,j , Ii,j) and cost(Qi,j , Qi,j). Combining this fact with eq. (1), we can bound, |Ii,j − Qi,j |2
by cost(Qi,j , Qi,j).
Lemma 5. The following bound holds:

|Ii,j −Qi,j |2 ≤
4α

1− 2α

cost(Qi,j , Qi,j)

|Qi|
.

Notice that lemma 5 also applies to any set in ωi,j with cost smaller than the expected cost of a subset
of size (1 − α)mi drawn uniformly at random from Qi,j . Instead of repeatedly sampling different
subsets of Qi,j and returning the one with the lowest clustering cost, the optimization step not only
simplifies the analysis of the algorithm, but also guarantees that we find such a subset efficiently.
This is the main innovation of the algorithm.

In the notations of lemma 2, we can consider c = Ii,j , P
∗
i,j = X,m∗

i = n. Thus, we want to

bound |P ∗
i,j − Ii,j |2 by

cost(P∗
i,j ,P

∗
i,j)

m∗
i

to achieve a (1 +O(α))-approximation. Recall that we bound

|Ii,j −Qi,j |2 by cost(Qi,j ,Qi,j)
|Qi| in lemma 5. In lemma 6 we relate cost(Qi,j , Qi,j) to cost(P ∗

i,j , P
∗
i,j)

as follows,

cost(P ∗
i,j , P

∗
i,j) ≥

1− α

α
m∗

i |P ∗
i,j −Qi,j |2 + cost(Qi,j , Qi,j)

We can then apply lemma 5 to bound |P ∗
i,j − Ii,j |2 by

cost(P∗
i,j ,P

∗
i,j)

m∗
i

.

Lemma 6. The following bound holds:

|P ∗
i,j − Ii,j |2 ≤ cost(P ∗

i,j , P
∗
i,j)

(︃
α

1− α
+

4α

(1− 2α)(1− α)

)︃
/m∗

i

Applying lemma 6 and lemma 2 to all i ∈ [K], j ∈ [d], we are able to bound the total clustering
cost.
Theorem 7. Algorithm 1 is a deterministic algorithm for k-means clustering such that given
a data set P ∈ Rm×d and a partition (P1, . . . , Pk) with error rate α < 1/2, it outputs a(︂
1 +

(︂
α

1−α + 4α
(1−2α)(1−α)

)︂)︂
-approximation in time O (dm logm) .

Corollary 8. For α ≤ 1/7, algorithm 1 achieves a clustering cost of (1 + 7.7α)OPT.

5



Published as a conference paper at ICLR 2023

3 k-MEDIANS

In this section we describe our algorithm for learning-augmented k-medians clustering and a theoret-
ical bound on the clustering cost and the run-time. Our algorithm works for ambient spaces equipped
with any metric dist(·, ·) for which it is possible to efficiently compute the geometric median, which
is the minimizer of the 1-medians clustering cost. For instance, it is known from prior work (Cohen
et al., 2016) that the geometric median with respect to the ℓ2-metric can be efficiently calculated,
and appealing to this result as a subroutine allows us to derive a guarantee for learning-augmented
k-medians with respect to the ℓ2 norm.

Theorem 9. (Cohen et al. (2016)) There is an algorithm that computes a (1 + ϵ)-approximation
to the geometric median of a set of size n in d-dimensional Euclidean space with respect to the ℓ2
distance metric with constant probability in O(nd log3(n/ϵ)) time.

Looking ahead at the pseudocode of algorithm 2, we see that to eventually derive a bound on the
time complexity, we would need to account for adjusting the success probability in the many calls
to theorem 9.

Corollary 10. It follows from theorem 9 that with probability 1− δ
2k , we have that for all j ∈ [R],

cost(Pi \ P ′
i ,ˆ︁cji ) is a (1 + γ)-approximation to the optimal 1-median cost for Pi \ P ′

i while taking
time O(mid log

3(mi/γ) log(Rk/δ)).

We refer the reader to definition 1 for all notation that is undefined in this section; the only additional
notation we introduce is the following definition.

Definition 11. We make the following definitions:

1. We denote the optimal clustering cost of P by OPT, and the optimal 1-median clustering
cost of P ∗

i by OPTi, with which notation we have that
∑︁

i∈[k] OPTi = OPT.

2. We denote the distance dist(x, y) between two points by ∥x− y∥.

We now describe at a high-level a run of our algorithm. Algorithm 2 operates sequentially on each
cluster estimate; for the cluster estimate Pi, it samples a point x ∈ Pi uniformly at random, and
removes from Pi the ⌈αmi⌉-many points that lie furthest from x. It then computes the median of
the clipped set, which is where we appeal to an algorithm for the geometric median, for instance
theorem 9 when the ambient metric for the input data set is the ℓ2 metric. It turns out that this
subroutine already gives us a good median for the cluster P ∗

i with constant probability (lemma 14);
to boost the success probability we repeat this subroutine some R-many times (the exact expression
is given in the pseudocode and justified in lemma 15), and pick the median with the lowest cost,
denoted ˆ︁ci. Collecting the ˆ︁ci across i ∈ [k], we get our final solution {ĉ1, . . . , ĉk}.

Algorithm 2 Learning-augmented k-Medians Clustering

Require: Data set P of m points, Partition P = P1 ∪ . . . Pk from a predictor, accuracy parameter
α < 1/2
for i ∈ [k] do

Let R = 2
1−2α log 2k

δ

for j ∈ [R] do
Sample x ∼ Pi u.a.r.
Let P ′

i be the ⌈αmi⌉ points farthest from xˆ︁cji ← median of Pi \ P ′
i .

end for
Let ˆ︁ci be the ˆ︁cji with minimum cost

end for
Return {ĉ1, . . . , ĉk}

Although our algorithm itself is relatively straightforward, the analysis turns out to be more involved.
We trace the proof at a high level in this section and mention the main steps, and defer all proofs to
the appendix.
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We see that it would suffice to allocate a center that works well for the true cluster P ∗
i , but we only

have access to the set Pi with the promise that they have a significant overlap (as characterized by
α). Fixing an arbitrary true median c∗i , one key insight is that the “false" points, i.e. points in Pi\P ∗

i
will only significantly distort the median if they happen to lie far from c∗i . If there were a way to
identify and remove these false points which lie far from c∗i , then simply computing the geometric
median of the clipped data set should work well.

By a direct application of Markov’s inequality it is possible to show that a point x picked uniformly
at random will in fact lie at a distance on the order of the average clustering cost OPTi/mi with
constant probability, as formalized in lemma 12.
Lemma 12. With probability 1−2α

2 , ∥x− c∗i ∥ ≤ 2OPTi/mi.

As we will condition on this good event holding, it will be convenient to introduce the notation E .
Definition 13. We let E denote the event that ∥x− c∗i ∥ ≤ 2OPTi/mi.

Having identified a good point x to serve as a proxy for where the true median c∗i lies, we need to
figure out a good way to clip the data set so as to avoid false points which lie very far from c∗i . We
observe that since there are guaranteed to be at most ⌈αn⌉-many false points, if we were to remove
the ⌈αn⌉-many points that lie farthest from x (denoted P ′

i ), then we either remove false points that
lie very far from c∗i , or true points (P ∗

i ∩P ′
i ) which are at the same distance from c∗i as the remaining

false points (the points in Pi\(P ′
i ∪ P ∗

i ). In particular, this implies that the impact of the remaining
false points is roughly dominated by the clustering cost of an equal number of true points, and we
are able to exploit this to show that the clustering cost of Pi\P ′

i with respect to its own median
estimate ˆ︁ci is already close to that of the true center P ∗

i .

Lemma 14. Conditioned on E , cost(Pi \ P ′
i ,ˆ︁cji ) ≤ (1 + 5α)OPTi.

Since the event E that the randomly sampled point x is close to a true median c∗i is true only with
constant probability, we boost the success probability by running this subroutine some R times and
letting ˆ︁ci be the median estimate with respect to which the respective clipped data set had the lowest
clustering cost.

Lemma 15. For R = O
(︂

1
(1−2α) log

(︁
2k
δ

)︁)︂
many repetitions, with probability at least 1 − δ

2k , we

have that cost(Pi \ P ′
i , ˆ︁ci) ≤ (1 + 5α)OPTi.

We see from lemma 21 that the set Pi\P ′
i differs from the true positives Pi ∩ P ∗

i by sets of size at
most ⌈αn⌉. It follows that as long as the distance between ˆ︁ci and c∗i is on the order of OPTi/n,
they will not influence the clustering cost by more than an O(αOPTi) additive term, which we will
be able to absorb into the (1 + O(α)) multiplicative approximation factor. We formalize this in
lemma 16.
Lemma 16. If cost(Pi \ P ′

i , ˆ︁ci) ≤ (1 + 5α)OPT, then ∥ˆ︁ci − c∗i ∥ ≤ 2+5α
(1−2α)

OPTi

n .

We finally put everything together to show that the clustering cost of the set of true points Pi ∩ P ∗
i

with respect to the estimate ˆ︁ci is only at most an additive O(αOPTi) more than the cost with respect
to the true median c∗i . The key technical point in the analysis is that we can only appeal to the fact
that the cost of Pi\P ′

i is close to OPTi, and we cannot directly reason about ˆ︁ci apart from appealing
to lemma 16.

Lemma 17. With probability 1− δ/k, cost(Pi ∩ P ∗
i , ˆ︁ci) ≤ cost(Pi ∩ P ∗

i , c
∗
i ) +

(5α+10α2)OPTi

1−2α .

We can now derive our main cost bound stated in lemma 18. Doing so only requires that we account
for the mislabelled points P ∗

i \Pi which were not accounted for during our clustering. Again, from
lemma 16 it suffices to appeal to the fact that the estimate ˆ︁ci lies within an O(αOPTi/n) distance
of the true median c∗i .

Lemma 18. With probability 1− δ/k, cost(P ∗
i , ĉi) ≤ (1 + cα)OPTi for c = 7+10α−10α2

(1−α)(1−2α) .

We now formalize our main cost bound, success probability and run-time guarantees in theorem 19.
Theorem 19. There is an algorithm for k-medians clustering such that given a data set P and
a labelling (P1, . . . , Pk) with error rate α < 1/2, it outputs a set of centers ˆ︁C = (ˆ︁c1, . . . , ˆ︁ck)
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such that
∑︁

i∈k cost(P
∗
i , ˆ︁ci) ≤ (1 + cα)OPTi for c = 7+10α−10α2

(1−α)(1−2α) , and does so in time

O
(︂

1
1−2αmd log3

(︁
m
α

)︁
log

(︂
k log(k/δ)
(1−2α)δ

)︂
log

(︁
k
δ

)︁)︂
.

Proof. We see from lemma 18 that by applying our subroutine for 1-median clustering on each
labelled partition Pi, we get a center ˆ︁ci with the promise that with probability 1− δ

k , cost(P
∗
i , ˆ︁ci) =

(1 + cα)OPTi. By the union bound, it follows that with probability 1 − δ,
∑︁

i∈[k] cost(P
∗
i , ˆ︁ci) ≤∑︁

i∈k(1 + cα)OPTi = (1 + cα)OPT. Since P = P ∗
1 ∪ · · · ∪ P ∗

k , it follows that cost(P, Ĉ) =
(1 + cα)OPT.

The time taken to execute the 1-median clustering subroutine on partition Pi is R(mid +
O(mi logmi) + O(mid log

3(mi/γ) log(Rk/δ)) + mid). This is because we have R iterations,
in each of which we first compute the distances of all mi points from the sampled point x in time
mid, followed by sorting the mi many points by their distances in time O(mi logmi), followed by
O(log(Rk/δ)) many iterations of the median computation for the clipped sets (wherein we appeal
to corollary 10), followed by a calculation of the 1-median clustering cost achieved in time mid. We
recall that we set R = O

(︂
1

1−2α log k
δ

)︂
. Further, we note that the expression for the upper bound on

the time complexity is convex in mi, so if we were to denote the value of this expression on a set of
size mi by T (mi),it follows that

∑︁
i∈[k] T (mi) ≤ T

(︂∑︁
i∈[k] mi

)︂
= T (m). Putting everything to-

gether, we get that the net time complexity is O
(︂

1
1−2αmd log3

(︁
m
α

)︁
log

(︂
k log(k/δ)
(1−2α)δ

)︂
log

(︁
k
δ

)︁)︂
.

4 EXPERIMENTS

In this section, we evaluate algorithm 1 and algorithm 2 on real-world datasets. Our experiments
were done on a i9-12900KF processor with 32GB RAM. For all experiments, we fix the number
of points to be allocated k = 10, and report the average and the standard deviation error of the
clustering cost over 20 independent runs 1.

Datasets. We test the algorithms on the testing set of the CIFAR-10 dataset (Krizhevsky et al.,
2009) (m = 104, d = 3072), the PHY dataset from KDD Cup 2004 (KDD Cup 2004), and the
MNIST dataset (Deng, 2012) (m = 1797, d = 64). For the PHY dataset , we take m = 104 random
samples to form our dataset (d = 50).

Predictor description. For each dataset, we create a predictor by first finding good k-means and
k-medians solutions. Specifically, for k-means we initialize by kmeans++ and then run Lloyd’s
algorithm until convergence. For k-medians, we use the "alternating" heuristic (Park & Jun, 2009)
of the k-medoids problem to find the center of each cluster. In both settings, we use the label given
to each point by the k-means and k-medians solutions to form the optimal partition (P ∗

1 , . . . , P
∗
10)

(recall we set k = 10). In order to test the algorithms’ performance under different error rates of the
predictor, for each cluster i, we change the labels of the αmi points closest to the mean (or median)
to that of a random center. For every dataset, we generate the set of corrupted labels (P1, . . . , P10)
for α from 0.1 to 0.5. Furthermore, we use the same set of optimal partition (P ∗

1 , . . . , P
∗
10) across

all instances of the algorithms. By fixing the optimal partition, we can investigate the effects of
increasing α on the clustering cost.

Guessing the error rate. Note that in most situations, we will not have access to the error rate α
and must try out different guesses of α then return the clustering with the best cost. For algorithm 1,
algorithm 2, and the k-medians algorithm of Ergun et al. (2022), we iterate over 15 possible value
of α uniformly spanning the interval [0.1, 0.5]. For the k-means algorithm of Ergun et al. (2022),
the algorithm is defined for α < 1/5 (not to be confused with the assumption that α < 1/7 for the
bound on the clustering cost). Thus, the range is [0.1, 1/5] for the algorithm.

Baselines. We report the clustering costs of the initial optimal k-means and k-medians solution
(P ∗

1 , . . . , P
∗
10) along with that of the naive approach of taking the average and geometric median of

each group returned by the predictor, e.g., returning (P1, . . . , P10) for k-means. The two baselines
help us see how much the clustering cost increases for different error rate α. The clustering cost

1The repository is hosted at github.com/thydnguyen/LA-Clustering.
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Figure 1: Experimental comparison of algorithm 1 with prior work and baselines for k-Means
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Figure 2: Experimental comparison of algorithm 2 with prior work and baselines for k-Medians

of the algorithm without corruption can also be seen as a lower bound on the cost of the learning-
augmented algorithms. Following Ergun et al. (2022), we use random sampling as another baseline.
We first randomly select a q-fraction of points from each cluster for q varied from 1% to 50%. Then,
we compute the means and the geometric medians of the sampled points to calculate the clustering
cost. Finally, we return the clustering corresponding to the value of q with the best cost.

We use the implementation provided in Ergun et al. (2022) for their k-means algorithm. Although
both our k-medians algorithm and the algorithm in Ergun et al. (2022) use the approach in Co-
hen et al. (2016) as the subroutine to compute the geometric median in nearly linear time, we use
Weiszfeld’s algorithm as implemented in Pillutla et al. (2022), a well-known method to compute the
geometric medians, for the k-medians algorithms. To generate the predictions, we use Pedregosa
et al. (2011); Scikit-Learn-Contrib (2021) for the implementations of the k-means and k-medoids
algorithms, and the code provided in Ergun et al. (2022) for the implementation of their k-means
algorithm.

For algorithm 2, we can treat the number of rounds R as a hyperparameter. We set R = 1; as shown
below, this is already enough to achieve a good performance compared to the other approaches.

4.1 RESULTS

In Figure 1, we omit the Sampling and the Prediction approach for the PHY dataset as they have
much larger clustering cost than ours and the k-means algorithm in Ergun et al. (2022). For the
CIFAR-10 dataset, we observe that the approach in Ergun et al. (2022) has slightly better clustering
costs as α increases. For the MNIST dataset, our approach has slightly improved costs across all
values of α. For the PHY dataset, observe that algorithm 1 is comparable to the Ergun et al. (2022).

In summary, the mean clustering cost of the two learning-augmented algorithms are similar across
the datasets. It is important to note that our algorithm achieves similar clustering cost to that of
Ergun et al. (2022) without any variance as it is a deterministic technique.

Figure 2 shows that our our k-medians algorithm has the best clustering cost across all the datasets.
We also observe that the sampling approach outperforms the approach of Ergun et al. (2022) for the
CIFAR-10 and the MNIST datasets. This is expected since the latter algorithm sample a random
subset of a fixed size in each cluster while the baseline approach samples subsets of different sizes
and uses the one with the best cost.
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A APPENDIX

A.1 MISSING PROOFS FOR k-MEANS

Lemma 3. For any partition J1 ∪ J2 of a set J ⊂ R of size n, if |J1| ≥ (1− λ)n, then |J − J1|2 ≤
λ

(1−λ)n cost(J, J).

Proof. We know |J1| = (1− x)n, |J2| = xn for some x ≤ λ. It follows that
J = (1− x)J1 + xJ2

⇒ |J − J1| = x|J2 − J1|
and |J − J2| = (1− x)|J2 − J1|

⇒ |J − J2| =
1− x

x
|J − J1|. (2)

We now observe that we can write
cost(J, J) = cost(J1, J) + cost(J2, J).

and recall the identity
cost(Jb, J) = cost(Jb, Jb) + |Jb| · |J − Jb|2

for b ∈ {0, 1}. It then follows that
cost(J, J) ≥ |J1| · |J − J1|2 + |J2| · |J − J2|2

= (1− x)n|J − J1|2 + xn|J − J2|2

= (1− x)n|J − J1|2 +
(1− x)2n

x
|J − J1|2

=
(1− x)n

x
|J − J1|2

≥ (1− λ)n

λ
|J − J1|2

⇒ |J − J1|2 ≤
λ

(1− λ)n
cost(J, J).

Lemma 4. For all i ∈ [k], j ∈ [d], let ω′
i,j be the collection of all subsets of (1 − α)mi points in

Pi,j . Then
cost(Ii,j , Ii,j) = min

Z′∈ω′
i,j

cost(Z ′, Z ′).

Proof. Suppose I ′i,j = argminZ′∈ω′
i,j

cost(Z ′, Z ′). If I ′i,j ∈ ωi,j then we are done since we know:

cost(Ii,j , Ii,j) = min
Z∈ωi,j

cost(Z,Z)

If I ′i,j /∈ ωi,j , let a and b be the minimum point and maximum points in I ′i,j . We know there exists
a point p ∈ Pi,j ∩ (a, b) such that p /∈ I ′i,j . If |I ′i,j | = 2, then we have a contradiction since

cost(I ′i,j , I
′
i,j) = (b− a)2/2 > (b− p)2/2 = cost({b, p}, {b, p})

If |I ′i,j | ≥ 3, we know either a or b is the furthest point from I ′i,j \ {a, b} in the interval [a, b].
Suppose a is such a point, consider Ki,j = (I ′i,j \ a) ∪ p. We have the following identity,

cost(Ki,j \ p, p) = cost(Ki,j \ {p, b}, p) + |p− b|2

= cost(I ′i,j \ {a, b}, p) + |p− b|2

= cost(I ′i,j \ {a, b}, I ′i,j \ a, b) + |I
′
i,j \ {a, b}| · |p− I ′i,j \ {a, b}|

2 + |p− b|2

< cost(I ′i,j \ {a, b}, I ′i,j \ a, b) + |I
′
i,j \ {a, b}| · |a− I ′i,j \ {a, b}|

2 + |a− b|2

= cost(I ′i,j \ {a, b}, a) + |a− b|2

= cost(I ′i,j \ {a}, a).
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For the inequality, we used the fact that a is the furthest point from I ′i,j \ {a, b} in the interval [a, b],
and q ∈ (a, b). We have,

cost(Ki,j ,Ki,j) =
1

(1− α)mi

∑︂
y1,y2∈Ki,j

|y1 − y2|2

=
1

(1− α)mi

⎛⎝ ∑︂
y1,y2∈Ki,j\p

|y1 − y2|2 + cost(Ki,j \ p, p)

⎞⎠
=

1

(1− α)mi

⎛⎝ ∑︂
y1,y2∈I′

i,j\a

|y1 − y2|2 + cost(I ′i,j \ a, p)

⎞⎠
<

1

(1− α)mi

⎛⎝ ∑︂
y1,y2∈I′

i,j\a

|y1 − y2|2 + cost(I ′i,j \ a, a)

⎞⎠
=

1

(1− α)mi

∑︂
y1,y2∈I′

i,j

|y1 − y2|2

= cost(I ′i,j , I
′
i,j)

Hence, cost(Ki,j ,Ki,j) < cost(I ′i,j , I
′
i,j) and we have a contradiction.

Lemma 5. The following bound holds:

|Ii,j −Qi,j |2 ≤
4α

1− 2α

cost(Qi,j , Qi,j)

|Qi|
.

Proof. Consider the set Si,j = {(Qi,j−q)2 : q ∈ Qi,j}. Let Vi,j be a subset of size (1−α)m drawn
uniformly at random from Qi,j . Since the sample mean is an unbiased estimator for the population
mean, we know

1

(1− α)mi
E

⎡⎣ ∑︂
q∈Vi,j

(Qi,j − q)2

⎤⎦ = Si,j =
cost(Qi,j , Qi,j)

|Qi|
.

We also know that,

E

⎡⎣ ∑︂
q∈Vi,j

(Qi,j − q)2

⎤⎦ = E
[︁
cost(Vi,j , Qi,j)

]︁
≥ E

[︁
cost(Vi,j , Vi,j)

]︁
≥ cost(Ii,j , Ii,j),

where we used the fact that Ii,j is a subset of size (1 − α)|Pi| with minimum 1-means clustering
cost (lemma 4). Thus, we have

cost(Ii,j , Ii,j) ≤
(1− α)mi

|Qi|
cost(Qi,j , Qi,j).

Now, in the notation of lemma 3, we set J = Ii,j and J1 = Ii,j ∩ P ∗
i,j . Since we have that

|Ii,j | = (1 − α)mi and |Ii,j ∩ P ∗
i,j | = |Ii,j ∩ Qi,j | = (1 − |Pi,j\Qi,j |

1−mi
)(1 − α)mi, we can set

λ =
|Pi,j\Qi,j |

1−mi
, and get that

|Ii,j − Ii,j ∩Qi,j |2 ≤
|Pi,j \Qi,j | cost(Ii,j , Ii,j)

((1− α)mi − |Pi,j \Qi,j |)(1− α)mi

≤ |Pi,j \Qi,j | cost(Qi,j , Qi,j)

((1− α)mi − |Pi,j \Qi,j |)|Qi|

≤ α cost(Qi,j , Qi,j)

(1− 2α)|Qi|
,
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where we use the fact that |Pi,j \Qi,j | ≤ αmi. Also, by lemma 3,

|Qi,j − Ii,j ∩Qi,j |2 ≤
αmi cost(Qi,j , Qi,j)

(|Qi,j | − αmi)|Qi,j |
≤ α cost(Qi,j , Qi)

(1− 2α)|Qi|

We conclude the proof by noting that

|Ii,j −Qi,j |2 ≤ 2|Ii,j − Ii,j ∩Qi,j |2 + 2|Ii,j ∩Qi,j −Qi,j |2.

Lemma 6. The following bound holds:

|P ∗
i,j − Ii,j |2 ≤ cost(P ∗

i,j , P
∗
i,j)

(︃
α

1− α
+

4α

(1− 2α)(1− α)

)︃
/m∗

i

Proof. By eq. (2),

|P ∗
i,j − P ∗

i,j \Qi,j |2 =
(1− z)2

z2
|P ∗

i,j −Qi,j |2,

where z =
|P∗

i,j\Qi,j |
|P∗

i,j |
≤ α. We have

cost(P ∗
i,j , P

∗
i,j)

= cost(P ∗
i,j \Qi,j , P ∗

i,j) + cost(Qi,j , P ∗
i,j)

= cost(P ∗
i,j \Qi,j , P ∗

i,j \Qi,j) + zm∗
i |P ∗

i,j − P ∗
i,j \Qi,j |2 + cost(Qi,j , Qi,j)

+ (1− z)m∗
i |P ∗

i,j −Qi,j |2

=
1− z

z
m∗

i |P ∗
i,j −Qi,j |2 + cost(P ∗

i,j \Qi,j , P ∗
i,j \Qi,j) + cost(Qi,j , Qi,j)

≥ 1− α

α
m∗

i |P ∗
i,j −Qi,j |2 + cost(Qi,j , Qi,j).

Applying lemma 5, we have

cost(P ∗
i,j , P

∗
i,j) ≥

1− α

α
m∗

i |P ∗
i,j −Qi,j |2 +

1− 2α

4α
· (1− α)m∗

i |Ii,j −Qi,j |2.

By Cauchy-Schwarz,(︁
|P ∗

i,j −Qi,j |+ |Ii,j −Qi,j |
)︁2

≤
(︃

α

1− α
+

4α

(1− 2α)(1− α)

)︃
(︃
1− α

α
m∗

i |P ∗
i,j −Qi,j |2 +

1− 2α

4α
· (1− α)m∗

i |Ii,j −Qi,j |2
)︃
/m∗

i

≤ cost(P ∗
i,j , P

∗
i,j)

(︃
α

1− α
+

4α

(1− 2α)(1− α)

)︃
/m∗

i

We conclude the proof by the fact that |P ∗
i,j − Ii,j |2 ≤

(︁
|P ∗

i,j −Qi,j |+ |Ii,j −Qi,j |
)︁2

.

Theorem 7. Algorithm 1 is a deterministic algorithm for k-means clustering such that given
a data set P ∈ Rm×d and a partition (P1, . . . , Pk) with error rate α < 1/2, it outputs a(︂
1 +

(︂
α

1−α + 4α
(1−2α)(1−α)

)︂)︂
-approximation in time O (dm logm) .

14
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Proof. Recall that the k-means clustering cost can be written as the sums of the clustering cost in
each dimension. For every i ∈ [k], we have∑︂

i∈[k]

cost(P ∗
i , {ˆ︁cj}kj=1) ≤

∑︂
i∈[k]

cost(P ∗
i ,ˆ︁ci)

=
∑︂
i∈[k]

∑︂
j∈[d]

cost(P ∗
i,j ,ˆ︁ci,j)

=
∑︂
i∈[k]

∑︂
j∈[d]

cost(P ∗
i,j , P

∗
i,j) +m∗

i |ˆ︁ci,j − P ∗
i,j |

=
∑︂
i∈[k]

∑︂
j∈[d]

cost(P ∗
i,j , P

∗
i,j) +m∗

i |Ii,j − P ∗
i,j |

≤
∑︂
i∈[k]

∑︂
j∈[d]

(︃
1 +

(︃
α

1− α
+

4α

(1− 2α)(1− α)

)︃)︃
cost(P ∗

i,j , P
∗
i,j)

=

(︃
1 +

(︃
α

1− α
+

4α

(1− 2α)(1− α)

)︃)︃ ∑︂
i∈[k]

cost(P ∗
i , c

∗
i ).

The inequality is due to lemma 6.

We analyze the runtime of algorithm 1. Notice for every i ∈ [k], j ∈ [d], computing Ii,j involves
sorting the points Pi,j , iterating from the smallest to the largest point, and taking the average of the
interval in ωi,j with the smallest cost. This takes O (mi logmi) time. Note that

∑︁
i∈[K] mi = m.

Thus, the total time over all i ∈ [k] and j ∈ [d] is O (dm logm) .

Corollary 8. For α ≤ 1/7, algorithm 1 achieves a clustering cost of (1 + 7.7α)OPT.

Proof. We recall that the generic guarantee for α < 1/2 is

cost(P, {ˆ︁c1, . . . ,ˆ︁ck}) ≤ (︃
1 +

(︃
α

1− α
+

4α

(1− 2α)(1− α)

)︃)︃
OPT.

We see that for α < 1/7, α
1−α ≤

7α
6 , and 4α

(1−2α)(1−α) ≤
49·4α
30 , so in sum the net approximation

factor is 1 + 7.7α.

A.2 MISSING PROOFS FOR k-MEDIANS

Lemma 12. With probability 1−2α
2 , ∥x− c∗i ∥ ≤ 2OPTi/mi.

Proof. We observe that cost(Pi∩P ∗
i , c

∗
i ) ≤ OPTi. It follows that Ex∼Pi∩P∗

i
[∥x−c∗i ∥] ≤ OPTi

|Pi∩P∗
i | ≤

OPTi

(1−α)mi
. By Markov’s inequality,

Pr

(︃
∥x− c∗i ∥ > (1 + ϵ) · OPTi

(1− α)mi

⃓⃓
x ∈ Pi ∩ P ∗

i

)︃
≤ 1

1 + ϵ

⇒
Pr

(︂
∥x− c∗i ∥ ≤

(1+ϵ)OPTi

(1−α)mi
∧ x ∈ Pi ∩ P ∗

i

)︂
P (x ∈ Pi ∩ P ∗

i )
≥ ϵ

1 + ϵ

Pr

(︃
∥x− c∗i ∥ ≤

(1 + ϵ)OPTi

(1− α)mi

)︃
≥ ϵ

1 + ϵ
P (x ∈ Pi ∩ P ∗

i )

≥ ϵ (1− α)

1 + ϵ

To get the stated bound we set ϵ = 1− 2α.

Lemma 14. Conditioned on E , cost(Pi \ P ′
i ,ˆ︁cji ) ≤ (1 + 5α)OPTi.
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We first define some notation for the sets of false positive and false negative points that occur in our
proof for lemma 14, and prove a technical lemma relating the sets Pi ∩ P ∗

i and Pi\P ′
i .

Definition 20. We make the following definitions:

1. Let E1 denote the event that ∥x− c∗i ∥ ≤ 2OPTi/n.

2. Let A denote the set of false negatives, i.e. P ∗
i ∩ P ′

i .

3. Let B denote the set of false positives, i.e. Pi\(P ′
i ∪ P ∗

i ).

To bound the clustering cost of Pi\P ′
i , in terms of the cost of Pi ∩ P ′

i , we first relate these two sets
in terms of the false positives B and the false negatives A.
Lemma 21. We can write Pi ∩ P ∗

i = ((Pi\P ′
i )\B) ∪ A (see definition 20 for the definitions of A

and B).

Proof. To see this we observe that

Pi\P ′
i = ((Pi\P ′

i ) ∩ P ∗
i ) ∪ ((Pi\P ′

i )\P ∗
i )

= ((Pi\P ′
i ) ∩ P ∗

i ) ∪B

⇒ (Pi\P ′
i ) ∩ P ∗

i = (Pi\P ′
i )\B.

We also have that

Pi ∩ P ∗
i = ((Pi ∩ P ∗

i ) ∩ P ′
i ) ∪ ((Pi ∩ P ∗

i )\P ′
i )

⇒ ((Pi ∩ P ∗
i )\P ′

i ) = (Pi ∩ P ∗
i )\((Pi ∩ P ∗

i ) ∩ P ′
i )

= (Pi ∩ P ∗
i )\A.

Since (Pi ∩ P ∗
i )\P ′

i = (Pi\P ′
i ) ∩ P ∗

i , we can identify the left hand sides in the last two displays
and write

(Pi ∩ P ∗
i )\A = (Pi\P ′

i )\B
⇒ Pi ∩ P ∗

i = ((Pi\P ′
i )\B) ∪A.

wherein we use that A = (Pi ∩ P ∗
i ) ∩ P ′

i .

We can now formalize our main argument showing that the clipped data set Pi\P ′
i has a clustering

cost close to that of the true cluster P ∗
i .

Proof of lemma 14. By lemma 21, we first observe that

cost(Pi \ P ′
i , c

∗
i ) = cost((Pi ∩ P ∗

i ), c
∗
i )− cost(A, c∗i ) + cost(B, c∗i ),

where A and B are defined as in definition 20. Again by lemma 21, Pi \ P ′
i = (Pi ∩ P ∗

i ) \ A ∪ B,
A ⊂ Pi ∩ P ∗

i and B ∩ (Pi ∩ P ∗
i ) = ∅, it follows that

|Pi \ P ′
i | = |Pi ∩ P ∗

i | − |A|+ |B|.
Further, we know that |Pi \ P ′

i | ≤ (1 − α)|Pi| and |Pi ∩ P ∗
i | ≥ (1 − α)|Pi|. It follows that

|B| ≤ |A| ≤ αn. Therefore, for every false positive p ∈ B, we can assign a unique corresponding
false negative np ∈ A arbitrarily. We observe that every point in A is farther from x than every point
in B, and so we can write

∥np − c∗i ∥≥∥np − x∥ − ∥x− c∗i ∥
≥∥p− x∥ − ∥x− c∗i ∥
≥∥p− c∗i ∥ − 2∥x− c∗i ∥

≥∥p− c∗i ∥ −
4OPTi

n

⇒ ∥p− c∗i ∥ ≤∥np − c∗i ∥+
4OPTi

n
.
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It follows that

cost(B, c∗i ) =
∑︂
p∈B

∥p− c∗i ∥

≤
∑︂
p∈B

∥np − c∗i ∥+
4OPTi

n

≤ cost(A, c∗i ) + 4αOPTi.

Returning to our expression for cost(Pi \ P ′
i ,m

∗
i ), we get that

cost(Pi \ P ′
i , c

∗
i ) = cost((Pi ∩ P ∗

i ) \A, c∗i ) + cost(B, c∗i )

= cost((Pi ∩ P ∗
i ), c

∗
i )− cost(A, c∗i ) + cost(B, c∗i )

≤ cost((Pi ∩ P ∗
i ), c

∗
i ) + 4αOPTi

≤ (1 + 4α)OPTi.

It follows that the optimal clustering cost for the set Pi \ P ′
i is at most (1 + 4α)OPTi, and hence

that cost(Pi \P ′
i ,ˆ︁cji ) ≤ (1+γ)(1+4α)OPTi ≤ (1+5α)OPTi, for suitably small γ ≤ α

1+4α .

Lemma 15. For R = O
(︂

1
(1−2α) log

(︁
2k
δ

)︁)︂
many repetitions, with probability at least 1 − δ

2k , we

have that cost(Pi \ P ′
i , ˆ︁ci) ≤ (1 + 5α)OPTi.

Proof. The probability E1 not holding for some ˆ︁cji is at most (1− 2α) /2. The probability of E1 not
holding for any of the ˆ︁cji is (1−(1− 2α) /2)R. It follows that for R = 2

1−2α ln
(︁
2k
δ

)︁
, the probability

of E1 not holding for any of the mj
i is at most

(1− (1− 2α)/2)R ≤ exp(−(1− 2α)/2)
R

≤ exp (− ln (2k/δ))

≤ δ

2k
.

It follows that with probability 1 − δ
2k , E1 holds for some ˆ︁cji and consequently by the union bound

cost(Pi \ P ′
i , ˆ︁ci) ≤ (1 + 5α)OPTi holds with probability 1− δ

k .

Lemma 16. If cost(Pi \ P ′
i , ˆ︁ci) ≤ (1 + 5α)OPT, then ∥ˆ︁ci − c∗i ∥ ≤ 2+5α

(1−2α)
OPTi

n .

Proof. By the reverse triangle inequality we have that for every point p ∈ P ∗
i ∩(Pi \P ′

i ), ∥ˆ︁ci−p∥ ≥
∥ˆ︁ci − c∗i ∥ − ∥p− c∗i ∥. Summing up across p, we get∑︂

p∈P∗
i ∩(Pi\P ′

i )

∥ˆ︁ci − p∥ ≥ |P ∗
i ∩ (Pi \ P ′

i )| · ∥ˆ︁ci − c∗i ∥ −
∑︂

p∈P∗
i ∩(Pi\P ′

i )

∥p− c∗i ∥

(1 + 5α)OPTi ≥ |P ∗
i ∩ (Pi \ P ′

i )| · ∥ˆ︁ci − c∗i ∥ −OPTi

⇒ |P ∗
i ∩ (Pi \ P ′

i )| · ∥ˆ︁ci − c∗i ∥ ≤ ((1 + 5α) + 1)OPTi

⇒ ∥ˆ︁ci − c∗i ∥ ≤
(2 + 5α)OPTi

(1− 2α)mi
.

Lemma 17. With probability 1− δ/k, cost(Pi ∩ P ∗
i , ˆ︁ci) ≤ cost(Pi ∩ P ∗

i , c
∗
i ) +

(5α+10α2)OPTi

1−2α .

Proof. From corollary 10, we know that with probability 1− δ
2k , the following bound holds:

cost(Pi \ P ′
i , ˆ︁ci) ≤ (1 + γ)cost(Pi \ P ′

i , c
′
i),

17
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where γ ≤ α
(1+4α) and c′i is an optimal 1-median for Pi\P ′

i . Also, it follows by definition that
cost(Pi\P ′

i , c
′
i) ≤ cost(Pi\P ′

i , c
∗
i ). Further, from lemma 15 and lemma 16 it follows that with

probability 1− δ
2k ,

∥ˆ︁ci − c∗i ∥ ≤
(2 + 5α)OPTi

(1− 2α)mi
.

By the union bound, both these events hold simultaneously with probability 1− δ
k . Conditioning on

this being the case, since Pi ∩ P ∗
i = ((Pi\P ′

i )\B) ∪A, we can write

cost(Pi ∩ P ∗
i , ˆ︁ci)− cost(Pi ∩ P ∗

i , c
∗
i ) = (cost(Pi \ P ′

i , ˆ︁ci)− cost(Pi \ P ′
i , c

∗
i ))

+ (cost(B, c∗i )− cost(B, ˆ︁ci))
+ (cost(A, ˆ︁ci)− cost(A, c∗i ))

≤ (1 + γ)cost(Pi \ P ′
i , c

′
i)− cost(Pi\P ′

i , c
′
i)

+ |B| · ∥ˆ︁ci − c∗i ∥+ |A| · ∥ˆ︁ci − c∗i ∥
≤ γ · cost(Pi\P ′

i , c
∗
i ) + |B| · ∥ˆ︁ci − c∗i ∥+ |A| · ∥ˆ︁ci − c∗i ∥

≤ αOPTi + (αmi + αmi) ·
(2 + 5α)OPTi

(1− 2α)mi

≤ α+ 2α(2 + 5α)OPTi

(1− 2α)

=

(︁
5α+ 10α2

)︁
OPTi

1− 2α
.

Lemma 18. With probability 1− δ/k, cost(P ∗
i , ĉi) ≤ (1 + cα)OPTi for c = 7+10α−10α2

(1−α)(1−2α) .

Proof. We have that

cost(P ∗
i , ˆ︁ci) = cost(P ∗

i ∩ Pi, ˆ︁ci) + cost(P ∗
i \Pi, ˆ︁ci).

We bound the second summand as follows

cost(P ∗
i \Pi, ˆ︁ci) = cost(P ∗

i \Pi, c
∗
i ) + |P ∗

i \Pi| ·
(2 + 5α)OPTi

(1− 2α)ci

≤ cost(P ∗
i \Pi, c

∗
i ) +

α(2 + 5α)OPTi

(1− α) (1− 2α)
.

Bounding the first summand cost(P ∗
i ∩ Pi, ˆ︁ci) using the bound from above, we get

cost(P ∗
i , ˆ︁ci) = cost(P ∗

i ∩ Pi, c
∗
i ) +

(︁
5α+ 10α2

)︁
OPTi

1− 2α

+ cost(P ∗
i \Pi, c

∗
i ) +

α(2 + 5α)OPTi

(1− α) (1− 2α)

= cost(P ∗
i , c

∗
i ) +

(︁
5α+ 10α2 − 5α2 − 10α3 + 2α+ 5α2

)︁
OPTi

(1− α)(1− 2α)

= cost(P ∗
i , c

∗
i ) +

(︁
7α+ 10α2 − 10α3

)︁
OPTi

(1− α)(1− 2α)
.

B EXPERIMENTS ON RUNTIME

In this section, we report the runtimes of our k-means and k-medians approaches and the methods
in Ergun et al. (2022). We sample subsets of points from the CIFAR-10 and the PHY datasets,
and report the runtime (means and standard deviations) of the algorithms over 20 random runs. The
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Figure 3: Runtime comparison of algorithm 1 with Ergun et al. (2022)
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Figure 4: Runtime comparison of algorithm 2 with Ergun et al. (2022)

subset sizes are varied from 20% to 100% of the size of the datasets, k is fixed at 10 and α is fixed
at .2

For k-means, we observe in fig. 3 that the runtime of the two approaches are comparable, except
for subset sizes 80% and 100% of CIFAR-10 where ours is slightly slower. This is expected since
finding a subset of size (1− α)mi with the best clustering cost in our algorithm and computing the
shortest interval containing mi(1− 5α)/2 points in the approach of Ergun et al. (2022) both involve
sorting the points and takes O(mi logmi) time.

We observe similar trends in the k-medians setting in fig. 4. This is also expected given that the
runtimes of both algorithms are dominated by calls to compute the 1-median center of the filtered
points in each predicted cluster.
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