
Published as a conference paper at ICLR 2023

ON THE CONVERGENCE OF ADAGRAD(NORM) ON Rd:
BEYOND CONVEXITY, NON-ASYMPTOTIC RATE AND
ACCELERATION

Zijian Liu∗

New York University
zl3067@nyu.edu

Ta Duy Nguyen∗& Alina Ene
Boston University
{taduy,aene}@bu.edu

Huy L. Nguyen
Northeastern University
hu.nguyen@northeastern.edu

ABSTRACT

Existing analysis of AdaGrad and other adaptive methods for smooth convex
optimization is typically for functions with bounded domain diameter. In un-
constrained problems, previous works guarantee an asymptotic convergence rate
without an explicit constant factor that holds true for the entire function class. Fur-
thermore, in the stochastic setting, only a modified version of AdaGrad, different
from the one commonly used in practice, in which the latest gradient is not used
to update the stepsize, has been analyzed. Our paper aims at bridging these gaps
and developing a deeper understanding of AdaGrad and its variants in the standard
setting of smooth convex functions as well as the more general setting of quasar
convex functions. First, we demonstrate new techniques to explicitly bound the
convergence rate of the vanilla AdaGrad for unconstrained problems in both de-
terministic and stochastic settings. Second, we propose a variant of AdaGrad for
which we can show the convergence of the last iterate, instead of the average it-
erate. Finally, we give new accelerated adaptive algorithms and their convergence
guarantee in the deterministic setting with explicit dependency on the problem
parameters, improving upon the asymptotic rate shown in previous works.

1 INTRODUCTION

In recent years, the prevalence of machine learning models has motivated the development of new
optimization tools, among which adaptive methods such as Adam (Kingma & Ba, 2014), AmsGrad
(Reddi et al., 2018), AdaGrad (Duchi et al., 2011) emerge as the most important class of algorithms.
These methods do not require the knowledge of the problem parameters when setting the stepsize as
traditional methods like SGD, while still showing robust performances in many ML tasks.

However, it remains a challenge to analyze and understand the properties of these methods. Take
AdaGrad and its variants for example. In its vanilla scalar form, also known as AdaGradNorm, the
step size is set using the cumulative sum of the gradient norm of all iterates so far. The work of
Ward et al. (2020) has shown the convergence of this algorithm for non-convex funtions by bound-
ing the decay of the gradient norms. However, in convex optimization, usually we require a stronger
convergence criterion—bounding the function value gap. This is where we lack theoretical under-
standing. Even in the deterministic setting, most existing works (Levy, 2017; Levy et al., 2018; Ene
et al., 2021) rely on the assumption that the domain of the function is bounded. The dependence
on the domain diameter can become an issue if it is unknown or cannot be readily estimated. Other
works for unconstrained problems (Antonakopoulos et al., 2020; 2022) offer a convergence rate that
depends on the limit of the step size sequence. This limit is shown to exist for each function, but
without an explicit value, and more importantly, it is not shown to be a constant for the entire func-
tion class. This means that these methods essentially do not tell us how fast the algorithm converges
in the worst case. Another work by Ene & Nguyen (2022) gives an explicit rate of convergence for
the entire class but requires the strong assumption that the gradients are bounded even in the smooth
setting and the convergence guarantee has additional error terms depending on this bound.

∗Equal contribution, corresponding authors.

1

Published as a conference paper at ICLR 2023

In the stochastic setting, one common approach is to analyze a modified version of AdaGrad with
off-by-one step size, i.e. the gradient at the current time step is not taken into account when setting
the new step size. This is where the gap between theory and practice exists.

1.1 OUR CONTRIBUTION

In this paper, we make the following contributions. First, we demonstrate a method to show an
explicit non-asymptotic convergence rate of AdaGradNorm and AdaGrad on Rd in the deterministic
setting. Our method extends to a more general function class known as γ-quasar convex functions
with a weaker condition for smoothness. To the best of our knowledge, we are the first to prove this
result. Second, we present new techniques to analyze stochastic AdaGradNorm and offer an explicit
convergence guarantee for γ-quasar convex optimization on Rd with a mild assumption on the noise
of the gradient estimates. We propose two new variants of AdaGradNorm which demonstrate the
convergence of the last iterate instead of the average iterate as shown in AdaGradNorm. Finally, we
propose a new accelerated algorithm with two variants and show their non-asymptotic convergence
rate in the deterministic setting.

1.2 RELATED WORK

Adaptive methods There has been a long line of works on adaptive methods, including AdaGrad
(Duchi et al., 2011), RMSProp (Tieleman et al., 2012) and Adam (Kingma & Ba, 2014). AdaGrad
was first designed for stochastic online optimization; subsequent works (Levy, 2017; Kavis et al.,
2019; Bach & Levy, 2019; Antonakopoulos et al., 2020; Ene et al., 2021) analyzed AdaGrad and
various adaptive algorithms for convex optimization and generalized them for variational inequality
problems. These works commonly assume that the optimization problem is contrained in a set with
bounded diameter. Li & Orabona (2019) are the first to analyze a variant of AdaGrad for unbounded
domains where the latest gradient is not used to construct the step size, which differs from the
standard version of AdaGrad commonly used in practice. However, the algorithm and analysis of
Li & Orabona (2019) set the initial step size based on the smoothness parameter and thus they do
not adapt to it. Other works provide convergence guarantees for adaptive methods for unbounded
domains, yet without explicit dependency on the problem parameters (Antonakopoulos et al., 2020;
2022), or for a class of strongly convex functions (Xie et al., 2020). Another work by Ene & Nguyen
(2022) requires the strong assumption that the gradients are bounded even for smooth functions and
the convergence guarantee has additional error terms depending on the gradient upperbound. Our
work analyzes the standard version of AdaGrad for unconstrained and general convex problems and
shows explicit convergence rate in both the deterministic and stochastic setting.

Accelerated adaptive methods have been designed to achieve O(1/T 2) and O(1/
√
T) respectively

in the deterministic and stochastic setting in the works of Levy et al. (2018); Ene & Nguyen (2022);
Antonakopoulos et al. (2022). We show different variants and demonstrate the same but explicit
accelerated convergence rate in the deterministic setting for unconstrained problems.

Analysis beyond convexity The convergence of some variants of AdaGrad has been established
for nonconvex functions in the work of Li & Orabona (2019); Ward et al. (2020); Faw et al. (2022)
under various assumptions. Other works (Li & Orabona, 2020; Kavis et al., 2022) demonstrate the
convergence with high probability. We refer the reader to Faw et al. (2022) for a more detailed survey
on AdaGrad-style methods for nonconvex optimization. In general, the criterion used to study these
convergence rates is the gradient norm of the function, which is weaker than the function value
gap normally used in the study of convex functions. In comparison, we study the convergence of
AdaGrad via the function value gap for a broader notion of convexity, known as quasar-convexity,
as well as a more generalized definition of smoothness.

2 PRELIMINARIES

We consider the following optimization problem: minimizex∈RdF (x), where F is differentiable
satisfying F ∗ = infx∈Rd F (x) > −∞ and x∗ ∈ argminx∈Rd F (x) ̸= ∅. We will use the following
notations throughout the paper: a+ = max {a, 0}, a ∨ b = max {a, b}, [n] = {1, 2, · · · , n}, and
∥ · ∥ denotes the ℓ2-norm ∥ · ∥2 for simplicity.

2

Published as a conference paper at ICLR 2023

Algorithm 1 AdaGradNorm
Initialize: x1, η > 0
for t = 1 to T

bt =
√︂
b20 +

∑︁t
i=1 ∥∇F (xi)∥2

xt+1 = xt − η
bt
∇F (xt)

Algorithm 2 Stochastic AdaGradNorm
Initialize: x1, η > 0
for t = 1 to T

bt =
√︂

b20 +
∑︁t

i=1 ∥ˆ︁∇F (xi)∥2

xt+1 = xt − η
bt
∥ˆ︁∇F (xt)∥2

Additionally, we list below the assumptions that will be used in the paper.

1. γ-quasar convexity: There exists γ ∈ (0, 1] such that F ∗ ≥ F (x)+ 1
γ ⟨∇F (x), x∗−x⟩,∀x ∈ Rd

where x∗ ∈ argminx∈Rd F (x). When γ = 1, F is also known as star-convex.

1’. Convexity: F is convex. This stronger assumption implies that Assumption 1 holds with γ = 1.

2. Weak L-smoothness: ∃L > 0 such that F (x)− F ∗ ≥ ∥∇F (x)∥2/2L,∀x ∈ Rd.

2’. L-smoothness: ∃L > 0 such that F (x) ≤ F (y) + ⟨∇F (y), x− y⟩+ L
2 ∥x− y∥2,∀x, y ∈ Rd.

2”. L-smoothness: ∃L = diag
(︁
Li∈[d]

)︁
with Li > 0 such that F (x) ≤ F (y) + ⟨∇F (y), x − y⟩ +

1
2∥x− y∥2L,∀x, y ∈ Rd where ∥a∥L =

√︁
⟨a,La⟩.

In the stochastic setting, we assume that we have access to a stochastic gradient oracle ˆ︁∇F (x) that
is independent of the history of the randomness and it satisfies the following assumptions:

3. Unbiased gradient estimate: E[ˆ︁∇F (x)] = ∇F (x).

4. Sub-Weibull noise: E
[︂
exp

(︂
(∥ˆ︁∇F (x)−∇F (x)∥/σ)1/θ

)︂]︂
≤ exp(1) for some θ > 0.

Here, we give a brief discussion of our assumptions. Assumption 1 is introduced by Hinder et al.
(2020) and it is strictly weaker than Assumption 1’. Assumption 2 is a relaxation of Assumption 2’,
the latter is the standard definition of smoothness used in many existing works (see Guille-Escuret
et al. (2021) for a detailed comparison between different smoothness conditions). Assumption 2”
is used to analyze the AdaGrad algorithm which uses per-coordinate step sizes. Assumption 3
is a standard assumption in stochastic optimization problems. Assumption 4 is more general and
encapsulates sub-Gaussian (θ = 1/2, used in Li & Orabona (2019)) and sub-exponential noise
(θ = 1). We refer the reader to Vladimirova et al. (2020) for more discussion on sub-Weibull noise.

3 CONVERGENCE OF ADAGRADNORM ON Rd UNDER γ-QUASAR
CONVEXITY

We first turn our attention to AdaGradNorm (Algorithm 1) in the deterministic setting, which will
serve as the basis for the understanding of Stochastic AdaGradNorm (Algorithm 2) and determin-
istic AdaGrad (Algorithm 7). To the best of our knowledge, we are the first to present the explict
convergence rate of these three algorithms on Rd. Due to the space limit, we defer the theorem of
the convergence guarantee of AdaGrad and its proof to Section A.3 in the appendix.

3.1 ADAGRADNORM

Previous analysis of AdaGradNorm often aims at bounding the gradient norm of smooth nonconvex
functions, or is conducted for smooth convex functions in constrained problems with a bounded
domain. Bounding the gradient norm is strictly weaker than bounding the function value gap due
to the fact that ∥∇F (x)∥2 ≤ 2L(F (x) − F ∗), where L is the smoothness parameter. For convex
functions, the common analysis will always meet the following intermediate step

F (xt)− F ∗ ≤ bt
2η

[︁
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

]︁
+ Other terms.

Assuming a bounded domain is a way to making the terms bt
2η

[︁
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

]︁
tele-

scope after taking the sum over all iterations t. This is critical in the analysis, but at the same

3

Published as a conference paper at ICLR 2023

time leads to the dependence on the domain diameter, which can be hard to estimate. For un-
constrained problems, a natural approach is to divide the terms by bt, so that the remaining terms
1
2η

[︁
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

]︁
can telescope. Our key insight is that we can bound the function

value gap via the step size bt, which in turn can be bounded via the function value gap. This self-
bounding argument allows us to finally prove the convergence rate. This result holds under more
general conditions than convexity and smoothness (Assumptions 1 and 2).
Theorem 3.1. With Assumptions 1 and 2, AdaGradNorm admits∑︁T

t=1 F (xt)− F ∗

T
≤

(︂
2L∥x1−x∗∥2

γη + 4ηL
γ log+ 2ηL

γb0
+ b0

)︂(︂
∥x1−x∗∥2

γη + 2η
γ log+ 2ηL

γb0

)︂
T

Proof. Starting from the γ-quasar convexity of F , we have

F (xt)− F ∗ ≤ ⟨∇F (xt), xt − x∗⟩
γ

=
bt
γη

⟨xt − xt+1, xt − x∗⟩

=
bt
2γη

[︁
∥xt − x∗∥2 − ∥xt+1 − x∗∥2 + ∥xt+1 − xt∥2

]︁
Notice that xt+1 − xt = −ηb−1

t ∇F (xt). Dividing both sides by bt and taking the sum over t, we
obtain

T∑︂
t=1

F (xt)− F ∗

bt
≤ ∥x1 − x∗∥2

2γη
+

T∑︂
t=1

η

2γb2t
∥∇F (xt)∥2.

Note that F also satisfies Assumption 2, i.e., F (xt)− F ∗ ≥ ∥∇F (xt)∥2

2L . Therefore
T∑︂

t=1

F (xt)− F ∗

2bt
+

∥∇F (xt)∥2

4Lbt
≤

T∑︂
t=1

F (xt)− F ∗

bt
≤ ∥x1 − x∗∥2

2γη
+

T∑︂
t=1

η

2γb2t
∥∇F (xt)∥2

⇒
T∑︂

t=1

F (xt)− F ∗

bt
≤ ∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
η

γb2t
− 1

2Lbt

)︃
∥∇F (xt)∥2⏞ ⏟⏟ ⏞

A

.

We can bound the term A by the technique commonly used in the analysis of adaptive methods. Let
τ be the last t such that bt ≤ 2ηL

γ . If b1 > 2ηL
γ , we have A < 0 ≤ 2η

γ log+ 2ηL
γb0

. Otherwise

A ≤
τ∑︂

t=1

(︃
η

γb2t
− 1

2Lbt

)︃
∥∇F (xt)∥2 ≤

τ∑︂
t=1

η

γ

b2t − b2t−1

b2t
≤ η

γ

τ∑︂
t=1

log
b2t
b2t−1

≤ 2η

γ
log+

2ηL

γb0
.

Thus we always have A ≤ 2η
γ log+ 2ηL

γb0
, and obtain

T∑︂
t=1

F (xt)− F ∗

bt
≤ ∥x1 − x∗∥2

γη
+

2η

γ
log+

2ηL

γb0
,

which gives
T∑︂

t=1

F (xt)− F ∗ ≤ bT

(︃
∥x1 − x∗∥2

γη
+

2η

γ
log+

2ηL

γb0

)︃
.

Note that by Assumption 2 again, we have

bT =

⌜⃓⃓⎷b20 +

T∑︂
t=1

∥∇F (xt)∥2 ≤

⌜⃓⃓⎷b20 +

T∑︂
t=1

2L (F (xt)− F ∗).

Let ∆T =
∑︁T

t=1 F (xt)− F ∗, then

∆T ≤
√︂
b20 + 2L∆T

(︃
∥x1 − x∗∥2

γη
+

2η

γ
log+

2ηL

γb0

)︃
⇒ ∆T ≤

(︃
2L∥x1 − x∗∥2

γη
+

4ηL

γ
log+

2ηL

γb0
+ b0

)︃(︃
∥x1 − x∗∥2

γη
+

2η

γ
log+

2ηL

γb0

)︃
.

Dividing both sides by T , we get the desired result.

4

Published as a conference paper at ICLR 2023

When F is convex (which implies γ = 1), using the above theorem and convexity, we obtain the
following convergence rate for the average iterate:

Corollary 3.2. With Assumptions 1’ and 2, for x̄T =
∑︁T

t=1 xt

T , AdaGradNorm admits

F (x̄T)− F ∗ ≤

(︂
2L∥x1−x∗∥2

η + 4ηL log+ 2ηL
b0

+ b0

)︂(︂
∥x1−x∗∥2

η + 2η log+ 2ηL
b0

)︂
T

.

The rate in Theorem 3.1 can be improved by a factor 1/γ by replacing Assumption 2 by 2’. The
details and the proof are deferred into Section A.1 in the appendix.

3.2 STOCHASTIC ADAGRADNORM

In this section, we consider the stochastic setting where we only have access to an unbiased gradient
estimate ˆ︁∇F (xt) of ∇F (xt) (Assumption 3). As expected for a stochastic method, the accumulation
of noise is the reason that we can only expect an O(1/

√
T) convergence rate, instead of O(1/T).

This convergence rate is already shown by prior works (Levy et al., 2018) under the bounded do-
main assumption. However, in an unbounded domain, when extending our previous analysis to the
stochastic setting, that is, dividing both sides by bt, we will face several challenges. One of such is
the term b−1

t ⟨∇F (xt) − ˆ︁∇F (xt), xt − x∗⟩. To handle this term, often we see that existing works,
such as Li & Orabona (2019), analyze a modified version of Stochastic AdaGradNorm with off-by-

one stepsize, i.e., bt =
√︂

b20 +
∑︁t−1

i=1 ∥ˆ︁∇F (xi)∥2 in which the latest gradient ˆ︁∇F (xt) is not used
to calculate bt. This allows to decouple the dependency of bt on the randomness at time t, thus
in expectation E[b−1

t ⟨∇F (xt) − ˆ︁∇F (xt), xt − x∗⟩] = 0. Yet, this analysis does not apply to the
standard algorithm which is more commonly used in practice.

To the best of our knowledge, we are the first to propose a new technique that can show the con-
vergence of Algorithm 2 on Rd without going through the off-by-one stepsize. Here, we briefly
compared the assumptions in our analysis with the assumptions in Li & Orabona (2019). Assump-
tions 2’ and 3 used in both works are standard. Meanwhile, Assumptions 1 (γ-quasar convexity)
and 4 (sub-Weibull noise) in our analysis are much weaker than the convexity and sub-Gaussian
noise assumptions in Li & Orabona (2019). Besides, we note that, while the guarantee in Li

& Orabona (2019) is a bound on E
[︁√︂

(
∑︁T

t=1 F (xt)− F (x∗))/T
]︁
, we will present a bound for

E
[︁
(
∑︁T

t=1 F (xt) − F (x∗))/T
]︁
, which is a stronger criterion that is often used in convex analysis.

We also remark that the algorithm and analysis of Li & Orabona (2019) still require the smoothness
parameter to set the initial stepsize, thus their method is not fully adaptive.

The first observation is that, if we let ξt := ˆ︁∇F (xt) − ∇F (xt) be the stochastic error and MT :=

maxt∈[T] ∥ξt∥2, MT is bounded by σ2 log2θ eT
δ with probability at least 1 − δ (c.f. Lemma A.4 in

Appendix A), which can give a high probability bound on bT .

Lemma 3.3. Suppose F satisfies Assumptions 2’ and 4, if MT ≤ σ2 log2θ eT
δ , then

bT ≤ 2b0 +
4(F (x1)− F ∗)

η
+ 4ηL log+

ηL

b0
+ 4σ

⌜⃓⃓⎷T log2θ
eT

δ
log

(︄
1 +

16σ2T log2θ eT
δ

b20

)︄
.

Lemma 3.3 gives us an insight: bt = ˜︁O(1 + σ

√︂
t log2θ t). Note that this can be expected since

we know the classic choice of the step size for SGD is of the order of O(1 + σ
√
t). Hence, if

we are willing to accept extra log terms in the convergence guarantee, the appearance of log bt is
accommodatable. Next we will introduce our novel technique, which, to the best of our knowledge,
is the first method that allows us to analyze the standard Stochastic AdaGradNorm on Rd.
Lemma 3.4. Suppose F satisfies Assumptions 1 and 3 then

E

[︄∑︁T
t=1 F (xt)− F (x∗)

bT

]︄
≤ ∥x1 − x∗∥2

γη
+

2η

γ
E
[︃
MT

b20
+ log

bT
b0

]︃
. (1)

5

Published as a conference paper at ICLR 2023

Proof sketch. Starting from the γ-quasar convexity, with simple transformations, we obtain

F (xt)− F ∗ ≤ ⟨−ξt, xt − x∗⟩
γ

+
bt
2γη

(︂
∥xt − x∗∥2 − ∥xt+1 − x∗∥2 + ∥xt+1 − xt∥2

)︂
.

Here we introduce our novel technique: instead of dividing by bt, we divide both sides by 2bt − b0.
This divisor causes a slight non-uniformity between the coefficients of the distance terms ∥xt − x∗∥2
making the sum of them not telescoping. However, this is exactly what we want to handle the
difficult term ⟨−ξt,xt−x∗⟩

γ(2bt−b0)
which does not disappear after taking the expectation.

E
[︃
F (xt)− F ∗

2bt − b0

]︃
≤ E

[︄
⟨−ξt, xt − x∗⟩
γ(2bt − b0)

+
bt

2bt − b0
× ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 + ∥xt+1 − xt∥2

2γη

]︄
.

The key step is to use Cauchy-Schwarz inequality for the term

|⟨−ξt, xt − x∗⟩| ≤ λ

2
∥ξt∥2 +

1

2λ
∥xt − x∗∥2

with the appropriate coefficient λ so that the term ∥xt−x∗∥2 can be absorbed to make a telescoping
sum bt−1∥xt−x∗∥2

2bt−1−b0
− bt∥xt+1−x∗∥2

2bt−b0
. The remaining terms are free of x∗; hence can be more easily

bounded. We can obtain

E
[︃
F (xt)− F ∗

2bt − b0

]︃
≤ E

⎡⎢⎣Zt ∥ξt∥2 +
bt−1 ∥xt − x∗∥2

2γη(2bt−1 − b0)
− bt ∥xt+1 − x∗∥2

2γη(2bt − b0)
+

η
⃦⃦⃦ ˆ︁∇F (xt)

⃦⃦⃦2
2γb2t

⎤⎥⎦ ,

where Zt = η
γb0

(︂
1

2bt−1−b0
− 1

2bt−b0

)︂
. Now we have a telescoping sum bt−1∥xt−x∗∥2

2γη(2bt−1−b0)
−

bt∥xt+1−x∗∥2

2γη(2bt−b0)
. Taking the sum over t, we have

E

[︄
T∑︂

t=1

F (xt)− F ∗

2bt

]︄
≤ E

[︄
T∑︂

t=1

F (xt)− F ∗

2bt − b0

]︄

≤ ∥x1 − x∗∥2

2γη
+ E

[︄
T∑︂

t=1

Zt ∥ξt∥2
]︄
+ E

⎡⎢⎣ T∑︂
t=1

η
⃦⃦⃦ ˆ︁∇F (xt)

⃦⃦⃦2
2γb2t

⎤⎥⎦ .

Proceeding to bound each term, we will obtain Lemma 3.4.

We emphasize the following crucial aspect of Lemma 3.4: the inequality gives us a relationship
between the function gap and the stepsize bT , which we know how to bound with high probability
under Assumptions 2’ and 4. On the other hand, this relationship is not ideal due to the fact that on
the L.H.S. of (1), we have not obtained a decoupling between the function gap and bT . To this end,
we introduce the second novel technique. Let ∆T :=

∑︁T
t=1 F (xt)− F (x∗), we write

∆T = ∆T1E(δ) +∆T1Ec(δ)

where we define the event E(δ) =
{︂
MT ≤ σ2 log2θ eT

δ

}︂
. For the first term, when E(δ) happens,

we also know from Lemma 3.3 that the stepsize is bounded. Thus we can bound

E
[︁
∆T1E(δ)

]︁
= E

[︄∑︁T
t=1 F (xt)− F (x∗)

bT
bT1E(δ)

]︄
which leads us back to Lemma 3.4. We can bound the second term using a tail bound for the event
Ec(δ), knowing from the first observation that Pr [Ec(δ)] ≤ δ. From this insight, and using the
self-bounding argument as in the proof of Theorem 3.1, we finally obtain the following result.
Theorem 3.5. Suppose F satisfies Assumptions 1, 2’, 3 and 4, Stochastic AdaGradNorm admits

E

[︄∑︁T
t=1 F (xt)− F (x∗)

T

]︄
= O

(︄(︂
1 + poly

(︂
σ2 log2θ T, log(1 + σ2T log2θ T)

)︂)︂(︄ 1

T
+

σ logθ T√
T

)︄)︄
.

6

Published as a conference paper at ICLR 2023

Algorithm 3 AdaGradNorm-Last
Initialize: x1, η > 0,∆ > 0, pt > 0
for t = 1 to T

bt =
(︂
b2+∆
0 +

∑︁t
i=1

∥∇F (xi)∥2

pi

)︂ 1
2+∆

xt+1 = xt − η
bt
∇F (xt)

Algorithm 4 AdaGradNorm-Last
Initialize: x1, η > 0, δ ∈ [2/3, 1), pt > 0
for t = 1 to T

bt =
(︂
b20 +

∑︁t
i=1

∥∇F (xi)∥2

pi

)︂ 1
2

xt+1 = xt − η

bδt b
1−δ
t−1

∇F (xt)

Remark 3.6. In Theorem 3.5, when the deterministic setting is considered, i.e, by setting σ = 0, we
obtain the standard convergence rate E

[︁
(
∑︁T

t=1 F (xt)−F (x∗))/T
]︁
= O(1/T) as shown in Section

3.1. This means our analysis adapts to the noise parameter σ.

Finally, it is worth pointing out that even when we relax Assumption 2’ to Assumption 2, we can still
provide a convergence guarantee for Stochastic AdaGradNorm. We present the result in Theorem
A.9 in the appendix.

4 LAST ITERATE CONVERGENCE OF VARIANTS OF ADAGRADNORM FOR
γ-QUASAR CONVEX AND SMOOTH MINIMIZATION ON Rd

In Section 3, under Assumptions 1 and 2, we proved that the average iterate produced by AdaGrad-
Norm converges at the 1/T rate, i.e.,

(︂∑︁T
t=1 F (xt)− F ∗

)︂
/T = O(1/T). A natural question is

whether there exists an adaptive algorithm that can guarantee the convergence of the last iterate. In
this section, we give an affirmative answer by presenting two simple variants of AdaGradNorm and
show convergence of the last iterate under Assumptions 1 and 2’.

In Algorithm 3, by setting pi = i−1, ∥∇F (xi)∥2 has a bigger coefficient than in the standard
AdaGradNorm. Should we use the 1

2 -power (∆ = 0) instead of 1
2+∆ with ∆ > 0, bt will grow

faster compared with the same term in AdaGradNorm. We will see later that ∆ = 0 still leads to
the convergence of the last iterate. However, we first focus on the easier case with ∆ > 0 and state
convergence rate of Algorithm 3 in Theorem 4.1.
Theorem 4.1. With Assumptions 1 and 2’, by taking pt =

1
t in Algorithm 3, we have

F (xT+1)− F ∗ ≤

(︂
2
η

(︂
∥x1−x∗∥2

γη + h(∆) + g(∆)
)︂
+ b∆0

)︂ 1
∆
(︂

∥x1−x∗∥2

γη + h(∆) + g(∆)
)︂

T
where

h(∆) :=

⎧⎨⎩
(2+∆)η(ηL)∆

2 log+ ηL
b0

∆ ≥ 1
(2+∆)η2L

2b1−∆
0

log+ ηL
b0

∆ ∈ (0, 1)
and g(∆) :=

(2 + ∆)η

γ

(︃
2ηL

γ

)︃∆

log+
2ηL

γb0
.

An issue with variant 3 is that, when using 1
2+∆ -power, the stepsize ceases to be scale-invariant.

Algorithm 4 shows a different approach, using the scale-invariant power 1
2 , but a different stepsize

bδt b
1−δ
t−1 , for a constant δ ∈ [2/3, 1). The tradeoff is that the provable convergence rate of the second

variant depends exponentially on the smoothness parameter. We also note that, when δ = 1, we
obtain the same algorithm as when setting ∆ = 0 in the previous variant.
Remark 4.2. b0 in every algorithm is only for stabilization and is set to a constant that is very close
to 0 in practice. However, the first stepsize in Algorithm 4, i.e., bδ1b

1−δ
0 will explode. To avoid this

issue, we can simply set the first stepsize as b1 instead of bδ1b
1−δ
0 . We note that, under this change,

Algorithm 4 still admits a provable convergence rate. However, for simplicity, we keep bδ1b
1−δ
0 in

both the description of the algorithm and its analysis.
Theorem 4.3. With Assumptions 1 and 2’, by taking pt =

1
t in Algorithm 4, we have

F (xT+1)− F ∗ ≤
ηb0 exp

(︂
k(δ)
1−δ

)︂
k(δ)

T
,

7

Published as a conference paper at ICLR 2023

where k(δ) = ∥x1−x∗∥2

γη2 + ηL
b0

(︃
1−

(︂
b0
ηL

)︂ 1
δ

)︃+

+ 2
γδ

(︂
2ηL
γb0

)︂ 2
δ−2

log+ 2ηL
γb0

.

To finish this section, we briefly discuss the case when ∆ = 0 in Algorithm 3 or equivalently
δ = 1 in Algorithm 4. First, by seeing ∆ tends to 0, we can expect a convergence rate depending
exponentially on the problem parameters. When ∆ = 0, while we can still expect a bound of the
function gap via the final stepsize bT , bounding bT becomes problematic. In the proof of Theorem

4.1, to bound bT , we use the sum
∑︁T

t=1
∥∇F (xt)∥2

b2tpt
=
∑︁T

t=1

b2+∆
t −b2+∆

t−1

b2t
. This sum only admits a

lower bound in terms of bT when ∆ > 0, thus the argument does not work when ∆ = 0. However,
it is still possible to give an asymptotic rate under the γ-quasar convexity assumption. If we further
assume that F is convex, we can give a non-asymptotic rate. The main idea on how to bound bT is as
follows. Let τ be the last time such that bt ≤ ηL/2. The increment from bτ+1 to bT can be bounded
by observing that the increase in each step ∥∇F (xt)∥2 ≤ 2

3ptb
2
t . Moreover, the critical step is the

increase from bτ to bτ+1, which again can be analyzed via the function gap and smoothness. We
present the asymptotic and a non-symptotic convergence rate and their analysis in Sections B.4 and
B.5 in the appendix.

5 ACCELERATED VARIANTS OF ADAGRADNORM FOR CONVEX AND
SMOOTH MINIMIZATION ON Rd

In this section, by using the stronger Assumption 1’, we give two new algorithms that achieve the ac-
celerated rate O(1/T 2), matching the optimal rate in T for convex and smooth optimization for un-
constrained deterministic problems. Our new algorithms are adapted from the acceleration scheme
introduced in Auslender & Teboulle (2006) (see also Lan (2020)). They are also similar to existing
adaptive accelerated methods designed for bounded domains, including Levy et al. (2018); Ene et al.
(2021). However, previous analysis does not apply in unconstrained problems; we therefore have to
make necessary modifications.

To the best of our knowledge, in unconstrained problems under the deterministic setting, the only
existing analysis for an accelerated method was introduced in Antonakopoulos et al. (2022). Here
we discuss some limitations of this work. The convergence rate for the weighted average iterate
xT+1/2 is given by

f(xT+1/2)− f(x) ≤ O

(︃
1

T 2

(︂
Rh lim

t→∞
bt +Kh lim

t→∞
b2t

)︂)︃
where h is a Kh-strongly convex mirror map function, Rh = maxh(x) − minh(x) is the range
of h. This result is only applicable when the domain is unbounded but the range of the mirror map
is bounded. Even in the standard ℓ2 setup with h(x) = 1

2∥x∥
2, this assumption does not hold.

Moreover, due to the term limt→∞ bt, the above guarantee is dependent on the particular function.
Thus, while a standard convergence guarantee is applicable to say, all SVM models with Huber loss,
the above guarantee varies for each SVM model and there is no universal bound for all of them.

We further highlight some key differences between this work and ours. While the convergence rate
above depends on the convergence of the stepsize, for both our variants, we will show an explicit
convergence rate that holds universally for the entire function class. Second, the algorithm in Anton-
akopoulos et al. (2022) is based on an extra gradient method which requires to calculate gradients
twice in one iteration. Instead, our algorithms only need one gradient computation per iteration. Fi-
nally, our algorithms guarantee the convergence of the last iterate as opposed to that for the weighted
average iterate as shown above.

Algorithm 5 shows the first variant. For an accelerated method, the step size typically has the form

bt =
(︂
b20 +

∑︁t
i=1 si∥∇Fi∥2

)︂ 1
2

where ∇Fi is the gradient evaluated at time i, and si = O(i2).
However in order to be able to give an explicit convergence rate, Algorithm 5 uses a smaller bt with
power 1

2+∆ , with ∆ > 0. When ∆ = 0, we can only show an asymptotic convergence rate, similarly
to Antonakopoulos et al. (2022). We first focus on the case when ∆ > 0. In the appendix we will
discuss the convergence of the algorithm when ∆ = 0. We have the following theorem.

8

Published as a conference paper at ICLR 2023

Algorithm 5 AdaGradNorm-Acc
Initialize: x1 = w1, η > 0,∆ > 0, at >
0, qt > 0
for t = 1 to T

vt = (1− at)wt + atxt

bt =
(︂
b2+∆
0 +

∑︁t
i=1

∥∇F (vi)∥2

q2i

)︂ 1
2+∆

xt+1 = xt − η
qtbt

∇F (vt)

wt+1 = (1− at)wt + atxt+1

Algorithm 6 AdaGradNorm-Acc
Initialize: x1 = w1, η > 0, δ ∈ [2/3, 1), at >
0, qt > 0
for t = 1 to T
vt = (1− at)wt + atxt

bt =
(︂
b20 +

∑︁t
i=1

∥∇F (vi)∥2

q2i

)︂ 1
2

xt+1 = xt − η

qtbδt b
1−δ
t−1

∇F (vt)

wt+1 = (1− at)wt + atxt+1

Theorem 5.1. Suppose F satisfies Assumptions 1’ and 2’, let at = 2
t+1 , qt = 2

t in Alg. 5, then

F (wT+1)− F ∗ ≤ 4

T (T + 1)

(︄
2 ∥x∗ − x1∥2

η2
+

4h(∆)

η
+ b∆0

)︄ 1
∆
(︄
∥x∗ − x1∥2

2η
+ h(∆)

)︄
where

h(∆) =

⎧⎨⎩
(2+∆)(2ηL)∆−1Lη2

2 log+ 2ηL
b0

∆ ≥ 1
(2+∆)Lη2

2b1−∆
0

log+ 2ηL
b0

∆ ∈ (0, 1) .

Similarly to the second variant in the previous section, we also have a scale-invariant accelerated
algorithm, shown in Algorithm 6 using power 1

2 but a smaller stepsize bδt b
1−δ
t−1 . This algorithm also

has an exponential dependency on the problem parameters, which is given in the following theorem.
Remark 5.2. Similar to Remark 4.2, the first stepsize in Algorithm 6, i.e., bδ1b

1−δ
0 can be replaced by

b1. However, for simplicity, we keep bδ1b
1−δ
0 in both the description of the algorithm and its analysis.

Theorem 5.3. Suppose F satisfies Assumptions 1’ and 2’, let at = 2
t+1 , qt = 2

t in Alg. 6, then

F (wT+1)− F ∗ ≤
4ηb0 exp

(︂
2s(δ)
1−δ

)︂
s(δ)

T (T + 1)
,

where s(δ) = ∥x∗−x1∥2

2η2 + ηL
b0

(︃
1−

(︂
b0
2ηL

)︂ 1
δ

)︃+

.

Similarly to the previous section, we give a more detailed discussion of the convergence of the
Algorithm 5 when ∆ = 0 or equivalently Algorithm 6 when δ = 1 in Section C.4 in the appendix.
While we can still show an accelerated O(1/T 2) asymptotic convergence rate, we only present an
O(1/T 2 + 1/T) non-asymptotic rate. The difference between these algorithms and the ones in the
previous section is that the stepsize bt increases much faster. More precisely, the increment in each
step is now O(t2∥∇F (vt)∥2) instead of O(t∥∇F (xt)∥2). Thus we can only show an upperbound
for bt that grows linearly with time, which leads to the O(1/T 2 + 1/T) convergence rate.

6 CONCLUSION AND FUTURE WORK

In this paper, we go back to the most basic AdaGrad algorithm and study its convergence rate in gen-
eralized smooth convex optimization. We prove explicit convergence guarantees for unconstrained
problems in both the deterministic and stochastic setting. Building on these insights, we propose
new algorithms that exhibit last iterate convergence, with and without acceleration. We see our
work as primarily theoretical since the first and foremost goal is to understand properties of existing
algorithms that work well in practice. We refer the reader to the long line of previous works (Duchi
et al., 2011; Levy, 2017; Kavis et al., 2019; Bach & Levy, 2019; Antonakopoulos et al., 2020; Ene
et al., 2021; Ene & Nguyen, 2022; Antonakopoulos et al., 2022) that have already demonstrated the
behavior of AdaGrad and accelerated adaptive algorithms empirically.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

TN and AE were supported in part by NSF CAREER grant CCF-1750333, NSF grant III-1908510,
and an Alfred P. Sloan Research Fellowship. HN was supported in part by NSF CAREER grant
CCF-1750716 and NSF grant CCF-1909314.

The authors would like to thank Thien Hang Nguyen for contributing his ideas during our discus-
sions.

Reproducibility Statement. We include the full proofs of all theorems in the Appendix.

REFERENCES

Kimon Antonakopoulos, E Veronica Belmega, and Panayotis Mertikopoulos. Adaptive extra-
gradient methods for min-max optimization and games. arXiv preprint arXiv:2010.12100, 2020.

Kimon Antonakopoulos, Dong Quan Vu, Volkan Cevher, Kfir Levy, and Panayotis Mertikopoulos.
Undergrad: A universal black-box optimization method with almost dimension-free convergence
rate guarantees. In International Conference on Machine Learning, pp. 772–795. PMLR, 2022.

Alfred Auslender and Marc Teboulle. Interior gradient and proximal methods for convex and conic
optimization. SIAM Journal on Optimization, 16(3):697–725, 2006.

Francis Bach and Kfir Y Levy. A universal algorithm for variational inequalities adaptive to smooth-
ness and noise. In Conference on learning theory, pp. 164–194. PMLR, 2019.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Alina Ene and Huy L Nguyen. Adaptive and universal algorithms for variational inequalities with
optimal convergence. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pp. 6559–6567, 2022.

Alina Ene, Huy L Nguyen, and Adrian Vladu. Adaptive gradient methods for constrained convex
optimization and variational inequalities. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 7314–7321, 2021.

Matthew Faw, Isidoros Tziotis, Constantine Caramanis, Aryan Mokhtari, Sanjay Shakkottai, and
Rachel Ward. The power of adaptivity in sgd: Self-tuning step sizes with unbounded gradients
and affine variance. arXiv preprint arXiv:2202.05791, 2022.

Charles Guille-Escuret, Manuela Girotti, Baptiste Goujaud, and Ioannis Mitliagkas. A study of
condition numbers for first-order optimization. In Arindam Banerjee and Kenji Fukumizu (eds.),
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume
130 of Proceedings of Machine Learning Research, pp. 1261–1269. PMLR, 13–15 Apr 2021.
URL https://proceedings.mlr.press/v130/guille-escuret21a.html.

Oliver Hinder, Aaron Sidford, and Nimit Sohoni. Near-optimal methods for minimizing star-convex
functions and beyond. In Conference on learning theory, pp. 1894–1938. PMLR, 2020.

Ali Kavis, Kfir Y Levy, Francis Bach, and Volkan Cevher. Unixgrad: A universal, adaptive algorithm
with optimal guarantees for constrained optimization. Advances in Neural Information Processing
Systems, 32, 2019.

Ali Kavis, Kfir Levy, and Volkan Cevher. High probability bounds for a class of nonconvex al-
gorithms with adagrad stepsize. In 10th International Conference on Learning Representations
(ICLR), 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Guanghui Lan. First-order and stochastic optimization methods for machine learning. Springer,
2020.

10

https://proceedings.mlr.press/v130/guille-escuret21a.html

Published as a conference paper at ICLR 2023

Kfir Levy. Online to offline conversions, universality and adaptive minibatch sizes. Advances in
Neural Information Processing Systems, 30, 2017.

Kfir Y Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and acceler-
ation. Advances in Neural Information Processing Systems, 31, 2018.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. In The 22nd international conference on artificial intelligence and statistics, pp. 983–
992. PMLR, 2019.

Xiaoyu Li and Francesco Orabona. A high probability analysis of adaptive sgd with momentum.
arXiv preprint arXiv:2007.14294, 2020.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012.

Mariia Vladimirova, Stéphane Girard, Hien Nguyen, and Julyan Arbel. Sub-weibull distributions:
Generalizing sub-gaussian and sub-exponential properties to heavier tailed distributions. Stat, 9
(1):e318, 2020.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. The Journal of Machine Learning Research, 21(1):9047–9076, 2020.

Yuege Xie, Xiaoxia Wu, and Rachel Ward. Linear convergence of adaptive stochastic gradient de-
scent. In International conference on artificial intelligence and statistics, pp. 1475–1485. PMLR,
2020.

11

Published as a conference paper at ICLR 2023

A MISSING PROOFS FROM SECTION 3

A.1 ADAGRADNORM

As we pointed out before, it is possible to obtain an improvement by a factor 1/γ compared with
Theorem 3.1 by assuming L-smoothness instead of weak L-smoothness.

Theorem A.1. With Assumptions 1 and 2’, AdaGradNorm admits

∑︁T
t=1 F (xt)− F ∗

T
≤

(︂
L∥x1−x∗∥2

η + 2ηL log+ ηL
b0

+ b0

)︂(︂
∥x1−x∗∥2

γη + 2η
γ log+ 2ηL

b0

)︂
T

.

Proof. Note that Assumption 2’ can imply Assumption 2, so following the same proof of Theorem
3.1, we still have

T∑︂
t=1

F (xt)− F ∗ ≤ bT

(︃
∥x1 − x∗∥2

γη
+

2η

γ
log+

2ηL

γb0

)︃
.

However, from here, we will bound bT directly, rathe than use the self bounded argument in the
previous proof. By the L-smoothness, we know

F (xt+1)− F (xt) ≤ ⟨∇F (xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

=

(︃
Lη2

2b2t
− η

bt

)︃
∥∇F (xt)∥2

⇒ ∥∇F (xt)∥2

bt
≤ 2 (F (xt)− F (xt+1))

η
+

(︃
Lη

b2t
− 1

bt

)︃
∥∇F (xt)∥2.

Sum up from 1 to T , we know

T∑︂
t=1

∥∇F (xt)∥2

bt
≤ 2

η
(F (x1)− F (xT+1)) +

T∑︂
t=1

(︃
Lη

b2t
− 1

bt

)︃
∥∇F (xt)∥2

≤ 2

η
(F (x1)− F (x∗)) +

T∑︂
t=1

(︃
Lη

b2t
− 1

bt

)︃
∥∇F (xt)∥2.

Use the the same proof technique as before, we can bound

T∑︂
t=1

(︃
Lη

b2t
− 1

bt

)︃
∥∇F (xt)∥2 ≤ 2ηL log+

ηL

b0
.

and
T∑︂

t=1

∥∇F (xt)∥2

bt
=

T∑︂
t=1

b2t − b2t−1

bt
≥

T∑︂
t=1

bt − bt−1 = bT − b0.

Hence, we know

bT ≤ 2

η
(F (x1)− F (x∗)) + 2ηL log+

ηL

b0
+ b0

≤ L∥x1 − x∗∥2

η
+ 2ηL log+

ηL

b0
+ b0.

By using this bound on bT , we can get the final result with an improvement by a factor 1/γ.

12

Published as a conference paper at ICLR 2023

A.2 STOCHASTIC ADAGRADNORM

We will employ the following notations for convenience

∆t :=

t∑︂
s=1

F (xs)− F ∗;

ξt := ˆ︁∇F (xt)−∇F (xt);

Mt := max
s∈[t]

∥ξs∥2 .

Before diving into the details of our proof, we first present some technical results we will use in the
proof of Theorem 3.5.

A.2.1 TECHNICAL LEMMAS

To start with, under Assumptions 1 and 3 only, we can obtain a bound for a term close to our final
goal ∆T .

Lemma A.2. (Lemma 3.4) Suppose F satisfies Assumptions 1 and 3, we have

E
[︃
∆T

bT

]︃
≤ ∥x1 − x∗∥2

γη
+

2η

γ
E
[︃
MT

b20
+ log

bT
b0

]︃
.

Proof. We start by using the γ-quasar convexity of the function F

F (xt)− F ∗ ≤ ⟨∇F (xt), xt − x∗⟩
γ

=
⟨∇F (xt)− ˆ︁∇F (xt), xt − x∗⟩

γ
+

⟨ˆ︁∇F (xt), xt − x∗⟩
γ

=
⟨−ξt, xt − x∗⟩

γ
+

bt
2γη

(︂
∥xt − x∗∥2 − ∥xt+1 − x∗∥2 + ∥xt+1 − xt∥2

)︂
.

Dividing both sides by 2bt − b0 and taking expactations, we have

E
[︃
F (xt)− F ∗

2bt − b0

]︃
≤ E

[︄
⟨−ξt, xt − x∗⟩
γ(2bt − b0)

+
bt

2bt − b0
× ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 + ∥xt+1 − xt∥2

2γη

]︄
.

Now we no longer have a telescoping sum in the R.H.S.. However, this is exactly what we want to
handle the difficult term ⟨−ξt,xt−x∗⟩

γ(2bt−b0)
which does not disappear after taking the expectation. The key

step is to use Cauchy-Schwarz inequality for the term

|⟨−ξt, xt − x∗⟩| ≤ λ

2
∥ξt∥2 +

1

2λ
∥xt − x∗∥2

with the appropriate coefficient λ so that the term ∥xt − x∗∥2 can be absorbed to make a telescoping
sum bt−1∥xt−x∗∥2

2bt−1−b0
− bt∥xt+1−x∗∥2

2bt−b0
. The remaining terms are free of x∗; hence can be more easily

13

Published as a conference paper at ICLR 2023

bounded. To do this, note that

E
[︃
⟨−ξt, xt − x∗⟩
γ(2bt − b0)

]︃

=E

⎡⎢⎢⎣ 1

γ

(︃
1

2bt − b0
− 1

2bt−1 − b0

)︃
⏞ ⏟⏟ ⏞

A

⟨−ξt, xt − x∗⟩

⎤⎥⎥⎦
≤E [|A| |⟨−ξt, xt − x∗⟩|]

≤E

[︄
|A|

(︄
|A|
4

(︃
bt−1

2γη(2bt−1 − b0)
− bt

2γη(2bt − b0)

)︃−1

∥ξt∥2

+ |A|−1

(︃
bt−1

2γη(2bt−1 − b0)
− bt

2γη(2bt − b0)

)︃
∥xt − x∗∥2

)︃]︃
=E

[︃
η

γb0

(︃
1

2bt−1 − b0
− 1

2bt − b0

)︃
∥ξt∥2

]︃
+ E

[︄(︃
bt−1

2bt−1 − b0
− bt

2bt − b0

)︃
∥xt − x∗∥2

2γη

]︄

Thus we have

E
[︃
F (xt)− F ∗

2bt − b0

]︃
≤E

[︃
η

γb0

(︃
1

2bt−1 − b0
− 1

2bt − b0

)︃
∥ξt∥2

]︃

+ E

[︄
bt−1 ∥xt − x∗∥2

2γη(2bt−1 − b0)
− bt ∥xt+1 − x∗∥2

2γη(2bt − b0)

]︄
+ E

⎡⎢⎣ η
⃦⃦⃦ ˆ︁∇F (xt)

⃦⃦⃦2
2γbt(2bt − b0)

⎤⎥⎦
≤E

[︃
η

γb0

(︃
1

2bt−1 − b0
− 1

2bt − b0

)︃
∥ξt∥2

]︃

+ E

[︄
bt−1 ∥xt − x∗∥2

2γη(2bt−1 − b0)
− bt ∥xt+1 − x∗∥2

2γη(2bt − b0)

]︄
+ E

⎡⎢⎣η
⃦⃦⃦ ˆ︁∇F (xt)

⃦⃦⃦2
2γb2t

⎤⎥⎦
Now we have a telescoping sum

bt−1 ∥xt − x∗∥2

2γη(2bt−1 − b0)
− bt ∥xt+1 − x∗∥2

2γη(2bt − b0)

and the remaining terms are free of xt − x∗. Taking the sum over t, we have

E

[︄
T∑︂

t=1

F (xt)− F ∗

2bt − b0

]︄

≤E

[︄
T∑︂

t=1

η

2γb0

(︃
1

2bt − b0
− 1

2bt−1 − b0

)︃
∥ξt∥2

]︄

+
∥x1 − x∗∥2

2γη
+ E

[︄
T∑︂

t=1

η∥ˆ︁∇F (xt)∥2

2γb2t

]︄
. (2)

14

Published as a conference paper at ICLR 2023

First for the easy term E
[︂∑︁T

t=1
η∥ˆ︁∇F (xt)∥2

2γb2t

]︂
, we have

E

[︄
T∑︂

t=1

η∥ˆ︁∇F (xt)∥2

2γb2t

]︄
=

η

2γ
E

[︄
T∑︂

t=1

b2t − b2t−1

b2t

]︄

≤ η

2γ
E

[︄
T∑︂

t=1

log b2t − log b2t−1

]︄

=
η

γ
E
[︃
log

bT
b0

]︃
. (3)

Next, we bound

E

[︄
T∑︂

t=1

η

γb0

(︃
1

2bt−1 − b0
− 1

2bt − b0

)︃
∥ξt∥2

]︄

≤E

[︄
T∑︂

t=1

η

γb0

(︃
1

2bt−1 − b0
− 1

2bt − b0

)︃
MT

]︄

≤E
[︃

η

γb20
MT

]︃
(4)

Plugging the bounds (3) and (4) into (2), we have

E

[︄
T∑︂

t=1

F (xt)− F ∗

2bt

]︄
≤ E

[︄
T∑︂

t=1

F (xt)− F ∗

2bt − b0

]︄
≤ ∥x1 − x∗∥2

2γη
+

η

γb20
E [MT] +

η

γ
E
[︃
log

bT
b0

]︃
.

The last step is using
∑︁T

t=1
F (xt)−F∗

2bt
≥

∑︁T
t=1 F (xt)−F∗

2bT
= ∆T

2bT
to finish the proof.

Due to the appearance of MT in Lemma A.2, it is natural to consider what we can obtain under the
additional Assumption 4, i.e., sub-Weibull noise with parameter θ. We first provide the following
simple bound on E

[︁
∥ξt∥2

]︁
. The result is not new and the proof is only included for completeness.

Lemma A.3. Under Assumption 4, ∀t ∈ [T], we have

E
[︁
∥ξt∥2

]︁
≤ Γ(2θ + 1)eσ2.

Proof. We first note that from the definition of sub-Weibull noise, the tail of ∥ξt∥ can be bounded
as follows

Pr [∥ξt∥ ≥ u] ≤
E
[︁
exp

(︁
(∥ξt∥/σ)1/θ

)︁]︁
exp

(︁
(u/σ)1/θ

)︁ ≤ exp
(︂
1− (u/σ)1/θ

)︂
.

Then we can obtain

E
[︁
∥ξt∥2

]︁
=

∫︂ ∞

0

2uPr [∥ξ∥ ≥ u] du

≤
∫︂ ∞

0

2u exp
(︂
1− (u/σ)1/θ

)︂
du

= 2θeσ2

∫︂ ∞

0

v2θ−1 exp(−v)dv

= Γ(2θ + 1)eσ2

where u is substituted by σvθ in the second equation.

Next, we prove a high probability bound on MT , the proof of which is inspired by Lemma 5 in Li
& Orabona (2020).

15

Published as a conference paper at ICLR 2023

Lemma A.4. Under Assumption 4, given 0 < δ < 1, define the event

E(δ) =

{︃
MT ≤ σ2 log2θ

eT

δ

}︃
,

we have Pr [E(δ)] ≥ 1− δ.

Proof. Note that

Pr [MT ≥ u] = Pr

[︃
max
s∈[T]

∥ξs∥2 ≥ u

]︃
= Pr

[︃
max
s∈[T]

∥ξs∥
1
θ ≥ u

1
2θ

]︃
≤

E
[︁
exp

(︁
maxs∈[T](∥ξs∥/σ)1/θ

)︁]︁
exp

(︁
(u1/2/σ)1/θ

)︁
≤
∑︁T

s=1 E
[︁
exp

(︁
(∥ξs∥/σ)1/θ

)︁]︁
exp

(︁
(u1/2/σ)1/θ

)︁
= T exp

(︂
1− (u1/2/σ)1/θ

)︂
.

Choose u = σ2 log2θ eT
δ to obtain

Pr

[︃
MT ≥ σ2 log2θ

eT

δ

]︃
≤ δ.

Lastly, we will find an upper bound on the p-th moment of MT .
Lemma A.5. Under Assumption 4, given p > 0, there is

E [Mp
T] ≤ σ2p

(︂
log2θp

(︁
Γ(4θp+ 1)e2T 2

)︁
+ 1
)︂
.

Proof. Note that in Lemma A.4, we proved

Pr [MT ≥ u] ≤ T exp
(︂
1− (u1/2/σ)1/θ

)︂
.

Let E(δ) be the same as it in Lemma A.4. Then, by Holder’s inequality we have

E [Mp
T] = E

[︁
Mp

T1E(δ)

]︁
+ E

[︁
Mp

T1Ec(δ)

]︁
≤ E

[︁
Mp

T1E(δ)

]︁
+

√︃
E
[︂
M2p

T

]︂
E
[︁
1Ec(δ)

]︁
≤ σ2p log2θp

eT

δ
+

√︃
E
[︂
M2p

T

]︂
δ

= σ2p log2θp
eT

δ
+

√︄
δ

∫︂ ∞

0

2pu2p−1 Pr [MT ≥ u] du

≤ σ2p log2θp
eT

δ
+

√︄
δ

∫︂ ∞

0

2pu2p−1T exp
(︁
1− (u1/2/σ)1/θ

)︁
du

= σ2p log2θp
eT

δ
+ σ2p

√︁
Γ(4θp+ 1)eTδ

= σ2p

(︃
log2θp

eT

δ
+
√︁

Γ(4θp+ 1)eTδ

)︃
.

Choose δ = 1
Γ(4θp+1)eT < 1, we have

E [Mp
T] ≤ σ2p

(︂
log2θp

(︁
Γ(4θp+ 1)e2T 2

)︁
+ 1
)︂
.

16

Published as a conference paper at ICLR 2023

Note that all the above results only depend on Assumptions 1, 3 and 4 without requiring the smooth-
ness of F .

A.2.2 PROOF OF THEOREM 3.5

Theorem 3.5 requires Assumption 2’ additionally. Thus we first show that under Assumptions 2’

and 4. bT enjoys a ˜︁O(1 + σ

√︂
T log2θ T) upper bound with high probability.

Lemma A.6. (Lemma 3.3) Suppose F satisfies Assumptions 2’and 4. Under the event E(δ) ={︂
MT ≤ σ2 log2θ eT

δ

}︂
, we have

bT ≤ gT (δ) := 2b0 +
4(F (x1)− F ∗)

η
+ 4ηL log+

ηL

b0
+ 4σ

⌜⃓⃓⎷T log2θ
eT

δ
log

(︄
1 +

16σ2T log2θ eT
δ

b20

)︄
.

Additionally, by Lemma A.4, there is

1− δ ≤ Pr [E(δ)] ≤ Pr [bT ≤ gT (δ)] .

Proof. We start by using the smoothness of F

F (xt+1)− F (xt) ≤ ⟨∇F (xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= − η

bt
⟨∇F (xt), ˆ︁∇F (xt)⟩+

η2L

2b2t
∥ˆ︁∇F (xt)∥2

= − η

bt
⟨∇F (xt)− ˆ︁∇F (xt), ˆ︁∇F (xt)⟩ −

η

bt
∥ˆ︁∇F (xt)∥2 +

η2L

2b2t
∥ˆ︁∇F (xt)∥2

⇒ ∥ˆ︁∇F (xt)∥2

bt
≤ 2

η
(F (xt)− F (xt+1)) +

2⟨ξt, ˆ︁∇F (xt)⟩
bt

+

(︃
ηL

b2t
− 1

bt

)︃
∥ˆ︁∇F (xt)∥2.

Taking the sum over t we have

T∑︂
t=1

∥ˆ︁∇F (xt)∥2

bt
≤ 2(F (x1)− F ∗)

η
+ 2

T∑︂
t=1

⟨ξt, ˆ︁∇F (xt)⟩
bt

+

T∑︂
t=1

(︃
ηL

b2t
− 1

bt

)︃
∥ˆ︁∇F (xt)∥2.

Using the common technique, we know that
∑︁T

t=1

(︂
ηL
b2t

− 1
bt

)︂
∥ˆ︁∇F (xt)∥2 ≤ 2ηL log+ ηL

b0
. More-

over, for the L.H.S.

T∑︂
t=1

∥ˆ︁∇F (xt)∥2

bt
=

T∑︂
t=1

b2t − b2t−1

bt
≥

T∑︂
t=1

bt − bt−1 = bT − b0.

Thus we have

bT ≤ b0 +
2(F (x1)− F ∗)

η
+ 2ηL log+

ηL

b0
+ 2

T∑︂
t=1

⟨ξt, ˆ︁∇F (xt)⟩
bt

17

Published as a conference paper at ICLR 2023

For the last term in this equation, we notice that ⟨ξt, ˆ︁∇F (xt)⟩ ≤ ∥ξt∥∥ˆ︁∇F (xt)∥ ≤√
MT ∥ˆ︁∇F (xt)∥, hence

bT ≤ 2(F (x1)− F ∗)

η
+ 2ηL log+

ηL

b0
+ b0 + 2

T∑︂
t=1

⟨ξt, ˆ︁∇F (xt)⟩
bt

≤ 2(F (x1)− F ∗)

η
+ 2ηL log+

ηL

b0
+ b0 + 2

√︁
MT

T∑︂
t=1

∥ˆ︁∇F (xt)∥
bt

(a)

≤ 2(F (x1)− F ∗)

η
+ 2ηL log+

ηL

b0
+ b0 + 2

√︁
MT

⌜⃓⃓⎷T

T∑︂
t=1

∥ˆ︁∇F (xt)∥2
b2t

=
2(F (x1)− F ∗)

η
+ 2ηL log+

ηL

b0
+ b0 +

⌜⃓⃓⎷4MTT

T∑︂
t=1

b2t − b2t−1

b2t

≤ 2(F (x1)− F ∗)

η
+ 2ηL log+

ηL

b0
+ b0 +

√︄
4MTT log

b2T
b20

where (a) is due to Jensen’s inequality. We can write

4MTT log
b2T
b20

= 4MTT

(︃
log

b2T
b20 + 16MTT

+ log
b20 + 16MTT

b20

)︃
≤ 4MTT

(︃
b2T

b20 + 16MTT
+ log

b20 + 16MTT

b20

)︃
≤ b2T

4
+ 4MTT log

b20 + 16MTT

b20
.

Hence

bT ≤ b0 +
2(F (x1)− F ∗)

η
+ 2ηL log+

ηL

b0
+

√︄
b2T
4

+ 4MTT log
b20 + 16MTT

b20

≤ b0 +
2(F (x1)− F ∗)

η
+ 2ηL log+

ηL

b0
+

bT
2

+ 2

√︄
MTT log

b20 + 16MTT

b20

which gives us

bT ≤ 2b0 +
4(F (x1)− F ∗)

η
+ 4ηL log+

ηL

b0
+ 4

√︄
MTT log

b20 + 16MTT

b20
.

Recall the definition of the event E(δ) is MT ≤ σ2 log2θ eT
δ , thus we know

bT ≤ 2b0 +
4(F (x1)− F ∗)

η
+ 4ηL log+

ηL

b0
+ 4σ

⌜⃓⃓⎷T

(︃
log2θ

eT

δ

)︃
log

(︄
1 +

16σ2T log2θ eT
δ

b20

)︄
.

By using Lemma A.6, we can consider the following decomposition

E [∆T] = E
[︁
∆T1E(δ)

]︁
+ E

[︁
∆T1Ec(δ)

]︁
= E

[︃
∆T

bT
bT1E(δ)

]︃
+ E

[︁
∆T1Ec(δ)

]︁
≤ gT (δ)E

[︃
∆T

bT
1E(δ)

]︃
+ E

[︁
∆T1Ec(δ)

]︁
≤ gT (δ)E

[︃
∆T

bT

]︃
+ E

[︁
∆T1Ec(δ)

]︁
.

18

Published as a conference paper at ICLR 2023

Note that Lemma A.2 tells us

E
[︃
∆T

bT

]︃
≤ ∥x1 − x∗∥2

γη
+

2η

γ
E
[︃
MT

b20
+ log

bT
b0

]︃
.

Hence our remaining task is to find a proper bound on E
[︁
∆T1Ec(δ)

]︁
, which is stated in the following

lemma.
Lemma A.7. Under Assumptions 2’ and 4 we have

E
[︁
∆T1Ec(δ)

]︁
≤
(︃
F (x1)− F ∗ + η2L log+

ηL

2b0

)︃
Tδ + ηE1/4

[︁
M2

T

]︁√︄
logE

[︃
b2T
b20

]︃
T 3/2δ1/4.

Proof. We restart from the smoothness of F :

F (xs+1)− F (xs) ≤ − η

bs
⟨∇F (xs)− ˆ︁∇F (xs), ˆ︁∇F (xs)⟩ −

η

bs
∥ˆ︁∇F (xs)∥2 +

η2L

2b2s
∥ˆ︁∇F (xs)∥2.

Taking the sum over s, we have for t ≥ 2

F (xt)− F (x1) ≤
t−1∑︂
s=1

− η

bs
⟨∇F (xs)− ˆ︁∇F (xs), ˆ︁∇F (xs)⟩+

t−1∑︂
s=1

(︃
η2L

2b2s
− η

bs

)︃
∥ˆ︁∇F (xs)∥2

≤ η2L log+
ηL

2b0
+

t−1∑︂
s=1

η

bs
∥ξs∥∥ˆ︁∇F (xs)∥.

Following the same proof of Lemma A.6, we have

F (xt)− F ∗ ≤ F (x1)− F ∗ + η2L log+
ηL

2b0
+ η

√︄
Mt−1(t− 1) log

b2t−1

b20
.

Now we bound ∆T as follows

∆T =

T∑︂
t=1

F (xt)− F ∗

≤ F (x1)− F ∗ +

T∑︂
t=2

F (x1)− F ∗ + η2L log+
ηL

2b0
+ η

√︄
Mt−1(t− 1) log

b2t−1

b20

≤
(︃
F (x1)− F ∗ + η2L log+

ηL

2b0

)︃
T +

T∑︂
t=2

η

√︄
Mt−1(t− 1) log

b2t−1

b20

≤
(︃
F (x1)− F ∗ + η2L log+

ηL

2b0

)︃
T + η

√︄
MT log

b2T
b20

T 3/2.

Thus we obtain

E
[︁
∆T1Ec(δ)

]︁
≤
(︃
F (x1)− F ∗ + η2L log+

ηL

2b0

)︃
Tδ + ηE

[︄√︄
MT log

b2T
b20
1Ec(δ)

]︄
T 3/2.

Here we invoke Holder’s inequality for three variables: for p, q, r > 0, 1/p + 1/q + 1/r = 1 then

E[XY Z] ≤ E1/p[Xp]E1/q[Y q]E1/r[Zr]. By substituting X =
√
MT , Y =

√︂
log

b2T
b20

, Z = 1Ec(δ),
and p = 4, q = 2, r = 4, we have

E

[︄√︄
MT log

b2T
b20
1Ec(δ)

]︄
≤ E1/4

[︁
M2

T

]︁
E1/2

[︃
log

b2T
b20

]︃
E1/4

[︁
1Ec(δ)

]︁
≤ E1/4

[︁
M2

T

]︁√︄
logE

[︃
b2T
b20

]︃
δ1/4.

19

Published as a conference paper at ICLR 2023

So finally we get

E
[︁
∆T1Ec(δ)

]︁
≤
(︃
F (x1)− F ∗ + η2L log+

ηL

2b0

)︃
Tδ

+ ηE1/4
[︁
M2

T

]︁√︄
logE

[︃
b2T
b20

]︃
T 3/2δ1/4.

Lemma A.8. Suppose F satisfies Assumptions 1, 2’, 3 and 4 then

E [∆T]

≤gT

⎛⎝∥x1 − x∗∥2

2γη
+

2ησ2
(︂
2(4θ−1)∨2θ log2θ T + C1

)︂
γb20

+
η

γ
logE

[︃
b2T
b20

]︃⎞⎠
+

F (x1)− F ∗ + η2L log+ ηL
2b0

T 3
+

ησ
(︂
2(2θ−1)∨θ logθ T + C2

)︂
2

(︃
1 + logE

[︃
b2T
b20

]︃)︃√
T

where C1 = 2(2θ−1)+ log2θ
(︁
Γ(4θ + 1)e2

)︁
+ 1 and C2 = 2(θ−1)+ logθ

(︁
Γ(8θ + 1)e2

)︁
+ 1 are two

constants and

gT = 2b0 +
4(F (x1)− F ∗)

η
+ 4ηL log+

ηL

b0

+ 4σ

⌜⃓⃓⎷T log2θ(eT 5) log

(︄
1 +

16σ2T log2θ(eT 5)

b20

)︄
.

Proof. As stated above, we know

E [∆T] = E
[︁
∆T1E(δ)

]︁
+ E

[︁
∆T1Ec(δ)

]︁
= E

[︃
∆T

bT
bT1E(δ)

]︃
+ E

[︁
∆T1Ec(δ)

]︁
(a)

≤ gT (δ)E
[︃
∆T

bT
1E(δ)

]︃
+ E

[︁
∆T1Ec(δ)

]︁
≤ gT (δ)E

[︃
∆T

bT

]︃
+ E

[︁
∆T1Ec(δ)

]︁
(b)

≤ gT (δ)

(︃
∥x1 − x∗∥2

2γη
+

2η

γ
E
[︃
MT

b20
+ log

bT
b0

]︃)︃
+ E

[︁
∆T1Ec(δ)

]︁
≤ gT (δ)

(︃
∥x1 − x∗∥2

2γη
+

2η

γb20
E [MT] +

η

γ
logE

[︃
b2T
b20

]︃)︃
+ E

[︁
∆T1Ec(δ)

]︁
where (a) is due to Lemma A.6. (b) is by Lemma A.2.

Lemma A.7 gives us

E
[︁
∆T1Ec(δ)

]︁
≤
(︃
F (x1)− F ∗ + η2L log+

ηL

2b0

)︃
Tδ + ηE1/4

[︁
M2

T

]︁√︄
logE

[︃
b2T
b20

]︃
T 3/2δ1/4.

Pluggin in this bound, we have

E [∆T]

≤gT (δ)

(︃
∥x1 − x∗∥2

2γη
+

2η

γb20
E [MT] +

η

γ
logE

[︃
b2T
b20

]︃)︃
+

(︃
F (x1)− F ∗ + η2L log+

ηL

2b0

)︃
Tδ + ηE1/4

[︁
M2

T

]︁√︄
logE

[︃
b2T
b20

]︃
T 3/2δ1/4.

20

Published as a conference paper at ICLR 2023

Now we take δ = T−4 and let gT := gT (T
−4) to obtain

E [∆T]

≤gT

(︃
∥x1 − x∗∥2

2γη
+

2η

γb20
E [MT] +

η

γ
logE

[︃
b2T
b20

]︃)︃
+

1

T 3

(︃
F (x1)− F ∗ + η2L log+

ηL

2b0

)︃
+ ηE1/4

[︁
M2

T

]︁√︄
logE

[︃
b2T
b20

]︃√
T .

From Lemma A.5, we know

E [MT] ≤ σ2
(︂
log2θ

(︁
Γ(4θ + 1)e2T 2

)︁
+ 1
)︂
≤ σ2(2(4θ−1)∨2θ log2θ(T) + C1)

and

E
[︁
M2

T

]︁
≤ σ4(log4θ(Γ(8θ + 1)e2T 2) + 1)

⇒ E1/4
[︁
M2

T

]︁
= σ

(︂
log4θ(Γ(8θ + 1)e2T 2) + 1

)︂1/4
≤ σ(logθ(Γ(8θ + 1)e2T 2) + 1)

≤ σ(2(2θ−1)∨θ logθ T + C2)

Hence we have

E [∆T]

≤gT

⎛⎝∥x1 − x∗∥2

2γη
+

2ησ2
(︂
2(4θ−1)∨2θ log2θ T + C1

)︂
γb20

+
η

γ
logE

[︃
b2T
b20

]︃⎞⎠
+

F (x1)− F ∗ + η2L log+ ηL
2b0

T 3
+ ησ

(︂
2(2θ−1)∨θ logθ T + C2

)︂√︄
logE

[︃
b2T
b20

]︃√
T

≤gT

⎛⎝∥x1 − x∗∥2

2γη
+

2ησ2
(︂
2(4θ−1)∨2θ log2θ T + C1

)︂
γb20

+
η

γ
logE

[︃
b2T
b20

]︃⎞⎠
+

F (x1)− F ∗ + η2L log+ ηL
2b0

T 3
+

ησ
(︂
2(2θ−1)∨θ logθ T + C2

)︂
2

(︃
1 + logE

[︃
b2T
b20

]︃)︃√
T

With these results, we can finally show the theorem 3.5.

Proof of Theorem 3.5 . The key technique we use is the self-bounding argument. That is, we have
expressed a bound for E[∆T] via E[b2T /b20], now we will show how to bound this term via ∆T . To
do this, we rely on the smoothness assumption and Lemma A.3

E
[︁
b2T
]︁
= E

[︄
b20 +

T∑︂
t=1

∥ˆ︁∇F (xt)∥2
]︄

≤ b20 + E

[︄
T∑︂

t=1

2∥ξt∥2
]︄
+ E

[︄
T∑︂

t=1

2∥∇F (xt)∥2
]︄

≤ b20 + 2Γ(2θ + 1)eσ2T + E

[︄
4L

T∑︂
t=1

F (xt)− F (x∗)

]︄
≤ b20 + 2Γ(2θ + 1)eσ2T + 4LE [∆T] .

Thus from Lemma A.8 we can write

E [∆T] ≤ G0 +G1 log

(︃
1 +

2Γ(2θ + 1)eσ2T

b20
+

4L

b20
E [∆T]

)︃
(5)

21

Published as a conference paper at ICLR 2023

where

G0 =
F (x1)− F ∗ + η2L log+ ηL

2b0

T 3
+

ησ
(︂
2(2θ−1)∨θ logθ T + C2

)︂√
T

2

+ gT

⎛⎝∥x1 − x∗∥2

2γη
+

2ησ2
(︂
2(4θ−1)∨2θ log2θ(T) + C1

)︂
γb20

⎞⎠
= O

(︃
1 + σ

√︂
T log2θ T + (1 + σ2 log2θ T)gT

)︃

G1 =
ησ
(︂
2(2θ−1)∨θ logθ T + C2

)︂√
T

2
+

ηgT
γ

= O

(︃
σ

√︂
T log2θ T + gT

)︃

gT = 2b0 +
4(F (x1)− F ∗)

η
+ 4ηL log+

ηL

b0
+ 4σ

⌜⃓⃓⎷T log2θ(eT 5) log

(︄
1 +

16σ2T log2θ(eT 5)

b20

)︄

= O

(︃
1 + σ

√︂
T log2θ T log(1 + σ2T log2θ T)

)︃
Now we solve (5). Consider two cases:

If 4LE [∆T] ≤ 2Γ(2θ + 1)eσ2T then

E [∆T] ≤ G0 +G1 log

(︃
1 +

4Γ(2θ + 1)eσ2T

b20

)︃
.

If 4LE [∆T] ≥ 2Γ(2θ + 1)eσ2T then

E [∆T] ≤ G0 +G1 log

(︃
1 +

8L

b20
E [∆T]

)︃
= G0 +G1 log

(︄
1 + 8L

b20
E [∆T]

1 + 16LG1/b20

)︄
+G1 log

(︃
1 +

16LG1

b20

)︃

≤ G0 +G1

1 + 8L
b20
E [∆T]

1 + 16LG1/b20
+G1 log

(︃
1 +

16LG1

b20

)︃
≤ G0 +G1 +

E [∆T]

2
+G1 log

(︃
1 +

16LG1

b20

)︃
⇒ E [∆T] ≤ 2G0 + 2G1 + 2G1 log

(︃
1 +

16eLG1

b20

)︃
.

In both cases, we have

E [∆T] ≤ 3G0 + 2G1 + 2G1 log

(︃
1 +

16eLG1

b20

)︃
+G1 log

(︃
1 +

4Γ(2θ + 1)eσ2T

b20

)︃
= O

(︃
(1 + poly(σ2 log2θ T, log(1 + σ2T log2θ T)))(1 + σ

√︂
T log2θ T)

)︃
Dividing both sides by T concludes the proof.

A.2.3 CONVERGENCE OF STOCHASTIC ADAGRADNORM UNDER WEAKER ASSUMPTIONS

Note that Theorem 3.5 depends on the stronger Assumption 2’ instead of Assumption 2. Besides,
in Section 3.1, we proved that Assumptions 1 and 2 are enough to ensure that AdaGradNorm can
converge in the deterministic setting. Hence it is reasonable to conjecture Stochastic AdaGradNorm
can also converge if replacing Assumption 2’ by Assumption 2. In this section, we show that, indeed,
this conjecture is true.

22

Published as a conference paper at ICLR 2023

Theorem A.9. Suppose F satisfies Assumptions 1, 2, 3 and 4. Stochastic AdaGradNorm admits

E

⎡⎣√︄∑︁T
t=1 F (xt)− F (x∗)

T

⎤⎦ = O

(︃
(1 + poly(log(1 + σ

√
T), σ2 log2θ T))

(︃
1√
T

+
σ1/2

T 1/4

)︃)︃
.

Proof. First we invoke Lemma A.2 to get

E
[︃
∆T

bT

]︃
≤ ∥x1 − x∗∥2

γη
+

2η

γ
E
[︃
MT

b20
+ log

bT
b0

]︃
.

Using Holder’s inequality we have

E
[︂√︁

∆T

]︂
≤

√︄(︃
∥x1 − x∗∥2

γη
+

2η

γ
E
[︃
MT

b20
+ log

bT
b0

]︃)︃
E [bT]

≤

√︄(︃
∥x1 − x∗∥2

γη
+

2η

γb20
E [MT] +

2η

γ
log

E [bT]

b0

)︃
E [bT].

Applying Lemma A.5 with p = 1 to get

E [MT] ≤ σ2
(︂
log2θ

(︁
Γ(4θ + 1)e2T 2

)︁
+ 1
)︂

≤ σ2
(︂
22θ log2θ

(︁
T 2
)︁
+ 22θ log2θ

(︁
Γ(4θ + 1)e2

)︁
+ 1
)︂

= σ2
(︂
24θ log2θ T + C

)︂
where C = 22θ log2θ

(︁
Γ(4θ + 1)e2

)︁
+ 1.

Besides, note that

bT =

⌜⃓⃓⎷b20 +

T∑︂
t=1

∥ˆ︁∇F (xt)∥2 ≤

⌜⃓⃓⎷b20 + 2

T∑︂
t=1

∥ξt∥2 + 4L∆T ≤ b0 +

⌜⃓⃓⎷2

T∑︂
t=1

∥ξt∥2 + 2
√︁

L∆T .

Thus we know

E [bT] ≤ E

⎡⎣b0 +
⌜⃓⃓⎷2

T∑︂
t=1

∥ξt∥2 + 2
√︁
L∆T .

⎤⎦
≤ b0 +

⌜⃓⃓⎷2

T∑︂
t=1

E [∥ξt∥2] + 2
√
LE
[︂√︁

∆T

]︂
≤ b0 +

√︁
2Γ(2θ + 1)eσ2T + 2

√
LE
[︂√︁

∆T

]︂
where the last inequality is due to Lemma A.3.

Hence, by letting

B1 =
∥x1 − x∗∥2

γη
+

2η
(︂
24θ log2θ T + C

)︂
σ2

γb20

= O(1 + σ2 log2θ T)

B2 = b0 +
√︁
2Γ(2θ + 1)eσ2T

= O(1 + σ
√
T)

X = E
[︂√︁

∆T

]︂
we can solve the following inequality

X2 ≤

(︄
B1 +

2η

γ
log

(︄
B2 + 2

√
LX

b0

)︄)︄
(B2 + 2

√
LX)

to get the final result.

23

Published as a conference paper at ICLR 2023

A.3 ADAGRAD

Algorithm 7 AdaGrad
Initialize: x1, η > 0
for t = 1 to T

for j = 1 to d

bt,j =
√︂
b20,j +

∑︁t
i=1 (∇jF (xi))

2

xt+1,j = xt,j − η
bt,j

∇jF (xt)

In this section, we will extend the result of AdaGradNorm to AdaGrad (Algorithm 7) in the deter-
ministic setting. To our knowledge, we are the first to give the explicit bound of the counvergence
rate of AdaGrad on Rd. First, we examine the growth of the stepsize.
Lemma A.10. Suppose F satisfies Assumptions 1 and 2”, we have

d∑︂
j=1

bT,j ≤
d∑︂

j=1

b0,j +
2(F (x1)− F ∗)

η
+ 2η

d∑︂
j=1

Lj log
+ ηLj

b0,j
.

Proof. By smoothness we have

F (xt+1)− F (xt) ≤ ⟨∇F (xt), xt+1 − xt⟩+
∥xt+1 − xt∥2L

2

=

d∑︂
j=1

(︄
− η

bt,j
+

Ljη
2

2b2t,j

)︄
∇jF (xt)

2

⇒
d∑︂

j=1

η

2bt,j
∇jF (xt)

2 ≤ F (xt)− F (xt+1) +

d∑︂
j=1

(︄
Ljη

2

2b2t,j
− η

2bt,j

)︄
∇jF (xt)

2

⇒
T∑︂

t=1

d∑︂
j=1

η

2bt,j
∇jF (xt)

2 ≤ F (x1)− F ∗ +

T∑︂
t=1

d∑︂
j=1

(︄
Ljη

2

2b2t,j
− η

2bt,j

)︄
∇jF (xt)

2.

Note that, for the L.H.S.,
T∑︂

t=1

d∑︂
j=1

η

2bt,j
∇jF (xt)

2 =
η

2

d∑︂
j=1

T∑︂
t=1

b2t,j − b2t−1,j

bt,j

≥ η

2

d∑︂
j=1

T∑︂
t=1

bt,j − bt−1,j

=
η

2

d∑︂
j=1

(bT,j − b0,j) .

Besides,
T∑︂

t=1

d∑︂
j=1

(︄
Ljη

2

2b2t,j
− η

2bt,j

)︄
∇jF (xt)

2 =
η

2

T∑︂
t=1

d∑︂
j=1

(︄
Ljη

b2t,j
− 1

bt,j

)︄
∇jF (xt)

2

≤ η

2

d∑︂
j=1

τj∑︂
t=1

Ljη

b2t,j
∇iF (xt)

2 (τj is the last t such thatbt,j ≤ ηLj)

=
η2

2

d∑︂
j=1

Lj

τi∑︂
t=1

b2t,j − b2t−1,j

b2t,j

≤ η2
d∑︂

j=1

Lj log
+ ηLj

b0,j
.

24

Published as a conference paper at ICLR 2023

Hence we have

d∑︂
j=1

bT,j ≤
d∑︂

j=1

b0,j +
2(F (x1)− F ∗)

η
+ 2η

d∑︂
j=1

Lj log
+ ηLj

b0,j
.

Theorem A.11 states the convergence guarantee for Algorithm 7.

Theorem A.11. Suppose F satisfies Assumptions 1 and 2”, we have∑︁T
t=1 F (xt)− F ∗

T

≤

(︂∑︁d
j=1 b0,j +

2(F (x1)−F∗)
η + 2η

∑︁d
j=1 Lj log

+ ηLj

b0,j

)︂d(︃∥x1−x∗∥2
b1

γη + 2η
γ

∑︁d
j=1

(︂
2ηLj

γ − b0,j

)︂+)︃
T
(︂
dd
∏︁d

j=1 b0,j

)︂
where

∥x1 − x∗∥2b1
=

d∑︂
j=1

b1,j(x1,j − x∗
j)

2.

Before going into the proof, it is worth discussing the result above as well as the main challenges
and differences compared with AdaGradNorm. For simplicity, let bt = diag(bt,i). We can expect
that, by a similar argument that we used before to bound the function value gap via the stepsize, we
will have

∑︁T
t=1 F (xt)− F ∗

T
≤

g(bT)

(︃
∥x1−x∗∥2

b1

γη + 2η
γ

∑︁d
j=1

(︂
2ηLj

γ − b0,j

)︂+)︃
T

where g(bT) is a function of the last stepsize and the factor
∥x1−x∗∥2

b1

γη + 2η
γ

∑︁d
j=1

(︂
2ηLj

γ − b0,j

)︂+
is obtained in a similar manner as before, but in d-dimensions. The challenge is that since the
stepsize is a vector, it is not possible to use “division” by the stepsize as in AdaGradNorm. On the
one hand, we can overcome this by rewriting the argument; on the other hand, this problem will
incur an exponential rate for g(bT) dependent on the smoothness parameters.

Proof. We can write

xt+1 = xt − ηb−1
t ∇F (xt).

Starting from γ-quasar convexity

F (xt)− F ∗ ≤ ⟨∇F (xt), xt − x∗⟩
γ

=
⟨bt (xt − xt+1) , xt − x∗⟩

ηγ

=
∥xt − x∗∥2bt

− ∥xt+1 − x∗∥2bt
+ ∥xt+1 − xt∥2bt

2ηγ

=
∥xt − x∗∥2bt

− ∥xt+1 − x∗∥2bt

2ηγ
+

η

2γ
∥∇F (xt)∥2b−1

t
.

Note that F also satisfies Assumption 2′′

F (xt)− F ∗ ≥
∥∇F (xt)∥2L,∗

2
.

25

Published as a conference paper at ICLR 2023

Hence

F (xt)− F ∗

2
+

∥∇F (xt)∥2L,∗

4
≤ F (xt)− F ∗

≤
∥xt − x∗∥2bt

− ∥xt+1 − x∗∥2bt

2ηγ
+

η

2γ
∥∇F (xt)∥2b−1

t

⇒ F (xt)− F ∗

2
≤

∥xt − x∗∥2bt
− ∥xt+1 − x∗∥2bt

2ηγ
+

η

2γ
∥∇F (xt)∥2b−1

t
−

∥∇F (xt)∥2L,∗

4

⇒ F (xt)− F ∗ ≤
∥xt − x∗∥2bt

− ∥xt+1 − x∗∥2bt

ηγ
+

d∑︂
j=1

(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2.

Taking the sum over t

T∑︂
t=1

F (xt)− F ∗

≤
T∑︂

t=1

∥xt − x∗∥2bt
− ∥xt+1 − x∗∥2bt

ηγ
+

T∑︂
t=1

d∑︂
j=1

(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2

=
∥x1 − x∗∥2b1

− ∥xT+1 − x∗∥2bT

γη
+

T∑︂
t=2

∥xt − x∗∥2bt−bt−1

γη
+

T∑︂
t=1

d∑︂
j=1

(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2.

Due to the excess term
∑︁T

t=2

∥xt−x∗∥2
bt−bt−1

γη in the RHS, we need to proceed and bound ∥xt −
x∗∥2bt−bt−1

. First, observe that since the L.H.S. is non-negative,

∥xT+1 − x∗∥2bT

γη
≤

∥x1 − x∗∥2b1

γη
+

T∑︂
t=2

∥xt − x∗∥2bt−bt−1

γη
+

T∑︂
t=1

d∑︂
j=1

(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2

To upperbound ∥xt − x∗∥2bt−bt−1
, a key observation is that

∥xT+1 − x∗∥2bT
= ∥xT+1 − x∗∥2bT+1−bT

×
∥xT+1 − x∗∥2bT

∥xT+1 − x∗∥2bT+1−bT

≥ ∥xT+1 − x∗∥2bT+1−bT
min
k

bT,k

bT+1,k − bT,k

Hence for T ≥ 1

∥xT+1 − x∗∥2bT+1−bT

γη

≤max
k

(︃
bT+1,k

bT,k
− 1

)︃⎡⎣∥x1 − x∗∥2b1

γη
+

T∑︂
t=2

∥xt − x∗∥2bt−bt−1

γη
+

T∑︂
t=1

d∑︂
j=1

(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2

⎤⎦
26

Published as a conference paper at ICLR 2023

By using this bound for the last term
∥xT−x∗∥2

bT −bT−1

γη we obtain

T∑︂
t=1

F (xt)− F ∗

≤
∥x1 − x∗∥2b1

− ∥xT+1 − x∗∥2bT

γη
+

T∑︂
t=2

∥xt − x∗∥2bt−bt−1

γη
+

T∑︂
t=1

d∑︂
j=1

(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2

≤
∥x1 − x∗∥2b1

γη
+

T−1∑︂
t=2

∥xt − x∗∥2bt−bt−1

γη
+

T∑︂
t=1

d∑︂
j=1

(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2

+max
k

(︃
bT,k

bT−1,k
− 1

)︃⎛⎝∥x1 − x∗∥2b1

γη
+

T−1∑︂
t=2

∥xt − x∗∥2bt−bt−1

γη
+

T−1∑︂
t=1

d∑︂
j=1

(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2

⎞⎠
=max

k

bT,k

bT−1,k

⎛⎝∥x1 − x∗∥2b1

γη
+

T−1∑︂
t=2

∥xt − x∗∥2bt−bt−1

γη
+

T−1∑︂
t=1

d∑︂
j=1

(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2

⎞⎠
+

d∑︂
j=1

(︃
η

γbT,j
− 1

2Lj

)︃
∇jF (xT)

2

Continue to unroll this relation and for convenience let
∏︁T

t=T+1 maxk
bt,k

bt−1,k
= 1, we have

T∑︂
t=1

F (xt)− F ∗

≤

[︄
T∏︂

t=2

max
k

bt,k
bt−1,k

]︄
∥x1 − x∗∥2b1

γη
+

T∑︂
t=1

(︄
T∏︂

ℓ=t+1

max
k

bℓ,k
bℓ−1,k

)︄⎛⎝ d∑︂
j=1

(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2

⎞⎠
=

[︄
T∏︂

t=2

max
k

bt,k
bt−1,k

]︄
∥x1 − x∗∥2b1

γη
+

d∑︂
j=1

T∑︂
t=1

(︄
T∏︂

ℓ=t+1

max
k

bℓ,k
bℓ−1,k

)︄(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2

Given j, if b1,j >
2ηLj

γ , we know

T∑︂
t=1

(︄
T∏︂

ℓ=t+1

max
k

bℓ,k
bℓ−1,k

)︄(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2 < 0 ≤ 2η

γ

[︄
T∏︂

t=2

max
k

bt,k
bt−1,k

]︄(︃
2ηLj

γ
− b0,j

)︃+

.

27

Published as a conference paper at ICLR 2023

Otherwise, let τj be the last t such that bt,j ≤ 2ηLj

γ , we also have

T∑︂
t=1

(︄
T∏︂

ℓ=t+1

max
k

bℓ,k
bℓ−1,k

)︄(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2

≤
τj∑︂
t=1

(︄
T∏︂

ℓ=t+1

max
k

bℓ,k
bℓ−1,k

)︄(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2

≤

[︄
T∏︂

t=2

max
k

bt,k
bt−1,k

]︄(︄
τj∑︂
t=1

(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2

)︄

≤

[︄
T∏︂

t=2

max
k

bt,k
bt−1,k

]︄(︄
τj∑︂
t=1

η

γbt,j
∇jF (xt)

2

)︄

=

[︄
T∏︂

t=2

max
k

bt,k
bt−1,k

]︄(︄
η

γ

τj∑︂
t=1

b2t,j − b2t−1,j

bt,j

)︄

≤

[︄
T∏︂

t=2

max
k

bt,k
bt−1,k

]︄(︄
2η

γ

τj∑︂
t=1

bt,j − bt−1,j

)︄

≤2η

γ

[︄
T∏︂

t=2

max
k

bt,k
bt−1,k

]︄(︃
2ηLj

γ
− b0,j

)︃+

.

Hence we know

d∑︂
j=1

T∑︂
t=1

(︄
T∏︂

ℓ=t+1

max
k

bℓ,k
bℓ−1,k

)︄(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2

≤2η

γ

[︄
T∏︂

t=2

max
k

bt,k
bt−1,k

]︄⎡⎣ d∑︂
j=1

(︃
2ηLj

γ
− b0,j

)︃+
⎤⎦ .

Thus we have

T∑︂
t=1

F (xt)− F ∗

≤

[︄
T∏︂

t=2

max
k

bt,k
bt−1,k

]︄
∥x1 − x∗∥2b1

γη
+

d∑︂
j=1

T∑︂
t=1

(︄
T∏︂

ℓ=t+1

max
k

bℓ,k
bℓ−1,k

)︄(︃
η

γbt,j
− 1

2Lj

)︃
∇jF (xt)

2

≤

[︄
T∏︂

t=2

max
k

bt,k
bt−1,k

]︄⎛⎝∥x1 − x∗∥2b1

γη
+

2η

γ

d∑︂
j=1

(︃
2ηLj

γ
− b0,j

)︃+
⎞⎠

From Lemma A.10

d∑︂
j=1

bT,j ≤
d∑︂

j=1

b0,j +
2(F (x1)− F ∗)

η
+ 2η

d∑︂
j=1

Lj log
+ ηLj

b0,j

Using AM-GM we have

d∏︂
j=1

bT,j ≤

(︄∑︁d
j=1 bT,j

d

)︄d

≤ 1

dd

⎛⎝ d∑︂
j=1

b0,j +
2(F (x1)− F ∗)

η
+ 2η

d∑︂
j=1

Lj log
+ ηLj

b0,j

⎞⎠d

28

Published as a conference paper at ICLR 2023

Note that

T∏︂
t=2

max
j

bt,j
bt−1,j

≤
T∏︂

t=2

d∏︂
j=1

bt,j
bt−1,j

≤
d∏︂

j=1

bT,j

b0,j

≤ 1

dd
∏︁d

j=1 b0,j

⎛⎝ d∑︂
j=1

b0,j +
2(F (x1)− F ∗)

η
+ 2η

d∑︂
j=1

Lj log
+ ηLj

b0,j

⎞⎠d

Hence

T∑︂
t=1

F (xt)− F ∗

≤

[︄
T∏︂

t=2

max
j

bT,j

bT−1,j

]︄⎛⎝∥x1 − x∗∥2b1

γη
+

2η

γ

d∑︂
j=1

(︃
2ηLj

γ
− b0,j

)︃+
⎞⎠

≤

(︂∑︁d
j=1 b0,j +

2(F (x1)−F∗)
η + 2η

∑︁d
j=1 Lj log

+ ηLj

b0,j

)︂d(︃∥x1−x∗∥2
b1

γη + 2η
γ

∑︁d
j=1

(︂
2ηLj

γ − b0,j

)︂+)︃
dd
∏︁d

j=1 b0,j

which finishes the proof.

B MISSING PROOFS FROM SECTION 4

B.1 IMPORTANT LEMMA

First, we state a general lemma that can be used for a more general setting. The proof of the lemma
is standard.

Lemma B.1. Suppose F satisfies Assumptions 1 and 2’ and the following conditions hold:

• xt is generated by xt+1 = xt − η
ct
∇F (xt), with η > 0 and ct > 0 is non-decreasing;

• pt ∈ (0, 1] satisfies 1
pt

≥ 1−pt+1

pt+1
, p1 = 1;

Then we have

F (xT+1)− F ∗

pT cT
≤ ∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2ct
− 1

η
+

pt
γη

− ptct
2η2L

)︃
η2∥∇F (xt)∥2

c2tpt
. (6)

29

Published as a conference paper at ICLR 2023

Proof. Starting from L-smoothness

F (xt+1)− F (xt) ≤ ⟨∇F (xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

=
2pt
γ

⟨∇F (xt), xt+1 − xt⟩+
(︃
1− 2pt

γ

)︃
⟨∇F (xt), xt+1 − xt⟩+

L

2
∥xt+1 − xt∥2

=
2pt
γ

⟨∇F (xt), x
∗ − xt⟩+

2pt
γ

⟨∇F (xt), xt+1 − x∗⟩

+

(︃
1− 2pt

γ

)︃
⟨∇F (xt), xt+1 − xt⟩+

L

2
∥xt+1 − xt∥2

≤ 2pt (F
∗ − F (xt)) +

ptct
γη

[︁
∥xt − x∗∥2 − ∥xt+1 − x∗∥2 − ∥xt+1 − x∥2

]︁
−
(︃
1− 2pt

γ

)︃
ct
η
∥xt+1 − xt∥2 +

L

2
∥xt+1 − xt∥2

= 2pt (F
∗ − F (xt)) +

ptct
γη

[︁
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

]︁
+

(︃
L

2
− ct

η
+

ptct
γη

)︃
∥xt+1 − xt∥2.

Note that Assumption 2 can be implied by Assumption 2’, hence we have

F ∗ − F (xt) ≤ −∥∇F (xt)∥2

2L
= −c2t∥xt+1 − xt∥2

2η2L
.

Therefore
F (xt+1)− F (xt) ≤ 2pt (F

∗ − F (xt)) +
ptct
γη

[︁
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

]︁
+

(︃
L

2
− ct

η
+

ptct
γη

)︃
∥xt+1 − xt∥2

≤ pt (F
∗ − F (xt))−

ptc
2
t∥xt+1 − xt∥2

2η2L
+

ptct
γη

[︁
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

]︁
+

(︃
L

2
− ct

η
+

ptct
γη

)︃
∥xt+1 − xt∥2

= pt (F
∗ − F (xt)) +

ptct
γη

[︁
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

]︁
+

(︃
L

2
− ct

η
+

ptct
γη

− ptc
2
t

2η2L

)︃
∥xt+1 − xt∥2.

We obtain
F (xt+1)− F ∗

ptct
≤ 1− pt

ptct
(F (xt)− F ∗) +

∥xt − x∗∥2 − ∥xt+1 − x∗∥2

γη

+

(︃
L

2ct
− 1

η
+

pt
γη

− ptct
2η2L

)︃
∥xt+1 − xt∥2

pt
.

Note that we require 1
pt

≥ 1−pt+1

pt+1
and ct is increasing hence

1

ptct
≥ 1− pt+1

pt+1ct
≥ 1− pt+1

pt+1ct+1

which leads to
F (xT+1)− F ∗

pT cT

≤1− p1
p1c1

(F (x1)− F ∗) +
∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2ct
− 1

η
+

pt
γη

− ptct
2η2L

)︃
∥xt+1 − xt∥2

pt

=
1− p1
p1c1

(F (x1)− F ∗) +
∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2ct
− 1

η
+

pt
γη

− ptct
2η2L

)︃
η2∥∇F (xt)∥2

c2tpt
.

30

Published as a conference paper at ICLR 2023

By setting p1 = 1 we get the desired result.

B.2 FIRST VARIANT

Note that if we assume pt satisfies the condition in Lemma B.1, by replacing ct by bt, we have

F (xT+1)− F ∗

pT bT
≤ ∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2bt
− 1

η
+

pt
γη

− ptbt
2η2L

)︃
η2∥∇F (xt)∥2

b2tpt

immediately. Now our two left tasks are to bound the residual term∑︁T
t=1

(︂
L
2bt

− 1
η + pt

γη − ptbt
2η2L

)︂
η2∥∇F (xt)∥2

b2tpt
and find an upper bound on bT . Lemmas B.2

and B.3 demonstrate how we achieve these two goals.
Lemma B.2. If pt ≤ 1 for every t, we have

T∑︂
t=1

(︃
L

2bt
− 1

2η

)︃
η2∥∇F (xt)∥2

b2tpt
≤ h(∆)

T∑︂
t=1

(︃
pt
γη

− ptbt
2η2L

)︃
η2∥∇F (xt)∥2

b2tpt
≤ g(∆)

where

h(∆) :=

⎧⎨⎩
(2+∆)η(ηL)∆

2 log+ ηL
b0

∆ ≥ 1
(2+∆)η2L

2b1−∆
0

log+ ηL
b0

∆ ∈ (0, 1)
and g(∆) :=

(2 + ∆)η

γ

(︃
2ηL

γ

)︃∆

log+
2ηL

γb0
.

Proof. We first bound
T∑︂

t=1

(︃
L

2bt
− 1

2η

)︃
η2∥∇F (xt)∥2

b2tpt
.

If b1 > ηL, we know
T∑︂

t=1

(︃
L

2bt
− 1

2η

)︃
η2∥∇F (xt)∥2

b2tpt
< 0 ≤ h(∆).

Otherwise, we define the time τ = max {t ∈ [T], bt ≤ ηL}. Hence, we have

T∑︂
t=1

(︃
L

2bt
− 1

2η

)︃
η2∥∇F (xt)∥2

b2tpt
=

τ∑︂
t=1

(︃
L

2bt
− 1

2η

)︃
η2∥∇F (xt)∥2

b2tpt
+

T∑︂
t=τ

(︃
L

2bt
− 1

2η

)︃
η2∥∇F (xt)∥2

b2tpt

≤
τ∑︂

t=1

(︃
L

2bt
− 1

2η

)︃
η2∥∇F (xt)∥2

b2tpt
≤

τ∑︂
t=1

L

2bt
× η2∥∇F (xt)∥2

b2tpt

=
η2L

2

τ∑︂
t=1

b2+∆
t − b2+∆

t−1

b3t
=

η2L

2

τ∑︂
t=1

b2+∆
t − b2+∆

t−1

b2+∆
t

× b∆−1
t

≤

⎧⎨⎩
η2L
2

∑︁τ
t=1

b2+∆
t −b2+∆

t−1

b2+∆
t

× (ηL)
∆−1

∆ ≥ 1

η2L
2

∑︁τ
t=1

b2+∆
t −b2+∆

t−1

b2+∆
t

× 1
b1−∆
0

∆ < 1

=

⎧⎨⎩
η(ηL)∆

2

∑︁τ
t=1

b2+∆
t −b2+∆

t−1

b2+∆
t

∆ ≥ 1

η2L

2b1−∆
0

∑︁τ
t=1

b2+∆
t −b2+∆

t−1

b2+∆
t

∆ < 1

≤

⎧⎨⎩
(2+∆)η(ηL)∆

2 log ηL
b0

∆ ≥ 1
(2+∆)η2L

2b1−∆
0

log ηL
b0

∆ < 1

≤ h(∆).

31

Published as a conference paper at ICLR 2023

By applying a similar argument, we can prove
T∑︂

t=1

(︃
pt
γη

− ptbt
2η2L

)︃
η2∥∇F (xt)∥2

b2tpt
≤ g(∆).

Lemma B.3. Suppose all the conditions in Lemma B.1 are satisfied by replacing ct by bt, addition-
ally, assume pt ≤ 1, we will have

bT ≤
(︃
2

η

(︃
∥x1 − x∗∥2

γη
+ h(∆) + g(∆)

)︃
+ b∆0

)︃ 1
∆

Proof. Using Lemma B.1 by replacing ct by bt, we know
F (xT+1)− F ∗

pT bT

≤∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2bt
− 1

η
+

pt
γη

− ptbt
2η2L

)︃
η2∥∇F (xt)∥2

b2tpt

=
∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2bt
− 1

2η
+

pt
γη

− ptbt
2η2L

)︃
η2∥∇F (xt)∥2

b2tpt
− η∥∇F (xt)∥2

2b2tpt

≤∥x1 − x∗∥2

γη
+ h(∆) + g(∆)−

T∑︂
t=1

η∥∇F (xt)∥2

2b2tpt
,

where the last inequality is by Lemma B.2. Noticing F (xT+1)− F ∗ ≥ 0, we know
T∑︂

t=1

η∥∇F (xt)∥2

2b2tpt
≤ ∥x1 − x∗∥2

γη
+ h(∆) + g(∆).

Now we use the update rule of bt to get
T∑︂

t=1

η∥∇F (xt)∥2

2b2tpt
=

η

2

T∑︂
t=1

b2+∆
t − b2+∆

t−1

b2t
≥ η

2

T∑︂
t=1

b∆t − b∆t−1 =
η

2

(︁
b∆T − b∆0

)︁
Hence we know

bT ≤
(︃
2

η

(︃
∥x1 − x∗∥2

γη
+ h(∆) + g(∆)

)︃
+ b∆0

)︃ 1
∆

Equipped with Lemmas B.2 and B.3, we can give a proof of Theorem 4.1.

Proof. Note that if pt = 1
t , all the conditions in Lemma B.1 are satisfied by replacing ct by bt.

Hence we have

F (xT+1)− F ∗

pT bT
≤ ∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2bt
− 1

η
+

pt
γη

− ptbt
2η2L

)︃
η2∥∇F (xt)∥2

b2tpt

≤ ∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2bt
− 1

2η
+

pt
γη

− ptbt
2η2L

)︃
η2∥∇F (xt)∥2

b2tpt

≤ ∥x1 − x∗∥2

γη
+ h(∆) + g(∆),

where the last inequality is by Lemma B.2. Multiplying both sides by pT bT , we get

F (xT+1)− F ∗ ≤
bT

(︂
∥x1−x∗∥2

γη + h(∆) + g(∆)
)︂

T
.

By using the upper bound of bT in Lemma B.3, we finish the proof.

32

Published as a conference paper at ICLR 2023

B.3 SECOND VARIANT

Similar to the previous section, what we need to do is to bound the residual term∑︁T
t=1

(︂
L
2ct

− 1
η + pt

γη − ptct
2η2L

)︂
η2∥∇F (xt)∥2

c2tpt
and find an upper bound on cT where ct = bδt b

1−δ
t−1

here. We first bound the residual term by the following lemma.
Lemma B.4. If pt ≤ 1 for every t, we have

T∑︂
t=1

(︃
L

2ct
− 1

2η

)︃
η2∥∇F (xt)∥2

c2tpt
≤ η2L

b0

(︄
1−

(︃
b0
ηL

)︃ 1
δ

)︄+

T∑︂
t=1

(︃
pt
γη

− ptct
2η2L

)︃
η2∥∇F (xt)∥2

c2tpt
≤ 2η

γδ

(︃
2ηL

γb0

)︃ 2
δ−2

log+
2ηL

γb0

where ct = bδt b
1−δ
t−1 .

Proof. Note that ct
ct−1

=
bδt

b2δ−1
t−1 b1−δ

t−2

≥ 1, this means ctis monotone increasing. We first bound

T∑︂
t=1

(︃
L

2ct
− 1

2η

)︃
η2∥∇F (xt)∥2

c2tpt
.

If c1 > ηL, we know

T∑︂
t=1

(︃
L

2ct
− 1

2η

)︃
η2∥∇F (xt)∥2

c2tpt
< 0 ≤ η2L

b0

(︄
1−

(︃
b0
ηL

)︃ 1
δ

)︄+

.

Otherwise, let τ = max {t ∈ [T] , ct ≤ ηL}. We have
T∑︂

t=1

(︃
L

2ct
− 1

2η

)︃
η2∥∇F (xt)∥2

c2tpt
≤

τ∑︂
t=1

η2L∥∇F (xt)∥2

2c3tpt

=
η2L

2

τ∑︂
t=1

b2t − b2t−1

b3δt b3−3δ
t−1

≤ η2L

τ∑︂
t=1

bt − bt−1

b3δ−1
t b3−3δ

t−1

≤ η2L

τ∑︂
t=1

bt − bt−1

btbt−1

≤ η2L

(︃
1

b0
− 1

bτ

)︃
.

Note that cτ = bδτ b
1−δ
τ−1 ≤ ηL ⇒ bτ ≤

(︃
ηL

b1−δ
τ−1

)︃1/δ

. Hence

1

b0
− 1

bτ
≤ 1

b0
− (bτ−1)

1
δ−1

(ηL)
1/δ

≤ 1

b0

(︄
1−

(︃
b0
ηL

)︃ 1
δ

)︄+

.

Combinging two cases, there is always

T∑︂
t=1

(︃
L

2ct
− 1

2η

)︃
η2∥∇F (xt)∥2

c2tpt
≤ η2L

b0

(︄
1−

(︃
b0
ηL

)︃ 1
δ

)︄+

.

Now we turn to the second bound. If c1 > 2ηL/γ, we know
T∑︂

t=1

(︃
pt
γη

− ptct
2η2L

)︃
η2∥∇F (xt)∥2

c2tpt
< 0 ≤ 2η

γδ

(︃
2ηL

γb0

)︃ 2
δ−2

log+
2ηL

γb0
.

33

Published as a conference paper at ICLR 2023

Otherwise, we define the time τ = max {t ∈ [T] , ct ≤ 2ηL/γ}. Then, we have

T∑︂
t=1

(︃
pt
γη

− ptct
2η2L

)︃
η2∥∇F (xt)∥2

c2tpt
≤

τ∑︂
t=1

pt
γη

η2∥∇F (xt)∥2

c2tpt

≤ η

γ

τ∑︂
t=1

∥∇F (xt)∥2

c2tpt

=
η

γ

τ∑︂
t=1

b2t − b2t−1

b2δt b2−2δ
t−1

=
η

γ

τ∑︂
t=1

(︃
bt

bt−1

)︃2−2δ b2t − b2t−1

b2t

Because bδt b
1−δ
t−1 = ct ≤ 2ηL/γ for t ≤ τ , so we know bt ≤

(︃
2ηL

γb1−δ
t−1

)︃1/δ

. Using this bound

η

γ

τ∑︂
t=1

(︃
bt

bt−1

)︃2−2δ b2t − b2t−1

b2t
≤ η

γ

τ∑︂
t=1

(︃
2ηL

γbt−1

)︃ 2
δ−2 b2t − b2t−1

b2t

≤ η

γ

(︃
2ηL

γb0

)︃ 2
δ−2 τ∑︂

t=1

b2t − b2t−1

b2t

≤ 2η

γ

(︃
2ηL

γb0

)︃ 2
δ−2

log
bt
b0

≤ 2η

γδ

(︃
2ηL

γb0

)︃ 2
δ−2

log+
2ηL

γb0
.

The proof is completed.

As before, our last task is to bound cT . It is enough to bound bT since cT ≤ bT .

Lemma B.5. Suppose all the conditions in Lemma B.1 are satisfied by replacing ct by bt, addition-
ally, assume pt ≤ 1, we will have

bT ≤ b0 exp

⎛⎜⎜⎜⎝
∥x1−x∗∥2

γη2 + ηL
b0

(︃
1−

(︂
b0
ηL

)︂ 1
δ

)︃+

+ 2
γδ

(︂
2ηL
γb0

)︂ 2
δ−2

log+ 2ηL
γb0

1− δ

⎞⎟⎟⎟⎠ .

Proof. By Lemma B.1, we know

0 ≤ F (xT+1)− F ∗

pT cT

≤ ∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2ct
− 1

η
+

pt
γη

− ptct
2η2L

)︃
η2∥∇F (xt)∥2

c2tpt

0 ≤ ∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2ct
− 1

2η
+

pt
γη

− ptct
2η2L

)︃
η2∥∇F (xt)∥2

c2tpt
− η∥∇F (xt)∥2

2c2tpt

T∑︂
t=1

η∥∇F (xt)∥2

2c2tpt
≤ ∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2ct
− 1

2η
+

pt
γη

− ptct
2η2L

)︃
η2∥∇F (xt)∥2

c2tpt

≤ ∥x1 − x∗∥2

γη
+

η2L

b0

(︄
1−

(︃
b0
ηL

)︃ 1
δ

)︄+

+
2η

γδ

(︃
2ηL

γb0

)︃ 2
δ−2

log+
2ηL

γb0

34

Published as a conference paper at ICLR 2023

where the last inequality is by Lemma B.4. Note that for the L.H.S., we have

T∑︂
t=1

η∥∇F (xt)∥2

2c2tpt
=

η

2

T∑︂
t=1

b2t − b2t−1

b2δt b2−2δ
t−1

=
η

2

T∑︂
t=1

(︃
bt

bt−1

)︃2−2δ

−
(︃
bt−1

bt

)︃2δ

≥ η(1− δ)

T∑︂
t=1

log
bt

bt−1
= η(1− δ) log

bT
b0

.

Hence we know

bT ≤ b0 exp

⎛⎜⎜⎜⎝
∥x1−x∗∥2

γη2 + ηL
b0

(︃
1−

(︂
b0
ηL

)︂ 1
δ

)︃+

+ 2
γδ

(︂
2ηL
γb0

)︂ 2
δ−2

log+ 2ηL
γb0

1− δ

⎞⎟⎟⎟⎠

Finally, the proof of Theorem 4.3 is similar to the proof of Theorem 4.1, hence, which is omitted.

B.4 AN ASYMPTOTIC RATE WHEN ∆ = 0 AND δ = 1

As mentioned before, by setting ∆ = 0 in Algorithm 3 and δ = 1 in Algorithm 4 we obtain the
same algorithm. The square root update rule of bt and the step size now are both more similar to
the original AdaGradNorm. Intuitively, we can also expect the convergence of the last iterate in
this case; furthermore, by taking the limit when ∆ → 0 and δ → 1, we can have a sense of the
exponential dependency of the provable convergence rate on the problem parameters. However,
previous analysis strictly requires that ∆ > 0 and δ < 1, thus does not apply here.

In this section, we partially confirm the convergence of this variant by proving an asymptotic rate,
i.e., F (xT+1) − F ∗ = O (1/T). Unfortunately, under Assumptions 1 and 2’, we cannot figure out
the explicit dependency of the convergence rate on the problem parameters. However, in the next
section, we will give an explicit rate by replacing Assumption 1 with the stronger Assumption 1’.
As stated, our goal is to prove Theorem B.6 in this section.

Theorem B.6. Suppose F satisfies Assumptions 1 and 2’, when ∆ = 0 for Algorithm 3, or equiva-
lently, δ = 1 for Algorithm 4, by taking pt =

1
t , we have

F (xT+1)− F ∗ = O (1/T) .

Before starting the proof, we first discuss why we can obtain only an asymptotic rate when ∆ = 0
and δ = 1. As before, one can still expect that F (xT+1) − F ∗ ≤ bTC

T remains true for some
constant C. However, a critical difference will show up when we want to find an explicit upper
bound on bT . Using the proof of Lemma B.3 as an example (similarly for the proof of Lemma
B.5), one key step is to get

∑︁T
t=1

∥∇F (xt)∥2

b2tpt
= O(1), where in the previous analysis, by replacing

∥∇F (xt)∥2

pt
by b2+∆

t − b2+∆
t−1 with ∆ > 0, we can lower bound

∑︁T
t=1

∥∇F (xt)∥2

b2tpt
by a function

of bT and finally give an explicit bound on bT . However, this is not possible when ∆ = 0 as∑︁T
t=1

∥∇F (xt)∥2

b2tpt
=
∑︁T

t=1

b2t−b2t−1

b2t
. The only information we can get from

∑︁T
t=1

b2t−b2t−1

b2t
= O(1) is

limT→∞
b2T−1

b2T
= 1. This is not enough to tell us whether bT is upper bounded or not. In Lemma B.8,

we will use a new argument to finally show that limT→∞ bT < ∞, which leads to an asymptotic
rate as desired. It is worth pointing out that finding an asymptotic without explicit dependency on
the problem parameters is the approach used in some of the previous work, such as Antonakopoulos
et al. (2022). This also gives us a glimpse of the method used to analyze the convergence of the
accelerated methods in Section 5.

Now we start the proof. As before, we can employ Lemma B.1. Hence we only need to bound the
residual terms as following

35

Published as a conference paper at ICLR 2023

Lemma B.7. Suppose pt ≤ 1, when ∆ = 0 for Algorithm 3, or equivalently, δ = 1 for Algorithm
4, we have

T∑︂
t=1

(︃
L

2bt
− 1

2η

)︃
η2∥∇F (xt)∥2

b2tpt
≤ η

(︃
ηL

b0
− 1

)︃+

T∑︂
t=1

(︃
pt
γη

− ptbt
2η2L

)︃
η2∥∇F (xt)∥2

b2tpt
≤ 2η

γ
log+

2ηL

γb0

The proof is essentially similar to the proof of Lemmas B.2 and B.4, hence we omit it here.
Lemma B.8. Suppose all the conditions in Lemma B.1 are satisfied by replacing ct by bt, then when
∆ = 0 for Algorithm 3, or equivalently, δ = 1 for Algorithm 4, we have

lim
T→∞

bT = b∞ < ∞.

Proof. First note that bt is increasing, by the Monotone convergence theorem, we know
limT→∞ bT = b∞ exists. We aim to show b∞ < ∞. By Lemma B.1 and replacing ct by bt,
we have

F (xT+1)− F ∗

pT bT

≤∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2bt
− 1

η
+

pt
γη

− ptbt
2η2L

)︃
η2∥∇F (xt)∥2

b2tpt

=
∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2bt
− 1

2η
+

pt
γη

− ptbt
2η2L

)︃
η2∥∇F (xt)∥2

b2tpt
− 1

2η
× η2∥∇F (xt)∥2

b2tpt

=
∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2bt
− 1

2η
+

pt
γη

− ptbt
2η2L

)︃
η2∥∇F (xt)∥2

b2tpt
− η∥∇F (xt)∥2

2b2tpt

≤∥x1 − x∗∥2

γη
+ η

(︃
ηL

b0
− 1

)︃+

+
2η

γ
log+

2ηL

γb0
−

T∑︂
t=1

η∥∇F (xt)∥2

2b2tpt
,

where the last inequality is by Lemma B.7. Noticing F (xT+1)− F ∗ ≥ 0, we know
T∑︂

t=1

η∥∇F (xt)∥2

2b2tpt
≤ ∥x1 − x∗∥2

γη
+ η

(︃
ηL

b0
− 1

)︃+

+
2η

γ
log+

2ηL

γb0
,

which implies
∞∑︂
t=1

∥∇F (xt)∥2

b2tpt
≤ 2∥x1 − x∗∥2

γη2
+ 2

(︃
ηL

b0
− 1

)︃+

+
4

γ
log+

2ηL

γb0
. (7)

We observe that

b2T = b2T−1 +
∥∇F (xT)∥2

pT

⇒b2T =
b2T−1

1− ∥∇F (xT)∥2

b2T pT

= b20

T∏︂
t=1

1

1− ∥∇F (xt)∥2

b2tpt

.

Taking log to both sides, we get

log b2T = log b20 +

T∑︂
t=1

log
1

1− ∥∇F (xt)∥2

b2tpt

≤ log b20 +

T∑︂
t=1

1

1− ∥∇F (xt)∥2

b2tpt

− 1

= log b20 +

T∑︂
t=1

∥∇F (xt)∥2

b2tpt

1− ∥∇F (xt)∥2

b2tpt

≤ log b20 +

∞∑︂
t=1

∥∇F (xt)∥2

b2tpt

1− ∥∇F (xt)∥2

b2tpt

36

Published as a conference paper at ICLR 2023

Note that Inequality (7) tells us limt→∞
∥∇F (xt)∥2

b2tpt
= 0, hence we can let τ be the time such that

∥∇F (xt)∥2

b2tpt
≤ 1

2 for t ≥ τ . Then we know

∞∑︂
t=1

∥∇F (xt)∥2

b2tpt

1− ∥∇F (xt)∥2

b2tpt

=

τ−1∑︂
t=1

∥∇F (xt)∥2

b2tpt

1− ∥∇F (xt)∥2

b2tpt

+

∞∑︂
t=τ

∥∇F (xt)∥2

b2tpt

1− ∥∇F (xt)∥2

b2tpt

≤
τ−1∑︂
t=1

∥∇F (xt)∥2

b2tpt

1− ∥∇F (xt)∥2

b2tpt

+ 2

∞∑︂
t=τ

∥∇F (xt)∥2

b2tpt

≤
τ−1∑︂
t=1

∥∇F (xt)∥2

b2tpt

1− ∥∇F (xt)∥2

b2tpt

+ 2

(︄
2∥x1 − x∗∥2

γη2
+ 2

(︃
ηL

b0
− 1

)︃+

+
4

γ
log+

2ηL

γb0

)︄
< ∞.

The above result implies log b2T has a uniform upper bound which means b∞ < ∞.

Now we can start to prove Theorem B.6.

Proof. Note that when ∆ = 0 for Algorithm 3, or equivalently, δ = 1 for Algorithm 4, if pt = 1
t ,

all the conditions in Lemma B.1 are satisfied by replacing ct by bt. Hence we have

F (xT+1)− F ∗

pT bT
≤ ∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2bt
− 1

η
+

pt
γη

− ptbt
2η2L

)︃
η2∥∇F (xt)∥2

b2tpt

≤ ∥x1 − x∗∥2

γη
+

T∑︂
t=1

(︃
L

2bt
− 1

2η
+

pt
γη

− ptbt
2η2L

)︃
η2∥∇F (xt)∥2

b2tpt

=
∥x1 − x∗∥2

γη
+ η

(︃
ηL

b0
− 1

)︃+

+
2η

γ
log+

2ηL

γb0
,

where the last inequality is by Lemma B.7. Multiplying both sides bypT bT , we wknow

F (xT+1)− F ∗ ≤ bT
T

(︄
∥x1 − x∗∥2

γη
+ η

(︃
ηL

b0
− 1

)︃+

+
2η

γ
log+

2ηL

γb0

)︄

≤ b∞
T

(︄
∥x1 − x∗∥2

γη
+ η

(︃
ηL

b0
− 1

)︃+

+
2η

γ
log+

2ηL

γb0

)︄

= O

(︃
1

T

)︃
,

where the last line is by Lemma B.8.

B.5 A NON-ASYMPTOTIC RATE WHEN ∆ = 0 AND δ = 1 FOR CONVEX SMOOTH FUNCTIONS

In the previous section, we only give an asymptotic rate when ∆ = 0 and δ = 1. In the following,
we will show that, by replacing Assumption 1 by the stronger Assumption 1’, a non-asymptotic rate
can be obtained as stated in Theorem B.9.
Theorem B.9. Suppose F satisfies Assumptions 1’ and 2’, when ∆ = 0 for Algorithm 3, or equiv-
alently, δ = 1 for Algorithm 4, by taking pt =

1
t , we have

F (xT+1)− F ∗ ≤
b

(︃
∥x1−x∗∥2

2η + η
2

(︂
2ηL
b0

− 1
)︂+)︃

T
,

where b = max

{︃
ηL
2 ,
√︁
b20 + ∥∇F (x1)∥2 exp

(︃
3∥x1−x∗∥2

η2 + 3
(︂

2ηL
b0

− 1
)︂+)︃

,

ηL

√︃
1
4 + ∥xt−x∗∥2

η2 +
(︂

2ηL
b0

− 1
)︂+

exp

(︃
3∥x1−x∗∥2

η2 + 3
(︂

2ηL
b0

− 1
)︂+)︃}︄

.

37

Published as a conference paper at ICLR 2023

We first give another well-known characterization of convex and L-smooth functions without proof.
Lemma B.10. Suppose F satisfies Assumption 1’ and 2’, then ∀x, y ∈ Rd

⟨∇F (x)−∇F (y), x− y⟩ ≥ ∥∇F (x)−∇F (y)∥2

L
.

Next, we state a simple variant of Lemma B.1, the proof of which is essentially the same as the proof
of Lemma B.1, hence we omit it.
Lemma B.11. Suppose the following conditions hold:

• F satisfies Assumptions 1’ and 2’;

• pt ∈ (0, 1) satisfies 1
pt

≥ 1−pt+1

pt+1
, p1 = 1.

When ∆ = 0 for Algorithm 3, or equivalently, δ = 1 for Algorithm 4, we have

F (xT+1)− F ∗

pT bT
≤ ∥x1 − x∗∥2

2η
+

T∑︂
t=1

(︃
L

2bt
− 1

η
+

pt
2η

)︃
η2∥∇F (xt)∥2

b2tpt

The same as Lemma B.7, we give the following bound on the residual term without proof.
Lemma B.12. Suppose pt ≤ 1, when ∆ = 0 for Algorithm 3, or equivalently, δ = 1 for Algorithm
4, we have

T∑︂
t=1

(︃
L

2bt
− 1

4η

)︃
η2∥∇F (xt)∥2

b2tpt
≤ η

2

(︃
2ηL

b0
− 1

)︃+

Again, the above two lemmas give us

F (xT+1)− F ∗ ≤ pT bT

(︄
∥x1 − x∗∥2

2η
+

η

2

(︃
2ηL

b0
− 1

)︃+
)︄

(8)

W.l.o.g., we assume bT > ηL
2 in the following analysis. Otherwise, we can use the bound bT ≤ ηL

2
to get a trivial convergence rate. Now we define the time

τ = max

{︃
t ∈ [T] , bt ≤

ηL

2

}︃
∨ 0.

This time τ is extremly useful and will finally help us bound bT . Now we list the following three
important lemmas related to time τ .
Lemma B.13. With Assumptions 1’ and 2’, when t ≥ τ + 1, ∥∇F (xt)∥ is non-increasing.

Proof. Taking x = xt,y = xt+1 in Lemma B.10, we get

∥∇F (xt)−∇F (xt+1)∥2

L
≤ ⟨∇F (xt)−∇F (xt+1), xt − xt+1⟩

= ⟨∇F (xt)−∇F (xt+1),
η

bt
∇F (xt)⟩

⇒
(︃
1

L
− η

bt

)︃
∥∇F (xt)∥2 +

1

L
∥∇F (xt+1)∥2 ≤

(︃
2

L
− η

bt

)︃
⟨∇F (xt),∇F (xt+1)⟩.

Note that when t ≥ τ + 1, we know bt >
ηL
2 ⇒ 2

L − η
bt

> 0, hence we have(︃
1

L
− η

bt

)︃
∥∇F (xt)∥2 +

1

L
∥∇F (xt+1)∥2

≤
(︃
2

L
− η

bt

)︃
⟨∇F (xt),∇F (xt+1)⟩

≤
(︃
1

L
− η

2bt

)︃
∥∇F (xt)∥2 +

(︃
1

L
− η

2bt

)︃
∥∇F (xt+1)∥2,

which implies ∥∇F (xt+1)∥2 ≤ ∥∇F (xt)∥2. This is just what we want.

38

Published as a conference paper at ICLR 2023

Lemma B.14. With Assumptions 1’ and 2’, if pt = 1
t , when t ≥ τ + 2 ≥ 2,

∥∇F (xt)∥2

b2tpt
≤ 2

3

Proof. This is because

∥∇F (xt)∥2

b2tpt
=

t∥∇F (xt)∥2

b20 +
∑︁t

i=1 i∥∇F (xi)∥2

≤ t∥∇F (xt)∥2

(t− 1)∥∇F (xt−1)∥2 + t∥∇F (xt)∥2

≤ t∥∇F (xt)∥2

(t− 1)∥∇F (xt)∥2 + t∥∇F (xt)∥2

=
t

2t− 1
,

where the last inequality is because t − 1 ≥ τ + 1, hence ∥∇F (xt−1)∥ ≥ ∥∇F (xt)∥ by Lemma
B.13. Note that t ≥ 2, so ∥∇F (xt)∥2

b2tpt
≤ t

2t−1 ≤ 2
3 .

Lemma B.15. With Assumptions 1’ and 2’, if pt = 1
t

bτ+1 ≤
√︂
b20 + ∥∇F (x1)∥2 ∨ ηL

√︄
1

4
+

∥x1 − x∗∥2
η2

+

(︃
2ηL

b0
− 1

)︃+

Proof. If τ = 0, we have

bτ+1 = b1 =
√︂

b20 + ∥∇F (x1)∥2.

Otherwise, we know τ + 1 ≥ 2, hence

b2τ+1 = b2τ + (τ + 1) ∥∇F (xτ+1)∥2

≤ b2τ + 2L (τ + 1) (F (xτ+1)− F ∗)

≤ b2τ + 2L
τ + 1

τ
bτ

(︄
∥x1 − x∗∥2

2η
+

η

2

(︃
2ηL

b0
− 1

)︃+
)︄

≤ b2τ + 4Lbτ

(︄
∥x1 − x∗∥2

2η
+

η

2

(︃
2ηL

b0
− 1

)︃+
)︄

≤
(︃
ηL

2

)︃2

+ η2L2

(︄
∥x1 − x∗∥2

η2
+

(︃
2ηL

b0
− 1

)︃+
)︄

⇒ bτ+1 ≤ ηL

√︄
1

4
+

∥x1 − x∗∥2
η2

+

(︃
2ηL

b0
− 1

)︃+

where the second inequality is due to (8).

Now we combine Lemmas B.14 and B.15 to get an upper bound for bT .

Lemma B.16. With Assumptions 1’ and 2’, if pt = 1
t

bT ≤ max

{︄
ηL

2
,
√︂
b20 + ∥∇F (x1)∥2 exp

(︄
3∥x1 − x∗∥2

η2
+ 3

(︃
2ηL

b0
− 1

)︃+
)︄
,

ηL

√︄
1

4
+

∥x1 − x∗∥2
η2

+

(︃
2ηL

b0
− 1

)︃+

exp

(︄
3∥x1 − x∗∥2

η2
+ 3

(︃
2ηL

b0
− 1

)︃+
)︄⎫⎬⎭

39

Published as a conference paper at ICLR 2023

Proof. Note that if bT ≤ ηL
2 , we are done. If bT > ηL

2 , we will bound bT as follows:

b2T = b2T−1 +
∥∇F (xT)∥2

pT

⇒ b2T =
b2T−1

1− ∥∇F (xT)∥2

b2T pT

= b2τ+1

T∏︂
t=τ+2

1

1− ∥∇F (xt)∥2

b2tpt

⇒ log b2T ≤ log b2τ+1 +

T∑︂
t=τ+2

log
1

1− ∥∇F (x)∥2

b2tpt

≤ log b2τ+1 +

T∑︂
t=τ+2

∥∇F (x)∥2

b2tpt

1− ∥∇F (x)∥2

b2tpt

≤ log b2τ+1 +

T∑︂
t=τ+2

3∥∇F (x)∥2

b2tpt
,

where the last inequality is by Lemma B.14. Noticing pt =
1
t ≤ 1, combining Lemmas B.11 and

B.12,we can find
T∑︂

t=1

∥∇F (xt)∥2

b2tpt
≤ 2∥x1 − x∗∥2

η2
+ 2

(︃
2ηL

b0
− 1

)︃+

.

Hence we know

log b2T ≤ log b2τ+1 +

T∑︂
t=τ+2

3∥∇F (x)∥2

b2tpt

≤ log b2τ+1 +
6∥x1 − x∗∥2

η2
+ 6

(︃
2ηL

b0
− 1

)︃+

⇒ b2T ≤ b2τ+1 exp

(︄
6∥x1 − x∗∥2

η2
+ 6

(︃
2ηL

b0
− 1

)︃+
)︄
.

The last step is to use the bound on bτ+1 in Lemma B.15.

Finally, the proof of Theorem B.9 is obtained by simply using Lemma B.16 to Equation (8).

C MISSING PROOFS FROM SECTION 5

C.1 IMPORTANT LEMMA

First, we state a general lemma that can be used for a more general setting. The proof of the lemma
is standard.
Lemma C.1. Suppose F satisfies Assumptions 1’ and 2’ and the following conditions hold:

• wt is generated by
vt = (1− at)wt + atxt

xt+1 = xt −
η

qtct
∇F (vt)

wt+1 = (1− at)wt + atxt+1

with η > 0 and ct > 0 is non-decreasing;

• at ∈ (0, 1] and qt ≥ at satisfy 1
atqt

≥ 1−at+1

at+1qt+1
, a1 = 1;

Then we have

F (wT+1)− F ∗

aT qT cT
≤ ∥x1 − x∗∥2

2η
+

T∑︂
t=1

(︃
L

2ct
− 1

2η

)︃
η2∥∇F (vt)∥2

c2t q
2
t

40

Published as a conference paper at ICLR 2023

Proof. Starting from smoothness

F (wt+1)− F (vt)

≤⟨∇F (vt), wt+1 − vt⟩+
L

2
∥wt+1 − vt∥2

=(1− at)⟨∇F (vt), wt − vt⟩+ at⟨∇F (vt), xt+1 − vt⟩+
L

2
∥wt+1 − vt∥2

=(1− at)⟨∇F (vt), wt − vt⟩+ at⟨∇F (vt), x
∗ − vt⟩+ at⟨∇F (vt), xt+1 − x∗⟩+ L

2
∥wt+1 − vt∥2

≤(1− at)(F (wt)− F (vt)) + at(F
∗ − F (vt)) + at⟨∇F (vt), xt+1 − x∗⟩+ L

2
∥wt+1 − vt∥2

Thus

F (wt+1)− F ∗ ≤ (1− at)(F (wt)− F ∗) + at⟨∇F (vt), xt+1 − x∗⟩+ L

2
∥wt+1 − vt∥2

where the last inequality is due to the convexity of F . Using the update rule ∇F (vt) =
qtct
η (xt − xt+1) and wt+1 − vt = at (xt+1 − xt) we obtain

F (wt+1)− F ∗ ≤ (1− at)(F (wt)− F ∗)

+
atqtct
2η

(︂
∥x∗ − xt∥2 − ∥x∗ − xt+1∥2 − ∥xt+1 − xt∥2

)︂
+

La2t
2

∥xt+1 − xt∥2

Dividing both sides by atqtct and sumning up from 1 to T , we have

T∑︂
t=1

1

atqtct
(F (wt+1)− F ∗) ≤

T∑︂
t=1

1− at
atqtct

(F (wt)− F ∗)

+

T∑︂
t=1

(︃
Lat
2qtct

− 1

2η

)︃
∥xt+1 − xt∥2 +

1

2η
∥x∗ − x1∥2

Note that at ≤ qt, 1
atqtct

≥ 1−at+1

at+1qt+1ct+1
and at = 1. Thus

F (wT+1)− F ∗

aT qT cT
≤ ∥x1 − x∗∥2

2η
+

T∑︂
t=1

(︃
L

2ct
− 1

2η

)︃
∥xt+1 − xt∥2

=
∥x1 − x∗∥2

2η
+

T∑︂
t=1

(︃
L

2ct
− 1

2η

)︃
η2∥∇F (vt)∥2

c2t q
2
t

.

C.2 FIRST VARIANT

By using Lemma C.1, the proof idea of Theorem 5.1 is the same as the proof of Theorem 4.1. Hence,
we omit it for brevity.

C.3 SECOND VARIANT

By using Lemma C.1, the proof idea of Theorem 5.3 is the same as the proof of Theorem 4.3. Hence,
we omit it here.

C.4 A DISCUSSION ON WHEN ∆ = 0 AND δ = 1

Algorithms 5 and 6 become one when ∆ = 0 and δ = 1. As discussed in B.4, the challenge is to
find a explicit bound on bT . First, we give an asymptotic rate in Theorem C.2 of which the proof
idea is the same as the proof of Theorem B.6, thus is omitted.

41

Published as a conference paper at ICLR 2023

Theorem C.2. Suppose F satisfies Assumptions 1 and 2’, when ∆ = 0 for Algorithm 5, or equiva-
lently, δ = 1 for Algorithm 6, by taking at =

2
t+1 , pt = 2

t , we have

F (wT+1)− F ∗ = O
(︁
1/T 2

)︁
.

Now, we aim to prove the following non-asymptotic rate.

Theorem C.3. Suppose F satisfies Assumptions 1 and 2’, when ∆ = 0 for Algorithm 5, or equiva-
lently, δ = 1 for Algorithm 6, by taking at =

2
t+1 , pt = 2

t , we have

F (wT+1)− F ∗ ≤
4
(︂
b0 +

4η2L2

b0

)︂(︂
∥x1−x∗∥2

2η + η2L
b0

log+ ηL
b0

)︂
T (T + 1)

+
16L

(︂
∥x1−x∗∥2

2η + η2L
b0

log+ ηL
b0

)︂2
T + 1

.

We shortly discuss here why we can only give a rate in the order of 1/T but not 1/T 2. Recall that
in the proof of Theorem B.9, the key step is that after a certain time, ∥∇F (xt)∥ is a non-increasing
sequence, by using which we can finally give a constant upper bound on bT that finally helps us
to get the final 1/T rate. However, it is unclear under what condition on bt, ∥∇F (vt)∥ now will
be a non-increasing sequence in our accelerated algorithm. Thus it is unclear to us whether it is
possible to give a constant bound on bT . Instead, we will show bt can increase at most linearly in
this accelerated scheme by a new trick, for which reason, we can finally obtain the rate in the order
of 1/T . This guarantees that the convergence of the last iterate is no worse than the variants in
Section 4.

Proof. As before, to start with, we use Lemma C.1 (replace ct by bt)

F (wT+1)− F ∗

aT qT bT
≤ ∥x1 − x∗∥2

2η
+

T∑︂
t=1

(︃
L

2bt
− 1

2η

)︃
η2∥∇F (vt)∥2

b2t q
2
t

.

By using b2t = b2t−1 +
∥∇F (vt)∥2

b2t
and the same technique in the previous proof, we know

T∑︂
t=1

(︃
L

2bt
− 1

2η

)︃
η2∥∇F (vt)∥2

b2t q
2
t

≤ η2L

b0
log+

ηL

b0
.

So we have

F (wT+1)− F ∗ ≤ aT qT bT

(︃
∥x1 − x∗∥2

2η
+

η2L

b0
log+

ηL

b0

)︃
⏞ ⏟⏟ ⏞

D

Now we turn to bound bt by observing

b2t = b2t−1 +
∥∇F (vt)∥2

q2t

≤ b2t−1 +
2∥∇F (vt)−∇F (wt+1)∥2

q2t
+

2∥∇F (wt+1)∥2

q2t

≤ b2t−1 +
2L2∥vt − wt+1∥2

q2t
+

2∥∇F (wt+1)∥2

q2t

= b2t−1 +
2L2a2t∥xt+1 − xt∥2

q2t
+

2∥∇F (wt+1)∥2

q2t

≤ b2t−1 + 2L2∥xt+1 − xt∥2 +
2∥∇F (wt+1)∥2

q2t
,

42

Published as a conference paper at ICLR 2023

where the last inequality is due to at ≤ pt. Then we use ∥xt+1−xt∥2 = η2∥∇F (vt)∥2

b2tq
2
t

=
η2(b2t−b2t−1)

b2t

and ∥∇F (wt+1)∥2 ≤ 2L(F (wt+1)− F ∗) ≤ 2LatqtbtD to get

b2t ≤ b2t−1 +
2η2L2

(︁
b2t − b2t−1

)︁
b2t

+
4LatqtbtD

q2t

≤ b2t−1 +
2η2L2

(︁
b2t − b2t−1

)︁
b2t

+ 4LbtD

⇒ bt ≤
b2t−1

bt
+ 2η2L2 b

2
t − b2t−1

b3t
+ 4LD

≤ bt−1 + 4η2L2

(︃
1

bt−1
− 1

bt

)︃
+ 4LD

⇒ bt ≤ b0 +
4η2L2

b0
+ 4LDt.

Using this bound, we finally get

F (wT+1)− F ∗ ≤ aT qT bTD

=
4
(︂
b0 +

4η2L2

b0
+ 4LDT

)︂
D

T (T + 1)

=
4
(︂
b0 +

4η2L2

b0

)︂(︂
∥x1−x∗∥2

2η + η2L
b0

log+ ηL
b0

)︂
T (T + 1)

+
16L

(︂
∥x1−x∗∥2

2η + η2L
b0

log+ ηL
b0

)︂2
T + 1

.

D EXPERIMENTS

Figure 1: Function value gap for different algorithms

In this section, we provide some empirical evidence to compare the performances of our algorithms
in the deterministic setting. Our test function follows the quadratic function used to prove the lower
bound of the first order method constructed by Nesterov (Nesterov et al., 2018). That is

F (x) =
x[1]2 + x[d]2 +

∑︁d−1
i=1 (x[i]− x[i+ 1])

2

2
− x[1].

43

Published as a conference paper at ICLR 2023

where x[i] refers to the i-th coordinate of point x ∈ Rd. It is known that F is 4-smooth and convex
with the unique minimizer

x∗[i] = 1− i

d+ 1
,∀i ∈ [d] .

We fix d = 101 and set the time horizon to T = 1000 in the test. The starting point x1 is initial-
ized randomly satisfying that every coordinate is uniformly chosen in [0, 1). All algorithms share
the same x1. For the adaptive algorithms, we choose b0 = 10−2 and set η = 1 without any fur-
ther tuning. We also compare with an accelerated algorithm (Lan, 2020), which requires using the
smoothness constant L = 4.

The result is shown in Figure 1. We can find that our Algorithms 3 and 4 admit the last iterate
convergence. Additionally, both our accelerated algorithms, i.e., Algorithms 5 and 6, enjoy the
accelerated property without knowing the smoothness parameter and are competitive against Ac-
celerated Gradient Descent (Lan, 2020) which requires the smooth parameter to set the step size.
Another interesting observation is that it seems AdaGradNorm also exhibits the last iterate conver-
gence. However, whether this is indeed a property of AdaGradNorm has not been confirmed by the
theory. We leave this as a future direction.

44

