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Tropical Atlantic multidecadal variability is 
dominated by external forcing

Chengfei He1 ✉, Amy C. Clement1, Sydney M. Kramer2, Mark A. Cane3, Jeremy M. Klavans2, 
Tyler M. Fenske1 & Lisa N. Murphy1

The tropical Atlantic climate is characterized by prominent and correlated multidecadal 
variability in Atlantic sea surface temperatures (SSTs), Sahel rainfall and hurricane 
activity1–4. Owing to uncertainties in both the models and the observations, the origin 
of the physical relationships among these systems has remained controversial3–7. 
Here we show that the cross-equatorial gradient in tropical Atlantic SSTs—largely 
driven by radiative perturbations associated with anthropogenic emissions and 
volcanic aerosols since 19503,7—is a key determinant of Atlantic hurricane formation 
and Sahel rainfall. The relationship is obscured in a large ensemble of CMIP6 Earth 
system models, because the models overestimate long-term trends for warming  
in the Northern Hemisphere relative to the Southern Hemisphere from around 1950  
as well as associated changes in atmospheric circulation and rainfall. When the 
overestimated trends are removed, correlations between SSTs and Atlantic hurricane 
formation and Sahel rainfall emerge as a response to radiative forcing, especially  
since 1950 when anthropogenic aerosol forcing has been high. Our findings establish 
that the tropical Atlantic SST gradient is a stronger determinant of tropical impacts 
than SSTs across the entire North Atlantic, because the gradient is more physically 
connected to tropical impacts via local atmospheric circulations8. Our findings 
highlight that Atlantic hurricane activity and Sahel rainfall variations can be predicted 
from radiative forcing driven by anthropogenic emissions and volcanism, but firmer 
predictions are limited by the signal-to-noise paradox9–11 and uncertainty in future 
climate forcings.

Basin-scale multidecadal fluctuations in sea surface temperatures 
(SSTs) in the Atlantic (AMV), along with associated impacts such as 
Sahel rainfall2,12, North Atlantic hurricanes1–4 (NAHs) and the European 
and North American summer climate13, are components of a multifac-
eted mode we will refer to as Atlantic multidecadal climate variability 
(AMCV). Simulating and understanding the historical evolution of the 
observed AMCV is vital to making successful predictions for short- and 
long-term adaptation. Here we study the tropical AMCV over the last 
century using a grand ensemble of historical simulations (46 models 
and approximately 400 realizations; Supplementary Table 1) from 
the Coupled Model Intercomparison Project 6 (CMIP6). We attribute 
the influence of greenhouse gases (GHGs), natural radiative forcings 
(NAT), anthropogenic aerosols (AER) and internal variability on the 
tropical AMCV.

A spurious trend from 1950 in CMIP6 runs
We first compare observations with data from CMIP6 simulations for 
June–October ( JJASO) for North Atlantic SSTs, Sahel rainfall and verti-
cal wind shear (VWS, a key feature of the environment in which NAHs 
form) over the main development region (MDR; 80–20° W, 10–20 °N) 

(see ‘Definitions’ in Methods). We focus on the boreal summer sea-
son as it is the most relevant for tropical impacts. Recent research has 
highlighted the signal-to-noise paradox, in which the forced signal in 
models is comparatively weaker than the internal noise compared to 
real-world observations9–11. To compensate for the low signal-to-noise 
ratio, we normalize the time series for both the models and the observa-
tions. Figure 1a shows that the forced North Atlantic SSTs, as estimated 
by the CMIP6 ensemble mean (see ‘Definitions’ in Methods), agrees 
reasonably well with the observations. The SSTs are characterized by 
a largely linear warming trend. By contrast, the long-term behaviour of 
the forced Sahel rainfall and VWS diverge considerably from the obser-
vations. The modelled Sahel rainfall generally exhibits an increasing 
trend like the simulated North Atlantic SSTs, whereas the observed data 
has multidecadal variability before the 1950s and a pronounced drying 
trend between the 1950s and 1980s, followed by a recovery (Fig. 1b). 
Although the simulated VWS has a negative trend, the observed VWS 
has a similar multidecadal time history as the observed Sahel rainfall 
(Fig. 1c). The differences between the simulated and observed values 
are represented by the grey curves, which all have a linear trend since 
1950. This is most evident for Sahel rainfall and VWS, but also visible 
for North Atlantic SSTs (Fig. 1a–c). This spurious linear trend is not 
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restricted to the Atlantic basin but is also seen in rainfall related to 
the Indian and East Asian monsoons, the position of the intertropi-
cal convergence zone and rainfall over the continental United States 
(Extended Data Fig. 1a,b).

We argue that the post-1950 model–data differences for atmospheric 
circulation and rainfall are due to differences in the interhemispheric 
SST gradient (see ‘Definitions’ in Methods). Figure 1d shows the differ-
ences in the simulated SST trends compared to observations for the 
global ocean. The hemispheric differences in the SST trend imply that 
the modelled ocean surface in the Northern Hemisphere warmed faster 
than observations but slower than observations in the Southern  
Hemisphere. This interhemispheric SST gradient is further quantified 
in Fig. 1e. The observed interhemispheric SST gradient has no clear 
trend but, rather, shows strong multidecadal variability14. The model–
data differences for the SST gradients also show a linear trend, with 
the model predicting more warming for the Northern Hemisphere 
compared to the Southern Hemisphere than has been observed (Fig. 1e, 
grey curve). The correlations between the grey curves in Fig. 1e and 
Fig. 1b,c are around 0.9 (DOF= 12   and P < 0.0001), indicating a sig-
nificant relation between interhemispheric SSTs and the atmospheric 
response. These differences in the interhemispheric SST gradient have 
resulted in a global-scale shift of the intertropical convergence zone15 
(Extended Data Fig. 1c,d), and, therefore, have affected the Sahel rain-
fall and VWS around the Atlantic basin3 (Fig. 1b,c) as well as the rainfall 
in other regions (Extended Data Fig. 1).

The differences in the SST gradient are systemic in the CMIP6 mod-
els, as almost all ensemble members predict that the trend for the SST 
gradient is higher than the observed trend (Fig. 1f). SST trends derived 
from the single-forcing runs in the Detection and Attribution Model 
Intercomparison Project (DAMIP; see ‘Model data’ in Methods) indi-
cate that GHGs contribute to a positive interhemispheric SST gradient 

(Fig. 1f and Extended Data Fig. 2). By contrast, the SST gradient for the 
NAT and AER runs are closely aligned with the observed values (Fig. 1f). 
We hypothesize that the disparity between trends for the ensemble 
mean of CMIP6 (CMIP6-EM) and observations may be attributed to 
at least two possible factors: (1) GHGs induce excess warming in the 
North Pacific and North Atlantic and insufficient warming in the Indian 
Ocean according to the models compared to observations16,17 and  
(2) the simulated cooling in the Northern Hemisphere associated  
with aerosol emissions is underestimated, as there should be an inter-
hemispheric gradient18. A recent study suggested that these two factors 
may be interconnected19. A thorough attribution of the cause for the 
model–data differences falls outside the scope of the present study 
and will be reported elsewhere.

A forced tropical AMCV since 1950
As the models misrepresent the post-1950 trend in the Atlantic climate, 
as shown in in Fig. 1a–c, we linearly detrended all time series after 1950. 
(We return to the pre-1950 period later in the paper.) The results are 
shown in Fig. 2a–c. The thin and light-coloured time series are linearly 
detrended and normalized (to adjust for the erroneous signal-to-noise 
ratio; Table 1), and the bold and dark-coloured time series are addi-
tionally low-pass filtered by a 10 yr Butterworth filter to isolate the 
decadal variability. In contrast to Fig. 1a–c, a clear agreement between 
the modelled and observed AMV, VWS and Sahel rainfall emerges when 
the spurious long-term trend is appropriately removed.

The AMV was in a warm phase before the mid-1960s and again after 
the mid-1990s, but in between it was in a cold phase (Fig. 2a). The Sahel 
rainfall, NAH frequency and VWS covary with the AMV (Fig. 2b,c). Dur-
ing a warm AMV phase, precipitation over North Africa increases12 
(Fig. 3e,f), while NAHs become more frequent and intense1 (Extended 
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Fig. 1 | Systemic model–data differences due to the interhemispheric SST 
contrast. a–c, Ensemble means (EM) for a large dataset from CMIP6 model 
simulations (blue) and observations (OBS; red) for indices for the boreal 
summer (JJASO) for 1900–2014. Observations and simulated data are not 
detrended but are normalized to the unit variance to allow comparison with the 
anaemic signal in the models. The grey curves are the differences between the 
two. North Atlantic SSTs (a), Sahel rainfall (b) and VWS (c) in the MDR are shown. 
d, Differences in the SST trends for JJASO from 1950 to 2014 between the CMIP6 
ensemble means and observations. Regions of statistical significance at the 

99% confidence level according to Student’s t-test are hatched. The map was 
plotted using the cartopy package in Python. e, Simulated and observed 
interhemispheric SST gradients and their differences from 1950 to 2014. 
Observations and simulated data are neither detrended nor normalized, 
although climatologies have been removed. f, Box plots of the interhemispheric 
SST contrast trends for CMIP6, DAMIP and observation data (red). The inner 
box runs from the first to the third quantile, whereas the whiskers denote the 
10% and 90% percentiles. The black dot in the box is the average. A five-year 
running mean is applied to the time series in a–c and e for presentation.
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Data Fig. 3a–c). The hurricane genesis region (see ‘Statistics of hur-
ricane variability and genesis’ in Methods) also shifts with the phase 
of AMV, with most hurricanes being generated in the MDR during a 
positive AMV, but the region shifts to the north and west to the Ber-
muda Sea during a negative AMV (Extended Data Fig. 3d–g), when the 
hurricane density and genesis is also suppressed. The shift is favoured 
by the shift in VWS20.

Beyond the Atlantic, the forced Northern Hemisphere atmospheric 
teleconnections and rainfall associated with the AMV are consistent 
between CMIP6 simulations and observations (Fig. 3), which differs 
from what was found in previous studies21,22. In the upper tropo-
sphere, a stationary circum-global teleconnection pattern persists at 
mid-latitudes in the Northern Hemisphere (Fig. 3a,b). At lower levels, 
there is anomalous low pressure in the Mediterranean region and Cen-
tral Asia, while an anomalous subtropical high emerges in the North 
Pacific22 (Fig. 3c,d), both of which enhance the southerly flow and, 
therefore, rainfall in India, East Asia, Siberia and Alaska (Fig. 3e,f).

The consistency between the simulated forced responses and obser-
vations suggests that the recent tropical AMCV is driven by external 

forcings. We calculated the correlation between the simulated and 
observed AMV, Sahel rainfall and VWS. Correlations associated with 
the forced response (ensemble mean; see ‘Definitions’ in Methods) are 
high (over 0.9), higher than all but a very few of the individual model 
runs and far higher than the average of individual members (mean 
of the ensemble, MOE; see ‘Definitions’ in Methods) (Extended Data 
Fig. 4a–c). This result confirms that the observed variability is consist-
ent with the response to forcing, but it does not rule out some influences 
from internal processes.

To test the alternative possibility that the AMCV is due to internal 
processes, we examined the correlations of AMV with Sahel rainfall 
and VWS in observations, in pre-industrial simulations (N = 3,100 
realizations) and in historical simulations after removing the forced 
responses from each ensemble member (N ≈ 400, see ‘Model 
data’ and ‘Quantifying the correlations between AMV/AMM and VWS 
and Sahel rainfall’ in Methods). This allowed us to test whether the 
covariability that makes AMCV a single mode arises without the influ-
ence of forcing. Figure 2d and Extended Data Fig. 5a show that the 
absolute value of the correlation between the observed AMV and VWS 
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Fig. 2 | Forced post-1950 tropical AMCV. a–c, Simulated and observed JJASO 
indices from 1950 to 2014. The times series are normalized to the unit variance 
for comparison. The light, thin curves are detrended values, whereas the dark, 
bold curves have been low-pass filtered. AMV (a), Sahel rainfall (b), and VWS 
and observed Atlantic hurricane frequency (NAH freq.; shading; c) are shown. 
d, Two-dimensional histogram of correlations of the historical AMV with Sahel 
rainfall (x axis) and AMV with the VWS (y axis) in the model realizations with 
forced responses removed (Corr. without forcing; shading). The observed 
correlation (red star) is averaged across multi-source datasets. Correlations 
between different observations are plotted as small purple stars underneath 
the red star. The black star (MOE) is the mean of the shading, that is, for the 

individual ensemble members. e, As in d but for correlations without forced 
responses being removed from the historical simulated data (Corr. with 
forcing). The light blue star (EM) is the correlation associated with the forced 
response. f, Distribution of R 2 by regressing the all-forcing AMV on 
single-forcing AMVs in a bootstrap (left), and the fraction of the total R 2 
explained by GHGs, AER and NAT in the regression (right). The inner box runs 
from the first to the third quantile, whereas the whiskers denote the 10% and 
90% percentiles. The light blue lines and dots were constructed using data 
from all members. g–i, As f but for Sahel rainfall (g), VWS (h) and AMM (i). 
See Methods for the definition of AMV, AMM, Sahel rainfall and VWS, and how 
the correlations and regressions were performed.



524  |  Nature  |  Vol 622  |  19 October 2023

Article

or Sahel rainfall is over 0.85. Figure 2d shows that none of the unforced 
model runs attained such high values, and that, when averaged over 
the ensemble (MOE; see ‘Definitions’ in Methods), the correlations are 
only approximately −0.2 and 0.3 (see also Extended Data Fig. 5a). That 
the modelled correlations have a large spread and relatively low MOEs 
is because the covariability between the AMV and its impacts may be 
interrupted or strengthened by other processes, such as El Niño- 
southern oscillation23 and the Pacific decadal oscillation24. This sug-
gests that internal dynamics produces some covariability in the trop-
ical AMCV, but the very strong observed covariability is highly unlikely 
to be due to internal dynamics alone.

Using the historical runs (with both the forced response and internal 
variability included) shifts the cluster of correlations slightly toward 
higher values (compare Fig. 2e with Fig. 2d), though the MOE correla-
tions in Fig. 2e are still much smaller than the observed correlation. 
By contrast, the correlations associated with the forced response 
alone (ensemble mean correlations) are close to the observed corre-
lation (Fig. 2e, blue star). These results show that forcing somewhat 
improves the correlations of single realizations3,25, but the observed 
high correlations are very unlikely to occur in the real world unless 
they are largely driven by external forcings with little influence from 
internal dynamics. This further implies that climate models have a low 
signal-to-noise ratio in the coupled AMCV because single realizations 
are dominated by internal variability (compare Fig. 2d with Fig. 2e, 
shading and black star), but they have a high signal-to-noise ratio in a 
single realization of the real world because it is mostly forced (Fig. 2e, 
blue and red star).

Tropical AMCV driven by AER and NAT
To diagnose the role of single forcings, we regressed the detrended 
and low-passed forced response in the all-forcing run onto the 

corresponding forced response in single-forcing runs for GHGs, AER 
and NAT. We used a bootstrap regression method to get uncertainty 
estimates for the regressions (see ‘Quantifying the role of single forc-
ings’ in Methods). The multilinear regression successfully captured 
the variability of the forced AMCV, as indicated by the high R2 values 
in the regression (Fig. 2f–h, left), especially for the all-member ensem-
ble mean (blue lines in Fig. 2f–h). The fraction of R2 explained by each 
forcing was quantified by a dominance analysis, which is a method 
for evaluating the role of predictors in a multilinear regression  
(Methods). The fractions are shown in Fig. 2f–h (right). For AMV, the 
contributions of GHGs, AER and NAT are similar in magnitude, but 
the role of GHGs is reduced in Sahel rainfall and VWS (Fig. 2f–h).  
VWS is driven by both AER and NAT, whereas AER is dominant for  
Sahel rainfall26. The impact of individual forcings is also reflected in 
their regression coefficients. The distributions of regression coeffi-
cients for single forcings are similar for AMV, whereas the coefficients 
for GHGs for Sahel rainfall and VWS are close to zero (Extended  
Data Fig. 6).

Mechanism of the tropical impacts
We hypothesize that the tropical impacts of the AMV are associated 
with the dipole SST anomaly in the tropical Atlantic, which excites a 
Gill-type response8 to aerosol forcing. In the positive AMV, an anticy-
clonic anomaly persists in the tropical North Atlantic that extends to 
North Africa in the upper troposphere (Fig. 3a,b), whereas a cyclonic 
anomaly persists in the lower atmosphere (Fig. 3c,d). This local baro-
clinic mode is predicted by the Gill model with a dipole heating anomaly 
across the equator (fig. 2 in ref. 8). As a result, the southern edge of an 
anticyclone produces an easterly anomaly that reduces the VWS in the 
MDR and, thus, favours NAH activity. The southern flank of a cyclone 
induces a westerly trade wind anomaly that transports water vapour 
to the Sahel region producing rainfall (Fig. 3e,f).

This mechanism is confirmed by the tropical North and South Atlan-
tic SST gradient (known as the Atlantic meridional mode or AMM; see 
‘Definitions’ in Methods) in model simulations, which resembles the 
low-frequency AMM that strongly relates to hurricane activity27. The 
forced AMM in the model is highly correlated with the observations, 
again indicating a strong influence from forcing (Extended Data Fig. 4d). 
The correlations between the modelled Sahel rainfall and VWS with 
AMM are higher than those with the modelled AMV (compare Extended 
Data Fig. 5c with Fig. 2e and Extended Data Fig. 5a with Extended Data 
Fig. 5b), especially for the forced response. The differences between 
the tropical North and South Atlantic SSTs largely remove the secular 
warming trend induced by GHG forcing (compare Fig. 1a with Fig. 4c). 
The absence of a secular trend in AMM is also true for Sahel rainfall and 
VWS over the past century (Fig. 4c), reinforcing the notion that AMM is 
a superior metric compared to AMV. In addition, a dominance analysis 
shows that GHGs, AER and NAT make similar relative contributions to 
AMM, Sahel rainfall and VWS. In particular, GHGs have a negligible 
role (Fig. 2i), because the warming due to GHGs is largely uniform in 
the tropics (Extended Data Fig. 7a). By contrast, heating by AER and 
NAT have spatial gradients (Extended Data Fig. 7b,c), which perturb 
the surface radiation and alters the SST3,7,28.

This mechanism is also qualitatively supported by an idealized 
sensitivity experiment with a slab ocean model (SOM), in which an 
anomalous heat convergence is placed in the tropical North Atlantic 
(see ‘Sensitivity experiment’ in Methods). The surface heating enhances 
tropical rainfall and releases latent heat, which triggers an anticyclone 
at high levels in the atmosphere west of the basin, weakening the VWS29 
(Extended Data Fig. 8a). Together with the extratropical SST30 and 
SST fingerprints caused by AER31,32, the surface heating may also trig-
ger circum-global atmospheric teleconnections through the tropical 
pathway33, leading to an intensified Pacific subtropical high and rainfall 
in East Asia (Extended Data Fig. 8).

Table 1 | Modelled and observed variance and signal-to-noise 
ratio for the post-1950 AMV, VWS, Sahel rainfall and AMM

Variance ACI AMV VWS Sahel 
rainfall

AMM

CMIP6 MOE All 0.0283 0.6794 0.0192 0.0175

High 0.0243 0.8155 0.0324 0.0159

Low 0.0340 0.5918 0.0146 0.0171

EM All 0.0141 0.0459 0.0031 0.0027

High 0.0136 0.0597 0.0071 0.0031

Low 0.0186 0.0450 0.0026 0.0033

IV = 
MOE − EM

All 0.0142 0.6335 0.0160 0.0148

High 0.0107 0.7558 0.0254 0.0128

Low 0.0153 0.5468 0.0120 0.0138

S/N ratio = 
EM/IV

All 1.00 0.07 0.20 0.19

High 1.26 0.08 0.28 0.25

Low 1.21 0.08 0.22 0.24

OBS MOE – 0.0302 2.2867 0.0685 0.0285

EM – 0.0250 1.9778 0.0618 0.0192

IV = 
MOE − EM

– 0.0052 0.3089 0.0067 0.0093

S/N ratio = 
EM/IV

– 4.82 6.40 9.26 2.05

All time series were detrended and low-pass filtered before the variance was calculated. 
See Methods for the definition of the ensemble mean (EM) and the MOE variance of the 
model data. The high and low aerosol–cloud interaction (ACI) models are shown in Extended 
Data Fig. 9. IV denotes the internal variability. For observations, the MOE variance is the total 
variance. The variance of the ensemble mean was calculated based on the square of the 
correlation with CMIP6-EM. Units for AMV, AMM, Sahel rainfall and VWS variances are °C2, °C2, 
mm2 day−2 and m2 s−2, respectively. S/N ratio, signal-to-noise ratio.
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Signal-to-noise paradox in the tropical AMCV
Although there is a strong temporal correlation between the simulated 
forced response and observed data (Extended Data Fig. 4), the variance 
of the modelled forced response (ensemble mean variance) is much 
smaller than that of the observations, which is estimated based on 
the correlation between the model ensemble mean and observations 
(Extended Data Fig. 9a–d and Table 1). This is a consequence of what 
is referred to as the signal-to-noise paradox10. It has also been docu-
mented for the North Atlantic oscillation9,11. One possible cause of the 
small ensemble mean variance is the weak indirect-aerosol effects in 
some models. A supporting example is that CMIP3 and CMIP5 models 
without indirect-aerosol effects exhibit smaller variances compared to 
those that include them3,7. However, in a comparison of CMIP6 models 
with high and low aerosol–cloud interactions, there is little difference 
in the signal-to-noise ratio (Extended Data Fig. 9e–l and Table 1). By 
contrast, a SOM produces a high ensemble mean and MOE variance, 
even higher than that observed, suggesting that the damping by ocean 
processes may be too strong in fully coupled models34. Recent work 
has also suggested that increasing model resolution may ameliorate 
signal-to-noise errors35. The EC-Earth3 model has the highest resolu-
tion and produces a more accurate interhemispheric SST gradient and 
covariability in AMCV.

Pre-1950 tropical AMCV
We now return to the AMCV before 1950. Figure 4d–g, the normalized 
pre-1950 time series (without detrending), shows that forcing has a 
discernible influence, even in this earlier period. This is surprising in 
view of the relatively weaker climate forcing in the pre-1950 era. Namely, 
there was a much lower signal-to-noise ratio in the models than from 
1950 on (Extended Data Table 1a).

However, observed correlations between North Atlantic SST/AMM 
and the tropical impacts are more consistent with the average of correla-
tions from individual simulations (MOE) than with the forced response 

(ensemble mean), marked as OBS and MOE in Fig. 4a,b. This suggests 
that when the external forcing is weaker in the early period, the tight 
coupling found in post-1950 AMCV is not present, implying that the pre-
1950 AMCV is substantially influenced by internal variability. The total 
change in the variance in the observed AMCV also substantiates less of 
a role for forcing in the pre-1950 tropical AMCV. There is an increase 
in post-1950 AMCV variance when anthropogenic forcing increases 
(Extended Data Table 1b). Assuming that the observed variance due to 
internal variability remains roughly constant, then the forced variance 
in the earlier period is lower compared to the later period (Extended 
Data Table 1b), consistent with the fact that the anthropogenic com-
ponents of the forcing are weaker.

Also, note that both observations36,37 and climate forcings38 in the 
early 20th century have more uncertainty. The observed pre-1950 
correlations between AMM and tropical impacts vary from 0.1 to 0.6 
depending on the dataset used (Fig. 4b, small purple stars), whereas the 
spread of post-1950 correlations is negligible (Fig. 2e and Extended Data 
Fig. 5). The low signal-to-noise ratio in the modelled pre-1950 AMCV 
(Extended Data Table 1a) calls into question whether our approximately 
400-member ensemble is large enough to extract the forced signal 
amidst the noise in the early period, albeit that some AMCV components 
show a forced response. These data uncertainties preclude a definitive 
attribution for the pre-1950 AMCV.

Discussion and summary
Simulations with constant external forcings (for example, pre-industrial 
control runs) show covariability between AMV and Sahel rainfall or hur-
ricane activity (NAH)4,39,40, which leads to the conclusion that tropical 
aspects of AMCV are a feature of internal oceanic and atmospheric 
dynamics5,6,41. As we have seen, however, the simulated covariability, 
measured as the correlations between AMV and its impacts, is much 
weaker than the observed values, which have been above 0.8 since 
World War II4,39,40. The linkage between the Atlantic meridional over-
turning circulation (AMOC) or the North Atlantic oscillation and AMCV 
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is observed in pre-industrial control runs, but it varies significantly 
across models42,43 and can even have the opposite sign in historical 
simulations44,45. Figure 2a shows that although the simulated forced 
AMOC is associated with the forced AMV, they are anti-correlated, 
which is contrary to what one would expect if the internal fluctuations 
in AMOC were the driver5.

Past work has shown that historical simulations forced by real-
istic radiative forcings exhibit spatial discrepancies with observa-
tions of SSTs and rainfall patterns22, although there has been some 
improvement in the temporal covariability of the tropical AMCV 
components3,25,28,46,47. Consistent with our results, anthropogenic 
(AER) and natural (NAT) aerosols have been suggested as a driver of 
the AMCV7,34,48,49, although some have questioned whether the aerosol 
forcing is too large5,50.

Here we have shown that a systemic interhemispheric SST differ-
ence between CMIP6 models and observations that develops after 
1950 induces a spurious trend in the tropical Atlantic (Fig. 1). When we 
remove this trend, we find that the tropical AMCV is largely driven by 
anthropogenic and volcanic aerosol forcings in the post-1950 period 
(Fig. 2), especially for Atlantic hurricanes, which are often thought to 
be internally driven4,20,24. Further, we provide a physical link from this 

north–south Atlantic SST difference to the change in Sahel rainfall 
and wind shear in the MDR, a determinant of hurricane activity. The 
tropical AMCV in the early 20th century appears to be more affected by 
internal variability than in the later period when anthropogenic forcing 
is strong (Fig. 4a,b). Even so, the forced response is evident in tropical 
impacts in multidecadal periods (Fig. 4d–g). Our results demonstrate 
the predictive potential of the tropical AMCV, which is underestimated 
in state-of-the-art climate models due to the signal-to-noise paradox. 
Rectifying this signal-to-noise error in climate models could unlock this 
potential, improving our ability to predict and adapt to a rapidly chang-
ing climate. Our findings also emphasize that large ensemble simula-
tions can serve as a viable approach for predicting the near-future 
AMCV, as has been demonstrated for the North Atlantic oscillation9,11.
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ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
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Methods

Definitions
As we are mostly focussed on AMV-related impacts, including NAH 
and Sahel rainfall, the current study uses mean annual time series for 
JJASO from CMIP6 and observations. The AMV is defined as the linearly 
detrended, area-averaged, and 10 yr low-passed (Butterworth filter) SST 
anomalies over the North Atlantic51 (0°–60° N, 70° W–0°).

Sahel rainfall is precipitation over North Africa (10–20° N, 
20° W–40° E). The VWS is the difference between the zonal wind at 
200 and 850 hPa over the MDR (80–20° W, 10–20° N). To analyse their 
multidecadal variability, both Sahel rainfall and VWS were linearly 
detrended and 10 yr low-pass-filtered, except in Figs. 1 and  4.

The hemispheric SST gradient was calculated as the difference in the 
SSTs between the Northern Hemisphere (30–60° N) and the Southern 
Hemisphere (40° S–0°), as significant model–data SST discrepancy 
exists.

We use the tropical Atlantic SST gradient (AMM) as an alternative to 
the AMV index. The AMM is here taken as the difference between the 
tropical North Atlantic (0°–35° N) and the South Atlantic (35° S–0°). 
The AMM naturally filters out the global warming trend over the past 
century, like the non-detrended VWS and Sahel rainfall in the past  
century (Fig. 4c).

In the model, the forced response is calculated as the ensemble mean:

∑
N

fEM =
1

,
i

N

i
=1

in which N is the number of ensemble members and fi  is the realization 
of member i.

For the forced response of all indices, we first calculate the ensemble 
mean and then do low-pass filtering and detrending. As the ensembles 
are large and the internal variations of individual members are, on aver-
age, uncorrelated in time, the ensemble mean is an excellent approxima-
tion of only the forced response34. Thus, the ensemble mean correlation 
with observations is a good measure of the correlation between the 
forced response and observations. For example, the ensemble mean 
correlation with the observed AMV:

∑N
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1
AMV, AMV

i

N

iEM OBS
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OBS

where x y� , � denotes the Pearson correlation between x and y.
By contrast, the MOE includes both forced and internal responses. 

To calculate the MOE correlation with observation, we first calculate 
the correlation between the low-pass-filtered and detrended realization 
fi  with the low-pass-filtered and detrended observations and then 

average these correlations over all members:
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We also measured the correlation between AMV/AMM and their tropi-
cal impacts on the observations and models. For example, the ensem-
ble mean correlation in the modelled AMV and VWS is due to a forced 
response:

∑ ∑N N
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whereas the MOE correlation in the modelled AMV and VWS is
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We also calculated the variance of the ensemble mean and the MOE 
variance of all indices. The ensemble mean variance of AMV is
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whereas the MOE variance is

N
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where xVar( ) denotes the variance of x.

Observations
Several observation products were used in the present study to verify 
the robustness of our statistics. The AMV and AMM were calculated 
from the Extended Reconstructed Sea Surface Temperature version 5 
dataset (ERSSTv5) from the National Oceanic and Atmospheric Admin-
istration (NOAA)52, Centennial in situ Observation-Based Estimates 
(COBE) SST2 data53 and the Hadley Centre Sea Ice and SST dataset ver-
sion 1.1 (HadISST)54.

The Sahel rainfall was calculated from data from the Precipitation v. 
4.05 dataset from the Climatic Research Unit (ref. 55) and data from the 
Global Precipitation Climatology Centre (GPCC)56 and the University 
of Delaware57.

The VWS was calculated from a reanalysis by the National Centers 
for Environmental Prediction and the National Center for Atmospheric 
Research (NCEP-NCAR Reanalysis 1)58 and the NOAA 20th Century  
Reanalysis59.

The observed time series are very close from 1950, as identified by 
the correlation between AMV and its impacts in Fig. 2d,e (purple stars). 
However, the uncertainty increases in the pre-1950 period, when the 
correlations have a large spread (Fig. 4a,b, purple stars).

Model data
Model SSTs, geopotential heights and zonal wind data were taken 
from the CMIP6 archive: https://esgf-node.llnl.gov/projects/cmip6/. 
The forced response as the ensemble mean was then calculated by 
averaging approximately 400 ensemble members from the 46 models 
(Supplementary Table 1). However, as most models do not provide the 
field of AMOC, the AMOC index was calculated from 105 members in 24 
models. The AMOC index is consistent with those in other studies60,61. 
We also used a subset of the AMV for the 24 models that has a AMOC 
output, and the results are qualitatively consistent. To quantify the 
internal variability, the first member (r1i1p1f1) of the pre-industrial 
control runs was also downloaded from 31 models. We also obtained 
these variables from DAMIP (https://damip.lbl.gov) to quantify the 
role of GHGs (hist_GHG), AER (hist_aer) and NAT (hist_nat).

Statistics of hurricane variability and genesis
Hurricane frequencies were calculated as in ref. 4 using the Hurricane 
Database (HURDAT).

Hurricane track density and genesis density were calculated for cat-
egory “HU” in the Atlantic hurricane database (HURDAT2) from 1950 to 
2014. We first counted the numbers of hurricanes in every grid (reso-
lution: latitude 3° × longitude 7°) that hurricanes passed through in 
1950–2014. We then normalized the numbers of hurricanes in each grid 
by dividing by the length of the AMV± phase to get the hurricane track 
density. According to Fig. 2, we defined the period before 1965 and after 
1995 as AMV+, and the period in between as AMV−. The genesis density 
was calculated in the same way, but we counted only the first data point 
as the genesis location. To quantify the shift of genesis location in dif-
ferent AMV phases, we calculated the ratios of hurricanes generated in 
the MDR (10–20° N, 80–20° W) and over the Bermuda Sea (24–32° N, 
90–60° W) to the total NAHs every year. The difference between these 
two ratios is plotted in Extended Data Fig. 3g (green curve).

https://esgf-node.llnl.gov/projects/cmip6/
https://damip.lbl.gov


Quantifying the correlations between AMV/AMM and VWS and 
Sahel rainfall
We quantified the correlations between AMV/AMM and VWS and Sahel 
rainfall associated with internal variability in two ways. First, we 
removed the forced response from ensemble members in the histori-
cal runs (1950–2014, N ≈ 400) and then calculated the correlation 
between these variables (Fig. 2d). Second, we used data from 31 
pre-industrial control runs with fixed forcings, discarding the first 
100 yr to remove spin-up effects. Then we randomly picked up a con-
tinuous 65 yr time series from the run (equal to the length of the his-
torical run in 1950–2014) and calculated AMV, AMM, VWS and Sahel 
rainfall based on the aforementioned definitions. This process was 
repeated 100 times for each run, so in total we have 3,100 (31 × 100) 
realizations. The correlation distributions from the two methods looks 
similar (compare Extended Data Fig. 5a with Fig. 2d and Extended Data 
Fig. 5b with Extended Data Fig. 5c).

We also quantified the correlations between AMV/AMM and VWS 
and Sahel rainfall in historical runs (1950–2014, N ≈ 400, with the forced 
response not removed) in the same way. Including forcings into single 
realizations indeed shifts the correlation distribution toward a higher 
value (Fig. 2d,e). Finally, the correlations associated with the forced 
response were calculated from the ensemble mean for AMV, AMM, 
VWS and Sahel rainfall.

The pre-1950 correlations between AMV/AMM and VWS and Sahel 
rainfall for the simulations were calculated in the same way but without 
detrending the observational or model data (Fig. 4a,b). The results 
after detrending pre-1950 were quantitatively unchanged (not shown).

As we have multiple observational datasets, a set of correlations, say 
between AMV and VWS, was calculated for each combination (N = 6, 
for three SST datasets times two VWS datasets). For Sahel rainfall, N = 9 
(3 × 3). The observed correlations from 1950 are insensitive to the data 
product used, as the spread of correlations was small (standard devia-
tion <0.03) from 1950 (Fig. 2d,e). Before 1950, we have only the 20th 
Reanalysis data for calculating the VWS, so correlations related to VWS 
have only three samples.

Quantifying the role of single forcings
To investigate the role of single forcings in the AMCV, we assumed that 
the forced responses of AMV/AMM, VWS and Sahel rainfall in CMIP6 
are a linear combination of those in the single-forcing runs from DAMIP. 
Thus, we regressed the all-forcing AMV/AMM, VWS and Sahel rainfall 
data onto those from single-forcing runs. As we have hundreds of model 
realizations, we performed the regression with a bootstrap method. 
First, we randomly selected 70 (150) members with duplication from 
single-forcing runs (all-forcing historical runs) and calculated the 
ensemble mean, detrended the data and calculated a 7 yr running mean 
for the AMV/AMM and their impacts. Second, we performed a domi-
nance analysis62, which is a method for quantifying the total R2 in a 
multilinear regression explained by each predictor: GHGs, AER and 
NAT. This process was repeated 1,000 times. Finally, we performed the 
dominance analysis for the all-member ensemble mean without dupli-
cation (N ≈ 400 for the all-forcing run, N varies for single-forcing runs, 
see Supplementary Table 1). The results are presented as light blue 
lines and dots in Fig. 2f–i. We also performed a relative weight analysis63 
of the same dataset, which is another way of quantifying the role of a 
predictor in a multilinear regression. The results are highly similar to 
those from the dominance analysis.

Sensitivity experiment
An idealized sensitivity experiment was performed with Community 
Earth System Model 1.1 from NCAR (CESM1.1, ref. 64) in a SOM con-
figuration with an atmospheric resolution of 0.9° × 1.25° and an oceanic 
resolution of 1.125° × 0.27–0.54° (f09_gx1v6). The configuration of the 
SOM consists of dynamic-thermodynamic atmosphere, land and sea 

ice models. The ocean component was replaced with a SOM with only 
thermal coupling to the overlying atmosphere and sea ice. Surface heat 
flux, Qflx, derived from model years 402 to 1510 of a long pre-industrial, 
control and fully coupled simulation, was used for dynamical ocean 
heat transport in SOM. In the sensitivity run, we added a uniform 
10 W m−2 to Qflx over the tropical North Atlantic (0–30° N from Africa 
to the Americas) to intensify the AMM, as in the positive AMV. Both 
sensitivity and pre-industrial control runs were integrated for 100 years 
and the first 40 years were neglected because of model drift and 
spin-up. The response of the intensified AMM was calculated as the 
difference between the sensitivity and the pre-industrial control runs.

Data availability
Observed SST, rainfall and wind data were obtained from: ERSSTv5, 
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html; COBE 
SST2, https://psl.noaa.gov/data/gridded/data.cobe2.html; HadISST, 
https://www.metoffice.gov.uk/hadobs/hadisst/; Climatic Research 
Unit precipitation data, https://crudata.uea.ac.uk/cru/data/hrg/; GPCC 
precipitation data, https://psl.noaa.gov/data/gridded/data.gpcc.html; 
University of Delaware precipitation data, http://climate.geog.udel.
edu/~climate/html_pages/download.html; NCEP-NCAR Reanalysis 1 
data, https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html; 
and NOAA 20th Century Reanalysis data, https://psl.noaa.gov/data/grid-
ded/data.20thC_ReanV3.html. Hurricane frequency data were obtained 
from HURDAT: HURDAT2, https://www.nhc.noaa.gov/data/; and  
HURDAT, https://www.aoml.noaa.gov/hrd/hurdat/comparison_table.
html. All model data were taken from the CMIP6 and DAMIP archives:  
https://esgf-node.llnl.gov/projects/cmip6/ and https://damip.lbl.gov.

Code availability
The code for the dominance analysis can be found at: https://github.
com/dominance-analysis/dominance-analysis. Other scripts to 
reproduce the results can be found at: https://doi.org/10.5281/
zenodo.8098355.
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Extended Data Fig. 1 | Model-data Northern Hemisphere rainfall difference 
due to inter-hemispheric SST contrast difference. a, JJASO precipitation 
trend difference between CMIP6 and GPCC over land in 1950–2014. b, as in a  
but for the difference between CMIP6 and 20th reanalysis. c, regression of 
precipitation difference (CMIP6 – GPCC) on the inter-hemispheric SST contrast 
difference (gray curve in Fig. 1e). d, as in c but for precipitation difference 

(CMIP6 – 20th reanalysis). In d, the black curve is the location of maximum 
rainfall climatology in 20th reanalysis. Note that unlike in Fig. 1a–c, the 
precipitation time series here are not normalized. Regions of statistical 
significance at the 99% confidence level according to Student’s t test are 
hatched. Maps are plotted using the cartopy package in Python.
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Extended Data Fig. 2 | SST trends in models and observations in 1950-2014. 
a, JJASO SST trend in runs forced by anthropogenic aerosols from DAMIP. b, as 
in a but for greenhouse gases. c, as in a but for natural forcings. d, the sum of 
a–c. e, as in a but for all forcing from CMIP6. f, as in e but for observation. 

Regions of statistical significance at the 99% confidence level according to 
Student’s t test are hatched in a–f. Maps are plotted using the cartopy package 
in Python.



Extended Data Fig. 3 | North Atlantic Hurricane associated with the AMV. 
 a, hurricane track density in positive AMV. b, as in a but for negative AMV. c, the 
difference between a and b. d, hurricane genesis density in positive AMV. e, as 
in d but for negative AMV. f, the difference between d and e. g, normalized 
hurricane frequency (shading) as in Fig. 2c and ratio difference between 

hurricane generated over main development region [10-20°N, 80-20°W] and 
over Bermuda Sea [24-32°N, 90-60°W] (green curve, right y-axis). In f, the main 
development region is marked as gray box, and the Bermuda Sea is pink box. 
Maps are plotted using the cartopy package in Python.
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Extended Data Fig. 4 | Correlations between simulations and observations. 
a, correlation distribution between simulated AMVs and the observed AMV. 
The dark blue line is the mean of the distribution (MOE). The light blue line is 

the correlation between the forced AMV (EM) and observation. b–d, as in a but 
for Sahel rainfall, VWS, and AMM.



Extended Data Fig. 5 | Correlations between AMV/AMM and Sahel rainfall 
and VWS in preindustrial and historical runs (1950–2014). a, joint distribution 
of correlations between the AMV and VWS (y-axis) and Sahel rainfall (x-axis) in 
preindustrial runs (N = 3100) and observation (red star). b, as in a but for AMM.  
c, as in b but for historical runs (with forced response included in single 
realizations). Comparing panel a and b shows the AMM has a better correlation 

with Sahel rainfall and VWS than AMV. Similar conclusion could also be drawn by 
comparing panel c and Fig. 2e. Comparing panel c and Fig. 4b shows the shift of 
observation before and after 1950. The small purple stars under the big red star 
are correlations calculated using different datasets, so the red start is the 
average of the purple stars. See methods how the correlations are calculated.
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Extended Data Fig. 6 | Distribution of regression coefficients by regressing detrended and lowpassed all-forcing run on single-forcing runs in bootstrap.  
a, AMV. b, Sahel rainfall. c, VWS. d, AMM.



Extended Data Fig. 7 | Regression of SST from single forcing run on AMM 
from all-forcing CMIP6 run. a, greenhouse gases. b, c, as in a but for 
anthropogenic aerosols and natural forcings. Regions of statistical 
significance at the 99% confidence level according to Student’s t test are 
hatched. Maps are plotted using the cartopy package in Python.
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Extended Data Fig. 8 | Response of tropical North Atlantic heating in 
CESM-SOM. a, 200hPa geopotential height and circulation. b, as in a but for 
850hPa. c, precipitation. The 200hPa (850hPa) response is averaged between 
150–250hPa (700–900hPa) on native hybrid-pressure model level. Maps are 
plotted using the cartopy package in Python.



Extended Data Fig. 9 | Signal-to-noise paradox in the CMIP6 models.  
a, distribution of the post-1950 AMV variance for ensemble member (gray), 
forced response (EM, blue), total response of model (MOE, black), and 
observation (red). b, c, d as in a, but for VWS, Sahel rainfall, and AMM.  
e, ensemble mean of AMV in models with strong aerosol-cloud interaction 
(blue) and weak aerosol-cloud interaction (red). f, g, h as in e, bur for VWS,  
Sahel rainfall, and AMM. i, distribution of the post-1950 AMV variance in  
models with strong aerosol-cloud interaction (blue) and weak aerosol-cloud 
interaction (red). j, k, l as in i, but for VWS, Sahel rainfall, and AMM. In e-l, 

models are divided into two composites based on the strength of aerosol 
forcings19. Models with strong aerosol forcings are represented in blue and they 
are: TaiESM1, CESM2-FV2, SAM0-UNICON, CESM2-WACCM, CESM2-WACCM- 
FV2, CESM2, NorESM2-LM, NorESM2-MM, ACCESS-CM2, CNRM-CM6-1, 
MIROC6. Models with weak aerosol forcings are represented in red, and they 
are: GFDL-ESM4, MIROC-ES2L, BCC-CSM2-MR, CNRM-ESM2-1, GFDL-CM4, 
CanESM5, EC-Earth3-Veg, IPSL-CM6A-LR, BCC-ESM1, FGOALS-g3, MPI-ESM1-
2-HR, MPI-ESM1-2-LR, INM-CM4-8, CAMS-CSM1-0.
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Extended Data Table 1 | a, variance and signal-to-noise ratio of the pre- and post-1950 AMV, VWS, Sahel rainfall, and AMM in 
CMIP6 models. b, variance of observed AMV, VWS, Sahel rainfall, and AMM in the pre- and post-1950 period

Note for the pre-1950 AMCV, we calculate the variance and signal-to-noise ratio using both non-detrended and detrended time series. The results indicate that they are similar, except for the 
non-detrended AMV which exhibits a higher variance due to an increasing trend in the early period (Fig. 4d). In a, the signal-to-noise ratio in the model for the pre-1950 period is much lower 
compared to the post-1950 ratio. In b, the observed variance in the pre-1950 period is lower compared to the post-1950 period, which is primarily driven by external forcing. This indicates that 
the pre-1950 AMCV is more influenced by internal variability. Units for AMV, AMM, SPR, and VWS variances are °C2, °C2, mm2/day2 and m2/s2, respectively.




