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Fig. 1. (Left) Our generalized constitutive model allows the simulation of inviscid fluids, Newtonian viscosity,

hyperelasticity, viscoplasticity, elastoplasticity (shown as the 5 corners of the pentagon) and other physical

effects that arise due to a mixture of these behaviors (shown as sample points inside the pentagon). (Right)

Snapshots of simulations at the pentagon corners.

We present a generalized constitutive model for versatile physics simulation of inviscid fluids, Newtonian

viscosity, hyperelasticity, viscoplasticity, elastoplasticity, and other physical effects that arise due to a mixture

of these behaviors. The key ideas behind our formulation are the design of a generalized Kirchhoff stress tensor

that can describe hyperelasticity, Newtonian viscosity and inviscid fluids, and the use of pre-projection and

post-correction rules for simulating material behaviors that involve plasticity, including elastoplasticity and

viscoplasticity. We show how our generalized Kirchhoff stress tensor can be coupled together into a generalized
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Fig. 2. The characteristic pattern of liquid flowing down a fountain. (Top) Our generalized constitutive model

using 𝜅 > 0, 𝜇 = 0, 𝜂 = 0 and no viscoplasticity or elastoplasticity. (Bottom) Reference results using the

equation-of-state fluid model.

constitutive model that allows the simulation of diverse material behaviors by only changing parameter values.

We present several side-by-side comparisons with physics simulations for specific constitutive models to

show that our generalized model produces visually similar results. More notably, our formulation allows for

inverse learning of unknown material properties directly from data using differentiable physics simulations.

We present several 3D simulations to highlight the robustness of our method, even with multiple different

materials. To the best of our knowledge, our approach is the first to recover the knowledge of unknown

material properties without making explicit assumptions about the data.
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1 INTRODUCTION

The quest to reproduce the behavior of physical materials digitally has been a longstanding pursuit
of computer graphics [Bridson 2015; Hu et al. 2019; Jiang et al. 2016; Sifakis and Barbic 2012] and
the VFX industry [Frost et al. 2017; Geiger et al. 2006; Hutchins et al. 2015; Rasmussen et al. 2004].
Apart from the natural appeal of creating immersive virtual worlds, researchers have also started
applying physics simulation in the emerging disciplines of virtual surgery [Lee et al. 2019, 2018;
Mitchell et al. 2015], digital fabrication [Ma et al. 2017], and soft robotics [Huang et al. 2021].

The standard approach to physics simulation uses a constitutive model that characterizes physical
attributes of the materials being simulated, and discretization schemes for constructing discrete
systems that are subsequently solved using numerical methods. While several researchers have ex-
plored generalized discretization schemes that can accommodate a large class of materials [Bouaziz
et al. 2014; Hu et al. 2019; Jiang et al. 2016; Liu et al. 2017; Losasso et al. 2006; Macklin et al. 2014;
Martin et al. 2010; Narain et al. 2016; Yan et al. 2016], there is very little prior work on generalized
constitutive models [Fang et al. 2019; Su et al. 2021; Xue et al. 2020]. To some extent, this makes
sense because specialized numerical solvers that are tailored for specific constitutive models tend
to be much faster than generalized simulation methods [Aanjaneya 2018; Aanjaneya et al. 2019;
Chu et al. 2017; Liu et al. 2016, 2017; McAdams et al. 2010; Zhang and Bridson 2014; Zhu et al. 2010].
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Fig. 3. Several hyperelastic gummy bears collide as they are dropped into a bowl. (Top) Results using our

generalized model with 𝜅 > 0, 𝜇 > 0, 𝜂 = 0, with no viscoplasticity or elastoplasticity. (Bottom) Reference

results simulated with traditional MPM.

Such an approach is also justified from the perspective of VFX [Frost et al. 2017; Geiger et al. 2006],
where a particular physical phenomenon is simulated repeatedly with small variations.

However, there is a growing need for methods in machine learning and robotics that can
automatically infer unknown physical parameters of materials from data, for learning, inference,
planning and control. A particular focus area within this domain is the nascent (but rapidly growing)
field of differentiable physics [Du et al. 2021; Geilinger et al. 2020; Holl et al. 2020; Li et al. 2023],
where a physics engine is embedded as an additional layer inside a neural network, and the
gradients of the loss function with respect to unknown physical parameters are backpropagated
through the physics engine. Such an approach is known to be more efficient than other data-
driven alternatives [Song and Boularias 2020a,b; Wang et al. 2020, 2021]. Unfortunately, for lack
of a general solution, researchers have developed their own customized differentiable engines for
studying particular phenomena of interest [Mozaffar and Cao 2021; Qiao et al. 2021; Srinivasan et al.
2021; Takahashi and Lin 2019b]. Those approaches are not feasible for exploratory tasks, such as
manipulating unknown objects or locomotion on unknown terrain, where the material properties
of the objects or the terrain are not known in advance. This motivates the need for a physics engine
that is capable of simulating materials with widely different material properties by only changing
the values of certain parameters during run-time, so as to be useful in gradient descent.

1.1 Contributions

Our work seeks to address this problem by designing a parameterized physics engine for inviscid
fluids, fluids with Newtonian viscosity, hyperelastic solids, viscoplastic and elastoplastic materials.
To achieve this, we design a generalized constitutive model that is capable of exhibiting all the
aforementioned material behaviors and employ the versatile Material Point Method (MPM) [Hu
et al. 2019; Jiang et al. 2016] for discretizing it in space, due to MPM’s ability to handle both large
deformations and topology change in a unified fashion, while minimizing numerical dissipation.
We present several side-by-side comparisons to highlight that our generalized model produces
visually similar results as the specific constitutive models that have been used in prior work. Further-
more, we show how our framework can be implemented in the Taichi differentiable programming
language [Hu et al. 2020] to automatically compute gradients for a given loss function by backprop-
agating through the simulation. This allows us to automatically learn unknown material properties
of objects from simulation data. We demonstrate the robustness of our model in simulation, which
can converge to the correct physics even for problems where multiple different materials interact
with each other (see Figure 12).

In contrast to prior studies that have also investigated the formulation of constitutive models for
different materials, our proposed methodology unifies various existing/newly proposed models
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and allows for designing those material behaviors that potentially match with uncharted materials.
For example, we show how the material properties span in the pentagon, as shown in Fig. 1,
and numerous unknown material behaviors can be formed under the umbrella of our generalized
constitutive model (see Figure 1). Moreover, the computational framework (see Section 5) emanating
from such a generalized constitutive model can significantly alleviate the complexity of simulations
that have to resort to the individual numerical methods used in prior studies [Raveendran et al.
2011; Stomakhin et al. 2013; Yue et al. 2015]. This can be more significant given that inverse learning
with differentiable physics in general needs a material łlibraryž to have a wider range of tuning
space. We show that the integration of our proposed approach with the Taichi differentiable engine
can readily transfer the initial guess to the target physics and yield excellent agreement with
the ground truth (see Figure 10). Due to the versatility of our generalized constitutive model, the
resulting inverse simulation with differentiable physics can readily handle complex scenarios with
multiple objects and materials, which has been considered to be challenging in prior work [Wang
et al. 2020].

2 RELATED WORK

We review relevant prior work in computer graphics which, to our knowledge, has considered
generalized physics simulation from two different perspectives so far: a) generalized discretization
approaches (which use different constitutive models, but the same spatial/temporal discretization),
and b) generalized modeling approaches (which use the same constitutive model).

2.1 Generalized Discretization Approaches

Discretization on Meshes: Elastic and inelastic deformation (including viscoelasticity, plasticity and
fracture) of non-rigid curves, surfaces and solids were introduced to computer graphics by the
seminal works of Terzopoulos et al. [Terzopoulos and Fleischer 1988; Terzopoulos et al. 1987].
Since then, FEM discretization has been used for elasticity, plasticity and fracture [Bao et al. 2007;
Martin et al. 2010; O’Brien and Hodgins 1999; Sifakis and Barbic 2012], viscoelasticity [Wojtan and
Turk 2008], viscoplasticity [Bargteil et al. 2007], water [Thürey et al. 2010; Wojtan et al. 2010] and
solid-fluid coupling [Clausen et al. 2013]. While many of these works were done by several different
groups, leading to slightly different discretizations, a generalized approach for solid simulation
on 1D, 2D and 3D meshes, termed projective dynamics (PD), was proposed in [Bouaziz et al. 2014;
Liu et al. 2017; Narain et al. 2016] that can accommodate several different constitutive models.
Projective dynamics succeeds position-based dynamics (PBD) [Macklin et al. 2014; Müller et al. 2007]
which, albeit not as accurate as PD, is more efficient to be useful in real-time environments. Besides
FEM, researchers have also explored discrete operators inspired by fluid mechanics for simulating
co-dimensional fluid phenomena [Da et al. 2015, 2016; Zhu et al. 2015, 2014]. A mixed-dimensional
discretization for elasticity on non-manifold surfaces was proposed in [Chang et al. 2019].

Discretization on Grids: Versatile simulation of sand, mud and snow was pioneered by the early
work of [Sumner et al. 1999]. Later, a particle-level set approach was shown to be capable of
simulating multiple interacting liquids with phase change [Losasso et al. 2006]. A monolithic
system for pressure and viscosity was proposed in [Larionov et al. 2017], which later inspired
monolithic formulations for viscosity with two-way coupling [Takahashi and Lin 2019a], generalized
pressure-viscosity-contact simulation [Takahashi and Batty 2020], and frictional contact of granular
materials with two-way rigid body coupling [Takahashi and Batty 2021]. Apart from fluids, uniform
grids have also been used for simulating highly constrained thin strands [Sueda et al. 2011] with
applications to biomechanics [Sachdeva et al. 2015], elastic solids with frictional contact [Levin et al.
2011], skin [Li et al. 2013], cloth [Weidner et al. 2018], and coupling fluids with elastic solids [Teng
et al. 2016].
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Fig. 4. Classical liquid rope coiling effect exhibited by a Newtonian viscous liquid when poured on a rigid

surface. (Top) Results produced by using our generalized constitutive model. (Bottom) Reference results

simuated using traditional MPM.

Discretization with Particles: The Smoothed Particles Hydrodynamics (SPH) method [Desbrun and
Gascuel 1996] has been used for versatile simulation of fluids [Ihmsen et al. 2014] with viscosity [Peer
et al. 2015], two-way coupled rigid bodies [Akinci et al. 2012], spray/foam and air bubbles [Ihmsen
et al. 2012], elastic solids [Becker et al. 2009], granular materials [Alduán and Otaduy 2011; Ihmsen
et al. 2013], surface tension and adhesion [Akinci et al. 2013], and snow [Gissler et al. 2020].
Particle discretizations based on peridynamics have been employed for simulating thin sheets
with diffusion effects [Han et al. 2021] and solid-fluid coupling with fracture [Truong et al. 2021],
where discontinuities introduced due to cracks make discrete differentials invalid. The versatile
position-based dynamics framework [Müller et al. 2007] has been used to simulate solids, fluids,
granular materials and two-way coupling between them [Macklin and Müller 2013; Macklin et al.
2014]. Particles have also been used to simulate large-scale multi-body dynamics problems with
frictional contact [Mazhar et al. 2015].
Discretization with Hybrid Methods: The FLIP method was introduced to computer graphics

through the seminal work of Zhu and Bridson [2005] for sand simulation. The Affine Particle-
In-Cell (APIC) method [Jiang et al. 2015] was proposed later to reduce dissipation and prevent
instabilities. In this domain, the Material Point Method (MPM) [Hu et al. 2019; Jiang et al. 2016] has
emerged as a versatile method for simulating snow [Stomakhin et al. 2013], phase change [Gao
et al. 2018b; Stomakhin et al. 2014], sponges and foam [Ram et al. 2015; Yue et al. 2015], wet
and dry sand [Klár et al. 2016; Tampubolon et al. 2017], wet cloth [Fei et al. 2018], particle-laden
fluids [Gao et al. 2018a], fracture [Wolper et al. 2019], baking and cooking [Ding et al. 2019], and
diffusion-driven phenomena [Su et al. 2021; Xue et al. 2020]. MPM has the advantage of using
particles for carrying material attributes, which avoids numerical dissipation issues characteristic
of grid-based schemes. The use of a background grid permits the use of regular numerical stencils
for force computations, allowing for good cache-locality and parallelism, and avoiding expensive
neighbor lookups. The concept of hybridization (or more generally, embedded simulation) has also
been proposed for solids [Sifakis et al. 2007a,b; Teran et al. 2005] for producing well-conditioned
systems for biomechanics.

In summary, all the prior works referenced above use different constitutive models for simulating
different material behaviors. This leads to different discrete systems per constitutive model, even
if the same spatial discretization method was used, requiring the need for different numerical
solvers. For example, MPM can use PCG with semi-implicitly linearized dynamic equations for
snow simulation [Stomakhin et al. 2013], but requires an optimization-based solver for sponges
and foam [Ram et al. 2015].
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Fig. 5. Two snow balls collide with a snow castle. (Top) Our generalized model can achieve elastoplastic

behavior when the critical coefficients 𝑓𝑐 , 𝑓𝑠 and the hardening factor 𝑓ℎ are appropriately selected while

keeping the viscoplasticity turned off. (Bottom) Reference results simulated using [Stomakhin et al. 2013].

2.2 Generalized Constitutive Modeling

As far as we know, the prior works that are most similar to our proposed approach are [Fang
et al. 2019; Nagasawa et al. 2019]. The method proposed in [Nagasawa et al. 2019] is limited to
shear-thinning viscous liquids. While impressive behaviors can be simulated for both viscoelastic
and elastoplastic materials by the method proposed in [Fang et al. 2019], it employs a damping
method for viscosity which does not allow for arbitrary viscosity values.

Our approach is inspired by the recent work in [Su et al. 2021; Xue et al. 2020] based on non-local

modeling [Eringen 1992; Sobolev 2014]. Unlike the prior works [Su et al. 2021; Xue et al. 2020]
that focused on the specific phenomena of diffusion and viscosity, we explore a much broader
spectrum of material behaviors, as illustrated in Figure 1. The key ideas behind our formulation are
the design of a generalized Kirchhoff stress tensor that can describe hyperelasticity, Newtonian
viscosity and inviscid fluids, and the use of pre-projection and post-correction rules for simulating
material behaviors that involve plasticity, including elastoplastic flows and viscoplastic flows.

3 OVERVIEW OF THE GENERALIZED KIRCHHOFF STRESS TENSOR

We assume a primary additive decomposition of any arbitrary Kirchhoff stress tensor 𝝉 into a
volumetric stress tensor 𝝉 𝑣 , a deviatoric stress tensor 𝝉𝑠 , and a rate-dependent stress tensor 𝝉𝑁 :

𝝉 = 𝝉 𝑣 + 𝝉𝑠 + 𝝉𝑁 (1)

3.1 Volumetric Stress

The volume-dependent energy density can be defined as follows:

𝑊 𝑣 (𝐽 ) =
𝜅

2

[

1

2
(𝐽 2 − 1) − ln 𝐽

]

, (2)

where 𝜅 denotes the bulk modulus and 𝐽 is the relative volume. The volumetric stress tensor is
given by:

𝝉 𝑣 =
𝜅

2
(𝐽 2 − 1)𝑰 (3)

3.2 Deviatoric Stress

The shear-dependent energy density is defined as follows:

𝑊 𝑠 (𝑭 ) =
𝜇

2

[

Tr(𝑭𝑇 𝑭 ) − 3
]

, (4)
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where 𝜇 denotes the shear modulus, 𝑭 is deformation gradient. The deviatoric stress tensor can be
expressed as:

𝝉𝑠 = 𝜇

[

𝑨𝑨𝑇 −
1

3
Tr(𝑨𝑨𝑇 )𝑰

]

, (5)

where 𝑨 = 𝐽 −1/3𝑰 is the isochoric deformation gradient.

3.3 Rate-Dependent Stress

In general, both fluids and soft solids share the same non-linear kinematics under large deformations.
The primary distinction between a (hyper)elastic solid and a (Newtonian) fluid is that the former
maintains a permanent memory of its initial (or reference) configuration, to which it relaxes
to, whereas all configurations are equivalent in a simple fluid and only rates of deformation are
important. To realize the shear stress induced by the rate of deformation, we add the Kirchhoff
stress 𝝉𝑁 corresponding to the Newtonian-type viscous stress 𝝈𝑁 , as defined below:

𝝈𝑁
=

𝜂

𝐽
𝝐, 𝝉𝑁 = 𝐽𝝈𝑁

= 𝜂𝝐 (6)

where 𝝐 =
1

2
(∇𝒗 + ∇𝒗𝑇 ).

3.4 Unification

The total Kirchhoff stress tensor 𝝉 can be reformulated as:

𝝉 =

𝜅

2
(𝐽 2 − 1)𝑰

︸       ︷︷       ︸

𝝉 𝑣

+ 𝜇

[

𝑨𝑨𝑇 −
1

3
Tr(𝑨𝑨𝑇 )𝑰

]

︸                         ︷︷                         ︸

𝝉𝑠

+ 𝜂𝝐
︸︷︷︸

𝝉𝑁

. (7)

Equation (7) can be combined with the following momentum equation for updating the physical
state:

𝜌 ¥𝒙 = ∇ · 𝝈 − 𝒇 ext (8)
where 𝜌 is the material density, 𝝈 is the Cauchy stress tensor, and 𝒇 ext is the vector of external
forces, such as gravity. By tuning 𝜇 and 𝜂 in equation (7), equation (8) can be used to describe:

(1) (𝜂 = 0): hyperelastic solids,
(2) (𝜇 = 0): Newtonian viscous fluids,
(3) (𝜇 = 0, 𝜂 = 0): inviscid fluids.

3.5 Plastic Projection and Correction

To further cover elastoplasticity and non-Newtonian viscosity, we follow Stomakhin et al. [2013] to
manipulate the elastic part of the deformation gradient before arriving at the total Kirchhoff stress
and apply a plastic correction to the shear-dependent stress 𝝉𝑠 in equation (5).

elasticity

non-equilibrated elasticity
plasticity

plasticity

viscous deformation

3.5.1 Elastoplasticity. In order to handle the elastoplastic behaviors ex-
hibited by materials like snow, we follow Stomakhin et al. [2013] and
introduce hyperparameters 𝑓𝑠 , 𝑓𝑐 and 𝑓ℎ , representing the stretching, compression and hardening
factors respectively, to have more control over the material’s response to deformation. We start
with a 1D rheological example. The plastic element represents the response due to permanent
deformation, without which the material will behave purely elastically. In 3D, the total deformation
gradient is multiplicatively decomposed into elastic and plastic parts as 𝑭 = 𝑭 𝑒𝑭 𝑝 . We follow
Stomakhin et al. [2013] and apply a singular value decomposition to 𝑭 𝑒 , followed by clamping
the singular values below a threshold. Note that in order to handle plastic hardening, the Lamè
coefficients need to be updated accordingly.
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Particles

Grid

𝑚𝑛 , 𝒗𝑛 , 𝐽𝑛

𝑨
𝑛 , 𝑭𝑝,𝑛 ,𝑪𝑝,𝑛

𝒗
𝑛+1, 𝑥𝑛+1

𝑨
𝑛+1, 𝐽𝑛+1

𝝉𝑛 = 𝝉𝑛
𝒾
+ 𝝉𝑛

𝒹
𝝉𝑁,𝑛
𝒾

𝑭
𝑝,𝑛+1,𝐶𝑝,𝑛+1projection/

correction

G2P
𝑚𝑛
𝑖 , 𝒗

𝑛
𝑖 𝒗∗𝑖 𝒗𝑛+1𝑖

P2G

explicit force collision

Fig. 6. Overview of the control flow of our algorithm for one time step, which uses the Material Point Method

(MPM) to maintain a number of physical quantities on the particles and rasterizes them on a background

Cartesian grid for computing forces, which are subsequently used for updating the entire state of the system.

equilibrium elasticity

elasticity
plasticity

plasticity

    viscous deformation

3.5.2 Viscoplasticity. We follow Nagasawa et al. [2019] and draw the 1D
rheological example, where an elastic spring is attached to a structure
consisting of a Coulomb friction element with yield stress 𝜎𝑌 and a dash-
pot with viscosity 𝜂. Similar to [Yue et al. 2015], we introduce plasticity
to the shear-dependent stress 𝝉𝑠 , and denote its scalar magnitude as 𝑠 = ∥𝝉𝑠 ∥𝐹 and its normalized
form 𝝉𝑠 = 1

𝑠
𝝉𝑠 , where ∥·∥𝐹 calculates the Frobenius norm. The von-Mises yield condition [Simo

and Hughes 2006] is:

Φ(𝑠) = 𝑠 −

√︂

2

3
𝜎𝑌 ≤ 0 (9)

makes precise the limits of the elastic regime in terms of a material-dependent yield stress 𝜎𝑌 . When
the inequality (9) is satisfied, the material’s response remains elastic or viscoelastic. Otherwise, a
limited plastic flow is introduced. We refer to the quantity max(0,Φ(𝑠)) as the yield excess, and the
inequality Φ(𝑠) ≤ 0 as the yield stress. Following Yue et al. [2015], we adopt the volume-preserving
time-dependent left Cauchy-Green tensor 𝒃

𝑒
= 𝑨𝑒 (𝑨𝑒 )𝑇 and express its time derivative as below:

¤̄𝒃𝑒 = L𝒃
𝑒
+ 𝒃

𝑒
L
𝑇 −

2

3
Tr(𝝉𝑠 )𝛾𝝉𝑠 , (10)

where L = ∇𝒗 =
¤𝑭 𝑭 −1. Equation (10) incorporates the combined effects of the flow field itself as

well as the plastic flow. Further, we introduce a power law relating the plastic flow rate as follows:

𝛾 = 𝛾 (𝑠) = max

(

0,
Φ(𝑠)

𝜂

)1/ℎ

(11)

where 𝜂 is the viscosity coefficient. By varying the Herschel-Bulkley power ℎ, our model can
describe shear-thinning (when ℎ < 1) and shear-thickening (when ℎ > 1), as shown in Figures 8
and 9.

4 GENERALIZED CONSTITUTIVE MODEL

equilibrium 
elasticity

non-equilibrated 
elasticity

plasticity

plasticity

viscous deformation

To handle both elastoplastic behavior and time-dependent viscoplas-
ticity, we follow Fang et al. [2019] and update the 1D rheological
example by connecting the previous models in parallel, represent-
ing the identical total deformation that the material is undergoing,
that is, 𝑭 = 𝑭 𝑡𝑜𝑝 = 𝑭𝑏𝑜𝑡 . Note that the bottom part of the this
model is time-independent, whereas the introduction of viscoplastity makes the top compoenent
time-dependent. The total stress tensor 𝝉 can be naturally computed by adding the two individual
stresses: 𝝉 = 𝝉𝒾 +𝝉𝒹 , where the subscripts 𝒾 and𝒹 denote the time-independent and time-dependent

components, respectively. Further expanding the Kirchhoff stress gives us the following expression:

𝝉 = 𝝉 𝑣
𝒾
+ 𝝉𝑠

𝒾
+ 𝝉𝑁

𝒾
︸          ︷︷          ︸

𝝉𝒾

+𝝉 𝑣
𝒹
+ 𝝉𝑠

𝒹
+ 𝝉𝑁

𝒹
︸            ︷︷            ︸

𝝉𝒹

(12)
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where 𝝉𝑁
𝒹
is in fact 0 since the Newtonian viscous stress is time-independent.

5 NUMERICAL METHOD

For numerical simulations, we explicitly track 𝑨 and 𝐽 at each particle. Additionally, to account for
different types of plasticity, we also store and update the plastic deformation gradient 𝑭 𝑝 . Other
variables can be obtained on the fly. We further replace the full relative volume 𝐽 and the total
isochoric deformation gradient 𝑨 with only the elastic portions 𝐽 𝑒 and 𝐴𝑒 when computing the
elastic stress tensor. Integrating equations (8) and (7) provides the following governing equations:

𝜌
𝐷𝒗

𝐷𝑡
= ∇ · 𝝈 + 𝜌𝒈, 𝝈 =

1

𝐽
𝝉 , 𝝉 = 𝝉𝒾 + 𝝉𝒹, (13)

where

𝝉★ = 𝝉 𝑣
★
+ 𝝉𝑠

★
+ 𝝉𝑁

★
, 𝝉 𝑣

★
=

𝜅★

2

[

(𝐽 𝑒
★
)2 − 1

]

𝑰 ,

𝝉𝑠
★
= 𝜇★

[

𝒃
𝑒
★
−
1

3
Tr(𝒃

𝑒
★
)𝑰

]

, 𝝉𝑁
★
=

𝜂★

2
(∇𝒗 + ∇𝒗𝑇 ),

(14)

The subscript ★ can be either 𝒾 or 𝒹, 𝒃
𝑒
★
= 𝑨𝑒

★
(𝑨𝑒

★
)𝑇 , 𝜂𝒹 = 0. We discretize equation (14) in space

using the versatile Material Point Method (MPM) [Jiang et al. 2016], where the use of particles in
conjunction with a background Cartesian grid provides a generalized interface for simulating both
solid-like and fluid-like materials.

Notation. We use subscript 𝑖 for quantities stored on grid nodes and drop the subscript for
quantities stored on particles. We use subscripts 𝑒 and 𝑝 to denote elastic and plastic components.
Superscript ∗ denotes the predicted value of a quantity that requires further modifications. Our full
method is summarized below:

(1) Rasterization.Mass and momentum are transferred from particles to the grid in a conserva-
tive form. See Section 5.1.

(2) Apply forces and update velocities on the grid. We obtain the stress-based forces on the
grid and apply the forward Euler method to update grid velocities. See Section 5.2

(3) Compute grid-based collision. We modify grid velocities based on boundary conditions to
avoid visual artifacts.

(4) Update deformation variables.Weupdate𝐴, 𝐽 , and apply pre-projection and post-correction
to account for plasticity.

(5) Update particle velocities and positions. After the velocities on the grid are finalized,
we interpolate them at the particle locations using a linear combination of the FLIP velocity
and the PIC velocity: 𝒗𝑛+1 = 𝛼𝒗𝑛+1

𝑝,flip
+ (1 − 𝛼)𝒗𝑛+1

𝑝,pic, where 𝒗
𝑛+1
𝑝,flip

= 𝒗𝑛 +
∑

𝑖 (𝒗
𝑛+1
𝑖 − 𝒗𝑛𝑖 )𝑤𝑖𝑝 and

𝒗𝑛+1
𝑝,pic =

∑

𝑖 𝒗
𝑛+1
𝑖 𝑤𝑖𝑝 , and 𝛼 is the blending coefficient.

5.1 Rasterization

We rasterize quantities 𝑚 and 𝒗 at time 𝑡𝑛 from particle locations to grid nodes as follows:
𝑚𝑛

𝑖 =

∑

𝑚𝑤𝑖𝑝 , where 𝑤𝑖𝑝 are the interpolation weights from particles to grid nodes. Subse-
quently, 𝒗 is rasterized according to the following normalization during the interpolation step:
𝒗𝑛𝑖 =

1

𝑚𝑛
𝑖

∑

𝑚𝒗𝑛𝑤𝑖𝑝 . In return, we can compute the rate of strain tensor at particles as shown below:

∇𝒗𝑛 =

∑︁

𝑖

𝒗𝑛𝑖 (∇𝑤𝑖𝑝 )
𝑇 , 𝝉𝑛

𝒾
=

𝜂

2

(

∇𝒗𝑛 + (∇𝒗𝑛)𝑇
)

(15)
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Fig. 7. Symmetric buckling patterns of Newtonian fluid using (top) our generalized model and (bottom)

traditional MPM.

5.2 Velocity Update

Following conventional MPM, forces on the grid are computed as:

𝒇𝑛𝑖 = −
∑︁

𝑉 𝑛𝝈𝑛∇𝑤𝑖𝑝 = −
∑︁

𝑉 0𝝉𝑛∇𝑤𝑖𝑝 (16)

where 𝑉 𝑛
= 𝐽𝑛𝑉 0 and 𝝈𝑛

=
1

𝐽 𝑛
𝝉𝑛 are used. The forward Euler update for grid velocities is

straightforward: 𝒗∗𝑖 = 𝒗𝑛𝑖 + Δ𝑡
𝑚𝑖
𝒇𝑛𝑖 + Δ𝑡𝒈, where 𝒈 represents the external accelerations (including

gravity).

5.3 Grid-Based Collision

We closely follow the strategy proposed in [Stomakhin et al. 2013]. The grid velocity 𝑣𝑖 is transformed
into the reference coordinates of the collision object and friction or other projection is applied,
based on the specific boundary condition. The modified velocity 𝑣∗𝑖 is then transformed back to the
world frame.

5.4 Update of Deformation Variables

We separately update 𝑨 and 𝐽 using the following rules:

𝑨𝑛+1
= 𝑒dev(∇𝒗

𝑛+1 )Δ𝑡𝑨𝑛, 𝐽𝑛+1 =
(

1 + Δ𝑡Tr(∇𝒗𝑛+1)
)

𝐽𝑛, (17)

where dev(∇𝒗) = ∇𝒗 − 1

3
Tr(∇𝒗)𝑰 and 𝑑 is the ambient dimension. The exponential update ensures

that det𝑨 = 1. Note that 𝑨 and 𝐽 represent the total deformation state variables. Reconstruction
of 𝑨𝑒 and 𝐽 𝑒 is necessary before computing the total Kirchhoff stress. Ideally, we can update the
variables as listed below:

𝑭𝑛+1
=

(

𝐽𝑛+1
) 1

3 𝑨𝑛+1, 𝑭 𝑒,∗
★

= 𝑭𝑛+1
(

𝑭
𝑝,𝑛
★

)−1

𝐽 𝑒,∗
★

= det
(

𝑭 𝑒,∗
★

)

, 𝑨𝑒,∗
★

=

(

𝐽 𝑒,∗
★

)− 1

3 𝑭 𝑒,∗
★
,

(18)

where ★ represents 𝒾 or𝒹. In practice, we found that tracking 𝑪
𝑝

𝒹
instead of 𝑭

𝑝

𝒹
helps improve

the performance since the eigendecomposition is no longer needed. We can calculate 𝑨𝑒,∗
𝒹
(𝑨𝑒,∗

𝒹
)𝑇 ,

denoted as 𝒃
𝑒,∗
𝒹
, as: 𝒃𝑒,∗

𝒹
= 𝑭𝑛+1 (𝑪

𝑝,𝑛

𝒹
)−1 (𝑭𝑛+1)𝑇 , 𝒃

𝑒,∗
𝒹

= det(𝒃𝑒,∗
𝒹
)−1/3𝒃𝑒,∗

𝒹
. To account for both the

elastoplastic and the viscoplastic behaviors, we keep track of both 𝑨𝑒
𝒾
, 𝑭

𝑝

𝒾
, 𝐽 𝑒

𝒾
and 𝒃

𝑒
𝒹, 𝑪

𝑝

𝒹
, each of

which is associated with a set of parameters 𝜅, 𝜇.
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Fig. 8. A shear-thinning liquid flows immediately when it hits the hourglass, but largely holds its shape as it

falls on the ground and the applied stresses decrease. Simulations produced by (top) our generalized model

and (bottom) traditional MPM.

Fig. 9. A shear-thickening liquid exhibits resistance to flow initially and bounces elastically, but eventually

flows down as the velocities decrease. Simulations produced by (top) our generalized constitutive model and

(bottom) traditional MPM.

5.4.1 Pre-Projection. We model the elastoplasticity by setting a restriction on the singular values
of the elastic deformation gradient:

𝑭 𝑒,∗
𝒾

= 𝑼𝚺∗𝑽𝑇 , 𝚺𝑖𝑖 = max
(

𝑓𝑐 ,min(𝑓𝑠 , Σ
∗
𝑖𝑖 ) (19)

Then, we can finalize the elastic/plastic deformation gradient:

𝑭 𝑒,𝑛+1
𝒾

= 𝑼𝚺𝑽𝑇 , 𝑭
𝑝,𝑛+1

𝒾
= 𝑽𝚺−1𝑼𝑇 𝑭

𝑝,∗

𝒾
(20)

as well as the Lamé coefficients:

𝜅𝑛+1
𝒾

= 𝜅𝒾,0𝑒
𝑓ℎ

(

1−det𝑭
𝑝,𝑛+1

𝒾

)

, 𝜇𝑛+1
𝒾

= 𝜇𝒾,0𝑒
𝑓ℎ

(

1−det𝑭
𝑝,𝑛+1

𝒾

)

(21)

We use the formulas 𝐽 𝑒,𝑛+1
𝒾

= det𝚺,𝑨𝑒,𝑛+1
𝒾

= (𝐽 𝑒,𝑛+1
𝒾

)−
1

3 𝑭 𝑒,𝑛+1 to compute 𝑨𝑒 and 𝐽 𝑒 . Finally, we
compute the Kirchhoff stress as:

𝝉𝑛+1
𝒾

= 𝜅𝑛+1
𝒾

(

(𝐽𝑒,𝑛+1
𝒾

)2 − 1

)

𝑰 + 𝜇𝑛+1
𝒾

(

𝒃
𝑒,𝑛+1
𝒾

−
1

3
Tr(𝒃

𝑒,𝑛+1
𝒾

)𝑰

)

+
𝜂

2

(

∇𝒗𝑛+1
𝒾

+ (∇𝒗𝑛+1
𝒾

)𝑇
)

(22)

where we denote 𝒃
𝑒,𝑛+1
𝒾 = 𝐴𝑒,𝑛+1

𝒾
(𝐴𝑒,𝑛+1

𝒾
)𝑇 for brevity.
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5.4.2 Post-Correction. The main focus of modeling viscoplasticity is on the shear-dependent stress
tensor 𝝉𝑠

𝒹
. The predicted shear stress can be computed via:

𝝉𝑠,∗
𝒹

= 𝜇𝒹

(

𝒃
𝑒,∗
𝒹

−
1

3
Tr(𝒃

𝑒,∗
𝒹
)𝑰

)

. (23)

Its Frobenius norm is obtained by 𝑠∗
𝒹

= ∥𝝉𝑠,∗
𝒹
∥𝐹 . Next, we substitute 𝑠

∗
𝒹
into the yield condition

Φ(𝑠) = 𝑠 −
√︃

2

3
𝜎𝑌 . If it is satisfied, the response remains elastic and no post-correction is needed.

Otherwise, the plastic correction is given by:

𝒃
𝑒,𝑛+1
𝒹

− 𝒃
𝑒,∗
𝒹

= −
2

3
Δ𝑡Tr(𝒃

𝑒,𝑛+1
𝒹

)𝛾 (𝑠𝑛+1
𝒹

)𝒔𝑛+1
𝒹

. (24)

where 𝑠𝑛+1
𝒹

= ∥𝝉𝑛+1
𝒹

∥𝐹 and 𝒔𝑛+1
𝒹

= 𝝉𝑛+1
𝒹

/𝑠𝑛+1
𝒹

. As shown in [Yue et al. 2015], this function can be
transformed into a single scalar formula as follows:

𝑠𝑛+1
𝒹

− 𝑠∗
𝒹
= −2𝜇𝒹Δ𝑡𝛾 (𝑠

𝑛+1
𝒹

), (25)

where 𝜇𝒹 =
1

3
Tr(𝒃

𝑒,∗
𝒹
)𝜇𝒹 . By solving equation (25), we can obtain 𝒃

𝑒,𝑛+1
𝒹

=
1

𝜇𝒹
𝒔𝑛+1
𝒹

+ 1

3
Tr(𝒃

𝑒,∗
𝒹
). The

corrected shear stress is:

𝝉𝑒,𝑛+1
𝒹

= 𝜇𝒹

(

𝒃
𝑒,𝑛+1
𝒹

−
1

3
Tr(𝒃

𝑒,𝑛+1
𝒹

)𝑰

)

(26)

Together with the volumetric stress and the Newtonian viscous stress, we can compute the total
Kirchhoff stress as follows:

𝝉𝑛+1
𝒹

= 𝜅𝑛+1
𝒹

[(𝐽𝑛+1)2 − 1]𝑰 + 𝜇𝒹

(

𝒃
𝑒,𝑛+1
𝒹

−
1

3
Tr(𝒃

𝑒,𝑛+1
𝒹

)𝑰

)

(27)

Here we use 𝐽𝑛+1 instead of 𝐽 𝑒,𝑛+1
𝒹

because the plastic deformation is volume-preserving. Although
we have already applied the correction directly to the shear stress, the isochoric deformation gradient
𝑨∗
𝒹
and the right Cauchy-Green plastic deformation gradient tensor 𝑪

𝑝

𝒹
remain unchanged. So

the next step is to incorporate this change in plasticity: 𝑪
𝑝,∗

𝒹
= 𝑭𝑛+1𝒃

𝑒,𝑛+1
𝒹

(𝑭𝑛+1)𝑇 . We finalize the

tensor by applying normalization: 𝑪
𝑝,𝑛+1

𝒹
= det(𝑪𝑝,∗)−1/3𝑪𝑝,∗.

6 INVERSE LEARNINGWITH DIFFERENTIABLE PHYSICS

Our generalized model provides us a parameterized physics engine, and we employ inverse learning
to reproduce given observations. We assume that particle sequences for objects of interest are
provided. This can be accomplished using computer vision techniques like NR-NeRF [Chen et al.
2022; Tretschk et al. 2021]. By utilizing our generalized constitutive model, we can effectively
replicate various material types using only one set of parameters.
The time stepping can be viewed as a mapping between two states: (𝑥𝑛, 𝑣𝑛, 𝐽𝑛, 𝐹𝑝,𝑛, 𝐴𝑝,𝑛) and

(𝑥𝑛+1, 𝑣𝑛+1, 𝐽𝑛+1, 𝐹𝑝,𝑛+1, 𝐴𝑝,𝑛+1), subject to a set of constitutive model parameters Θ. For an explicit
simulation scheme, this mapping is essentially a collection of basic mathematical operators, which
can be differentiated using AutoDiff. Given a target particle sequence of an object {𝑥𝑛}, we use the
following loss between the output sequence {𝑥𝑛} to guide the recovery of the unknown physical
parameter set Θ:

𝐿Θ ({𝑥
𝑛}, {𝑥𝑛}) =

𝑁∑︁

𝑓 =1

Sinkhorn(𝑥 𝑓 𝑁𝑠 , 𝑥 𝑓 ) (28)
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T
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Fig. 10. With the same initial guess, our generalized model is able to mimic multiple types of materials via

inverse learning.

where 𝑁 is the total number of frames, and 𝑁𝑠 is the number of substeps per frame. We assume the
object is homogeneous, within which all particles share the same physical parameters. We use the
Sinkhorn distance [Feydy et al. 2019] to compute the loss function between two point clouds.

Differentiability. Return mappings involve maximum operators, which make certain parameters
like 𝑓𝑠 , 𝑓𝑐 , and 𝜎𝑌 only piecewise differentiable. Without executing plasticity correction, gradients
will not be applied to these parameters, resulting in gradient vanishing. To address this issue, we
initialize 𝑓𝑠 and 𝑓𝑐 to values that are very close to 1, and 𝜎𝑌 to a small value. This enables the
activation of return mappings at the start, thereby alleviating the problem of gradient vanishing.

Simulator Layer Simulator Layer

Taichi Scope

Trainable 
Parameters

PyTorch ScopeForward Backward

Fig. 11. The computational graph of our inverse learning

framework implemented in the Taichi language. 𝑥𝑖 is the

ground truth data. 𝑥𝑖 is the output of the simulator layer.

Implementation.We developed our explicit
MPM simulator with our generalized constitu-
tive model using the Taichi differentiable pro-
gramming language [Hu et al. 2020] to utilize
its AutoDiff system. Similar to the approach
taken in [Li et al. 2023], we integrated theMPM
simulator as a differentiable layer within the
PyTorch framework [Paszke et al. 2019], which
allows for organized management of tunable design variables by PyTorch. This integration also
enables convenient application of PyTorch optimizers like ADAM. Figure 11 illustrates the compu-
tational graph of our inverse learning framework. Note that AutoDiff requires access to all substeps
at the time of backpropagation. To optimize storage, we only save states every hundred substeps,
and the intermediate substeps between two stored steps are recomputed on the GPU as necessary.

7 EXPERIMENTAL RESULTS

7.1 Forward Simulations and Comparisons

We simulated all examples on an Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz. Specific timings for
all examples are summarized in Table 1 and the various parameters used are listed in Table 2.

Inviscid Liquid Spray. We simulated a weakly-compressible liquid example to first validate
that our generalized model can capture liquid behaviors and recover simulations from the reference
constitutive model. Figure 2 shows how the inviscid fluid spouts from a nozzle and flows down
under gravity to fill the fountain. Note that the reference model only requires updating the fluid
density, which is equivalent to updating 𝐽 . In contrast, our generalized model also requires keeping
track of the matrix 𝑨 and performing additional operations, such as the reconstruction of the
deformation gradient, followed by a projection step. This could be optimized by checking if the
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Table 1. (Left) Simulation Statistics All simulations were run on Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz.

# P: The total number of MPM particles in the simulation. G: The background grid resolution. Simulation

time RT is measured in average seconds per substep. dt: time step size of a substep, measured in 1 × 10
−5𝑠 .

Table 2. (Right) Material Parameters Parameters for all the test materials. M represents the maximum

value of a float.The unit of 𝜅 is ×103 and the unit of 𝜇 is ×102.

Simulation # P G RT dt

Fountain (Fig. 2 (top)) 1.06M 256
3

1.13 11.0

Fountain (Fig. 2 (bottom)) 1M 256
3

1.05 10.5

Coiling (Fig. 4 (top)) 748K 128
2 × 256 0.79 3

Coiling (Fig. 4 (bottom)) 748K 128
2 × 256 0.83 3

Buckling (Fig. 7 (top)) 318K 128
2 × 256 0.29 3

Buckling (Fig. 7 (bottom)) 316K 128
2 × 256 0.30 3

Gummy Bears (Fig. 3 (top)) 1.5M 256
3

2.05 5

Gummy Bears (Fig. 3 (bottom)) 1.5M 256
3

1.81 5

Snow Castle (Fig. 5 (top)) 1M 256
3

2.12 5

Snow Castle (Fig. 5 (bottom)) 1M 256
3

1.91 5

Hourglass (Fig. 9 (top)) 1M 256
3

2.03 5

Hourglass (Fig. 9 (bottom)) 1M 256
3

2.00 5

Hourglass (Fig. 8 (top)) 1M 256
3

2.12 5

Hourglass (Fig. 8 (bottom)) 1M 256
3

2.01 5

Simulation 𝜅𝒾 𝜇𝒾 𝜅𝒹 𝜇𝒹 𝜂 𝜎𝑌 ℎ 𝑓ℎ 𝑓𝑠 𝑓𝑐

Fountain (Fig. 2) 0.1 0 0 0 0 M 1 1 M -M

Coiling (Fig. 4) 10 0 0 0 50 M 1 1 M -M

Buckling (Fig. 7) 10 0 0 0 50 M 1 1 M -M

Gummy Bears (Fig. 3) 1.7 3.6 0 0 0 M 1 1 M -M

Snow Castle (Fig. 5) 1.2 5.8 0 0 0 M 1 10 1.002 0.9925

Hourglass (Fig. 9) 0 0 8.3 18.3 0.1 0.1 5 1 M -M

Hourglass (Fig. 8) 0 0 8.3 18.3 0.1 50 0.9 1 M -M

Groundtruth Model

Fied Model

Fig. 12. We use the fitted model obtained from Figure 10 and test its generalizability by using it to simulate

different shapes in the same scene. Simulation results with the fitted models closely reproduce the behaviors

of the ground truth models.

shear modulus is 0 and deciding whether it is necessary to track 𝑨. The timings listed in Table 1
reflect this optimization.

Jet Coiling and Buckling. We simulated jet buckling using our generalized constitutive model.
Figure 4 (top) shows that our method successfully reproduces the liquid rope coiling effect for
classical Newtonian viscous liquids, such as honey. Additionally, we simulated a layer of viscous
chocolate folding onto a board (Figure 7). Our method captures the characteristic folding behaviors
and produces smooth merging and symmetric buckling patterns. The astute reader may notice
some visual differences between the reference results and our simulations. In the reference model,
the force exerted by pressure exhibits an approximate linear relationship with the seventh power
of density. However, in our generalized model, the pressure varies quadratically with respect to
density. We believe this is the cause for the visual differences evident in Figure 7.

Elastoplastic Snow Castle. We threw two snowballs successively at a snow castle, showcasing
that our generalized model can simulate brittle materials. We set 𝑓ℎ > 1 and 𝑓𝑐 , 𝑓𝑠 close to 1 to
activate both the elastic and plastic regimes. The system abruptly switches from the elastic regime
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to the plastic regime once the plastic criterion is violated. Consequently, the snow castle breaks
apart after the impart of snowballs, illustrating the typical elastoplastic behavior of snow.

Gummy Bears. We sequentially dropped hyperelastic gummy bears with random orientations
onto a plate (Figure 3), which bounce back and create interesting collisions before settling down.

Hourglass. Ourmethod can produce shear-thinning (see Figure 8) and shear-thickening behaviors
(see Figure 9), both of which are typical non-Newtonian viscous behaviors [Su et al. 2021]. For the
shear-thickening material, the rate of shear strain increases abruptly on impact, which triggers
different mechanisms of viscosity. Strong elastic effects come into play. Subsequently, the object
bounces back immediately. Following this elastic behavior, as the second impact gets weak and the
momentum gradually decreases, the shear strain decreases and the object begins to flow outwards.
On the other hand, the shear-thinning material flows immediately when it hits the hourglass, but
largely holds its shape as it falls on the ground and the applied stresses decrease.

7.2 Inverse Learning

Material Fitting. Our generalized model is advantageous in inverse learning since it enables
us to replicate various material types using a single set of parameters. In this experiment, we use
identical initial parameters and allow the differentiable simulation to optimize the generalized
material parameters to fit distinct materials. The initial guesses and optimized values are presented
in the supplemental video. It is important to note that the objective of inverse learning is to replicate
the behaviors of a given material, which means that the learned parameters may differ from the
ground truth model and may not possess physical significance. In addition, it is worth mentioning
that all the examples of material fitting discussed in this context involve synthetic data. The results
displayed in Figure 10 illustrate that the losses in particle distribution are reduced to a sufficient
degree to generate observations that are visually similar.

Generalization. The generalized model that we learned can be extended to various shapes and
scenes. Here we included all four learned generalized models in a single scene, where they interact
with each other. We permute the initial shapes and use different initial velocities. As illustrated in
Figure 12, our learned models can closely replicate the behaviors of the ground truth models.

8 CONCLUSION

We proposed a generalized constitutive model for simulating a large class of materials including
inviscid fluids, Newtonian viscosity, hyperelasticity, viscoelasticity and viscoplasticity. Our model
is a strict generalization of existing constitutive models that are used in computer graphics. Along
with this generalized constitutive model, we developed a generalized computational framework
that integrates well with the Material Point Method (MPM) [Jiang et al. 2016] and allows for visually
realistic simulations with large deformations.
We demonstrated that our method captures a wide range of material behaviors, which can be

elastic, inelastic or plastic, or a mixture of these properties, such as liquid rope coiling, buckling,
shear thinning/thickening, snow and hyperelasticity. We also demonstrated the ability of our
formulation to allow inverse learning of unknown material properties directly from data using
differentiable physics simulations, without making explicit assumptions about the data.

9 LIMITATIONS AND FUTURE WORK

Our model has generated a large number of complex examples, but there remains much work to be
done. Although we provided an intuitive interpretation for achieving various material behaviors,
different parameters to adjust the material properties were tuned by hand and it would be interesting
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to automatically calibrate them to measured models. Additionally, it would be interesting to
explore the design of implicit solvers to allow for large time steps. Besides, since the spatial
discretization was integrated with MPM, adaptive Lagrangian formulations [Su et al. 2022] may
boost the computational efficiency and circumvent visual artifacts, such as numerical fracture, that
exist in simulations with large deformations. Finally, while our focus was on the material responses
of water, snow, elastic and inelastic solids, it would be interesting to investigate other materials,
such as wet and dry sand, frictional contact mechanics, and multi-physics coupling problems under
the same generalized umbrella.
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