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We present an end-to-end method for capturing the dynamics of 3D human characters and translating them
for synthesizing new, visually-realistic motion sequences. Conventional methods employ sophisticated, but
generic, control approaches for driving the joints of articulated characters, paying little attention to the
distinct dynamics of human joint movements. In contrast, our approach attempts to synthesize human-like
joint movements by exploiting a biologically-plausible, compact network of spiking neurons that drive joint
control in primates and rodents. We adapt the controller architecture by introducing learnable components and
propose an evolutionary algorithm for training the spiking neural network architectures and capturing diverse
joint dynamics. Our method requires only a few samples for capturing the dynamic properties of a joint’s
motion and exploits the biologically-inspired, trained controller for its reconstruction. More importantly, it
can transfer the captured dynamics to new visually-plausible motion sequences. To enable user-dependent
tailoring of the resulting motion sequences, we develop an interactive framework that allows for editing and
real-time visualization of the controlled 3D character. We also demonstrate the applicability of our method
to real human motion capture data by learning the hand joint dynamics from a gesture dataset and using
our framework to reconstruct the gestures with our 3D animated character. The compact architecture of our
joint controller emerging from its biologically-realistic design, and the inherent capacity of our evolutionary
learning algorithm for parallelization, suggest that our approach could provide an efficient and scalable
alternative for synthesizing 3D character animations with diverse and visually-realistic motion dynamics.
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1 INTRODUCTION

The synthesis of realistic motion for 3D human characters is a challenging problem that has attracted
much interest over the years [Arikan et al. 2003; Fang and Pollard 2003; Lee et al. 2002; Li et al.
2002; Ren et al. 2005]. The difficulties arise due to the human skeleton’s intricate structure, which
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2 Polykretis et al.

must be taken into account with all its details for the motion to look realistic [Popovi¢ and Witkin
1999]. Despite being underactuated, the human musculoskeletal system introduces many degrees
of freedom (DOF), whose motion appears realistic when consistent with the laws of physics.
Forward dynamics methods have targeted this equivalence of physical and visual realism and
have been widely deployed for generating physics-constrained motions of objects [Arnaldi et al.
1989; Park and Fussell 1997; Ramakrishnananda and Wong 1999; Wu and Popovi¢ 2003]. Such
approaches demonstrate remarkable performance in the motion animation of rigid bodies [Baraff
1990, 1994] and textured surfaces (e.g., cloth) [Baraff and Witkin 1998; DeRose et al. 1998]. However,
the complexity of physics-based models increases dramatically as the number of DOFs scales
up [Popovi¢ and Witkin 1999], limiting their applicability for animating more detailed characters.
Capturing human motion data with sensors and using them as a reference can simplify the
problem. Effective sampling methods have been proposed for discretizing the analog sensor signals,
reducing their dimensions, and overcoming their inherent noise [Herrmann et al. 2019; Pullen and
Bregler 2002; Rajaméki and Hamaéldinen 2017]. Then, the samples can be used to reconstruct the
original motions in animation. The reconstruction methods range from the use of simple cubic
spline interpolation [Brotman and Netravali 1988; Liu and McMillan 2006] to the deployment of
dedicated proportional-derivative (PD) controllers [Liu et al. 2015]. Statistical Machine Learning
models [Chai and Hodgins 2007; Min and Chai 2012] have been proposed to automate and im-
prove the in-betweening of motion key-frames. With the recent advances in deep learning, this
trajectory generation task is addressed by sophisticated tools such as adversarial recurrent neural
networks [Harvey et al. 2020] or diffusion models [Tevet et al. 2022]. While such methods effectively
reconstruct the original motions, they separate the samples from the musculoskeletal dynamics that
generate the continuous motions. This separation can degrade the realism of the reconstruction
when the methods are required to generalize to new (and previously unseen) motion sequences.
In this work, we attempt to bridge this gap between the samples and the continuous motion signals
by proposing a method that combines the sample interpolation with accurate reconstruction of the
intermediate trajectories, by exploiting the underlying musculoskeletal dynamics that generate
the motion sequences. We draw inspiration from the spiking neural networks (SNNs) that provide
joint control in primates and rodents [Fink et al. 2014; Polykretis et al. 2023; Seki et al. 2003]
and formalize their architecture in a context-free grammar, which encapsulates different network
variants. We then propose an evolutionary algorithm that allows the joint controller to learn
the network architecture that best approximates the motion dynamics of the joint. We use this
learnable joint controller as a building block and scale it up to capture the synthetic motion of a
multi-DOF 3D humanoid character. We demonstrate how our controller can reconstruct the original
movement and transfer the learned dynamics to unknown, visually-realistic motion sequences. We
also verify the ability of our method to capture human motion dynamics by applying it to a dataset
consisting of human gesture recordings, which we reconstruct in animation. Moreover, we develop
an interactive framework for modifying the driving controller and visualizing the resulting motion
in real-time.
In summary, our main contributions are as follows:

e The formalization of complicated, biologically inspired spiking neural network (SNN) archi-
tectures in a concise context-free grammar,

e A novel evolutionary training algorithm that allows the SNN controller for each joint to
capture and learn the dynamics of its corresponding movement,

e An end-to-end method for inverse motion synthesis that captures the motion dynamics of a
3D character and uses them to reconstruct known motions and generalize to unknown ones,
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o An interactive framework to modify the learned motion dynamics and visualize the effects of
the modifications in real-time.

Our bioinspired method captures the motion dynamics accurately and allows for effective visually-
plausible reconstructions. More importantly, it generalizes to realistic motion sequences that follow
the captured dynamics and allows for interactively modifying the dynamics in a user-dependent
fashion without sacrificing the motion realism.

2 RELATED WORK

The animation of 3D human characters has been of interest to the graphics community for many
decades [Sturman 1994]. The spectrum of animation detail and applications is vast: from simplified
humanoid silhouettes performing physically valid human motions (e.g., jumps, flips, gymnastic
exercises) [Fang and Pollard 2003] and choreographed dancing sequences [Li et al. 2002] to detailed
avatars performing human manipulation tasks [Yamane et al. 2004] and forming crowds to interact
with each other in dynamic environments [Lau and Kuffner 2005]. The ever-growing need for
realistic human character animation in movies, video games, and even the metaverse has led to the
development of a multitude of different solutions.

A prominent approach due to its remarkable success in diverse tasks has been Reinforcement
Learning (RL). For the continuous action space of character animation, RL mainly relies on policy
gradient [Silver et al. 2014] or continuous actor-critic learning [Van Hasselt and Wiering 2007].
Combined with recent advances in deep learning [Arulkumaran et al. 2017], deep RL provides
remarkably elegant behaviors in animated characters [Liu and Hodgins 2018; Peng et al. 2018]. The
requirement of these methods for stabilizing techniques [Mnih et al. 2015], but most importantly,
their long training times and high computational resource requirements, have forced researchers
to explore alternative solutions.

In contrast to the task-agnostic approach of RL, physics-based models benefit from our knowledge
of the constraints that the laws of physics impose on the motion of objects in space [Arnaldi
et al. 1989; Park and Fussell 1997; Ramakrishnananda and Wong 1999; Wu and Popovi¢ 2003].
Forward dynamics models achieve aesthetically pleasing animations of characters exhibiting
diverse behaviors [Geijtenbeek and Pronost 2012; Popovi¢ and Witkin 1999] by exploiting the
equivalence of physical and visual realism. The increase in the DOF of the character to be visualized
challenges such methods since determining the required forces for a large number of objects
becomes extremely difficult [Popovi¢ and Witkin 1999]. Spacetime constraint methods [Cohen
1992; Rose et al. 1996; Witkin and Kass 1988] attempt to simplify the problem by introducing
animator-defined pose constraints (e.g., the initial, final, and possibly intermediate poses) that the
motion sequence needs to satisfy. Beyond the sensitivity of the methods to the selection of the
pose constraints [Popovi¢ and Witkin 1999], defining the intermediate poses by hand becomes
increasingly tedious with the increasing complexity of the motion sequences.

A solution to the definition of intermediate pose constraints comes from human motion capture
(MoCap) data, which provides a continuum of intermediate poses for the motions to be performed.
Sampling methods [Herrmann et al. 2019; Liu et al. 2015, 2010; Pullen and Bregler 2002; Rajaméki and
Héamaéldinen 2017] optimize the selection of keyframes, which then can be combined to reconstruct
the motion in animation. Past approaches have used methods of increasing complexity and elegance
to gel the keyframes into a continuous movement: While even cubic spline interpolation provides
reasonable results [Brotman and Netravali 1988; Liu and McMillan 2006], others have used dedicated
proportional-derivative (PD) controllers to control the animated character [Liu et al. 2015]. This
introduction of additional tunable parameters for the reconstruction has led to simplification
attempts [Herrmann et al. 2019; Rajaméki and Hamaldinen 2017], which exploit the transformation
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of the samples into the angular velocity representation space. However, the reconstruction methods
disregard the musculoskeletal dynamics that gave rise to the captured continuous signals, limiting
the visual realism for reconstructions of unknown motion sequences.

Our work attempts to capture these musculoskeletal dynamics of human joints and use them
to not only reconstruct the recorded motions but also generalize to visually-realistic animations
of unknown sequences. For this, we use a simple sampling method to identify keyframes for
the reconstruction, but focus on developing a bioinspired method to learn the dynamics of the
continuous MoCap data and allow for their realistic combination into motion sequences.

3 TECHNICAL APPROACH
3.1 Background

While task-agnostic methods such as PID control or RL perform remarkably in a wide range of tasks,
biological agents can provide valuable inspiration for visually realistic animation of articulated
human characters. Interestingly, biological agents such as primates and rodents employ dedicated
neuronal structures to control their joints [Fink et al. 2014; Seki et al. 2003]. Neuroscientific
evidence has characterized these neuronal subnetworks and abstracted them into high-level control
modules [Fink et al. 2014]. Recently, computational modeling works have attempted to simulate
the dynamics of these control modules with networks of spiking neurons to endow robotic joints
with human-like control [Polykretis et al. 2023].

3.2 A Brief Primer on Spiking Neural Networks (SNNs)

Unlike neurons in artificial neural networks (ANNSs) that sum continuous-valued inputs, apply
threshold functions, and provide continuous-valued outputs [Bishop 2006], spiking neuron models
attempt to better approximate biological neurons. Specifically, they first integrate their synaptic
inputs in a state variable representing the continuous neuronal membrane voltage. When this
voltage exceeds a threshold value, the neurons emit a binary, all-or-none output called a spike
and reset their membrane voltage. Similar to ANNS, spiking neurons connect through weighted
synapses. While only learning modifies synaptic weights in ANNSs, in SNNs, weights can change
transiently in response to different factors. Increasing spiking activity of the presynaptic neurons
may either increase or decrease the synaptic weights until saturation, a phenomenon known as
synaptic facilitation or depression [Tsodyks et al. 1998]. The synaptic weights can also transiently
change in response to the activity of other modulatory neurons [Fink et al. 2014]. These complicated
dynamics are then combined with intricate architectures to control high-level behaviors.

S = {Controller} T = {eN, Syn, Fac, Adapt, M N}
[ ]
1)Controller — Inp — Net — Out 7)StaticF f Path — ECM — Con
2)Net — Bus//Bus 8)AdaptF f Path — (ECM — Con)//Adapt
3)Bus — PathEns — M Npool 9)FbPath — ECM — Syn
4)PathEns — F fPath | F f Path//FbPathEns 10)M Npool — MN | M N //M Npool
5)F fPath — StaticF f Path | AdaptF f Path 11)ECM — eN
6)FbPathEns — FbPath | FbPath//FbPathEns — 12)Con — Syn|Syn — Fac

Fig. 1. Our Context-free Grammar for automatically generating SNNs with desired properties.
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Fig. 2. A. Exemplary derivations of three controllers as words of the language (B1-shortest, B2-intermediate,
B3-longest word). Some symbols of the grammar are abbreviated as follows: FP-FfPath, PE-PathEns, MNP-
MNpool, FP-F fPath, SFP-StaticF f Path, BP-FbPath. B. SNN implementations of the corresponding controller
architectures, which can be obtained following the procedure described in Section 3.4.

3.2.1 Notational Terminology. In this section, we introduce some notations for various features
in SNNs that we will subsequently use when describing our context-free grammar for generating
SNNs in Section 3.3. We encourage the reader to refer to Figure 2 when reading our notation.
Motor control networks (Net) are recurrent architectures. They receive external inputs (Inp) and
propagate them through processing alleys (Buses) in two steps. The first step utilizes ensembles
of feedforward pathways (F fPathEns) to reach the output layer of the Net. This layer consists
of dedicated cells called motor neurons (MN). Groups of MN (MN pools) modify the controlled
variables (e.g., muscle length or joint angle) that constitute the network’s outputs (Out). In the
second step of the propagation, estimates of these outputs loop back into the Net using dedicated
ensembles of feedback pathways (FbPathEns). Both F fpath and FbPath are essentially processing
modules (ECM), i.e. neurons (eN), that form connections (Con) to the MNpools. These connections
may be synapses (Syn) with static or dynamic weights. Dynamic weights may transiently fluctuate
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due to synaptic facilitation (Fac) or depression. They may also fluctuate in response to the activity
of parallel modulatory pathways (Adapt).

While the structure and properties of the individual components are understood, their networks
introduce challenges. The inverse problem of deciphering how such networks give rise to high-level
behaviors is challenging, even for neuroscience experts that slowly characterize such architec-
tures [Fink et al. 2014; Seki et al. 2003]. But even the forward problem of designing SNNs for motion
control that are not tailored to a single set of motion dynamics is not straightforward.

In the following sections, we aim to formulate the properties of such networks in a structured
way and allow for capturing the dynamic properties of different joint movements. To achieve this,
we first define a context-free grammar (see Section 3.3) that produces a language for generating
SNNs. Then, we propose an evolutionary algorithm (see Section 3.6) that uses the grammar as a
genetic code to produce controller mutations that best capture the dynamics of a joint.

3.3 A Context-free Grammar for Automatically Generating SNN Controllers

Our context-free grammar for generating SNN controllers is shown in Figure 1. The goal of the
grammar is to define controllers that follow the general structure of motor control networks
described in Section 3.2.1, while they provide different control dynamics. For this, the first group of
rules (Structure Rules) in our grammar ensures that the words of the language follow the overall
architecture. Then, the second group of rules (Dynamics Rules) introduce different control dynamics
to capture diverse motion sequences. We explain the rule definition in more detail below.

3.3.1 Structure Rules. Rule 1 ensures that the Net follows the recurrent architecture of motor
control networks that compares the input, desired value, and the fed-back actual value of the
controlled variable. Rules 2 and 3 are also restrictive to ensure that the Net consists of the two
parallel Buses that allow for bidirectional modifications of the controlled variable through processing
pathways (PathEns) and actuation components (MN pool).

3.3.2 Dynamics Rules. The remaining rules are more flexible and introduce variability in the
architecture and diversity in the network dynamics. For example, when applied, rules 4 and 6 enrich
the processing capabilities of the Net by introducing one or more pathways to feed properties
of the controlled variable back into the Net. For simplification purposes, we limited the number
of feedback pathways to one to account for the derivative of the controlled variable. However,
this restriction could be lifted to include higher moments. Several rules (7, 8, 9, 12) are defined to
allow for static or dynamic connections in the Net. Again for simplicity, we restricted dynamic
connections only to the feed-forward pathways (rules 5 and 9), a design choice that could easily be
extended. Lastly, we introduced rule 10 to allow for different strengths of the actuation components
(MNpool) corresponding to different muscle

sizes and innervation levels. While we limited Target — Intermediate

our grammar to a few discrete sizes, our design 10 {— Shortest — Longest

could be extended to a continuous size spec-
trum. More importantly, the neuron population

approach could be expanded beyond the actu- >
ation to the processing neurons (ECM), whose
number we here limited to one (rule 11). 01
We illustrate the ability of our grammar to
produce controller architectures with differ- -5 -() i é

ent properties through a series of derivations
shown in Figure 2. The response of the derived
SNN controllers to a step function is shown in

Time (s)
Fig. 3. Response of the three SNN controllers derived
from our grammar in Figure 2 to a step function.
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Figure 3. Note that even though the response of the longest “word” (i.e., SNN controller) derived
from our grammar looks closest to the step function, one should not naively conclude that the
longest word is always better for every given function. We have empirically verified this claim
through our experiments on the hand gesture MoCap data set, described in Sections 3.7 and 4.6.

First, we present the derivation of the controller that corresponds to the shortest word in our
language (Fig. 2, A1). This controller’s external input Inp is the desired joint angle 6¢, while its
output is the controlled joint angle 6. Inp propagates through the Net to the Out through two
parallel Buses (step 2). Our grammar always produces two parallel Buses, one for increasing the
controlled variable and one for decreasing it. An estimate of Out was fed back to the Net to allow
error computation and correction. In general, the Buses could consist of a more complex PathEns
connected to the output layer of MNpool (step 3). However, for the shortest word of the language,
they were substituted with only one FfPath (step 4). For similar brevity reasons, each FfPath
was substituted with its shortest static version StaticF f Path (step 5). For the substitution of each
StaticPath, there was only one choice resulting in an eN and its corresponding Con to the MNpool
(step 6). However, both the Con and the MNpool were substituted with their shortest possible
versions: a static Syn and a single MN, respectively (step 7). Functionally, this SNN controller was
equivalent to a conventional proportional (P) controller. The two eN received input and feedback
with opposite signs. This forced them to fire in a mutually exclusive fashion. The upper one encoded
the presence of a negative (§ < 6%), while the lower one that of a positive (§ > %) error. Their
firing rate was proportional to the magnitude of the error and drove the corresponding MN to
modify the controlled variable and correct the error.

3.4 Translating the Controller Architecture to Spiking Neural Networks

To translate the abstract architectures that our grammar produces into SNN formulation, we
followed the approach and the parameter definitions presented in detail in [Polykretis et al. 2023].
In this section, we briefly describe the main components of the SNN controllers shown in Fig. 1, C.
We simulated all neurons on the feedforward (eN) and feedback (dN) pathways, and the MN
pools (E/F) using the Leaky-Integrate-and-Fire (LIF) neuron model, which is defined as follows:

ul.(t) = ul.(t_l) ~dy + Z wij - sj(-t_l), and vi(t) = vi(t_l) “dy + ul-(t), 1)
J

where t is the time step, u; is the neuron’s input current, v; is the neuron’s voltage, d,, and d, are
current and voltage decay factors, w;; are the connection weights between the presynaptic neuron

Yisa binary variable denoting the spikes of neuron j at

Jj and the postsynaptic neuron i, and s](f_
time step ¢ — 1.

Following [Polykretis et al. 2023], we set the static values of all the synaptic weights between
neurons to 1, except for the connections to the MN pools. For these connections, the presynaptic
neurons were fully connected to the pool of MN, and the weights followed a uniform distribution
U(0,1). We introduced synaptic dynamics to the static weights through two time-dependent,
multiplicative factors f(*) and g(*) that adapted the weights W between the eN and the motor
neurons, as shown below:

w® =w ,f(t) .g(f), ()

The first factor f*) corresponded to the presynaptic-dependent facilitation of the weights
[Tsodyks et al. 1998] to enforce the gradual transfer of the presynaptic activity to the motor
neurons. The efficacy fiﬁ.t) of the synaptic connection between the j** ePPC and the i*" motor
neuron increased with each presynaptic spike until saturating at a maximum value and decayed
otherwise with a factor dy,., as shown in equation (3) below:
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ij't) = ﬁ;t_l) : dfac + Ufac : SJ(-t_l)> (3)

where dp,. is the facilitation decay time constant, U, is the facilitation factor increment, and
s](.t_l) is the spike of the presynaptic neuron. When the synaptic efficacies are initially low, abrupt
increases in the activity of the eN do not directly affect the motor neurons. As they slowly increase,
they gradually change the activity of the motor neurons and, in turn, the controlled amount.

The second factor g'*) ensured the accurate control of both small and large-range movements by
allowing for weight adaptation to the movement magnitude. This function is based on presynaptic
inhibition, an experimentally identified biological mechanism for adaptation [Fink et al. 2014]. For
this, we utilized an additional spiking neuron (PSI), whose activity reflected the activity of the eN
and, therefore, the magnitude of the error. The spikes of the PSI modulated the connection weights
through a factor g as described below:

) ) (t-1

9" = Gomax — |9 - dpst + Upst * Spg; |, (4)
where gmqy is the maximum value of the modulatory factor g, dg,. is the presynaptic inhibition

decay time constant, Upgy is the presynaptic inhibition increment, and s}fs_[l) represents the spike

of the PSI neuron. During the control, g decreased by Upsy with each PSI spike sl(fS;I) and otherwise
decayed to its maximum value g4, With a factor dpgs;. Using g as a multiplicative factor in Eq. 2,
we emulated the divisive effect of presynaptic inhibition on the weights of biological synapses

[Fink et al. 2014].

10 1 a\.‘,/‘ ka/"
Algorithm 1 Sampling
1: for all joints do ED 57
2 S={0,T} <
s G = {0 6r} o
4: 0 «— Grad(0) <
5: z = arg{0;0;_; < 0} I |5
&  S—SU {z} =
7: t=0 1 . | I |
8 while t € Sand t # T do 0 1 2
9 G — GU {01} Time (s)
10: b _t +1 Fig. 4. Application of Algorithm 1 to discretize a given joint angle
11: end while (blue) into target angles (yellow) that are provided as inputs to
12: return S, G the joint controller. At each trigger point (red), where the sign of
13: end for the angle’s derivative changes, the target angle is updated to the

value of the joint angle at the next trigger point.

3.5 Input Generation for the Joint Controller

To use our SNN architectures for joint control, we need to provide the desired/target angle (8%)
to the SNN and let the network minimize the error between that and the actual value of the
controlled variable. Our method requires only a few time-target pairs (s, g) (Fig. 4, red dots) to
delineate the desired trajectory of a joint (Fig. 4, blue) over time T. Then, the biologically plausible
architecture and dynamics of the SNN controller can effectively approximate the intermediate
parts of the trajectory, resulting in visually realistic joint motions for 3D human characters. To
specify these pairs (s, g), we used a simple algorithm (Algorithm 1), which is similar to classical
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methods for sampling points of interest from continuous motion sequences [Pullen and Bregler
2002]. Specifically, two pairs were selected for each joint by default (steps 2-3). For these, s was
selected as the start (+ = 0) and end (¢ = T) of the motion, while g was given by the value of the
desired angle at the respective time instances (6y) and end (67). The s for the intermediate points
was selected as the time instances when the sign of the desired joint angle’s derivative changed
(steps 5-6). The g-value of each intermediate point was set to the value of the desired angle at the
next point of interest (steps 8-11). For all other time steps that were not points of interest, we set
the value for the desired angle to the value at the next point of interest and obtained the discretized
angle values (Fig. 4, yellow) that we provided as input to our joint controller.

3.6 Evolutionary Algorithm for Capturing Joint Dynamics with SNNs
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Fig. 5. Visualization of the genetic algorithm (Algorithm 2) for selecting the best-performing
controller architecture. The search starts from the shortest word produced by our context-free grammar
that constitutes the first generation. The second generation of controllers results from all possible mutations
of the shortest word. Then, the best-performing controller of the first two generations is selected as the
parent of the third generation. A final architecture is selected (golden square) when either its performance
exceeds a predefined threshold or a number of architectures have been examined. For illustration purposes,
we only show three generations, we don’t show all the possible variations of the architecture, and we select a
controller from the most recent generation as the best-performing controller.

To effectively capture the dynamics of different joints, we need to identify which components from
our grammar allow the controller to closely approximate the given joint angles. We drew inspiration
from the classical A* algorithm to develop an evolutionary algorithm for SNNs [Schmidgall et al.
2022] (Algorithm 2) to select the best-performing architecture among generations of controller
words with different components and, hence, different dynamics. A simplified visualization of the
algorithm’s execution is shown in Figure 5.

To formalize the representation of the different controller architectures, we abstracted them
into 7-dimensional vectors. The first five binary-valued dimensions represent the presence (1) or
facilitation in each feedforward pathway, and (iv-v) range adaptation in each feedforward pathway.
The last two dimensions can take values in a given range {1, 5, 10, 15, 20, 35, 50} and represent the
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10 Polykretis et al.

number of neurons in the MN pool of each feedforward pathway. Given this formulation, the
three controllers shown in Fig. 1, C are represented by [0,0,0,0,0,1,1], [1,0,1,1,0, 15,15], and
[1,1,1,1,1,50,50] respectively.

For each joint, the first generation of controllers (step 3) consists of only the SNN whose archi-
tecture corresponds to the shortest word in the language (Fig. 1, C1 - [0,0,0,0,0, 1, 1]). We evaluate
the controller’s performance by estimating the error between the actual (0) and the controlled (6°)
values of the joint angle, normalized over the range of the actual angle, as shown below:

i V(0; = 07)?

ERR(6,0,) = max{0} — min{6}

®)

If the error of the given controller exceeds a predefined threshold (step 5), the algorithm proceeds
to the next options. This step is similar to that of A* where the heuristic is evaluated at the closest
neighbors of the current vertex. At this step, our algorithm considers the next generation of
controllers, which are all possible mutations of the parent controller (step 12). As a mutation, we
define a single allowed value change in the representation vector of the parent controller. As a
result, each parent controller can mutate into 180 different offsprings (5 possible binary mutations x
62 MN pool size mutations). Algorithm 2 goes through the new controller generation (step 13) and
evaluates their performance using Equation (5) (step 17). Simultaneously, it inserts the evaluated
offsprings and their respective errors in a record sorted by ascending error (<= denotes insertion
to a sorted list) to avoid repeated future evaluations (steps 17-18). The best-performing offspring,
whose offsprings have not been evaluated (found always in the first entry of the sorted record),
is selected as the parent of the next generation of controllers (steps 6-11). This step corresponds
to the optimality-preserving step of A*, where the exploration proceeds through the vertex with
the minimal cost. We stop searching for the best-performing controller when the dynamics are
captured appropriately, or we have tested a predefined number of controllers (step 5). Again, this
corresponds to A* stopping when either the goal vertex has been reached or a number of edge
transitions has been exceeded.

In this way, our algorithm trains the controller architecture on different joint dynamics. For
example, joints with gradual movement initiation and gradual deceleration towards the target
would benefit from synaptic facilitation, while joints that had to achieve both small and large-range
movements would benefit from the PSI-induced range adaptation. At the same time, joints with
small or slow movements would only employ a few MN, while large and fast movements would
require larger populations, as observed in muscle fiber innervation of humans with age [Luff 1998]
or strength training [Wilson et al. 2012].

3.7 Data Processing of Motion Sequences

We used two types of motion sequences to examine our controller’s ability to capture their dynamics:
synthetic and real human motion data. As synthetic motion data, we used the activity recordings
of the publicly available, pre-trained 3D humanoid! exhibiting different behaviors (i.e., walking,
running, and their “sad” and “sneaky” variations). The motion sequences consist of 67 humanoid
bone rotations around three axes over time (201 DOF in total). For the real-world data, we used a
human MoCap dataset that consists of recordings of human subjects performing hand gestures
while wearing a glove with recording sensors [Jarque-Bou et al. 2020]. The motion gestures were
repeated several times by each subject and captured by the sensor glove. Then, the sensor readouts
were calibrated as described in [Jarque-Bou et al. 2020] to obtain joint angle estimates for 22 joints.

https://threejs.org/examples/#webgl_animation_skinning_additive_blending
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Algorithm 2 Evolutionary training of the SNN joint controller

1: Sete; counter_limit
2: for all joints do
3: counter < 0; k « [0,0,0,0,0,1,1]; parents « { };

4 of fspring_list « {k}; of fspring_heap «— {k}; of fspring err < {ERR(0,6.(k))}
5: while min{of fspring_err} > € and counter < counter_limit do
6: for ¢ € of fspring_list do
7: if ¢ ¢ parents then
8: parents «— parents U {£}
9 break

10: end if

11: end for

12: of fspring_heap < of fspring_heap U MUTATE(?)

13: while |of fspring_heap| > 0 do

14: x < POP(of fspring_heap)

15: if k ¢ of fspring_list then

16: counter « counter +1

17: of fspring_err <= ERR(6, 6.(x))

18: of fspring_list < x

19: end if

20: end while

21: end while

22: return of fspring_list(argmin(of fspring_cost))

23: end for

To obtain the joint angles of a representative hand gesture, we first averaged the repetitions of a
gesture by each subject and then calculated the mean across different subjects.

4 RESULTS

To evaluate the applicability and performance of our approach, we attempted to approximate both
synthetic joint dynamics of pre-trained 3D animated characters and real-world joint dynamics
recorded in a human motion capture (MoCap) dataset. We first trained two controllers and used
them to reconstruct two behaviors of the animated character with drastically different motion
speeds and ranges. Additionally, we examined how our trained controllers transferred the learned
dynamics to motions with similar or different speeds and ranges. Then, we trained our controllers
on the joint dynamics of a human hand and reconstructed the gestures recorded in the MoCap
dataset with our 3D animated character. Finally, we demonstrate the interactive functionalities of
our framework, allowing for the user-dependent modification of the control dynamics.

4.1 Comparison to related methods

We first evaluated our method against a simple alternative that has been used for motion sequence
reconstruction [Pullen and Bregler 2002]. To do so, we compared the dynamics generated by our
controllers with those generated by cubic polynomial interpolation, as shown in Figure 6.

Due to the properties of cubic interpolation, the reconstruction resulted in a smooth motion that
was accurate at the sampled keyframes. However, the fixed dynamics of the cubic polynomials
deteriorated the reconstruction of the motion dynamics between samples, which lagged behind
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the original movement. In contrast, our method — Actual Longest o Samples

did not presuppose any fixed dynamics and 10 { Shortest ~ — Best — Cubic Spline
the grammar gave rise to multiple controllers,
ranging from its shortest to its longest words.
The best-performing controller generated by
our grammar performed better than the cubic
interpolation in capturing the motion dynam-

Angle (deg)
W

ics between consecutive samples, avoiding the -5 4 : :
lag. As a result, the diverse dynamics provided 0 1 2
by our grammar and the selection of the best- Time (s)

performing controller by our evolutionary al- Fig. 6. Comparison of the controllers generated by our
gorithm can indeed improve the motion recon- method against interpolation with cubic polynomials.

structions.

4.2 Reconstruction of Captured Dynamics

To examine how our method can capture motion dynamics with different speeds and ranges, we
used our approach to train controllers for two behaviors with distinct dynamics: a slower and
smaller-range walking motion and a faster and larger-range running motion, as shown in Figure 7.
Our training algorithm successfully generated controller architectures that recreated the reference
joint motions (Fig. 7, B). Although the resulting joint motions were not identical to the reference
ones, the overall behavior of the animated character closely resembled the reference and appeared
visually realistic for both walking and running (Fig. 7, A). This example shows that our method
can generate controller architectures that do not simply learn the given behaviors but capture the
motion dynamics of the character joints that give rise to the behaviors.
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Fig. 7. Reconstruction of motions with captured dynamics. A. Visualization of a walking (A1) and a
running (A2) motion and their reconstructions based on the captured joint dynamics. B. Exemplary joint
angle recordings and their reconstructions.
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4.3 Generalization to Similar Dynamics

After capturing the underlying motion dynamics, we wondered whether our controllers could
transfer them to different behaviors requiring motions of similar speed and range. For this, we used
our controller trained on walking (Section 4.2) to drive two variants of the walking behavior: "sad"
and "sneaky" walking (Fig. 8). When required to drive these two variants of walking behavior, our
controller accurately recreated the reference joint motions (Fig. 8, B) and gave rise to behaviors that
closely resembled the reference motion sequences, although not explicitly trained on the dynamics
of these motions. Our results suggest that our trained controllers can exploit their final architecture
to generalize to previously unseen motion sequences with similar dynamics. As a reminder, our
approach does require the trigger points to be re-computed for new motion sequences and provided
as input to our SNN controllers.
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Fig. 8. Reconstruction of motions with dynamics similar to the captured ones. A. Visualization of a
sad walking (A1) and a sneaky walking (A2) motion and their reconstructions based on the joint dynamics
captured during regular walking. B. Exemplary joint angle recordings and their reconstructions.

4.4 Generalization to Different Dynamics

After the successful generalization of the trained controllers to motions with similar dynamics,
we went one step further to examine whether our controllers could also generalize to previously
unseen motion sequences with different speeds and ranges.

For this task, we first attempted to drive the running motion using the controller trained on
walking (Section 4.2) to control the running motion (Fig. 9, A1-B1). While appearing visually
realistic, the resulting behavior resembled “jogging” with a smaller range of joint movements,
similar to the high-effort run of an older or unfit person (Fig. 9, A1). Looking at the individual
joint movements of the character (Fig. 9, B1), we observed that for some joints, the reconstructed
motions could not cover the full range of the reference ones. Even the joints that moved across the
required range consistently lagged behind the respective recordings, suggesting that the walking
controller was too weak to recreate the running movement accurately.

The inability of the walking controller to effectively drive the more intense running motion made
us wonder whether the controllers of physically intense behaviors could effectively reproduce
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Fig. 9. Reconstruction of motions with dynamics different from the captured ones. A. Visualization
of a running (A1) and a sad walking (A2) motion and their reconstructions based on the joint dynamics
captured during regular walking and regular running, respectively. B. Exemplary joint angle recordings and
their reconstructions.

milder ones. To verify this hypothesis, we used the controller trained on running (Section 4.2) to
drive the “sad” variation of the walking motion (Fig. 9, A2-B2). Once again, the motion appeared
visually realistic but preserved the dynamic properties of the behavior used for the controller’s
training. Namely, the “sad” walking appeared “heavier” than the reference, similar to the walking
of a muscular, bulkier human (Fig. 9, A2). Looking at the individual joint movements again (Fig. 9,
B1), we observed that the reconstructed motions consistently preceded the recorded ones. This
effect was opposite to the one observed in the walking-to-running generalization discussed above.
We attribute these observations to the increased strength of the running controller, which attempts
to correct the angle errors faster than the “sad” walking behavior required.

4.5 Interactive Modification of Joint Controller Dynamics

The difference between the reference and the reconstructed motions of specific joints when gen-
eralizing to sequences with different dynamics (Section 4.4) highlighted our need to modify the
controller dynamics of specific joints. Our interactive framework (Fig. 10) allows us to select the
joints of interest, edit the number and location of trigger points, retrain the joint controller based on
the new trigger points, and visualize the effect of the retrained controller on the motion sequence
in real-time. As illustrated in Figure 11, we show how a number of user-added trigger points
and the retraining of the controller based on them can modify the controller dynamics. In the
supplementary video we also present the real-time visualization of the effects of the controller
modification on the motion sequence.

4.6 Hand Gesture Animation using Human MoCap Data

After capturing the dynamics of synthetic data, we examined whether our controller could capture
real human joint dynamics and animate them using the controlled 3D character. To investigate
this, we used our method to train controllers on the dynamics of human hand joints from subjects
that performed hand gestures while wearing a glove with recording sensors [Jarque-Bou et al.
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Fig. 10. Screenshot of our interactive framework. A. Visualization of the reference motion sequence. B.
Visualization of the reconstruction. C. Panel for joint selection D. Panel for interactive editing of the joint
dynamics.

2020]. Our evolutionary algorithm resulted in controller architectures that successfully captured
the dynamics of the human hand joints (Fig. 12, B). To visualize the reconstruction of the recorded
hand gestures, we translated the controlled angles to the respective DOFs of our 3D character.
As a result, the hand of our character animated the flexion of the little (Fig. 12, A1) and middle
finger (Fig. 12, A2) that were represented in the gesture dataset recordings. Notably, our animation
captured the coupling between neighboring fingers of the hand (e.g., the ring and the little fingers).
These results suggest that our training method can successfully capture real human joint dynamics
and could potentially be useful for the 3D animation of human MoCap data.

4.7 Timings
As areference, we measured the training time that our method required to capture the dynamics of a
joint. Our evolutionary algorithm stopped either when the error was below 0.08 (see Eq. 5) or when
270 possible architectures had been tested. To capture the dynamics of one joint over a sequence
with a duration of 1s, this process took 40.12s with a standard deviation of 32.24s when run on an
Intel i5-1035G1 CPU with 8 cores at 1 GHz. The large standard deviation emerged because of the
A0 B

— Actual joint angle

Target angle

i

— Controlled angle

Angle (deg)
(=1
r

e Automatically detected triggers

.K User-defined triggers

0 1 2 0 1 2
Time (s) Time (s)

Fig. 11. User-dependent modification of joint controller dynamics in our interactive framework. A.
Capture and reconstruction of the joint dynamics (blue) by our trained controller (green) based on the target
angles (yellow) that are specified by the automatically detected trigger points (red dots) B. The addition of
user-defined triggers (arrows) in the interactive framework initiates a retraining of the controller to capture
the updated dynamics and fine-tune the movement.
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Fig. 12. Animation of two human gestures based on human MoCap data. A. The flexion of the middle
(A1) and the little (A2) finger are recreated with the 3D animated character based on recordings of humans
performing the gestures while wearing a sensor glove [Jarque-Bou et al. 2020]. B. The recorded dynamics of
four representative joints (black) are properly captured and reconstructed by our controller (red) to give rise
to the hand gesture.

two extreme training scenarios; Often the method identified a suitable controller very early after a
couple of tested variations, while at other times, it only stopped after the maximum allowed number
of controllers was tested. We note that this training time was measured without any parallelization
of our evolutionary algorithm. Such an optimization of our method will allow for simultaneous
evaluation of multiple controller variations belonging in the same generation, and would drastically
decrease the training time. We have left this improvement for future work. We also measured the
time that our trained controller required to reconstruct a given sequence based on its captured
dynamics, corresponding to the inference time. The reconstruction of a sequence with a duration
of 1s took on average 273.26ms with a standard deviation of 16.62ms.

5 LIMITATIONS AND FUTURE WORK

We presented a method to capture the dynamics of motion sequences and use them for synthesizing
visually realistic 3D character animations. Unlike previous sampling methods, our focus was not on
the keyframes, but on the spatiotemporal dynamics that govern the evolution of motion sequences
between keyframes. While our method is endowed by its biological inspiration with realistic motion
dynamics resembling those of human joints, it still has its own limitations.

First, the formalization of biological neuronal networks that drive motor controls into a simplified
grammar is an abstraction of reality. Although we attempted to include enough biological realism to
capture the main components of such networks, many components, mechanisms, and architectural
details are not modeled. While the presented version of the grammar was sufficient to generate
effective controllers, expanding its alphabet and production rules to incorporate further biological
evidence would be fruitful for improving our method’s performance.

Second, the evolutionary algorithm we propose allows for the accurate capturing of joint dynam-
ics, but we do not fully exploit its potential. Specifically, while the nature of the algorithm allows for
a parallel evaluation of multiple controller variants belonging to the same generation, our current
implementation performs the evaluation sequentially. The sequential evaluation not only induced
longer training times but, more importantly, limited the number of possible controller variations
that we could test in a reasonable time frame. Therefore, investigating parallel implementations
could further improve the performance of our method.

Lastly, the biologically plausible dynamics generated by our method can outperform simple
methods such as interpolation with cubic polynomials (Fig. 6). Similarly to polynomial interpolation,
our method did not aim to point-by-point reconstruct the original motion sequences. In contrast,
it accurately captured the motion dynamics that could be transferred to different sequences. Our
controller design method could perform well in cases where the goal is the optimization of specific
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motion dynamics such as speed constraints, range adaptation, or overshoot avoidance (as demon-
strated in [Polykretis et al. 2023] that targeted motion smoothness). However, it is still limited
when compared against motion in-betweening methods that use deep learning [Harvey et al. 2020;
Peng et al. 2018]. More specifically, these advanced methods can also generalize to transitions
between different motions and synthesize complicated motion sequences such as gymnastics or
parkour exercises, which patch fractions of different motion sequences. Therefore, the combination
of our low-level controller with sophisticated high-order planning could further improve the overall
performance.

6 CONCLUSION

In this work, we presented a method to capture the musculoskeletal dynamics of human joints
during motion sequences and use them to synthesize visually realistic motions of 3D animated
characters. We abstracted the intricate architectures of the SNNs that drive motor controls in
primates and rodents and formalized them in a context-free grammar, encapsulating different
network variants. We then proposed an evolutionary algorithm to allow the joint controller to learn
the network architecture that best approximates the joint dynamics. We scaled up our approach to
capture the synthetic motion of a 3D animated character and demonstrated the reconstruction of
the original movement and generalization to previously unseen, realistic motion sequences. We also
validated our method by capturing the joint dynamics of real human hands performing gestures
and animated the gestures using the 3D character.
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