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Abstract— Tensegrity robots, composed of rigid rods and
flexible cables, exhibit high strength-to-weight ratios and signif-
icant deformations, which enable them to navigate unstructured
terrains and survive harsh impacts. They are hard to control,
however, due to high dimensionality, complex dynamics, and a
coupled architecture. Physics-based simulation is a promis-ing
avenue for developing locomotion policies that can be
transferred to real robots. Nevertheless, modeling tensegrity
robots is a complex task due to a substantial sim2real gap. To
address this issue, this paper describes a Real2Sim2Real
(R2S2R) strategy for tensegrity robots. This strategy is based on
a differentiable physics engine that can be trained given limited
data from a real robot. These data include offline measurements
of physical properties, such as mass and geometry for various
robot components, and the observation of a trajectory using a
random control policy. With the data from the real robot, the
engine can be iteratively refined and used to discover
locomotion policies that are directly transferable to the real
robot. Beyond the R2S2R pipeline, key contributions of this
work include computing non-zero gradients at contact points, a
loss function for matching tensegrity locomotion gaits, and a
trajectory segmentation technique that avoids conflicts in
gradient evaluation during training. Multiple iterations of the
R2S2R process are demonstrated and evaluated on a real 3-bar
tensegrity robot.

I . INTRODUC T I ON

Tensegrity robots are actuated systems composed of rigid
struts (rods) and flexible elements (cables) connected to form
lightweight, deformable structures. Their natural compliance
makes them adaptable and safe robots that are well-suited for
many applications, such as manipulation [1], locomotion [2],
morphing airfoils [3], and spacecraft landing [4].

At the same time, tensegrity robots are difficult to ac-
curately model and control due to their many degrees of
freedom (DoF) and complex dynamics [5]. The difficulty
in modeling has led some researchers to propose model-
free solutions for learning control [6], but these strate-
gies still encounter challenges since they require a large
amount of training data, and collecting trajectories from
tensegrities is time-consuming, cumbersome, and expensive.
The authors have previously introduced a differentiable, but
modular and explainable, physics engine [7]–[9] as a data-
efficient tool to identify physical parameters and develop
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Fig. 1: The target platform: a 3-bar prismatic tensegrity robot with 9
stretch sensors. The 6 short cables are contracted and extended by
the motors in the 3D-printed housings on each rod.

locomotion policies for tensegrity robots. Yet, the transfer of
simulated policies to real hardware is typically impeded by
the so-called simulation-to-reality (sim2real) gap [10], [11].
Sim2real transfer can be improved by tuning the simulation
to minimize differences between predicted and real robot
trajectories for the same controls.

To overcome the sim2real gap, many methods are ap-
plied [11]–[15], however, the robot is assumed to be
rigid [16] as a prior. Systems that include compliance, such as
tensegrity robots, are less frequently targeted, as com-
pliance makes closing the sim2real gap more challenging.
Only recently have Real2Sim2Real (R2S2R) frameworks
been developed that focus on deformable elements (e.g., a
system that manipulates deformable cables [17]).

This work applies the principle of R2S2R to the control of
deformable robots composed of both rigid and soft elements.
More specifically, this work introduces an R2S2R pipeline
for tensegrity robots, through which a policy learned on a
differentiable engine is transferred to a 3-bar tensegrity robot
(Fig. 1) by first training the engine with data from the real
robot. This paper contributes:
• A  complete pipeline for identifying the parameters of a

differentiable simulator from real tensegrity robot trajecto-
ries, generating locomotion policies in the simulator, and
transferring the policies back to the real robot.

• A  method to compute non-zero gradients at contact points to
enable efficient learning of contact parameters in the
optimization step of the engine’s identification process.

• A  loss function and trajectory segmentation strategy to
avoid conflicts in gradient direction during training under
noisy observations. Non-convex trajectories lead to gradi-
ents with opposite directions at different time steps. Thus,
the trajectory is segmented into convex segments to ensure
the gradient directions computed are aligned.



I I . R E L AT E D  WO R K

Sim2real transfer has been applied in autonomous un-
derwater vehicles [18], drones [19], [20], muscles [21],
quadruped robots [22], soft robots [23]–[25], and grasping
manipulators [26]. To the best of the authors’ knowledge,
this is the first work that mitigates the sim2real gap for a
tensegrity robot.

Differentiable physics has been actively applied to sys-
tem identification. Compared to artificial evolution ap-
proaches (e.g., genetic algorithms, particle swarm optimiza-
tions, and covariance matrix adaptation evolution strategies)
and domain-randomization methods, gradient-based methods
like differential physics are data-efficient and can lead to
faster convergence for complex robot systems [27], [28]. We
previously developed a differentiable engine for tensegrity
robots [7]–[9], although prior work has been limited to only
sim2sim transfer and never demonstrated on a real tensegrity
robot.

Prior work on tensegrity locomotion [29]–[31] has
achieved complex behaviors, sometimes on uneven terrain,
using the NASA Tensegrity Robotics Toolkit (NTRT) simu-
lator [32], which was manually tuned to match a real plat-
form [33], [34]. Many prior approaches use reinforcement
learning (RL) to learn policies given sparse inputs, which
can be provided by onboard sensors [30] and aim to address
the large data requirements of R L  [31], including by training
in simulation. Simulated locomotion, however, is hard to
replicate on a real platform, even after hand-tuning, which
emphasizes the importance of training a simulator that can
produce policies that can be transferred to a real system. A
website accompanying this paper with videos and additional
evaluation is available1.

I I I . RO B OT DESIGN

This work demonstrates and evaluates the R2S2R pipeline
on the untethered 3-bar prismatic tensegrity robot shown in
Fig. 1. The tensegrity robot has a rod length of 36 cm, and it is
driven by motors that extend and contract its cables to shift its
center of mass. The six short cables (three on each side) are
actuated by the motors while the three longer tendons in the
middle are passive elastic elements. These passive tendons
double as stretch sensors, and there are also six sensor
tendons in parallel with the six actuated cables. The design
and characterization of the stretch sensors are detailed in
previous work [35]. Each sensor is calibrated individually by
fitting a linear model to map capacitance measurements to
corresponding lengths [36]. The stretch sensors are used both
for feedback control and for pose estimation, as described in
section IV-B.

I V. R E A L 2 S I M 2 R E A L  P I P E L I N E

The following discussion describes the various compo-
nents of the proposed R2S2R pipeline as outlined in Fig. 2.

1 An appendix with addtional material and accompanying multimedia can
be found at: https://sites.google.com/view/sim2real

Fig. 2: R2S2R pipeline. A  randomly generated policy is executed
first on the robot. An overhead RGB-D camera captures the
trajectory to estimate the robot’s state at each frame. Internal robot
parameters are then identified with a differentiable physics engine
given robot states and offline measurements. Given the identified
model, new policies are generated and executed on the robot. The
process can be repeated to further close the sim2real gap. Red
blocks correspond to real-robot tasks; blue blocks correspond to
simulation tasks. Labels correspond to sections in the text.

A. Random Policy and Real World Execution
The first step in the R2S2R pipeline is to generate a

random policy and execute it on the real robot. The policy is
defined as a list of robot cable lengths (0 means fully
contracted and 1 means fully extended) that represent a series
of target robot shapes. To transition between these high-level
shapes, a PID controller extends or contracts the actuated
cables by sending low-level control signals based on the
feedback from the robot cable length sensors until the robot
reaches the next target shape. All policies start from the robot
rest state where the robot sits on the ground with the six
actuated cables fully extended, as shown in Fig. 1.

B. State Estimation
The next step is to estimate the robot states, i.e., the

position and orientation of each rod, at each time frame. We
adopt a state estimation method [37] designed for tensegrity
robots. This method tracks the 6-DoF pose of each rod given a
multi-modal input sequence of RGB images, depth images,
and measured cable lengths from the onboard stretch sensors.
The tracking method incorporates a variety of physical con-
straints, and it performs state estimation with high accuracy
and robustness to self-occlusions. Further, RANSAC [38] is
used for ground detection so that contacts between end caps
and the ground could be found(Section IV-D).

Fig. 3: (Left) Measured physical parameters. Mass and length are in
grams and mm, respectively. (Right) Force-displacement curves for
long tendons (N = 11). A  third-order polynomial was fit to each
curve, and the average was used in the simulator.

C. Offline Robot Measurements
Physical parameters inside a simulator (e.g., mass, radius

of the end caps, lengths of the rods, inertia tensor, stiffness
coefficient, coefficient of friction, etc.) are key to modeling a
real robot with high fidelity. However, identifying all of
these parameters in one optimization is challenging. Instead,

https://sites.google.com/view/sim2real


we measure some of these parameters offline and use them
as inputs to the simulator. The measured mass and physical
dimensions of the robot’s components are listed in Fig. 3. We
also collected stiffness data for the long, passive tendons. A
batch of 11 sensor tendons was measured on a materials
testing system (Instron 3345) and fit with a third-order
polynomial; we averaged the curves to input a single model
into the simulator. The short, actuated cables are inelastic
and modeled with high stiffness in the simulation.

D. System Identification
Physical parameters like the coefficient of friction and the

speed of the robot’s motors are difficult to measure offline.
We have previously introduced a differentiable physics en-
gine that uses gradient descent to identify system parameters
from ground truth data [7]–[9]. However, this engine has
been demonstrated only in simulation. This section describes
the key differences that are necessary for system identifica-
tion when a real robot is the target platform.

Some parameters, such as the cable attachment points,
are not measured on the real robot but are crucial for
the success of the simulation. The benchmark tensegrity
simulator, NTRT [32], attaches cables at the ends of each
rod, which simplifies the modeling process. However, this
attachment strategy can lead the simulated robot to collapse
and get stuck, unable to recover because all the actuated
cables are coplanar, as shown in Figure 4 (Left). Although,
this never happens to the real robot. Instead, we put the
cable attachment points on the surface of the end caps. This
setup prevents the collapsing and results in a more stable
simulation, as shown in Figure 4 (Right). Note that these
attachment points are not available in the observations; we
implement a heuristic to infer their positions.

Each rod has six attachment points that are distributed
symmetrically and evenly on two end caps. Attachment
points are placed evenly at robot construction every 2π/3
along the disk that is perpendicular to the rod. So it is
possible to infer all attachment points from only one of them.
At the robot rest state, one rod is in the center and the other
two rods are on the side. Referring to Fig. 5, we first compute
point A  directly, which is on top of the end cap. Then B , C ,
can be inferred from it. Since the segments A D , B E , C F
are parallel to the rod, points D , E , F  on the other end are
computed based on points A, B , C .  Points G , H  are closest
to points B , C .

Fig. 4: (Left) After certain controls, the robot collapses onto the
ground if all cables are attached to the end of the rods. (Right)
With the same control sequences, the robot does not collapse if the
cables are attached on the surface of the end caps.

Before each trajectory, the real robot resets itself to the rest
state. We also reset the simulator to align with the real robot’s
initial state using the data collected at time t =  0, including
both cable lengths and end cap positions. The initial pose

Fig. 5: Cable attachment points on the end caps in the rest state.

generated by the state estimation algorithm (Section IV-B)
may not have the robot perfectly resting on the ground due to
the limitations of the sensors. Thus, we added gravity to the
simulation to force the lowest end caps to come in contact
with the ground.

After initializing the robot in simulation, we use the dif-
ferentiable physics engine to identify the remaining physical
parameters by performing gradient descent over a trajectory.
To accomplish this task, we introduce a detachment method
to compute nonzero gradients at contact points in order to
efficiently learn contact parameters. Furthermore, the long-
horizon trajectories and noisy observations from the real
robot can lead to conflicts in the gradient direction. To
combat these conflicts, we introduce the Key Frame Loss
(KFL)  function to segment the trajectories and compute
losses at gait transitions. The detachment method and K F L
are described in Sections IV-F and IV-G, respectively.

E. Developing Policies with Symmetry Reduction
Policy search on tensegrity robots is challenging due to

combinatorial explosion since a sequence of control signals
for each actuation cable with unknown time horizon are need
to be discovered. Symmetry reduction has been developed
for 6-bar tensegrity robots [31], [39] to reduce the policy
search space. Here, we apply symmetry reduction to our
3-bar tensegrity robot and combine it with hybrid control,
where a high-level planner outputs the next target state and a
low-level PID controller commands the cable lengths.

Fig. 6: (Left) The robot principle axis (yellow) is the average
direction of the three rods. The forward direction is indicated by the
cyan arrow; the backward direction is indicated by the orange arrow.
(Right) Two robot poses, with different types of bottom triangles,
are mapped after rotating π radians around the ground normal.

To reduce the state space via symmetry reduction, we
use a relabeling scheme defined with respect to the support
triangle. We define the robot’s state in Fig. 6 (Left) as the
reference state, from which we can rotate the robot about its
principle axis (the yellow line in Fig. 6) by intervals of π/6
to get 2 types of support triangles with opposite forward and
backward directions. To map from one type of support
triangle to the other, we rotate the robot by π around the
ground normal. After all rotations, we identify the mapping
by computing the closest end caps to the reference state.
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To generate gaits, i.e., time-ordered sequences of target
poses, we conduct a graph search starting from the rest pose.
These short gaits are mapped to long control policies via
symmetry expansion. The nodes of the graph are robot poses
represented by binary cable lengths (0 is retracted and 1
is extended), and the edges of the graph are cable controls
(retract, extend, or hold). To limit the search space, we search
to a depth of 4. The root node and leaf nodes are in the
same rest pose where all cables are fully extended. We use
the center of mass displacement as the reward function to
generate one forward and one backward rolling gait. We use
principal axis rotation as the reward function to generate
clockwise and counterclockwise turning gaits.

F. Detachment Approach for Contact Gradients
Impulse-based dynamics can’t be directly applied to dif-

ferentiable simulations due to a zero gradient issue [40]. We
propose a “detachment” method to obtain nonzero gradients
for contact parameters e, µ. Passive forces, such as restitution
and friction generate equal gradients in opposite directions,
and gradients of these forces should not be backpropagated.
The detach() function [41] returns a new tensor detached
from the computational graph, truncating the gradient prop-
agation path.

Our detachment method can be applied to learn the
restitution e and the force F  =  mg −  N , which is shown in
Algorithm 1. The difference of speed (∆v) and position
(∆x)  at time t +  1 and time t are detached to stop the passive
force gradient from backpropagating. Otherwise, the gradient
would be dxt+1 /de =  0.
Algorithm 1 Detachment Method for Restitution

v ′ =  vt −  g∆t  +  F /m∆ t
∆v  =  − ( 1  +  e)vt+1.detach()

t + 1
if x t  <  ground then

∆ x  =  ground −  x t
x t + 1  =  x t  +  v t + 1∆t  +  ∆x.detach()

else
x t + 1  =  x t  +  v t + 1∆t

end if

The detachment approach is also used for learning friction
parameters, as shown in Algorithm 2. We detach ∆v  because
the friction force is a passive force. We add the term − ∆ p f  +
∆p f  .detach() to pass the gradient to µ in the case where
there is only static friction. This term guarantees that µ can
always be updated by the gradient, no matter if the initial µ
is higher or lower than the actual one. The evaluation of the
contact gradients and integration with Time of Impact (ToI)
computations can be found in the accompanying appendix
available online1.

G. Key Frame Loss
System identification with long trajectories is difficult due

to sensing noise and the non-monotonicity of trajectories.
As shown in Fig. 7, the later observations are preferable

to reduce the fitting error. Consider a simple example of a
1D trajectory from x  =  vt with length T . We are given two

Algorithm 2 Detachment Method in Friction Computation

v ′ =  vt +  F /m∆ t
∆v  =  −v ′ .detach()
∆p f  =  µN ∆t/m
if |∆v| >  ∆p f  then ∆v  =  ∆v  � ∆p f  /|∆v|
else ∆v  =  ∆v  −  ∆p f  +  ∆p f  .detach()
end if
vt +1  =  vt +  F /m∆ t  +  ∆v
x t + 1  =  x t  +  v t + 1∆t

Fig. 7: Fitting the ground truth line (green) with two noisy
observations, pi  and pj . Although pi  and p j  have the same sensing
error, the fitted line (red) by p j  is better than that by pi . x  =  vt is a
linear function (Left). y =  f (t)  is a non-convex function (Right).

data points, pi =  (t i , xi ) and pj  =  (t j , x j ) .  ti  is close to 0
and t j  is close to T . x i  and x j  have the same observation
error relative to the ground truth. v is the parameter to
estimate. Fig. 7 (Left) shows that the fitted line by pj  is
better than that by pi . Moreover, if x  =  f (t)  is a non-
monotonic function, which is closer to reality for tensegrity
robot trajectories, the fitted line by pi is worse as shown
in Fig. 7 (Right). The trajectory of an end cap is noisier
around time t =  0 because of the sudden motor activation.
Note that the loss landscape may be non-convex due to
contradictions in gradient directions, which can interfere with
the optimization step. As shown in Fig. 8, three losses yield
opposite gradient directions.

Fig. 8: The ground truth trajectory (green) includes three targets,
x1 , x 2  and x3 . The unidentified engine (red) has a lower speed and
takes more time to reach the targets. Three losses are computed at
these targets. The gradients at loss1 and loss3 pull up the red line;
however, the gradient at loss2 drags it down.

The multiple-shooting (MS) method has been applied
for system identification with long trajectories [42]. MS,
however, needs full robot observations (i.e., positions and
velocities of each end cap) to initialize the simulator. The
defects may lead to contradicting gradient directions.

We introduce the Key Frame Loss (KFL)  function, which
splits the robot trajectory into a list of monotonic segments
using unidirectional control intervals. We only consider the
loss from the last frame in each segment. There are four



Fig. 9: (Left) The multiple-shooting (MS) method needs both positions and velocities at each time step so the simulator can align with the
ground truth at intermediate time steps. It uses the entire length of a time window to compute defects between the ground truth and the
simulator. The window size is empirical, and the defects may provide contradicting gradient directions. (Right) The K F L  method only needs
positions at each time step. The trajectory is split into segments based on unidirectional control intervals. The time step at the end of the
control signal is the key frame where the defects are computed. The window size is the same size as the control interval, and the defects
provide consistent gradient directions.

departures of K F L  from MS: 1) K F L  only needs partial
observation, i.e., it only requires end cap positions, not their
velocities; 2) In the intermediate time steps, we do not aim to
recover the simulator from the partially observed state since
we do not know velocities; 3) The observation frequency
does not have to be constant; 4) The shooting time window
size is not fixed. Fig. 9 provides a comparison between MS
and K F L .

The benefits of K F L  are that it 1) eliminates the factor of
time, 2) makes system identification robust to observation
noise, and 3) ensures the correct gradient direction. This
strategy can be generalized to other optimization problems
using trajectories as ground truth data: trajectories can be
split into monotonic segments, and the K F L  can be applied at
the final frame of each segment like in this work.

Fig. 10: (Above) The ground truth (GT) and engine-predicted
trajectory are split into three gaits based on the control intervals.
(Below) The gaits are aligned at the starting points and their key
frames (KF0, KF1, KF2) are the last time frames of each
intersection. The predicted trajectory takes less time in gait 0 and 2,
but more time in 1, which leads to contradicting gradient directions.

To get the key frames, we split the trajectory into gaits
for monotonic segmentation, as in Fig. 10. In each gait, each
cable follows only one of the possible controls: retracting,
holding, or extending. These controls form a convex tra-
jectory segment, avoiding the zig-zag trajectory that leads
to contradicting gradients shown in Fig. 8. The key frame
(KF) is the last time step of each gait. Consider an example
trajectory with three gaits, as shown in Fig. 10. Both the
ground truth (red) and the engine-predicted trajectory are
split into three gaits. The corresponding gaits are remapped,
and the KFs  are the last time frames of their intersections.
The K F L  is the system difference, i.e., the sum of the
differences in the positions of the end caps at the KF.  We
select the last time step because 1) the observation noise
around the start of each gait may lead to worse fitting as

shown in Fig. 7 and 2) the gait transition point is where
one gait is finished; however, whether the gait execution
is complete is determined by measurements from the cable
length sensors, so it is possible the gait transition occurs
earlier or later than predicted, as shown by the gaps in
Fig. 10.

Losses from different gaits may have contradicting gra-
dients. In Fig. 10, the predicted trajectory takes less time
for gait 0 and 2, but it takes more time for gait 1. These
contradicting gradients can confuse the optimizer, as it will
not know whether to speed up or slow down. Some possible
reasons for these time differences are 1) The ground truth
timestamp is noisy due to the limitations of the sensors;
2) The noisy cable length sensor readings lead to early or
later gait transitions; 3) The starting states are not perfectly
aligned; 4) There are gaps between the simplified physics
engine and the real robot. To solve the problem, we adopt a
mask filter to handle the contradicting gradients. Our
heuristic states that the identified engine should execute the
same gaits on the robot with similar time and behavior. Then,
we take the execution time of the whole trajectory as an
indicator to filter out the opposing gradients. For example, in
Fig. 10, since the predicted trajectory takes a shorter length of
time than the ground truth, we only consider key frame
losses of gait 0 and gait 2 to slow down the engine, and we
ignore the loss from gait 1. Additional evaluation about the
K F L  can be found in the link to the appendix1.

V. E X P E R I M E N TA L R E S U LT S

Our experiments evaluate the R2S2R pipeline both in
simulation and on the real 3-bar tensegrity robot. Section V-A
evaluates key components of the proposed process, i.e., the
detachment strategy and the Key Frame Loss (KFL),  using
synthetic data. Section V-B evaluates the full R2S2R pipeline
on the 3-bar tensegrity robot shown in Fig. 1 with the
dimensions in Fig. 3. Section V-C shows the additional
improvement when a second iteration of the R2S2R pipeline
is performed.

A. System Identification with Synthetic Trajectories

We evaluate K F L  by comparing three different loss func-
tions: 1) The average defects from all time steps (All Step)
in each window; 2) The average defects of the last time step
(Last Step) in each window; 3) Our method (Ours) with K F L ,



which averages defects of the last time step in each window
and detaches the observations between each window. The
difference between these three methods is shown in Fig. 11.

observe greater variability in the CCW Turning gait. In the
simulator, this gait capitalizes on uniform friction to rotate
the robot’s principal axis; however, in the real world, the
friction between the ground and the end caps is nonuniform.
This discrepancy explains the higher variability.

TA B L E  I :  Real Robot Gait Execution Repeatability Test

Fig. 11: A  trajectory starts from the origin, moves along x, and then
returns to the origin. This trajectory can be split into 2 windows. The
ground truth trajectory (green) takes less time than the estimated one
(red). The second window of the ground truth is shifted to the right to
compute defects. (Left) The All  Step loss function averages the
defects of all time steps in each window. (Right) The Last Step loss
function averages defects from the last time step in each window.
K F L  also detaches the system state at the transition point (cyan) of 2
windows [41].

Metric

Trajectory

Mean ±  std

End CoM Position (m)

Straight CCW Turning

[-1.14± 0.02, 0.29±0.05]       [0.01±0.02, 0.29±0.02]

End Orientation (radian)

Straight CCW Turning

0.136±0.07 2.7± 0.23

To simplify the problem, only motor speed is identified in
this task (in addition to motor speed, the friction coefficient is
also identified in V-B). A  synthetic trajectory where the
motor speed is set to 0.5 is used as ground truth. The defects
are the differences in end cap positions. An Adam optimizer
with learning rate 0.1 is applied. Fig. 12 shows that our
method converges fast, smooth and stable. The curve of
the Last Step method fluctuates more due to the gradient
propagation across windows, even if the motor speed is close
to the target in later iterations. This shows the neeed for
detaching. The multiple windows approach considering all
time steps performs worse.

Fig. 12: To identify the motor speed parameter, three loss functions
are considered: All  Step (blue), Last Step (orange), and K F L  loss
with state detachment (green). K F L  loss converges better.

B. Complete Evaluation of the R2S2R Pipeline
The R2S2R pipeline has been applied twice to show

continuous improvement each iteration. In the first iter-
ation, a single robot trajectory given random controls is
used to identify the physics engine parameters, including
motor speed and friction coefficient. From the identified
engine, we generate three policies corresponding to “forward
rolling,” “backward rolling,” and “counterclockwise turning”
behaviors. These policies are mapped to two long, open-
loop gaits with symmetry reduction: a straight gait (Straight)
composed of forward and backward rolling policies and a
counterclockwise turning gait (CCW Turning) composed of
“counterclockwise turning” polices. These two gaits are
executed in simulation and on the real robot, and these
executions are shown as blue and orange lines, respectively,
in Figure 13. We also execute these gaits starting from
different positions on the ground to test the repeatability on
the real platform (Table I). The Center of Mass (CoM) and
orientation are measured at the end of each trajectory. We

Fig. 13: Trajectories in simulation and on the real robot for the
same policy. The open-loop trajectories start at (0, 0). The robot
trajectory is observed in order to generate new data to further refine
the simulator. (Left) The output for a straight-line trajectory of the
center of mass. The policy executes forward and backward motion
in the symmetry-reduction frame. (Right) The output from a
counterclockwise turning policy.
C. Continuous Improvement with R2S2R

The second iteration re-identifies the engine using the two
real robot trajectories from the first iteration, and then we
execute these policies again in simulation to show how the
R2S2R pipeline reduces the sim2real gap. The trajectories
sampled from the refined simulation are plotted as green lines
in Fig. 13. The robot position and orientation at the end of the
trajectories are compared in Table II. Generally, the CoM and
orientation errors go down in the refined simulation; how-
ever, the slightly increased CCW Turning orientation error
shows the limitations of simulating nonuniform environment
friction with a uniform friction coefficient.

TA B L E  I I :  Iterative Refined Simulation with Real Data
Metric                            End CoM Position (m)               End Orientation (radian)

Trajectory                       Straight            CCW Turning       Straight       CCW Turning

Initial Simulation           [-0.97, 0.40]         [-0.02, 0.22]            0.31                    2.36
Real Robot Execution       [-1.11, 0.32]          [0.02, 0.29]             0.02                    1.78

Refined Simulation          [-1.11, 0.29]          [0.05, 0.30]             0.12                    2.45

Initial Error                        0.16                        0.26                    0.09                    0.04
Refined Error                       0.03                        0.06                    0.03                    0.13

Qualitatively, the trajectory executed on the robot has the
same behavior as the initial simulation. After the second
iteration, the simulation trajectory is even more similar to
the real robot trajectory, as shown in Fig 15 and 16.

After the second iteration of system identification, two new
clockwise turning polices are generated, and these policies
are mapped to two long, open-loop gaits (Figure 14). The
deviations are larger for the arching gait (Figure 14 Left)
because of the nonuniform friction between the end caps
and the ground. This gait covers a larger area, and the
coefficient of friction is not uniform everywhere on the floor.



Fig. 14: Two new clockwise turning trajectories are executed in
simulation and on the real robot. The open-loop trajectories start at
(0, 0). (Left) The arch turning trajectory. (Right) The in-place
turning trajectory.

Fig. 15: The frame-by-frame comparison of the straight trajectory
execution in simulation and on the real robot.

We observe smaller deviations for the in-place turning gait
(Figure 14 Right) where the robot is confined to a much
smaller region. Qualitative visualization is also avaliable in
Fig 17 and Fig 18.

V I . CO N C L U S I O N

This paper demonstrates an R2S2R pipeline that mitigates
the sim2real gap for tensegrity robots and develops locomo-
tion policies that can be seamlessly transferred to real robots.
The sim2real gap is reduced by using a differentiable physics
engine that learns system parameters from real robot data
via gradient descent. The simulation can then generate new
locomotion policies and extend them for long trajectories
via symmetry reduction. After transferring these policies to
the real robot, the simulation can be continuously improved
by re-identifying the system parameters from the recorded
trajectories. To enable efficient system identification, we
introduce and experimentally validate the detachment ap-
proach for computing contact gradients and the Key Frame
Loss with a trajectory segmentation strategy. In future work,

Fig. 16: The frame-by-frame comparison of the counterclockwise
turning trajectory execution in simulation and on the real robot.

Fig. 17: The frame by frame comparison of the clockwise arching
trajectory execution in simulation and on the real robot.

the accuracy of the physics engine could be improved by
allowing the system to identify the physical parameters of
each component (e.g., the stiffness of each sensor tendon)
and adapt online as these parameters change over time.
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Schrauwen, and V. SunSpiral, “Design and control of compliant
tensegrity robots through simulation and hardware validation,” Journal
of the royal society interface, vol. 11, no. 98, p. 20140520, 2014.

[35] W. R. Johnson, A. Agrawala, X .  Huang, J. Booth, and R. Kramer-
Bottiglio, “Sensor tendons for soft robot shape estimation,” in IEEE
Sensors.     IEEE,  2022, pp. 1–4.

[36] W. R. Johnson, J. Booth, and R. Kramer-Bottiglio, “Integrated sensing in
robotic skin modules,” in 2021 IEEE  Sensors.      IEEE,  2021, pp. 1–4.

[37] S. Lu, W. R. Johnson III, K .  Wang, X .  Huang, J. Booth, R. Kramer-
Bottiglio, and K.  Bekris, “6n-dof pose tracking for tensegrity robots,”
arXiv preprint arXiv:2205.14764, 2022.

[38] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[39] D. Surovik, J. Bruce, K .  Wang, M. Vespignani, and K.  E. Bekris,
“Any-axis tensegrity rolling via bootstrapped learning and symmetry
reduction,” in ISER, Buenos Aires, Argentina, 11/2018 2018.

[40] K .  Werling, D. Omens, J. Lee, I. Exarchos, and C. K .  Liu, “Fast and
feature-complete differentiable physics engine for articulated rigid
bodies with contact constraints,” in RSS, 2021.

[41] Pytorch, “Pytorch Detach Method,” Accessed 2022, https://pytorch.
org/docs/stable/generated/torch.Tensor.detach.html.

[42] E. Heiden, C. E. Denniston, D. Millard, F. Ramos, and G. S. Sukhatme,
“Probabilistic inference of simulation parameters via parallel differen-
tiable simulation,” ICRA, 2022.

[43] Y.  Hu, L .  Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley, and
F. Durand, “Difftaichi: Differentiable programming for physical
simulation,” ICLR, 2020.

https://arxiv.org/abs/1906.01728
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim
https://pytorch.org/docs/stable/generated/torch.Tensor.detach.html
https://pytorch.org/docs/stable/generated/torch.Tensor.detach.html


∂ x̂
∂ F

APP ENDI X

A. Contact Gradients with/without "Detach"

To highlight our "Detach" method in the contact model,
we design three toy problems to show how our method could
generate correct gradient for parameter optimization.

The first test evaluates Algorithm 1 and cor-
responds to a trajectory optimization challenge
from the literature [40], where a drone is taking
off from the ground and reaching a fixed height
at t =  500. The loss is the Mean Square Error
(MSE) of the estimated drone’s height x̂  against

the ground truth height that is x  =  10m.
The clamping contact between the drone and ground

causes zero gradients and halts progress in the optimization
as the passive contact generates an opposite equal gradient to
F. After detaching the contact velocity impulse ∆v  and posi-
tion impulse ∆ x  from the computation graph of Algorithm 1,
the correct gradient keeps increasing F  even if there is no
change in the loss for the first 100 iterations (Figure 19).

Fig. 19: We train a drone to lift off the ground to evaluate our
"Detaching" method. Loss is the MSE of the distance from drone x̂
to target x  at t =  500. The drone is initialized resting on the

ground. The gradient is zero with clamping contact. However,
after detaching the contact response ∆v(dv) from the computation
graph, the correct gradient on F  can guide the optimizer to increase F
and reach the target.

We bring the box problem,
pulling a box to the target po-
sition in 200 time steps, to eval-

uate Algorithm 2. The pulling force F  is known and the
ground friction coefficient µ is to be estimated. We take the
MSE of box position and target position as a loss function.

The initial µ is 1 and box can’t be moved with such large
friction. Our detach method can generate correct negative
gradient to reduce µ and the loss. However, without our
method, the gradient is always zero and the loss curve never
goes down.

Fig. 20: The box pulling problem shows the detaching method can
get correct gradient to reduce the friction coefficient µ. Otherwise,
zero gradients would happen on optimization of µ.

In general, we suggest to apply the "detach" method to
clamping contacts of all actuated objects. However, this

method should not be applied to objects whose movement
only relies on these passive contact forces, e.g. the billiard.
The philosophy is that we keep the "trending" gradient from
the small actuation force even if the object can’t move. This
avoids the gradient discontinuities between clamping contact
and separating contact.

Finally, we take the billiards
problem, applying F  on ball A
and aiming the ball B  to reach

a target position in 500 timesteps, to evaluate the detaching
philosophy - only detach actuated object. The loss is the
mean MSE of B ’s  position and target position.

We compare the differences between detaching both A , B
and detaching A  only. As we suggested, we should only
detach the actuated object A ’s contact response. We shouldn’t
detach B ’s  contact response, Because B  is only affected by
the passive contact forces. The result in Figure 21 shows
that detaching both A  and B  could get zero gradient on F
and no change in F  and loss. However, if we only detach the
actuated object A, we can still get the correct gradient
direction and escape the saddle point.

Fig. 21: The billiards problem shows that only detaching the
actuated object A  can get the correct gradient on actuation force F
to reduce the loss. Detaching the passive moved object B  will
isolate B  from gradient passing, which result to zero gradients on
F .

B. Gaits Transition Smoothing

After generating locomotion gaits for all bottom triangles,
we have a controller to generate longer trajectories. However,
these trajectories have redundant actuation between gait
transitions. We adopt a smoothing algorithm to smooth out
the transition.

Let’s consider a simple example of gaits transition in
Figure 22. Although the following gait includes 3 steps, we
only keep the third step after removing the reset step and
finding the shortcut with minimum actuated cables. But these
shortcuts should be reevaluated because some of them may
not work due to changes in center of gravity.

C. Comparison to Alternatives on a Small-scale Problem

This section evaluates Key Frame Loss (KFL)  on a small-
scale problem where the MS alternative can be applied. A
learning rate of 0.1 and an Adam optimizer are used.

The problem involves identi-
fying the velocity of a vehicular
model so as to match a demon-
stration trajectory from a ground truth vehicle that drives
between points A  and B. The ground truth trajectory uses a
velocity v =  1 m/s to reach point B  at t =  100, return to
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Fig. 22: The current gait ends at state 110001, i.e., cables 1,2,6 are
at maximum length and cables 3,4,5 are at minimum length. The
next gait includes three steps. Step one, which is to reset the robot to
a neural state, is removed. Then we compute the distance from
110001 to the remaining two steps. We transit to step 3 directly
since fewer cables are actuated.

A  at t =  200, and reach B  again at t =  300. We compare
3 methods: a) A  naive approach that computes loss at each
step as the difference between ground truth and estimated
trajectory; b) A  multiple shooting (MS) method [42] that
splits the trajectory to multiple windows and computes the
loss by defects at the end of each window (different numbers
of windows are tested for variants MS2, MS3, MS4); and c)
the proposed K F L  method. Fig. 23 provides the comparison.

Fig. 23: Loss and velocity curve comparison during the training
process of Naive, multiple shooting with 2, 3, and 4 windows (MS),
and the Key Frame Loss method (KFL).

Only K F L  and MS4 converge to the correct velocity
(1 m/s). The other methods fail due to conflicting gradients.
We also tested MS for a higher number of windows (5 to
9). The resulting loss curves are non-smooth, but the
velocity eventually converges. The MS method samples
discrete gradients on a continuous trajectory, so the sampling
frequency must be high enough to compute correct gradients,
which need to be discovered empirically. At the same time,
the frequency should not be too high for noisy ground truth
data, as the noise may dominate the optimization. The K F L
approach splits the trajectory by “gaits” (i.e., the trajectory
segment where the robot moves to a specific point), and this
allows it to compute correct gradients.

D. Detachment Method for Restitution with Time of Impact
(TOI)

For more accurate contact point computation, the Time of
Impact (TOI) is introduced [43] to compute the exact time
that the contact happens. The detachment method can also
integrate with TOI for restitution inference, which is shown
in Algorithm 3.

E. Tensegrity Robot Locomotion and Applications
Tensegrity robots’ compliance gives them the ability to

adapt to unstructured terrain and survive harsh impacts, mo-
tivating them as future planetary rovers [34]. Many tensegrity

robots achieve locomotion by changing their tendon lengths
to shift their center of mass outside of their polygon of
stability and therefore roll [5]. Electric motors that drive
winches are commonly used to extend and contract tensegrity
robots’ cables [4]. The 3-bar tensegrity robot used in this
work has six such motors that drive winches to extend
and contract six cables (the remaining three tendons are
passive elastic elements) in order to shift the robot’s center of
mass and achieve locomotion. The robot can demonstrate the
different locomotion policies enumerated in this paper
(forward rolling, backward rolling, counterclockwise turning,
and clockwise turning) by controlling its six cable lengths to
match a sequence of target shapes. Sensor tendons [35] that
run parallel to each actuator sense the length of the cables
and provide feedback to a PID controller so that the robot can
execute the locomotion policies with high fidelity. In future
work, we aim to demonstrate this lightweight, adaptable
tensegrity robot navigating unstructured terrain and
maintaining robust control even when subjected to harsh
impacts.

Algorithm 3 Detachment Method for Restitution with TOI
v ′ =  vt −  g∆t  +  F /m∆ t
x ′ =  x t  +  v ′ ∆ t
∆v  =  − ( 1  +  e)v ′ .detach()
vt +1  =  v ′ +  ∆v
if x t  >  ground then

toi =  (x t  −  ground)/max(−vt , 10−4 )
toi =  toi.detach()

else
toi =  0

end if
if x ′ <  ground then

∆ x  =  ground −  x ′

x t + 1  =  x t  +  v t + 1∆t  +  ∆x.detach() −  toi∆v
else

x t + 1  =  x t  +  v t + 1∆t
end if


