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Tropical Atlantic multidecadal variability is
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M Check for updates

The tropical Atlantic climateis characterized by prominent and correlated multidecadal
variability in Atlantic sea surface temperatures (SSTs), Sahel rainfall and hurricane
activity'™*. Owing to uncertainties in both the models and the observations, the origin
of the physical relationships among these systems has remained controversia

P,

Here we show that the cross-equatorial gradient in tropical Atlantic SSTs—largely
driven by radiative perturbations associated with anthropogenic emissions and
volcanic aerosols since 1950*’—is a key determinant of Atlantic hurricane formation
and Sahel rainfall. The relationship is obscured in alarge ensemble of CMIP6 Earth
system models, because the models overestimate long-term trends for warming
inthe Northern Hemisphere relative to the Southern Hemisphere from around 1950
as well as associated changes in atmospheric circulation and rainfall. When the
overestimated trends are removed, correlations between SSTs and Atlantic hurricane
formation and Sahel rainfall emerge as aresponse to radiative forcing, especially
since 1950 when anthropogenic aerosol forcing has been high. Our findings establish
that the tropical Atlantic SST gradient is a stronger determinant of tropical impacts
than SSTs across the entire North Atlantic, because the gradient is more physically
connected to tropical impacts vialocal atmospheric circulations®. Our findings
highlight that Atlantic hurricane activity and Sahel rainfall variations can be predicted
from radiative forcing driven by anthropogenic emissions and volcanism, but firmer

predictions are limited by the signal-to-noise paradox

climate forcings.

*and uncertainty in future

Basin-scale multidecadal fluctuations in sea surface temperatures
(SSTs) in the Atlantic (AMV), along with associated impacts such as
Sahelrainfall>2, North Atlantic hurricanes' * (NAHs) and the European
and North American summer climate®®, are components of amultifac-
eted mode we will refer to as Atlantic multidecadal climate variability
(AMCV).Simulating and understanding the historical evolution of the
observed AMCV s vital to making successful predictions for short-and
long-term adaptation. Here we study the tropical AMCV over the last
century using a grand ensemble of historical simulations (46 models
and approximately 400 realizations; Supplementary Table 1) from
the Coupled Model Intercomparison Project 6 (CMIP6). We attribute
the influence of greenhouse gases (GHGs), natural radiative forcings
(NAT), anthropogenic aerosols (AER) and internal variability on the
tropical AMCV.

A spurious trend from 1950 in CMIP6 runs

We first compare observations with data from CMIP6 simulations for
June-October (JJASO) for North Atlantic SSTs, Sahel rainfall and verti-
cal wind shear (VWS, akey feature of the environment in which NAHs
form) over the main development region (MDR; 80-20° W,10-20 °N)

(see ‘Definitions’ in Methods). We focus on the boreal summer sea-
sonasitisthe mostrelevant for tropical impacts. Recent research has
highlighted the signal-to-noise paradox, in which the forced signal in
models is comparatively weaker than the internal noise compared to
real-world observations® ™. To compensate for the low signal-to-noise
ratio, we normalize the time series for both the models and the observa-
tions. Figure 1ashows that the forced North Atlantic SSTs, as estimated
by the CMIP6 ensemble mean (see ‘Definitions’ in Methods), agrees
reasonably well with the observations. The SSTs are characterized by
alargely linear warming trend. By contrast, the long-term behaviour of
theforced Sahel rainfalland VWS diverge considerably from the obser-
vations. The modelled Sahel rainfall generally exhibits an increasing
trend like the simulated North Atlantic SSTs, whereas the observed data
has multidecadal variability before the 1950s and a pronounced drying
trend between the 1950s and 1980s, followed by a recovery (Fig. 1b).
Although the simulated VWS has a negative trend, the observed VWS
has a similar multidecadal time history as the observed Sahel rainfall
(Fig. 1c). The differences between the simulated and observed values
arerepresented by the grey curves, which all have a linear trend since
1950. This is most evident for Sahel rainfall and VWS, but also visible
for North Atlantic SSTs (Fig. 1a—c). This spurious linear trend is not
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Fig.1|Systemic model-datadifferences due to theinterhemispheric SST
contrast. a-c, Ensemble means (EM) for alarge dataset from CMIP6 model
simulations (blue) and observations (OBS; red) for indices for the boreal
summer (JJASO) for1900-2014. Observations and simulated dataare not
detrended but are normalized to the unit variance to allow comparison with the
anaemicsignalinthe models. The grey curves are the differences between the
two. North Atlantic SSTs (a), Sahel rainfall (b) and VWS (c) in the MDR are shown.
d, Differencesinthe SST trends forJJASO from 1950 to 2014 between the CMIP6
ensemble means and observations. Regions of statistical significance at the

restricted to the Atlantic basin but is also seen in rainfall related to
the Indian and East Asian monsoons, the position of the intertropi-
cal convergence zone and rainfall over the continental United States
(Extended DataFig.1a,b).

We argue that the post-1950 model-data differences for atmospheric
circulation and rainfall are due to differences in the interhemispheric
SST gradient (see ‘Definitions’in Methods). Figure 1d shows the differ-
ences in the simulated SST trends compared to observations for the
global ocean. The hemispheric differencesinthe SST trend imply that
themodelled oceansurfaceinthe Northern Hemisphere warmed faster
than observations but slower than observations in the Southern
Hemisphere. Thisinterhemispheric SST gradient is further quantified
in Fig. le. The observed interhemispheric SST gradient has no clear
trend but, rather, shows strong multidecadal variability*. The model-
data differences for the SST gradients also show a linear trend, with
the model predicting more warming for the Northern Hemisphere
compared tothe Southern Hemisphere than hasbeen observed (Fig. 1e,
grey curve). The correlations between the grey curves in Fig. 1e and
Fig.1b,c are around 0.9 (DOF =12 and P < 0.0001), indicating a sig-
nificant relation between interhemispheric SSTs and the atmospheric
response. These differencesin theinterhemispheric SST gradient have
resulted in a global-scale shift of the intertropical convergence zone®
(Extended DataFig.1c,d), and, therefore, have affected the Sahel rain-
falland VWS around the Atlantic basin® (Fig. 1b,c) as well as the rainfall
inother regions (Extended Data Fig. 1).

The differences inthe SST gradient are systemic in the CMIP6 mod-
els, as almost all ensemble members predict that the trend for the SST
gradientis higher than the observed trend (Fig. 1f). SST trends derived
from the single-forcing runs in the Detection and Attribution Model
Intercomparison Project (DAMIP; see ‘Model data’ in Methods) indi-
cate that GHGs contribute to a positive interhemispheric SST gradient
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99% confidence level according to Student’s t-test are hatched. The map was
plotted using the cartopy package in Python. e, Simulated and observed
interhemispheric SST gradients and their differences from 1950 to 2014.
Observations and simulated dataare neither detrended nor normalized,
although climatologies have been removed. f, Box plots of the interhemispheric
SST contrast trends for CMIP6, DAMIP and observation data (red). Theinner
boxrunsfromthefirstto the third quantile, whereas the whiskers denote the
10% and 90% percentiles. Theblack dotin the boxis the average. A five-year
running meanisapplied tothe time seriesina-cand e for presentation.

(Fig.1fand Extended Data Fig. 2). By contrast, the SST gradient for the
NAT and AERruns are closely aligned with the observed values (Fig. 1f).
We hypothesize that the disparity between trends for the ensemble
mean of CMIP6 (CMIP6-EM) and observations may be attributed to
atleast two possible factors: (1) GHGs induce excess warming in the
North Pacificand North Atlantic and insufficient warmingin the Indian
Ocean according to the models compared to observations'®" and
(2) the simulated cooling in the Northern Hemisphere associated
with aerosol emissionsis underestimated, as there should be aninter-
hemispheric gradient'®. A recent study suggested that these two factors
may be interconnected”. A thorough attribution of the cause for the
model-data differences falls outside the scope of the present study
and will be reported elsewhere.

Aforced tropical AMCV since 1950

Asthe models misrepresent the post-1950 trend in the Atlantic climate,
asshownininFig.1a-c, welinearly detrended all time series after 1950.
(We return to the pre-1950 period later in the paper.) The results are
showninFig.2a-c. Thethinand light-coloured time series are linearly
detrended and normalized (to adjust for the erroneous signal-to-noise
ratio; Table 1), and the bold and dark-coloured time series are addi-
tionally low-pass filtered by a 10 yr Butterworth filter to isolate the
decadal variability. In contrast to Fig.1a-c, aclear agreement between
themodelled and observed AMV, VWS and Sahel rainfall emerges when
the spurious long-term trend is appropriately removed.

The AMV was inawarm phase before the mid-1960s and again after
the mid-1990s, butinbetweenit wasin a cold phase (Fig. 2a). The Sahel
rainfall, NAH frequency and VWS covary with the AMV (Fig. 2b,c). Dur-
ing awarm AMV phase, precipitation over North Africa increases'
(Fig.3e,f), while NAHs become more frequent and intense' (Extended
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Fig.2|Forced post-1950 tropical AMCV. a-c, Simulated and observed JJASO
indices from1950 to2014. The times series are normalized to the unit variance
for comparison. Thelight, thin curves are detrended values, whereas the dark,
bold curves have been low-pass filtered. AMV (a), Sahel rainfall (b), and VWS
and observed Atlantic hurricane frequency (NAH freq.; shading; c¢) are shown.
d, Two-dimensional histogram of correlations of the historical AMV with Sahel
rainfall (xaxis) and AMV with the VWS (y axis) in the model realizations with
forced responses removed (Corr. without forcing; shading). The observed
correlation (red star) isaveraged across multi-source datasets. Correlations
betweendifferent observationsare plotted as small purple stars underneath
theredstar. The black star (MOE) is the mean of the shading, that s, for the

Data Fig. 3a-c). The hurricane genesis region (see ‘Statistics of hur-
ricane variability and genesis’ in Methods) also shifts with the phase
of AMV, with most hurricanes being generated in the MDR during a
positive AMV, but the region shifts to the north and west to the Ber-
muda Sea during anegative AMV (Extended Data Fig.3d-g), whenthe
hurricane density and genesisis also suppressed. The shift is favoured
by the shiftin VWS?.

Beyond the Atlantic, the forced Northern Hemisphere atmospheric
teleconnections and rainfall associated with the AMV are consistent
between CMIP6 simulations and observations (Fig. 3), which differs
from what was found in previous studies®*. In the upper tropo-
sphere, astationary circum-global teleconnection pattern persists at
mid-latitudes in the Northern Hemisphere (Fig. 3a,b). At lower levels,
thereisanomalous low pressurein the Mediterraneanregion and Cen-
tral Asia, while an anomalous subtropical high emerges in the North
Pacific®® (Fig. 3¢,d), both of which enhance the southerly flow and,
therefore, rainfall in India, East Asia, Siberia and Alaska (Fig. 3e,f).

The consistency between the simulated forced responses and obser-
vations suggests that the recent tropical AMCV is driven by external

individual ensemble members. e, Asind but for correlations without forced
responses being removed from the historical simulated data (Corr. with
forcing). Thelight blue star (EM) is the correlation associated with the forced
response. f, Distribution of R? by regressing the all-forcing AMV on
single-forcing AMVsinabootstrap (left), and the fraction of the total R?
explained by GHGs, AERand NAT inthe regression (right). Theinner box runs
fromthe first to the third quantile, whereas the whiskers denote the 10% and
90% percentiles. Thelight bluelines and dots were constructed using data
fromallmembers. g-i, Asfbut for Sahel rainfall (g), VWS (h) and AMM (i).
See Methods for the definition of AMV, AMM, Sahel rainfalland VWS, and how
thecorrelations and regressions were performed.

forcings. We calculated the correlation between the simulated and
observed AMV, Sahel rainfall and VWS. Correlations associated with
the forced response (ensemble mean; see ‘Definitions’ in Methods) are
high (over 0.9), higher than all but a very few of the individual model
runs and far higher than the average of individual members (mean
of the ensemble, MOE; see ‘Definitions’ in Methods) (Extended Data
Fig.4a-c). This result confirms that the observed variability is consist-
entwith theresponsetoforcing, butit does not rule out someinfluences
frominternal processes.

To test the alternative possibility that the AMCV is due to internal
processes, we examined the correlations of AMV with Sahel rainfall
and VWS in observations, in pre-industrial simulations (V=3,100
realizations) and in historical simulations after removing the forced
responses from each ensemble member (N =400, see ‘Model
data’ and ‘Quantifying the correlations between AMV/AMM and VWS
and Sahel rainfall’ in Methods). This allowed us to test whether the
covariability that makes AMCV asingle mode arises without the influ-
ence of forcing. Figure 2d and Extended Data Fig. 5a show that the
absolute value of the correlation between the observed AMV and VWS
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Table 1| Modelled and observed variance and signal-to-noise
ratio for the post-1950 AMV, VWS, Sahel rainfalland AMM

Variance ACI AMV VWS Sahel AMM
rainfall
CMIP6  MOE All 0.0283 0.6794 0.0192 0.0175
High 0.0243 0.8155 0.0324 0.0159
Low 0.0340 0.5918 0.0146 0.017
EM All 0.0141 0.0459 0.0031 0.0027
High 0.0136 0.0597 0.0071 0.0031
Low 0.0186 0.0450 0.0026 0.0033
V= All 0.0142 0.6335 0.0160 0.0148
MOE-EM High 0.0107 0.7558 0.0254 0.0128
Low 0.0153 0.5468 0.0120 0.0138
S/Nratio= All 1.00 0.07 0.20 0.19
EM/IV High 126 008 028 0.25
Low 1.21 0.08 0.22 0.24
OBS MOE - 0.0302 2.2867 0.0685 0.0285
EM - 0.0250 1.9778 0.0618 0.0192
V= - 0.0052 0.3089 0.0067 0.0093
MOE-EM
S/Nratio= - 4.82 6.40 9.26 2.05
EM/IV

All time series were detrended and low-pass filtered before the variance was calculated.

See Methods for the definition of the ensemble mean (EM) and the MOE variance of the
model data. The high and low aerosol-cloud interaction (ACI) models are shown in Extended
Data Fig. 9. IV denotes the internal variability. For observations, the MOE variance is the total
variance. The variance of the ensemble mean was calculated based on the square of the
correlation with CMIP6-EM. Units for AMV, AMM, Sahel rainfall and VWS variances are °C?, °C?,
mm?2day?and m?s?, respectively. S/N ratio, signal-to-noise ratio.

or Sahelrainfallis over 0.85. Figure 2d shows that none of the unforced
model runs attained such high values, and that, when averaged over
the ensemble (MOE; see ‘Definitions’ in Methods), the correlations are
only approximately -0.2 and 0.3 (see also Extended Data Fig. 5a). That
themodelled correlations have alarge spread and relatively low MOEs
is because the covariability between the AMV and its impacts may be
interrupted or strengthened by other processes, such as El Nifio-
southern oscillation?® and the Pacific decadal oscillation?. This sug-
gests thatinternal dynamics produces some covariability in the trop-
ical AMCV, but the very strong observed covariability is highly unlikely
to be due to internal dynamics alone.

Using the historical runs (with both the forced response and internal
variability included) shifts the cluster of correlations slightly toward
higher values (compare Fig. 2e with Fig. 2d), though the MOE correla-
tions in Fig. 2e are still much smaller than the observed correlation.
By contrast, the correlations associated with the forced response
alone (ensemble mean correlations) are close to the observed corre-
lation (Fig. 2e, blue star). These results show that forcing somewhat
improves the correlations of single realizations>*, but the observed
high correlations are very unlikely to occur in the real world unless
they are largely driven by external forcings with little influence from
internal dynamics. This further implies that climate models have alow
signal-to-noiseratiointhe coupled AMCV because single realizations
are dominated by internal variability (compare Fig. 2d with Fig. 2e,
shading and black star), but they have a high signal-to-noiseratioina
singlerealization of the real world because it is mostly forced (Fig. 2e,
blue and red star).

Tropical AMCV driven by AER and NAT

To diagnose the role of single forcings, we regressed the detrended
and low-passed forced response in the all-forcing run onto the
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corresponding forced response in single-forcing runs for GHGs, AER
and NAT. We used a bootstrap regression method to get uncertainty
estimates for the regressions (see ‘Quantifying the role of single forc-
ings’ in Methods). The multilinear regression successfully captured
the variability of the forced AMCYV, as indicated by the high R?values
intheregression (Fig. 2f-h, left), especially for the all-member ensem-
ble mean (blue lines in Fig. 2f-h). The fraction of R*explained by each
forcing was quantified by a dominance analysis, which is a method
for evaluating the role of predictors in a multilinear regression
(Methods). The fractions are shown in Fig. 2f-h (right). For AMV, the
contributions of GHGs, AER and NAT are similar in magnitude, but
the role of GHGs is reduced in Sahel rainfall and VWS (Fig. 2f-h).
VWS is driven by both AER and NAT, whereas AER is dominant for
Sahel rainfall®. The impact of individual forcings is also reflected in
their regression coefficients. The distributions of regression coeffi-
cients for single forcings are similar for AMV, whereas the coefficients
for GHGs for Sahel rainfall and VWS are close to zero (Extended
Data Fig. 6).

Mechanism of the tropical impacts

We hypothesize that the tropical impacts of the AMV are associated
with the dipole SST anomaly in the tropical Atlantic, which excites a
Gill-type response® to aerosol forcing. In the positive AMV, an anticy-
clonic anomaly persists in the tropical North Atlantic that extends to
North Africain the upper troposphere (Fig. 3a,b), whereas a cyclonic
anomaly persists in the lower atmosphere (Fig. 3¢,d). This local baro-
clinicmodeis predicted by the Gillmodel withadipole heating anomaly
across the equator (fig. 2 inref. 8). As aresult, the southern edge of an
anticyclone produces an easterly anomaly that reduces the VWS in the
MDR and, thus, favours NAH activity. The southern flank of a cyclone
induces a westerly trade wind anomaly that transports water vapour
to the Sahel region producing rainfall (Fig. 3e,f).

This mechanism s confirmed by the tropical North and South Atlan-
tic SST gradient (known as the Atlantic meridional mode or AMM; see
‘Definitions’ in Methods) in model simulations, which resembles the
low-frequency AMM that strongly relates to hurricane activity?. The
forced AMM in the model is highly correlated with the observations,
againindicatingastronginfluence fromforcing (Extended DataFig. 4d).
The correlations between the modelled Sahel rainfall and VWS with
AMM are higher than those with the modelled AMV (compare Extended
DataFig. 5c with Fig. 2e and Extended Data Fig. 5a with Extended Data
Fig. 5b), especially for the forced response. The differences between
the tropical North and South Atlantic SSTs largely remove the secular
warming trend induced by GHG forcing (compare Fig. 1a with Fig. 4c).
Theabsence of asecular trendin AMM is also true for Sahel rainfall and
VWS over the past century (Fig. 4c), reinforcing the notion that AMM is
asuperior metriccompared to AMV.Inaddition, adominance analysis
shows that GHGs, AER and NAT make similar relative contributions to
AMM, Sahel rainfall and VWS. In particular, GHGs have a negligible
role (Fig. 2i), because the warming due to GHGs is largely uniform in
the tropics (Extended Data Fig. 7a). By contrast, heating by AER and
NAT have spatial gradients (Extended Data Fig. 7b,c), which perturb
the surface radiation and alters the SST>7%,

This mechanism is also qualitatively supported by an idealized
sensitivity experiment with a slab ocean model (SOM), in which an
anomalous heat convergence is placed in the tropical North Atlantic
(see ‘Sensitivity experiment’in Methods). The surface heating enhances
tropical rainfall and releases latent heat, which triggers an anticyclone
athighlevelsin the atmosphere west of the basin, weakening the VWS?
(Extended Data Fig. 8a). Together with the extratropical SST** and
SST fingerprints caused by AER**?, the surface heating may also trig-
ger circum-global atmospheric teleconnections through the tropical
pathway®, leading to anintensified Pacific subtropical high and rainfall
in East Asia (Extended Data Fig. 8).
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Signal-to-noise paradoxin the tropical AMCV

Although thereis astrong temporal correlation between the simulated
forced response and observed data (Extended Data Fig.4), the variance
of the modelled forced response (ensemble mean variance) is much
smaller than that of the observations, which is estimated based on
the correlation between the model ensemble mean and observations
(Extended Data Fig. 9a-d and Table 1). This is a consequence of what
is referred to as the signal-to-noise paradox™. It has also been docu-
mented for the North Atlantic oscillation®, One possible cause of the
small ensemble mean variance is the weak indirect-aerosol effects in
some models. A supporting exampleis that CMIP3 and CMIP5 models
withoutindirect-aerosol effects exhibit smaller variances compared to
those thatinclude them?®”. However, ina comparison of CMIP6 models
with highandlow aerosol-cloud interactions, thereislittle difference
in the signal-to-noise ratio (Extended Data Fig. 9e-l and Table 1). By
contrast, a SOM produces a high ensemble mean and MOE variance,
even higher than that observed, suggesting that the damping by ocean
processes may be too strong in fully coupled models®. Recent work
has also suggested that increasing model resolution may ameliorate
signal-to-noise errors®. The EC-Earth3 model has the highest resolu-
tionand produces amore accurate interhemispheric SST gradient and
covariability in AMCV.

Pre-1950 tropical AMCV

We now returnto the AMCV before 1950. Figure 4d-g, the normalized
pre-1950 time series (without detrending), shows that forcing has a
discernible influence, even in this earlier period. This is surprising in
view of the relatively weaker climate forcing inthe pre-1950 era. Namely,
there was a much lower signal-to-noise ratio in the models than from
1950 on (Extended Data Table 1a).

However, observed correlations between North Atlantic SST/AMM
andthetropicalimpacts are more consistent with the average of correla-
tions fromindividual simulations (MOE) than with the forced response
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(ensemble mean), marked as OBS and MOE in Fig. 4a,b. This suggests
that when the external forcing is weaker in the early period, the tight
couplingfoundin post-1950 AMCVis not present, implying that the pre-
1950 AMCV s substantially influenced by internal variability. The total
changeinthevariancein the observed AMCV also substantiates less of
arole for forcing in the pre-1950 tropical AMCV. There is an increase
in post-1950 AMCYV variance when anthropogenic forcing increases
(Extended Data Table 1b). Assuming that the observed variance due to
internal variability remains roughly constant, then the forced variance
inthe earlier period is lower compared to the later period (Extended
Data Table 1b), consistent with the fact that the anthropogenic com-
ponents of the forcing are weaker.

Also, note that both observations*** and climate forcings® in the
early 20th century have more uncertainty. The observed pre-1950
correlations between AMM and tropical impacts vary from 0.1to 0.6
depending onthe dataset used (Fig. 4b, small purple stars), whereas the
spread of post-1950 correlations is negligible (Fig. 2e and Extended Data
Fig.5). The low signal-to-noise ratio in the modelled pre-1950 AMCV
(Extended Data Table1a) calls into question whether our approximately
400-member ensemble is large enough to extract the forced signal
amidst the noiseinthe early period, albeit that some AMCV components
showaforcedresponse. These data uncertainties preclude a definitive
attribution for the pre-1950 AMCV.

Discussion and summary

Simulations with constant external forcings (for example, pre-industrial
control runs) show covariability between AMV and Sahel rainfall or hur-
ricane activity (NAH)***°, which leads to the conclusion that tropical
aspects of AMCV are a feature of internal oceanic and atmospheric
dynamics>**. As we have seen, however, the simulated covariability,
measured as the correlations between AMV and its impacts, is much
weaker than the observed values, which have been above 0.8 since
World War [1***°_ The linkage between the Atlantic meridional over-
turning circulation (AMOC) or the North Atlantic oscillationand AMCV
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Fig.4|Pre-1950 tropical AMCV. a, Two-dimensional histogram of correlations
betweenlow-pass-filtered North Atlantic (NA) SST and Sahel rainfall (x axis)
and VWS (yaxis) inmodel realizations (shading) and observations (OBS; big
purplestar)in1905-1950. The small purple stars are correlations between
different observation datasets. The bluestaris the ensemble mean (EM). The

is observed in pre-industrial control runs, but it varies significantly
across models**** and can even have the opposite sign in historical
simulations***, Figure 2a shows that although the simulated forced
AMOC is associated with the forced AMV, they are anti-correlated,
whichis contrary to what one would expect if the internal fluctuations
in AMOC were the driver.

Past work has shown that historical simulations forced by real-
istic radiative forcings exhibit spatial discrepancies with observa-
tions of SSTs and rainfall patterns?, although there has been some
improvement in the temporal covariability of the tropical AMCV
components>»?4647 Consistent with our results, anthropogenic
(AER) and natural (NAT) aerosols have been suggested as a driver of
the AMCV”***$% although some have questioned whether the aerosol
forcingis too large>™.

Here we have shown that a systemic interhemispheric SST differ-
ence between CMIP6 models and observations that develops after
1950induces aspurious trend inthe tropical Atlantic (Fig.1). When we
remove this trend, we find that the tropical AMCV is largely driven by
anthropogenic and volcanic aerosol forcings in the post-1950 period
(Fig. 2), especially for Atlantic hurricanes, which are often thought to
be internally driven***?*, Further, we provide a physical link from this
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blackstaristhe MOE. b, Asabut for correlations between AMM and tropical
impacts. ¢, Observations of normalized AMM, VWS and Sahel rainfall from
1900t02014.d, Low-pass-filtered North Atlantic SST,1905-1950.e-g, Asind
but for Sahel rainfall (e), VWS (f) and AMM (g). In c-g, the time series are not
detrended.

north-south Atlantic SST difference to the change in Sahel rainfall
and wind shear in the MDR, a determinant of hurricane activity. The
tropical AMCVintheearly 20th century appears to be more affected by
internal variability thanin the later period when anthropogenic forcing
isstrong (Fig. 4a,b). Evenso, the forced responseis evidentin tropical
impactsin multidecadal periods (Fig.4d-g). Our results demonstrate
the predictive potential of the tropical AMCV, whichis underestimated
instate-of-the-art climate models due to the signal-to-noise paradox.
Rectifying this signal-to-noise errorin climate models could unlock this
potential,improving our ability to predict and adapt to a rapidly chang-
ing climate. Our findings also emphasize that large ensemble simula-
tions can serve as a viable approach for predicting the near-future
AMCYV, as has been demonstrated for the North Atlantic oscillation®™.
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Methods

Definitions

As we are mostly focussed on AMV-related impacts, including NAH
and Sahel rainfall, the current study uses mean annual time series for
JJASO from CMIP6 and observations. The AMV is defined as the linearly
detrended, area-averaged, and 10 yr low-passed (Butterworth filter) SST
anomalies over the North Atlantic™ (0°-60° N, 70° W-0°).

Sahel rainfall is precipitation over North Africa (10-20°N,
20° W-40°E). The VWS is the difference between the zonal wind at
200 and 850 hPa over the MDR (80-20° W,10-20° N). To analyse their
multidecadal variability, both Sahel rainfall and VWS were linearly
detrended and 10 yr low-pass-filtered, exceptin Figs.1and 4.

The hemispheric SST gradient was calculated as the differencein the
SSTsbetween the Northern Hemisphere (30-60° N) and the Southern
Hemisphere (40° S-0°), as significant model-data SST discrepancy
exists.

We use the tropical Atlantic SST gradient (AMM) as an alternative to
the AMVindex. The AMM is here taken as the difference between the
tropical North Atlantic (0°-35° N) and the South Atlantic (35° S-0°).
The AMM naturally filters out the global warming trend over the past
century, like the non-detrended VWS and Sahel rainfall in the past
century (Fig. 4c).

Inthe model, the forced response s calculated as the ensemble mean:

1 N
EM=N[_:ZI],?,

inwhich Nis the number of ensemble membersand f is therealization
of memberi.

Forthe forced response of all indices, we first calculate the ensemble
mean and then do low-pass filtering and detrending. As the ensembles
arelargeand theinternal variations of individual members are, on aver-
age, uncorrelatedintime, the ensemble meanis an excellent approxima-
tion of only the forced response. Thus, the ensemble mean correlation
with observations is a good measure of the correlation between the
forced response and observations. For example, the ensemble mean
correlation with the observed AMV:

N
(AMVip, AMVe) = <}b ) AWy, AMVOBS>
i=1

where (x, y) denotes the Pearson correlation between x and y.

By contrast, the MOE includes both forced and internal responses.
To calculate the MOE correlation with observation, we first calculate
the correlationbetween the low-pass-filtered and detrended realization
S with the low-pass-filtered and detrended observations and then
average these correlations over all members:

N
1
(AMVyiop, AMVogs) = - Y (AMV, AMVqge)

i=1

We also measured the correlationbetween AMV/AMM and their tropi-
calimpacts onthe observations and models. For example, the ensem-
ble mean correlation in the modelled AMV and VWS is due to a forced
response:

N N
(AMV, VWS) = 1 > AMY, 1 Y VWS,
N i=1 N i=1

whereas the MOE correlation in the modelled AMV and VWS is

1 N
(AMV, VWS)yor = Y (AMV, VWS))
i=1

We also calculated the variance of the ensemble mean and the MOE
variance of all indices. The ensemble mean variance of AMV is

N
Var(AMVgy,) = Var[lb Y AMV,]

i=1
whereas the MOE varianceis
N
Var (AMVyop) = % 3 Var(AMV)
i=1
where Var(x) denotes the variance of x.

Observations

Several observation products were used in the present study to verify
the robustness of our statistics. The AMV and AMM were calculated
fromthe Extended Reconstructed Sea Surface Temperature version 5
dataset (ERSSTvS5) from the National Oceanic and Atmospheric Admin-
istration (NOAA)*?, Centennial in situ Observation-Based Estimates
(COBE) SST2 data®® and the Hadley Centre Sealce and SST dataset ver-
sion1.1(HadISST)>.

The Sahel rainfall was calculated from data fromthe Precipitationv.
4.05 dataset from the Climatic Research Unit (ref. 55) and datafrom the
Global Precipitation Climatology Centre (GPCC)*® and the University
of Delaware®”.

The VWS was calculated from a reanalysis by the National Centers
for Environmental Prediction and the National Center for Atmospheric
Research (NCEP-NCAR Reanalysis 1)*® and the NOAA 20th Century
Reanalysis®.

The observed time series are very close from 1950, as identified by
the correlation between AMV and itsimpactsin Fig. 2d,e (purple stars).
However, the uncertainty increases in the pre-1950 period, when the
correlations have alarge spread (Fig. 4a,b, purple stars).

Model data

Model SSTs, geopotential heights and zonal wind data were taken
fromthe CMIP6 archive: https://esgf-node.lInl.gov/projects/cmip6/.
The forced response as the ensemble mean was then calculated by
averaging approximately 400 ensemble members from the 46 models
(Supplementary Table1). However, as most models do not provide the
field of AMOC, the AMOC index was calculated from 105 members in 24
models. The AMOC index is consistent with those in other studies®®®,
We also used a subset of the AMV for the 24 models that has a AMOC
output, and the results are qualitatively consistent. To quantify the
internal variability, the first member (rlilp1fl) of the pre-industrial
control runs was also downloaded from 31 models. We also obtained
these variables from DAMIP (https://damip.lbl.gov) to quantify the
role of GHGs (hist GHG), AER (hist_aer) and NAT (hist_nat).

Statistics of hurricane variability and genesis
Hurricane frequencies were calculated asin ref. 4 using the Hurricane
Database (HURDAT).

Hurricane track density and genesis density were calculated for cat-
egory “HU” in the Atlantic hurricane database (HURDAT2) from 1950 to
2014. We first counted the numbers of hurricanes in every grid (reso-
lution: latitude 3° x longitude 7°) that hurricanes passed through in
1950-2014. We then normalized the numbers of hurricanesineach grid
by dividing by the length of the AMV+ phase to get the hurricane track
density. According to Fig. 2, we defined the period before 1965 and after
1995 as AMV+, and the period in between as AMV-. The genesis density
was calculated in the same way, but we counted only the first data point
asthe genesis location. To quantify the shift of genesis location in dif-
ferent AMV phases, we calculated the ratios of hurricanes generatedin
the MDR (10-20° N, 80-20° W) and over the Bermuda Sea (24-32°N,
90-60° W) tothe total NAHs every year. The difference between these
two ratios is plotted in Extended Data Fig. 3g (green curve).


https://esgf-node.llnl.gov/projects/cmip6/
https://damip.lbl.gov

Quantifying the correlations between AMV/AMM and VWS and
Sahel rainfall

We quantified the correlations between AMV/AMM and VWS and Sahel
rainfall associated with internal variability in two ways. First, we
removed the forced response from ensemble members in the histori-
cal runs (1950-2014, N = 400) and then calculated the correlation
between these variables (Fig. 2d). Second, we used data from 31
pre-industrial control runs with fixed forcings, discarding the first
100 yr to remove spin-up effects. Then we randomly picked up a con-
tinuous 65 yr time series from the run (equal to the length of the his-
torical runin1950-2014) and calculated AMV, AMM, VWS and Sahel
rainfall based on the aforementioned definitions. This process was
repeated 100 times for each run, so in total we have 3,100 (31 x 100)
realizations. The correlation distributions from the two methods looks
similar (compare Extended Data Fig. Sawith Fig.2d and Extended Data
Fig. 5b with Extended Data Fig. 5c).

We also quantified the correlations between AMV/AMM and VWS
and Sahel rainfallin historical runs (1950-2014, N = 400, with the forced
response notremoved) in the same way. Including forcingsintosingle
realizationsindeed shifts the correlation distribution toward a higher
value (Fig. 2d,e). Finally, the correlations associated with the forced
response were calculated from the ensemble mean for AMV, AMM,
VWS and Sahel rainfall.

The pre-1950 correlations between AMV/AMM and VWS and Sahel
rainfall for the simulations were calculated in the same way but without
detrending the observational or model data (Fig. 4a,b). The results
after detrending pre-1950 were quantitatively unchanged (not shown).

Aswe have multiple observational datasets, aset of correlations, say
between AMV and VWS, was calculated for each combination (N=6,
for three SST datasets times two VWS datasets). For Sahel rainfall, N=9
(3 x3).The observed correlations from 1950 are insensitive to the data
productused, as the spread of correlations was small (standard devia-
tion <0.03) from 1950 (Fig. 2d,e). Before 1950, we have only the 20th
Reanalysis data for calculating the VWS, so correlations related to VWS
have only three samples.

Quantifying therole of single forcings

Toinvestigate the role of single forcingsin the AMCV, we assumed that
the forced responses of AMV/AMM, VWS and Sahel rainfall in CMIP6
arealinear combination of those inthe single-forcing runs from DAMIP.
Thus, we regressed the all-forcing AMV/AMM, VWS and Sahel rainfall
dataonto those fromsingle-forcing runs. As we have hundreds of model
realizations, we performed the regression with abootstrap method.
First, we randomly selected 70 (150) members with duplication from
single-forcing runs (all-forcing historical runs) and calculated the
ensemble mean, detrended the dataand calculated a7 yr running mean
for the AMV/AMM and their impacts. Second, we performed a domi-
nance analysis®, which is a method for quantifying the total R*in a
multilinear regression explained by each predictor: GHGs, AER and
NAT. This process was repeated 1,000 times. Finally, we performed the
dominance analysis for the all-member ensemble mean without dupli-
cation (V=400 for the all-forcing run, N varies for single-forcing runs,
see Supplementary Table 1). The results are presented as light blue
lines and dotsin Fig. 2f-i. We also performed a relative weight analysis®
of the same dataset, which is another way of quantifying the role of a
predictor in a multilinear regression. The results are highly similar to
those from the dominance analysis.

Sensitivity experiment

Anidealized sensitivity experiment was performed with Community
Earth System Model 1.1 from NCAR (CESM1.1, ref. 64) in a SOM con-
figuration with anatmosphericresolution of 0.9° x 1.25°and an oceanic
resolution of 1.125° x 0.27-0.54° (f09_gx1v6). The configuration of the
SOM consists of dynamic-thermodynamic atmosphere, land and sea

ice models. The ocean component was replaced witha SOM with only
thermal couplingtothe overlying atmosphere and seaice. Surface heat
flux, Qy,, derived from model years 402 to 1510 of along pre-industrial,
control and fully coupled simulation, was used for dynamical ocean
heat transport in SOM. In the sensitivity run, we added a uniform
10 W m™to Q;;, over the tropical North Atlantic (0-30° N from Africa
to the Americas) to intensify the AMM, as in the positive AMV. Both
sensitivity and pre-industrial control runs wereintegrated for 100 years
and the first 40 years were neglected because of model drift and
spin-up. The response of the intensified AMM was calculated as the
difference between the sensitivity and the pre-industrial control runs.

Data availability

Observed SST, rainfall and wind data were obtained from: ERSSTvS5,
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html; COBE
SST2, https://psl.noaa.gov/data/gridded/data.cobe2.html; HadISST,
https://www.metoffice.gov.uk/hadobs/hadisst/; Climatic Research
Unit precipitationdata, https://crudata.uea.ac.uk/cru/data/hrg/; GPCC
precipitation data, https://psl.noaa.gov/data/gridded/data.gpcc.html;
University of Delaware precipitation data, http://climate.geog.udel.
edu/~climate/html_pages/download.html; NCEP-NCAR Reanalysis 1
data, https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html;
and NOAA 20th Century Reanalysis data, https://psl.noaa.gov/data/grid-
ded/data.20thC_ReanV3.html. Hurricane frequency datawere obtained
from HURDAT: HURDAT2, https://www.nhc.noaa.gov/data/; and
HURDAT, https://www.aoml.noaa.gov/hrd/hurdat/comparison_table.
html. All model data were taken from the CMIP6 and DAMIP archives:
https://esgf-node.linl.gov/projects/cmip6/and https://damip.lbl.gov.

Code availability

The code for the dominance analysis can be found at: https://github.
com/dominance-analysis/dominance-analysis. Other scripts to
reproduce the results can be found at: https://doi.org/10.5281/
zenodo.8098355.
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trend difference between CMIP6 and GPCCoverlandin1950-2014.b, asina precipitationtime series here are not normalized. Regions of statistical
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difference (gray curveinFig.1e).d, asin cbut for precipitation difference

mm /day / Decade

mm /day / K



Article

a SST trend from AER d SST trend from AER+GHG+NAT

, 0.3
; / / Z 3
0°  60°E 120°E 180° 120°W 60°W 0°  60°E 120°E 180° 120°W 60°W 0.25
0.2
b SST trend from GHG e SST trend from CMIP6-EM L 0.15
s : ; F0.1
-0.05 [
Lo §
-—0.05;
; ’ | --0.1
0° 60°E 120°E 180° 120°W 60°W 0° 60°E 120°E 180° 120°W 60°W ~-0.15
-0.2
c SST trend from NAT f SST trend from OBS _0.25
' ~ : 0.3
40°N
20°N
0° o
20°S 1 ‘ o
b
0° 60°E 120°E 180° 120°W 60°W 0° 60° 120°E  180° 120°W 60°W
Extended DataFig.2|SST trendsin models and observationsin1950-2014. Regions of statistical significance at the 99% confidence level according to
a,JJASO SST trend inruns forced by anthropogenic aerosols from DAMIP. b, as Student’sttestare hatched in a-f. Maps are plotted using the cartopy package
inabut for greenhouse gases. ¢, asinabut for natural forcings. d, the sum of inPython.

a-c.e,asinabutforallforcing from CMIP6.f,asin ebut for observation.



50°N
40°N
30°N
20°N
10°N

o

Counts / 10 yr

O=NWhOION®

50°N
40°N
30°N
20°N
10°N

0°

Counts /10 yr

O=NWHhOTOO N

80°W 60°W 40°W 20°W
[AMV+] - [AMV-]

00

lat

50°N
40°N
30°N
20°N
10°N

o

[ 18

SIS )

LU ] IGD--RDOGINN

00

Counts / 10 yr

50°N
40°N
30°N
20°N
10°N

0°

Counts / 10 yr

RO RO

00

50°N
40°N
30°N
20°N
10°N

o

Counts /10 yr

[SENOT I CE N Yo

80°W 60°W 40°W 20°W
f [AMV+] - [AMV-]

00

50°N
40°N
30°N
20°N
10°N

o

| OO0 ——=N
NA=00  hmwivoe

Counts /10 yr

AN

80°W 60°W 40°W 20°W  0°

time
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Maps are plotted using the cartopy packagein Python.
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a Regressing SST(GHG) on AMM(CMIP®6)

Extended DataFig.7|Regression of SST fromssingle forcingrunonAMM
fromall-forcing CMIP6 run. a, greenhouse gases.b, ¢,asinabut for
anthropogenic aerosols and natural forcings. Regions of statistical
significance at the 99% confidence level accordingto Student’sttest are
hatched. Maps are plotted using the cartopy package in Python.
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a, distribution of the post-1950 AMV variance for ensemble member (gray),
forcedresponse (EM, blue), total response of model (MOE, black), and
observation (red).b, ¢, dasina, but for VWS, Sahel rainfall,and AMM.

e, ensemble mean of AMVin models with strong aerosol-cloud interaction
(blue) and weak aerosol-cloudinteraction (red).f,g, hasine, bur for VWS,
Sahelrainfall,and AMM. 1, distribution of the post-1950 AMV variancein
models with strong aerosol-cloud interaction (blue) and weak aerosol-cloud
interaction (red).j, k,lasini, but for VWS, Sahelrainfall, and AMM. Ine-l,

modelsaredivided into two composites based on the strength of aerosol
forcings®. Models with strong aerosol forcings are represented inblue and they
are: TaiESM1, CESM2-FV2, SAMO-UNICON, CESM2-WACCM, CESM2-WACCM-
FV2,CESM2, NorESM2-LM, NorESM2-MM, ACCESS-CM2, CNRM-CMé6-1,
MIROC6.Models with weak aerosol forcings are represented inred, and they
are: GFDL-ESM4, MIROC-ES2L, BCC-CSM2-MR, CNRM-ESM2-1, GFDL-CM4,
CanESMS, EC-Earth3-Veg, IPSL-CM6A-LR, BCC-ESM1, FGOALS-g3, MPI-ESM1-
2-HR, MPI-ESM1-2-LR, INM-CM4-8, CAMS-CSM1-0.
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Extended Data Table 1] a, variance and signal-to-noise ratio of the pre- and post-1950 AMV, VWS, Sahel rainfall, and AMM in
CMIP6 models. b, variance of observed AMV, VWS, Sahel rainfall, and AMM in the pre- and post-1950 period

a Model Pre-1950 (non Pre-1950 (detrending) Post-1950
detrending) (detrending)
AMV MOE 0.0205 0.0114 0.0283
EM 0.0055 0.0011 0.0141
\Y) 0.0150 0.0103 0.0142
S/N ratio 0.3686 0.1107 0.9959
Sahel MOE 0.0130 0.0119 0.0192
Rainfall EM 0.0005 0.0005 0.0031
\} 0.0125 0.0114 0.0160
S/N ratio 0.0413 0.0461 0.1965
VWS MOE 0.5314 0.4937 0.6794
EM 0.0079 0.0088 0.0459
\Y) 0.5235 0.4848 0.6335
S/N ratio 0.0150 0.0182 0.07
AMM MOE 0.0162 0.0135 0.0175
EM 0.0010 0.0007 0.0027
\} 0.0152 0.0128 0.0148
S/N ratio 0.0626 0.0524 0.1862
b Observation Pre-1950 (non Pre-1950 (detrending) Post-1950
detrending) (detrending)
AMV COBE2 0.0657 0.0157 0.0354
ERSSTV5 0.0790 0.0166 0.0265
HadiSST 0.0468 0.0141 0.0287
Mean 0.0638 0.0155 0.0302
Sahel CRU 0.0159 0.0111 0.0699
Rainfall GPCC 0.0217 0.0211 0.0628
UDEL 0.0190 0.0182 0.0728
Mean 0.0189 0.0168 0.0685
VWS 20th reanalysis 0.8850 0.8694 1.1141
NCEP reanalysis 1 3.4592
Mean 0.8850 0.8694 2.2867
AMM COBE2 0.0178 0.0174 0.0268
ERSSTV5 0.0327 0.0233 0.0298
HadiSST 0.0142 0.0111 0.0289
Mean 0.0216 0.0173 0.0285

Note for the pre-1950 AMCYV, we calculate the variance and signal-to-noise ratio using both non-detrended and detrended time series. The results indicate that they are similar, except for the
non-detrended AMV which exhibits a higher variance due to an increasing trend in the early period (Fig. 4d). In a, the signal-to-noise ratio in the model for the pre-1950 period is much lower
compared to the post-1950 ratio. In b, the observed variance in the pre-1950 period is lower compared to the post-1950 period, which is primarily driven by external forcing. This indicates that
the pre-1950 AMCV is more influenced by internal variability. Units for AMV, AMM, SPR, and VWS variances are °C?, °C?, mm?/day? and m?/s?, respectively.





