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Abstract

Severalautomatedmolecularmethodshaveemerged fordistinguishingeukaryote
species based on DNA sequence data. However, there are knowledge gaps around
which of these single-locus methods is more accurate for the identification of
microalgal species, such as the highly diverse and ecologically relevant diatoms.
We applied genetic divergence, Automatic Barcode Gap Discovery for primary
species delimitation (ABGD), Assemble Species by Automatic Partitioning
(ASAP), Statistical Parsimony Network Analysis (SPNA), Generalized Mixed
Yule Coalescent (GMYC) and Poisson Tree Processes (PTP) using partial
coxl, rbcL, 5.8S+ITS2, ITS1+5.85+1TS2 markers to delineate species and
compare to published polyphasic identification data (morphological features,
phylogeny and sexual reproductive isolation) to test the resolution of these
methods. ASAP, ABGD, SPNA and PTP models resolved species of Eunotia,
Seminavis, Nitzschia, Sellaphora and Pseudo-nitzschia corresponding to
previous polyphasic identification, including reproductive isolation studies. In
most cases, these models identified diatom species in similar ways, regardless
of sequence fragment length. GMYC model presented smallest number of
results that agreed with previous published identification. Following the
recommendations for proper use of each model presented in the present study,
these models can be useful tools to identify cryptic or closely related species of
diatoms, even when the datasets have relatively few sequences.

KEYWORDS
ABGD, ASAP, GMYC, microalgae species, molecular taxonomy, PTP, SPNA, systematics,
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INTRODUCTION

THE identification of eukaryotic microalgae is not triv-
ial, considering that some species lack obvious features
for identification. Diverse criteria have been used to
identify species, these include the biological, ecologi-
cal, evolutionary and phylogenetic species concepts. All
these approaches assume that species are metapopula-
tion lineages that evolved separately (De Queiroz, 2007,
Leliaert et al., 2014).

Diatoms are one of the most species-rich eukaryotic
algal groups, with an estimated 30,000-100,000 species
(Mann & Vanormelingen, 2013). They can be found in

many kinds of habitats: marine, freshwater, ice, terres-
trial (soils, sand, mosses, rock walls) and can even be
found as endosymbionts of dinoflagellates and epibi-
onts of animals and macroalgae (Ashworth et al., 2022;
Hehenberger et al., 2016; Mann & Vanormelingen, 2013;
Round et al., 1990). The diatoms are also notable among
the microalgae in their distinctive morphology; dia-
toms have a siliceous cell wall (the “frustule”), which
can show high levels of morphological variability be-
tween taxa. Traditionally, the morphology of the dia-
tom frustule has been used for species identification
and taxonomical studies (Mann, 1999). However, the
so-called crypitc, semicryptic or pseudocryptic species
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have not shown sufficient morphological distinctions
to separate species even with advances in electron mi-
croscopy (Mann et al., 2010). Some of these species have
shown some level of reproductive isolation, and several
studies have distinguished species using molecular tools
(Amato et al., 2007; Evans et al., 2007; Mann et al., 2008;
Pouli¢kova et al., 2010; Quijano-Scheggia et al., 2009).
With regard to reproductive isolation, this has been
tested experimentally in only a few diatom taxa, due to
the difficulties in inducing sexual reproduction in cul-
ture (Chepurnov et al., 2004; Poulickova & Mann, 2019).

Molecular data can be applied in different ways to
delimit algal taxa: (a) using thresholds of sequence sim-
ilarity and genetic divergence to define species (diag-
nosable genotypic concept) (Evans et al., 2007, Hamsher
et al., 2011; MacGillivary & Kaczmarska, 2011), (b) de-
fining molecular clades as species based on one or more
molecular markers (phylogenetic concept) (Leliaert
et al., 2014), (c) recognizing significant changes in the
pace of branching events in the phylogenetic tree as in-
dicators of speciation (coalescent methods — phyloge-
netic concept) (Leliaert et al., 2014) and (d) occurrence of
compensatory base pair changes (CBCs) in the second-
ary structure of ITS (Coleman, 2009). Regarding the di-
agnosable genotypic concept, there are several methods
used to estimate the genetic divergence between putative
species. The p-distance (simple uncorrected distance) is
a method that quantifies the proportion (p) of nucleo-
tide sites which differ between two sequences and is used
to make pairwise comparisons of phylogenetically close
species (Nei & Kumar, 2000). The p-distance has been
used together with other methods (polyphasic approach)
to identify pennate diatoms, e.g., Eunotia bilunaris
(Ehrenberg) Schaarschmidt sensu lato (Vanormelingen
et al., 2008), the Nitzschia palea (Kutzing) complex
(Trobajo et al., 2009, 2010) and the Asterionellopsis gla-
cialis (Castracane) Round species complex (Franco
et al.,, 2016; Kaczmarska et al., 2014).

Automated single-locus computational methods
have emerged to assist molecular taxonomy, such as the
Automatic Barcode Gap Discovery for primary spe-
cies delimitation (ABGD) (Puillandre et al., 2012), the
Assemble Species by Automatic Partitioning (ASAP)
(Puillandre et al., 2021) and the Statistical Parsimony
Network Analysis (SPNA) (Clement et al., 2000;
Templeton et al., 1992), which are based on genetic di-
vergence (diagnosable genotypic concept). In addition,
the Poisson Tree Processes (PTP) (Zhang et al., 2013)
and General Mixed Yule Coalescent method (GMYC)
(Fujisawa & Barraclough, 2013) follow the phylogenetic
concept. The ABGD is an automated interactive process
that sorts sequences into putative species and selects the
reliable delimitations of species based on pairwise dis-
tance among sequences. The models search for a possible
barcode gap, the individuals of each suggested species
having smaller pairwise distances than among potential
distinct species (Puillandre et al., 2012). The ASAP is a

model that merges sequences in “groups” (or species)
by ascending hierarchical clustering successively. After
that, each putative species group is assigned a single
ASAP score obtained by combination of barcode gap
widths and the probability of groups to be panmictic
species, to indicate the most reliable species delimitation
(Puillandre et al., 2021). ABGD outperformed ASAP
considering the species delimitation with the best ASAP
score; however, when the ASAP species identifications
with the first and second best ASAP scores were consid-
ered, both models showed similar results to real data-
sets (5—643 species of gastropod; decapod crustaceans;
amphibians; cladocerans; mammals; insects; birds). In
addition, both models also showed comparable results
using simulated datasets (Puillandre et al., 2021). SPNA
estimates species by comparing the genetic distance be-
tween haplotypes; the model calculates the maximum
number of mutational steps constituting a parsimonious
connection between two haplotypes. The haplotypes
that constitute the same network are considered to rep-
resent the same species (Clement et al., 2000; Templeton
et al., 1992).

The PTP and GMYC models, on the other hand, are
tree-based species delimitation methods, which delin-
eate species based on significant changes in the pace of
branching events in a molecular phylogeny (Fujisawa &
Barraclough, 2013; Pons et al., 2006; Zhang et al., 2013).
While PTP directly uses the number of base pair substi-
tutions between branching events (Zhanget al., 2013), the
GMYC model considers time among branching events.
For this reason, the GMYC model needs ultramet-
ric trees as input data (Fujisawa & Barraclough, 2013;
Pons et al., 2006). In general, both methods show com-
parable results using real datasets (species of Gallotia
lizards; arthropod metabarcoding sequences; bears;
bees) and simulated datasets (Luo et al., 2018; Zhang
et al., 2013). However, the PTP outperformed the GMYC
model when the genetic distance between species in the
dataset was very small (more closely related species,
Zhang et al., 2013) or in dataset with fewer species (Luo
et al., 2018).

Few studies used automated species delimitation
models to investigate diatom taxonomy and only five
species complexes were analyzed by these methods:
N. palea complex (Rimet et al., 2014); Pinnularia subgibba
complex (Kollar et al., 2019); Cylindrotheca closterium
complex (Stock et al., 2019); Pinnularia borealis complex
(Pinseel et al., 2020) and Achnanthidium minutissimum
complex (Rimet et al., 2023). GMYC failed to delimitate
taxa of the N.palea complex (Rimet et al., 2014), and
PTP indicated that C. closterium is a true complex of spe-
cies with at least 12 species. The phylogenetic position
of C. closterium strains showed a link with temperature,
as strains from the same clade showed a similar thermal
optimum, which was correlated to the water temperature
of the place of origin (Stock et al., 2019). The SPNA and
ABGD indicated the presence of five and seven putative
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species within the A. minutissimum complex using ampl-
icon/metabarcode sequences (Rimet et al., 2023) of bar-
code region rbcL312 pb (Kermarrec et al., 2013; Vasselon
et al., 2017).

The studies that address Pinnularia taxonomy
used different models simultaneously. For P.subgibba
Krammer, a species originally described by morphol-
ogy, part of the strains formed a clade of reproduc-
tively compatible clones (Pouli¢kova et al., 2007), which
was described as Pinnularia lacustrigibba (Poulickova
et al., 2018). The PTP, GMYC and Statistical Parsimony
Network Estimation (SPNE) indicated that the P.sub-
gibba complex in fact comprised 14 or 15 species (Kollar
et al., 2019), one of them corresponded to the repro-
ductively compatible Pinnularia lacustrigibba (Kollar
et al., 2019; Poulickova et al., 2018). The global study of
diversification in the P. borealis complex used hundreds
of samples and, based on the consensus of five auto-
mated delimitation models (GMYC, PTP-ML, bPTP-h,
ABGD, SPNA/SPNE), indicated the presence of 126 spe-
cies in this globally distributed complex.

Relatively few studies used automated single-locus
computational methods as a tool for species identifica-
tion within microalgae lineages as diverse as the dino-
flagellates Symbiodinium and Gymnodinium (Annenkova
et al., 2020; Correa & Baker, 2009), cryptophytes (Hoef-
Emden, 2012), the rhodophytes of the Cyanidiales (Hsieh
et al., 2015), Choricystis, Coccomyxa and Chlorella-like
species in the Trebouxiophyceae (Kulakova et al., 2020;
Malavasi et al.,, 2016; Zou, Fei, Song, et al., 2016),
Haematococcus and Scenedesmus in the Chlorophyceae
(Allewaert et al., 2015; Zou, Fei, Wang, et al., 2016)
and the five aforementioned diatom species complexes
(Kollar et al., 2019; Pinseel et al., 2020; Rimet et al., 2014,
2023; Stock et al.,, 2019). However, most automated
species delimitation models (i.e., ABGD, ASAP, PTP,
GMYC) were developed and tested using simulated
datasets and/or real datasets with species of macroor-
ganisms (Pons et al., 2006; Puillandre et al., 2012, 2021;
Zhang et al., 2013). Macroorganisms in general have a
relatively small population size and more restrictive dis-
persal capabilities than microorganisms, influencing
gene flow between distinct populations and the specia-
tion process and rate, which may influence the accuracy
of these models (Luo et al., 2018; Puillandre et al., 2012,
2021). The present study is the first to compare the results
of different automated molecular species delimitation
methods or models using data from previously identified
diatom species. The selected models are available free of
charge and can be used easily through online web server
or software. Our goal in the present study is to test the
accuracy of single-locus methods (genetic divergence
thresholds, ABGD, ASAP, SPNA, GMYC and PTP)
using diatom species datasets. In order to avoid neglect-
ing cryptic, semicryptic or pseudocryptic species and
generate useful information to compare close species, we
restricted the analysis to diatom species and complexes

whose species delimitation was done a priori, based on
polyphasic taxonomy studies that used morphological
features, molecular information and the sexual repro-
ductive isolation data.

MATERIALS AND METHODS
Bibliographic survey

We searched for sequences of coxl, rbcL, 5.8S+1TS2 and
ITS1+5.8S+ITS2 from diatoms, which were identified
using both molecular information and morphological
features and also had their sexual compatibility tested in
previous studies. These molecular markers originate from
distinct organelles, respectively, the chloroplast, mito-
chondria and nucleus, and are often used to identify closely
related diatom species. Regarding reproductive criterion,
the diatom strains were considered conspecific when ex-
periments show that the crosses between them produced
descendants through sexual reproduction. To guarantee
that observed auxospores were the result of sexual repro-
duction among strains, we considered the results of crosses
between heterothallic strains only, where the progeny was
generated by crossing distinct parental strains with docu-
mented gametogenesis. Eight studies presented sequences
available on GenBank from strains that fill the require-
ments cited above. These selected strains correspond to
17 taxa in the class Bacillariophyceae (Table 1).These se-
quences were used to estimate the intra- and interspecific
genetic divergence (p-distance) and to delimit species by
Automatic Barcode Gap Discovery for primary species
delimitation (ABGD), Assemble Species by Automatic
Partitioning (ASAP), Statistical Parsimony Network
Analysis (SPNA), Generalized Mixed Yule Coalescent
(GMYC) and Poisson Tree Processes (PTP) that were cal-
culated in two different ways: PTP maximum likelihood
(PTP-ML) and Bayesian PTP heuristic (bPTP-h).

Calculation of genetic divergence

The alignment of sequences and the calculation of genetic
divergence (p-distance) were carried out in the MEGAG6
Program (Nei & Kumar, 2000; Tamura et al., 2013); tran-
sitions and transversions were included in the calcula-
tion; gaps and missing data were treated by pairwise
deletion. The alignments were performed using ClustalW
(Thompson et al., 1997), with the standard parameters of
MEGAG6 for cox1 and rbcL (Gap Opening Penalty 10 and
Gap Extension Penalty 6.66) (Tamura et al., 2013). The
5.8S+ITS2 marker was aligned using standard param-
eters or the Gap Opening Penalty 10 and Gap Extension
Penalty 1.2, following the recommendations of Moniz
and Kaczmarska (2010). When necessary, the I'TS align-
ments were manually corrected. Each diatom genus was
aligned separately, since the genera were not compared to
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TABLE 1

Taxon

Eunotia bilunaris
(Ehrenberg)
Schaarschmidt

Nitzschia palea
(Kutzing) Smith

Pseudo-nitzschia
pseudodelicatissima
(Hasle) Hasle
complex

Pseudo-nitzschia
delicatissima
(Cleve) Heiden
complex

Sellaphora pupula
(Kiitzing)
Mereschkovsky,

complex

Seminavis robusta
Danielidis & Mann

Tabularia fasciculata
(Agardh) Williams
& Round

Provenance of
sequences

Vanormelingen
et al. (2008)

Trobajo
et al. (2009)

Amato et al. (2007)

Quijano-Scheggia
et al. (2009)

Vanormelingen
et al. (2013)

Behnke
et al. (2004)

De Decker
et al. (2018)

Kaczmarska
et al. (2009)

Barcode marker

5.88+ITS2 372
alignable positions
with gaps

cox1 400bp
rbeL 540bp

rbeL 540bp

cox1 371 bp

5.85+1TS2 363
alignable positions
with gaps

5.8S+ITS2 337
alignable positions
with gaps

coxl

rbcL 540bp

5.8S+1ITS2

418 alignable positions
with gaps

5.88+1TS2 334
alignable positions
with gaps

rbcL 540bp

5.8S+1TS2 388
alignable positions
with gaps

rbeL 540 bp

N(T)

28 (1)
10 (1)

1)
21 (1)
3(1)
6 (1)
3(1)

1(1)

10 (1)
1(1)
1(1)

210 (1)
6 (1)
6 (1)

3(1)
15(1)
36 (1)

21(1)
21(1)

235(1)
168(1)

1991(1)
1107(1)

9(1)
12(1)

11)

Intra-specific genetic divergence

E. bilunaris ‘robust’: 0%—1% (0%=+0.3);
E. bilunaris ‘slender’: 0%—-2% (1%+0.6);

E. bilunaris ‘robust’ 0%

E. bilunaris ‘robust™ 0% (£0);
E. bilunaris ‘slender’: 0% (0);

N. palea 1 (Belgium): 0% (£0);
N. palea 2 (Brazil, Paraguai, Spain A4): 0%
(=0);

N. palea 2 (Brazil, Paraguai, Spain A4):

0% (£0);

P. pseudodelicatissima: 0% (£0);

P. mannii Amato & Montresor: 0% (+0);

P. calliantha Lundholm, Moestrup & Hasle:
0% (+0);

P. delicatissima: 0% (£0); P. arenysensis
Quijano-Scheggia, Garcés & Lundholm:
0% (+0);

P. dolorosa Lundholm & Moestrup: 0% (+0)

Sellaphora auldreekie Mann & McDonald: 0%
(0);

S. pupula agg. ‘coarse auldreekie’: 0% (+0);

S. pupula agg. ‘southern auldreekie’: 0% (+0);

S. auldreekie: 0% (£0);

S. pupula agg. ‘coarse auldreekie’: 0% (£0);

S. pupula agg. ‘southern auldreekie”:0%

S. pupula agg. ‘pseudocapitate’ 0% (+0.1);

Sellaphora backfordenses Mann & Droop: 0%—
1% (1%+0.4);

Same clade: 0-1% (0.1%+0.3);

Different clades (1, 2):

0%—-1% (0.3%=+0.2);

Same clade: 0% (+0)

Different clades (1, 2): 0%-1% (0.4%+0.03)

Same clade: 0%—1% (0.3%=+0.1)

Different clades: 3% (+0)

Different clades: 1%

N(T)
40 (2)

202
21(2)

12(2)

10 (2)
10 2)
4(2)

84(2)
84(2)
16 (2)

54(2)
18(2)
27(2)

6
92
6(2)

49 (2)

Genetic divergence calculated in the present study from strains with phylogeny and sexual compatibility tested by Vanormelingen et al. (2008), Trobajo et al. (2009), Amato et
al. (2007), Quijano-Scheggia et al. (2009), Vanormelingen et al. (2013), Behnke et al. (2004), De Decker et al. (2018) and Kaczmarska et al. (2009).

Inter-specific genetic divergence (different
clades)

(‘robust’, ‘slender’): 12% (£0.2);

(‘robust’, ‘slender’): 4% (+0);
(‘robust’, ‘slender’): 2% (£0);

(‘Belgium’, ‘Brazil, Paraguai, Spain A4’): 1%
(0);

(P. pseudodelicatissima, P. mannii): 9% (£0);

(P. pseudodelicatissima, P. calliantha): 9%
(0);

(P. calliantha, P. mannii): 3% (+0)

(P. delicatissima, P. arenysensis): 4% (£0);
(P. delicatissima, P.dolorosa): 9% (£0);
(P. arenysensis, P. dolorosa): 9% (£0);

(Coarse, southern): 5% (+0);
(coarse, auldreekie): 6% (£0);
(auldreekie, southern): 5% (+0);

(coarse, southern): 1% (£0);
(coarse, auldreekie): 1% (+0);
(auldreekie, southern): 1% (+0);

S. pupula agg. ‘pseudocapitate’,
S. backfordenses: 6%—7% (71%=+0.4);

Note: The numbers of pairwise comparisons (N) and taxa (T), minimum and maximum values of genetic divergence (mean+standard deviation) are shown.
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each other for the calculation of the intra- and interspe-
cific divergences. Therefore, the 5.8S+17S2 alignments
differed in length between genera, even though they cor-
responded to the same barcode region (the complete 5.8S
and up to the conserved region of the helix III motif in
ITS2), as suggested by Moniz and Kaczmarska (2010).
The length variation of 5.8S+ITS2 ranged from 300 to
500bp. The rbcL alignments were trimmed to correspond
with the proposed diatom barcode fragment: 540 bp start-
ing 139 amino acids downstream from the start codon,
a conserved region starting with an “AGA” triplet, and
ending after 540bp on a “TAA” triplet, as proposed by
MacGillivary and Kaczmarska (2011). The coxl frag-
ment corresponded to the region near the 5 end, with
approximately 431 bp (Moniz & Kaczmarska, 2009). The
trimmed alignments were used to calculate p-distance.
So we calculated genetic divergence using barcode re-
gions (Table 1) to compare our results with thresholds
proposed to delimit diatom species.

Alignments and trees used as input for
automated species delimitation models

The target clades used in the present study correspond
to selected species or populations. The clades were pro-
posed based on trees produced by previous polypha-
sic taxonomic studies of the selected species (Amato
et al., 2007; Behnke et al., 2004; De Decker et al., 2018;
Kaczmarska et al., 2009; Quijano-Scheggia et al., 2009;
Trobajo et al., 2009; Vanormelingen et al., 2008, 2013)
(see the Bibliographic survey).

The input alignments used in the ABGD, ASAP and
SPNA analyses were built using ClustalW in the MEGA6
Program (Tamura et al., 2013; Thompson et al., 1997),
with the same parameters cited above. However, we
used the gene markers trimmed in two different ways:
(A) as large as possible; (B) the barcode region only:
cox] 431bp (Moniz & Kaczmarska, 2009), rbcL 540bp
(MacGillivary & Kaczmarska, 2011) and 5.8S+ITS2
(Moniz & Kaczmarska, 2010). The barcode regions were
used in the previously described calculation of genetic di-
vergence. We considered gene markers with at least four
available sequences per genus; thus, alignments of Tabularia
fasciculata—rbcL (two sequences) were discarded.

In order to obtain the same number of sequences
per target clade (“balanced” alignments), we randomly
removed a few sequences from clades that had a higher
number of sequences. In summary, 22 “balanced” align-
ments were constructed with each genus or species com-
plex separately (Table 2). In addition, a second type of
dataset was built, by removing all identical sequences
from previous cited alignments, thus obtaining 21 align-
ments containing different haplotypes only (Table 3).

Despite the random deletion of sequences to obtain
the same number of sequences per target clade, our data-
set represents almost all the genetic variability available

in the studied species. One sequence per diatom strain/
individual was included. Therefore, some haplotypes
from the same strain of Eunotia and Sellaphora (ITS re-
gion and 5.8S+ITS2) were excluded from the analyses.
Vanormelingen et al. (2008) suggested that this intraclonal
variability in the /7S region is related to distinct copies of
the molecular marker in the genome. The random exclusion
of sequences removed one haplotype of rbcL in Seminavis
robusta and Sellaphora pupula agg. ‘southern auldreekie’.

The phylogenetic trees used as input for PTP and
GMYC were built with the same 43 alignments used in
the ABGD, ASAP and SPNA. The best-fit substitution
model used to construct phylogenetic trees was esti-
mated for each alignment separately, by the Akaike in-
formation criterion (Akaike, 1974) using JModeltest 2
(Darriba et al., 2012).

For the construction of the ultrametric trees used as
GMYC input, the best-fit molecular clock and the branch
length estimation model were selected based on the har-
monic mean (Kass & Raftery, 1995) of models available
in MrBayes 3.2.3 (Ronquist et al., 2012).

The Bayesian analyses to build the trees for PTP and
the ultrametric trees for GMYC were performed using
MrBayes 3.2.3 by two independent Markov Chain Monte
Carlo (MCMC) runs, each with four chains of 1-5million
generations each. The convergence was initially verified
when the average standard deviation in split frequencies
was <0.01. The consensus trees were built from topolo-
gies sampled every 100 generations, with 25% of the gen-
erations discarded as burn-in (Ronquist et al., 2012). The
MCMC performance and convergence between indepen-
dent runs were confirmed with the likelihood plots for
each run and the effective sample size (>200) using the
software Tracer 1.5 (Rambaut et al., 2018). The obtained
consensus trees were converted to NEXUS format by
FigTree v.1.4.0 and used as input of PTP. The ultramet-
ric trees were converted to NEWICK format by input of
FigTree v.1.4.0 and used as GMYC.

Automatic barcode gap discovery for primary
species delimitation (ABGD)

The analysis was performed using the default parameters
in the ABGD webserver (Puillandre et al., 2012) avail-
able at https:/bioinfo.mnhn.fr/abi/public/abgd/abgdw
eb.html, except for the method to calculate the pairwise
distance, for which we used simple distance (p-distance).
We considered the species delimitation that occurred in
a higher number of partitions (initial + recursive).

Assemble species by automatic partitioning
(ASAP)

The ASAP model was carried out with the same input
alignments used in the ABGD analysis, using the
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TABLE 2 The number of species obtained by ABDG, ASAP, SPNA, GMYC, PTP-ML and bPTP-h models using “balanced” input dataset and the polyphasic identification (morphological,
molecular and sexual criteria) according to previous studies: Vanormelingen et al. (2008), Trobajo et al. (2009), Amato et al. (2007), Quijano-Scheggia et al. (2009), Vanormelingen et al. (2013),

Behnke et al. (2004), De Decker et al. (2018) and Kaczmarska et al. (2009).

(=2
=]

=
—
-

Marker (number of base m
pair or alignable positions PTP-ML and Previously 3
with gaps) Input data: Number of sequences (seq) for species or population ABGD ASAP SPNA GMYC bPTP-h identified species gﬁ
S
rbeL (1341 bp) 3 seq E. bilunaris ‘robust’+3 seq E. bilunaris ‘slender’ 2 2 2 3 2 and 2 2 o
rbcL (540 bp) 3 seq E. bilunaris ‘robust’+3 seq E. bilunaris ‘slender’ 2 2 Y 4% 2 and 2 2
ITS1+5.8S+ITS2 3 seq E. bilunaris ‘robust’+3 seq E. bilunaris ‘slender’ 2 3 2 3% 2 and 2 2
(630bp)
5.8S+1ITS2 (362bp) 3 seq E. bilunaris ‘robust’+3 seq E. bilunaris ‘slender’ 4% 2 3¢ 2 and 2 2
rbeL (1355bp) 3 seq N. palea 1+3 sequences N. palea 2 2 2 1# 3? 2and2 2
rbeL (540 bp) 3 seq N.palea 1+3 seq N. palea 2 1# 2 * 2 2 and 3 2
ITS1+5.8S+ITS2 4 seq Pseudo-nitzschia arenysensis+4 seq P. delicatissima+4 seq P. dolorosa 3 3 3 2% 3and 3 3
(770 bp)
5.8S+1TS2 (337 bp) 4 seq P. arenysensis+4 seq P. delicatissima+4 seq P. dolorosa 3 3 3 6" 3and 3 3
ITS1+5.8S+I1TS2 2 seq P. pseudodelicatissima+?2 seq P. mannii+2 seq P. calliantha 1# 3 4% 3 3and 3 3
(856 bp)
5.8S+ITS2 (363 bp) 2 seq P. pseudodelicatissima+2 seq P. mannii+2 seq P. calliantha 1# 3 3 3 3and3 3
cox1 (624bp) 3seq S. pupula agg. ‘southern auldreekie’+3 seq S. pupula agg. ‘coarse 3 3 3 3 3and3 3
auldreekie’+3 seq Sellaphora auldreekie
coxI (422bp) 3 seq S. pupula agg. ‘southern auldreekie’+3 seq S. pupula agg. ‘coarse 3 3 Y 5 3and3 3
auldreekie’ +3 seq Sellaphora auldreekie
rbeL (1398 bp: ABGD, 2 seq S. pupula agg. ‘southern auldreekie’+2 seq S. pupula agg. ‘coarse 1# 3 2% 3 3and 3 3
SPNA, GMYC and auldreekie’+2 seq Sellaphora auldreekie
PTP; 1390 bp: ASAP)
rbcL (540 bp) 2 seq S. pupula agg. ‘southern auldreekie’+2 seq S. pupula agg. ‘coarse 1# 3 I 3 3and3 3
auldreekie’+2 seq Sellaphora auldreekie
ITS1+5.8S+ITS2 4 seq Sellaphora backfordensis+4 seq S. pupula agg. ‘pseudocapitate’ 2 2 4% 2 2 and 2 2
(889bp)
5.8S+ITS2 (418 bp) 4 seq Sellaphora backfordensis+4 seq S. pupula agg. ‘pseudocapitate’ 2 2 3t 2 2 and 4* 2
rbcL (1096 bp) 27 seq S. robusta—clade 1+27 seq S. robusta—clade 2 1 2% 1 2* 2% and 54* 1
rbcL (540 bp) 27 seq S. robusta—clade 1+27 seq S. robusta—clade 2 1 2% 1 28 2% and 54° 1
ITS1+5.8S+ITS2 12 seq S. robusta—clade 1+12 seq S. robusta—clade 2 2% 2% 1 2% 17* and 21* 1
(420bp)
5.8S+ITS2 (334bp) 12 seq S. robusta—clade 1+12 seq S. robusta—clade 2 1 24 1 228 17* and 21* 1
5.8S+ITS2 (388 bp) 3 seq T. fasciculata—clade Bw+3 seq T. fasciculata—clade An 2t 24 24 24 2% and 2* 1 -
=
5.8S+1TS2 (389 bp) 14 seq T. fasciculata—clade Bw+ 14 seq T. fasciculata— clade An 2% 2% 2% 24 2% and 2% 1 3z>
Note: The ABDG, ASAP, SPNA, GMYC, PTP-ML and bPTP-h results were obtained using input data with the same number of sequences per species and are shown for each barcode marker, with the number of sequences 8
for each taxon and clade. Y’ No run: Unable to calculate any connection among sequences: software does not provide any network and closes itself. 3
“Identification of automatic method does not match with previous study. 52
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TABLE 3 The number of species obtained by ABDG, ASAP, SPNA, GMYC, PTP-ML and bPTP-h models using only haplotype data and the polyphasic identification (morphological,
molecular and sexual criteria) according to previous studies: Vanormelingen et al. (2008), Trobajo et al. (2009), Amato et al. (2007), Quijano-Scheggia et al. (2009), Vanormelingen et al. (2013),
Behnke et al. (2004), De Decker et al. (2018) and Kaczmarska et al. (2009).

Marker (number of base
pair or alignable positions
with gaps)

rbcL (1341 bp)

rbcL (540 bp)
ITS1+5.8S+ITS2 (628 bp)
5.8S+I1TS2 (362bp)

rbeL (1355bp)

rbcL (540 bp)
ITS1+5.8S+ITS2 (770 bp)
5.8S+ITS2 (337bp)
ITS1+5.8S+I1TS2 (856bp)
5.8S+ITS2 (363 bp)

cox1 (624 bp)

coxl (422bp)

rbecL (1398 bp: ABGD,
SPNA, GMYC and
PTP; 1390bp: ASAP)

rbcL (540 bp)

ITS1+5.8S+ITS2 (888 bp)

5.85+ITS2 (418 bp)

rbeL (1096 bp)

rbcL (540 bp)
ITS1+5.8S+ITS2 (420 bp)
5.8S+ITS2 (334 bp)
5.8S+ITS2 (389 bp)

Input data: Number of sequences/haplotypes (haplo) for species or
population

3 haplo E. bilunaris ‘robust’+2 haplo E. bilunaris ‘slender’

1 haplo E. bilunaris ‘robust’+ 1 haplo E. bilunaris ‘slender’

3 haplo Eunotia. bilunaris ‘robust’+3 haplo E. bilunaris ‘slender’

3 haplo E. bilunaris ‘robust’+2 haplo E. bilunaris ‘slender’

1 haplo (belgium) N. palea 1+2 haplo N. palea 2

1 haplo (belgium) N. palea 1+2 haplo N. palea 2

2 haplo P. arenysensis+1 haplo P. delicatissima+3 haplo P. dolorosa

1 haplo P. arenysensis+1 haplo P. delicatissima+2 haplo P. dolorosa

2 haplo P. pseudodelicatissima+?2 haplo P. mannii+2 haplo P. calliantha

1 haplo P. pseudodelicatissima+2 haplo P.mannii+1 haplo P. calliantha

1 haplo S. pupula agg. ‘southern auldreekie’+2 haplo S. pupula agg.
‘coarse auldreekie’+ 1 haplo Sellaphora auldreekie

1 haplo S. pupula agg. ‘southern auldreekie’+1 haplo S. pupula agg.
‘coarse auldreekie’+ 1 haplo Sellaphora auldreekie

1 haplo S. pupula agg. ‘southern auldreekie’+1 haplo S. pupula agg.
‘coarse auldreekie’+1 haplo Sellaphora auldreekie

1 haplo S. pupula agg. ‘southern auldreekie’+1 haplo S. pupula agg.
‘coarse auldreekie’+ 1 haplo Sellaphora auldreekie

4 haplo Sellaphora backfordensis+3 haplo S. pupula agg.
‘pseudocapitate’

4 haplo Sellaphora backfordensis+3 haplo S. pupula agg.
‘pseudocapitate’

1 haplo S. robusta—clade 1+1 haplo S. robusta—clade 2
1 haplo S. robusta—clade 1+1 haplo S. robusta — clade 2
4 haplo S. robusta—clade 1+5 haplo S. robusta—clade 2
3 haplo S. robusta—clade 1+5 haplo S. robusta—clade 2
2 haplo T fasciculata—clade Bw+4 haplo T. fasciculata—clade An

ABGD

l‘d

la

1
1
23

22\

2a

2&

SPNA

121

48

3a

1
1
1
1
28

[\9)

£ £ X X

2&

PTP-ML and
bPTP-h

2and2
X

2and 2
2 and 2
X

X

3and3
3and3
3and 3
3and 3
3and3

2 and 2

2 and 2

X
X
5%and 8"
2% and 8*
2%and 2*

Previously
identified species

W W W W W NN NN NN

—_ =

Note: “X: No run: ASAP not performed or input trees (PTP and GMYC) not built, due to the low number of sequences. “W’: No run: Input tree not bifurcated, impossible to correct, since all (multiple) branches originated
from the same node. Y™ No run: Unable to calculate any connection among sequences: software does not provide any network and closes itself.

“Identification of automatic method does not match with previous study.
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ASAP webserver (Puillandre et al., 2021) available at
https://bioinfo.mnhn.fr/abi/public/asap/asapweb.html.
The method to calculate the pairwise distance chosen
in the webserver was simple distance (p-distance). We
considered the delimitation of species with the lowest
ASAP score according to Puillandre et al. (2021); how-
ever, if two or more species delimitations presented the
same lowest ASAP score, the one with the lowest p-
value was chosen.

Statistical parsimony network analysis (SPNA)

The SPNA model was carried out with the same input
alignments used in the ABGD and ASAP analyses, using
TCS v.1.21 with default configuration: the connection
limit was calculated with 95% significance and with gaps
treated as the fifth state (Clement et al., 2000).

Poisson tree processes (PTP)

PTP is a model to infer putative species through a phy-
logenetic input tree based on the number of bp substitu-
tions between branching (Zhang et al., 2013). The PTP
analyses were performed on the Species Delimitation
web server (https://species.h-its.org). The PTP analy-
ses were based on two strategies: (A) PTP maximum
likelihood (PTP-ML) and (B) Bayesian PTP heuristic
(bPTP-h) (Zhang et al., 2013). Regarding the Bayesian
implementation in PTP web server (https://species.h-its.
org/), we applied the maximum number of generations
(500,000), 0.25 burn-in and default sampled trees. The
Bayesian likelihood plots were checked for convergence,
following the recommendations of Zhang et al. (2013).

Generalized mixed yule coalescent (GMYC)

Ultrametric and fully bifurcating trees are required as
input for GMYC analyses. When the ultrametric trees
were not fully bifurcating, they were corrected using
ape package with multi2di function in R (Fujisawa &
Barraclough, 2013; Paradis et al., 2004). The GMYC
analysis was performed using the splits package with
gmyc function in R (Ezard et al., 2009; Fujisawa &
Barraclough, 2013).

RESULTS

Genetic divergence in reproductively compatible
strains

Intraspecific diatom genetic divergence values ranged
from 0% to 1% (rbcL), 0% (cox1) and 0%—3% (5.8S + ITS2),
while the interspecific divergence (with species defined

by polyphasic taxonomy) was 1%-2% (rbcL), 4%—6%
(cox1) and 3%—12% (5.8S+1TS2) (Table 1). All repro-
ductively isolated species were monophyletic, and each
species showed internal clades that likely represent
population-level variation (Table 1).

ABGD, ASAP, SPNA, GMYC and PTP models
in reproductively compatible strains

ABGD, ASAP, SPNA, GMYC and PTP were conducted
on alignments and trees built with the same sequences
used to calculate genetic divergence trimmed as bar-
code region and as the larger fragment with the highest
number of bp possible. The sequences were organized
in two different types of datasets: (A) 22 alignments and
trees built using the same number of sequences per stud-
ied clade, tested species or population (Table 2); (B) 21
alignments and trees built using haplotypes only, iden-
tical sequences were removed of this dataset (Table 3).
All alignments and trees used as input of models were
built for each genus or species complex separately
(Tables 2 and 3).

Overall, in the first type of input data (the same num-
ber of sequences per studied clade), the ABGD, ASAP
and PTP showed similar results (Figure 1A), with a high
number of analyses agreeing with previously-published
species delimitation. The PTP-ML and bPTP-h mod-
els delineated the species in accordance with previous
identification in 16 and 15 cases, respectively, followed
by ASAP and ABGD that agreed with the polyphasic
species identification in 14 cases. The SPNA and GMYC
presented 11 and 8 analyses that delineated the species
according to previous identification (Table 2; Figure 1A).

The use of dataset composed by haplotype only, af-
fected the GMYC performance positively, as the num-
ber of “wrong” identifications reduced from 12 to 3
(Figure 1A,B). This happened due to the increase of the
number of “no run” analyses (6), when models were not
able to be used with dataset (see details for each case in
Tables 2 and 3 — footnotes), and the GMYC analyses that
agreed with the previous published identification using
the datasets with haplotypes (4) (Tables 2 and 3).

On the other hand, when using dataset composed
by haplotype only, the PTP-ML and bPTP-h showed a
lower number of analyses that agreed with previous iden-
tification (Figure 1A,B) because the number of “no run”
increased, since the alignments with less than four se-
quences cannot be used to build an input tree (Tables 2
and 3). ABGD and ASAP models were negatively af-
fected by dataset comprising only haplotypes as the
number of cases that the results disagree with the pre-
vious identification increased (Figure 1A,B). The SPNA
does not show any difference between two types of data-
sets, since the software automatically removes identical
sequences and builds networks only using the haplo-
types. The ASAP, GMYC and PTP models were unable
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to resolve the identification when the dataset consisted The ABGD and SPNA methods agreed with the pre-
of only one species (Tables 2 and 3: S. robusta or T. fascic- vious polyphasic delimitation of S. robusta, in almost all
ulata), suggesting that at least two nominate species must  cases (dataset consisting of a single species), but overes-
be included in these analyses. timated 7. fasciculata in all analyses (Table 2). In fact, all
(A)
161

Number of Analyses

L

NN

A

&

GMYC PTP-ML bPTP-h

Number of Analyses

=

ABGD ASAP SPNA GMYC PTP-ML bPTP-h

= Agree with previous identification
X Disagree with previous identification
* Norun

FIGURE 1 Number of analysis carried out with ABDG, ASAP, SPNA, GMYC, PTP-ML and bPTP-h models that agree with and disagree
with polyphasic identification and that were not able to run (No run). Polyphasic identification according to Vanormelingen et al. (2008),
Trobajo et al. (2009), Amato et al. (2007), Quijano-Scheggia et al. (2009), Vanormelingen et al. (2013), Behnke et al. (2004), De Decker

et al. (2018) and Kaczmarska et al. (2009). (A) Balanced datasets — the same number of sequences per target clade. (B) Dataset composed only of
haplotypes.
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five studied models indicated that the sequences of the
reproductively compatible 7. fasciculata (Table 1) were
two distinct species (Table 3).

When ABGD, SPNA, ASAP or PTP species delimita-
tion did not agree with the previously published identifi-
cation, the same result was generally observed in the short
and large DNA fragments from the same DNA marker
(rbeL, 5.8S+ITS2, ITS1+5.85+1TS2 or coxl) and group
of sequences (Tables 2 and 3). In these cases, the size of the
molecular marker had little effect on the result.

DISCUSSION

The use of genetic divergence threshold for
species identification

For the delimitation of closely related species, the in-
traspecific divergence is more useful as a threshold than
interspecific divergence, since the latter varies accord-
ing to the phylogenetic relationships between species.
The values of intraspecific (0%—-1%) and interspecific
(1%-2%) divergences obtained for rbcL in the present
study correspond close to the cut-off values proposed
by MacGillivary and Kaczmarska (2011) for the class
Bacillariophyceae, based on the classical morphological
criteria (Table 1). The intraspecific divergence of coxl
(0%) corresponded to the previously observed values
(Moniz & Kaczmarska, 2009), while the interspecific
values of cox1 (4%—6%) were lower than found by Moniz
and Kaczmarska (2009), probably, due to differences in
the number of sequences and species analyzed. For the
5.8S+1ITS2 marker, the intraspecific (0%-3%) and in-
terspecific (3%-12%) divergence values showed a higher
variation than other markers; however, these ranges may
vary even more with the inclusion of more diatom species
(Moniz & Kaczmarska, 2010) (Table 1). We should high-
light, of course, that the genetic distance of 5.8S +17S2
from T fasciculata, S.pupula complex, E.bilunaris and
some species of both Pseudo-nitzschia complexes, as well
as the genetic divergence of rbcL from T. fasciculata and
N. palea were previously calculated (MacGillivary &
Kaczmarska, 2011; Moniz & Kaczmarska, 2009, 2010);
therefore, in these cases, the genetic divergence calcu-
lated here (Table 1) is not independent from these cited
studies.

The values of intra- or interspecific divergence can
present discrepancies from those shown in previous
studies due to differences in the number of sequences
and species analyzed. For example, the interspecific
(but intrageneric) divergence value for taxa in the
Bacillariophyceae using the 5.8S+77S2 marker was
11%-23% based on nine sequences and three species
(Moniz & Kaczmarska, 2009), but presented a larger
range (1%-48%) in other analyses, with higher number
of sequences (316 pairwise comparisons) and species (45)
(Moniz & Kaczmarska, 2010).

There is little to support the idea of a “universal”
genetic divergence threshold for species across dia-
toms. The 5.85+17S2 showed a high variation of in-
traspecific divergence between families, mainly of the
Bacillariophyceae (Moniz & Kaczmarska, 2010), and
the percent of identified species with 5.8S+I7TS2 in-
creased from 59% to 96% (Bacillariophyceae) using
family-specific rather than class-specific thresholds
(Moniz & Kaczmarska, 2010). Intraspecific divergence
of rbcL in the Bacillariophyceae varies from 0% to 11%
(237 pairwise comparisons and 39 species). However, 9
of 12 studied families showed an intraspecific mean<1%
(MacGillivary & Kaczmarska, 2011). For this reason,
MacGillivary and Kaczmarska (2011) suggested 2% di-
vergence as the threshold for separate species within the
Bacillariophyceae using the rbcL. marker. However, this
threshold was not able to separate all the studied species.
N. palea complex and S. pupula complex showed inter-
specific divergence of 1%, and if a specific threshold of
Sellaphoraceae (MacGillivary & Kaczmarska, 2011: 0%)
were applied to the species of the S. pupula complex, the
taxon delimitation would agree with the previous identi-
fication of Vanormelingen et al. (2013). Regarding cox1,
the seven diatom orders that were examined by Moniz
and Kaczmarska (2009), each showed a different intra-
specific mean value, which can be used as specific order
thresholds. However, the information for this marker is
the least available than other markers, probably asso-
ciated with low amplification and sequencing success
rates (Moniz & Kaczmarska, 2009). There appears to be
a general pattern of intra- and interspecific genetic diver-
gence for each DNA marker (coxl, rbcL or 5.85+1TS2),
but the values may vary among the family or order and
probably among the genus of the same family. Therefore,
the use of genetic divergence depends on reference data
specific to the groups of species studied to inform a re-
liable threshold. It was shown that speciation and ex-
tinction rates vary across different groups of diatoms,
based on metagenomic data from the global oceans of
the 20 most abundant genera (Nakov et al., 2018a), and
sequences from 1151 taxa, including bipolar diatoms
with and without raphe (Nakov et al., 2018b). In addi-
tion, the diversification rates also vary within a diatom
genus with lots of species, such as estimated in Pinnularia
(Pinseel et al., 2020). These differences will affect genetic
divergence, the rate of branching and the branch lengths
in the phylogenetic tree, hampering the species identifi-
cation of datasets that gather simultaneously phyloge-
netically distant diatoms, using threshold or automated
molecular species delimitation methods.

Using ABGD, ASAP, SPNA, GMYC and PTP
to identify reproductively compatible diatoms

The ASAP, PTP and GMYC models did not delimit
diatom species in agreement with reproductive isolation
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studies when the dataset consisted of only one species
(Table 2: S. robusta or T. fasciculata), which corroborates
previous studies, e.g., conducted by Luo et al. (2018)
using PTP and GMYC and simulated dataset. In these
cases, the ASAP model is likely to overestimate the spe-
cies due to a lack of information on intra- and interspe-
cific levels of divergence. The PTP and GMYC models
estimate species based on the significant changes in
the pace of branching events on the tree (Fujisawa &
Barraclough, 2013; Pons et al., 2006; Zhang et al., 2013).
Therefore, the overestimation associated with the ab-
sence of distinct species in the input tree of GMYC and
PTP analyses may be due to the fact that the dataset does
not include reference to distinguish intra- and interspe-
cific levels of variability, and the significant changes in
the tree among populations are interpreted as species.

The ABGD and SPNA models identified S.ro-
busta (in a dataset consisting of a single species) cor-
responding to previous polyphasic identification, but
overestimated T fasciculata. This overestimation of
T. fasciculata species (Tables 2 and 3) by the five models
could be explained by the measured lower diversifica-
tion rate and branch lengths in bipolar araphid diatoms
than bipolar raphid pennate ones (Nakov et al., 2018a,
2018b). According to these results, we would recom-
mend that sequences from other species of the same
genus or closely related species be included in align-
ments or trees to obtain more reliable species delimita-
tion by all studied methods (Tables 2 and 3).

In many cases, the delimitation of species from
alignments with two or more species using ASAP,
ABGD, SPNA and PTP agreed with the previous stud-
ies of polyphasic taxonomy, which included reproduc-
tive compatibility tests through breeding experiments
(Tables 2 and 3). Our results and those of previous
studies indicate that GMYC is outperformed by PTP
using datasets with few species (Luo et al., 2018) or
with closely related species with relatively small genetic
distance among them (Zhang et al., 2013). Therefore,
we would propose that GMYC is not particularly use-
ful for datasets with relatively few and closely related
diatom species, such as our dataset. This model pre-
sented the worst performance among studied methods.
However, GMYC performed better when using data-
sets comprised only of haplotypes than datasets with
identical sequences.

It is recommended that the input alignments of the
ASAP and ABGD analyses be balanced, i.e., the studied
clades containing the candidate species or populations
should be represented by the same or similar number of
sequences.

The sequences must be from different individuals,
but they can be the same haplotype. This was inferred
from the ASAP and ABGD models, which agreed with
the previously published polyphasic delimitation more
frequently when the datasets were “balanced” than in
datasets with only one haplotype (Figure 1A,B). This

happens probably because these models are based on
genetic divergence and the presence of sequences from
different individuals with the same haplotype represents
their real genetic variability.

The ABGD model can underestimate species with
less than three to five sequences (Puillandre et al., 2012),
explaining the higher number of misleading species de-
limitation by ABDG than in ASAP, SPNA and PTP in
alignments composed of species that had one to two se-
quences (Tables 2 and 3).

When the results of the automated single-locus
computational methods differed from the previous
polyphasic identification, ABGD tended to underesti-
mate the number of species, while ASAP, GMYC and
PTP tended to overestimate this number. The SPNA
presented both types of disagreement in the species de-
limitation. In most cases, at least three models agreed
with previous polyphasic species identification (Tables 2
and 3). Therefore, the comparison of distinct automated
single-locus computational methods improved the spe-
cies delimitation, such as the identification of species be-
longing to the P.subgibba complex, P.borealis complex
and A. minutissimum complex (Kollar et al., 2019; Pinseel
et al., 2020; Rimet et al., 2023).

The ABGD, ASAP, SPNA and PTP analyses appear
to have great potential for molecular diatom taxonomy,
even using relatively small datasets (6—12 sequences; 2-3
species) using markers with a wide size range (~300—
1000 bp). Most importantly, the advantage of these tools
is associated with the fact that they do not depend on spe-
cific thresholds, such as genetic divergence. Therefore,
these tools can be applied to diatom identification using
sequence data generated for other research purposes,
such as barcode genes (short DNA fragments) used in
environmental DNA surveys or the larger DNA frag-
ments and markers used for phylogenetic and molecular
systematic studies.

Due to the paucity of sexual reproduction data
available from most diatom species, our datasets were
composed of a few species and only four genera (six
species complexes), which had more than one species.
To improve our knowledge on the accuracy of ABGD,
ASAP, SPNA, GMYC and PTP identifications, further
studies are needed using datasets with more geograph-
ically diverse strains of Eunotia, Seminavis, Nitzschia,
Sellaphora, Tabularia, Pseudo-nitzschia and species from
other diatom families.

CONCLUSION

Genetic divergence, ABGD, ASAP, SPNA and PTP
methods delimited species of Eunotia, Seminavis,
Nitzschia, Sellaphora and Pseudo-nitzschia, correlating
to polyphasic taxonomy, including sexual reproductive
compatibility. In summary, it is recommended to
form a hypothesis before using automated molecular
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delimitation methods to address taxonomy questions
with relatively few sequences or species, as our
dataset. First, a molecular phylogeny based on all
available sequence data should be constructed and
considered together with other available information
(e.g. morphology, ecological preferences and/or sexual
reproductive data) for the target clades (tested species
or populations) to be defined. For reliable species
delimitation using the ABGD, ASAP, SPNA, GMYC
and PTP models, the alignments and trees used as input
should include sequences of at least one closely related
species to the studied clade or taxa of interest, preferably
from the same genus. For the ABGD and ASAP models,
the input data should include alignments without a
major discrepancy in the number of sequences among
the studied clades (tested species or populations), and
only of sequences from different individuals; however,
distinct individuals with the same haplotype need not
be removed. The ABGD also requires that each target
clade comprises at least three sequences to test the
hypothesis if the clade is a species. In the case of SPNA,
the software will remove identical sequences and build
the network with haplotypes only. For the PTP model,
the tree built with the same alignment as in the ABGD
and ASAP analyses can be used (with a balanced dataset
— the same or similar number of sequences per studied
clade), or the tree built with the alignment containing
only haplotypes. It can be useful to compare the results
of the PTP analysis using both types of datasets. The
GMYC model is not recommended for small datasets,
and when this model is used, it requires an input tree
built only with haplotypes and should include sequences
of at least one closely related species to the target clades.
We highlight the great potential of automated methods
and that they should be used to augment, but not replace
traditional taxonomy approaches. Also, we would like
to encourage the diatom community to apply a wide
range of models/methods and not just simply one model/
method when using molecular data to automate species
delimitation and define a consensus among them to
improve the species delineation.
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