How to Support ML End-User Programmers through a
Conversational Agent

Emily Arteaga Garcia
Oregon State University
Corvallis, OR, USA
arteagae@oregonstate.edu

Marco Gerosa
Northern Arizona University
Flagstaff, AZ, USA
marco.gerosa@nau.edu

ABSTRACT

Machine Learning (ML) is increasingly gaining significance for end-
user programmer (EUP) applications. However, machine learning
end-user programmers (ML-EUPs) without the right background
face a daunting learning curve and a heightened risk of mistakes
and flaws in their models. In this work, we designed a conversa-
tional agent named “Newton” as an expert to support ML-EUPs.
Newton’s design was shaped by a comprehensive review of existing
literature, from which we identified six primary challenges faced by
ML-EUPs and five strategies to assist them. To evaluate the efficacy
of Newton’s design, we conducted a Wizard of Oz within-subjects
study with 12 ML-EUPs. Our findings indicate that Newton effec-
tively assisted ML-EUPs, addressing the challenges highlighted in
the literature. We also proposed six design guidelines for future
conversational agents, which can help other EUP applications and
software engineering activities.

CCS CONCEPTS

« Computing methodologies — Machine learning; « Human-
centered computing — Human computer interaction (HCI).

KEYWORDS

End-user programming, Conversational Agent, Wizard of Oz

ACM Reference Format:

Emily Arteaga Garcia, Jodo Felipe Pimentel, Zixuan Feng, Marco Gerosa,
Igor Steinmacher, and Anita Sarma. 2024. How to Support ML End-User
Programmers through a Conversational Agent. In 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE 2024), April 14-20,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3597503.3608130

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE 2024, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04...$15.00
https://doi.org/10.1145/3597503.3608130

Joao Felipe Pimentel
Northern Arizona University
Flagstaff, AZ, USA
joao.pimentel@nau.edu

Igor Steinmacher
Northern Arizona University
Flagstaff, AZ, USA
igor.steinmacher@nau.edu

Zixuan Feng
Oregon State University
Corvallis, OR, USA
fengzi@oregonstate.edu

Anita Sarma
Oregon State University
Corvallis, OR, USA
anita.sarma@oregonstate.edu

1 INTRODUCTION

Machine learning (ML) lies at the intersection of computer science,
mathematics, and statistics [10, 16, 18, 22, 47] and has become wide-
spread in research and commercial software development. For ex-
ample, ML drives data-driven user experience and decision-making
in software engineering, where it is being used to analyze patterns
in large datasets. A broad spectrum of businesses has embraced
ML, and its adoption has been growing each year [10]. ML has
also caught the attention of business leaders, governments, and the
general public [18, 47]. This has resulted in a large class of users
who use ML for their work or to improve their careers, whom we
refer to here as ML End-User Programmers (ML-EUP).

It is challenging to start using ML, as it involves extensive time
and effort from ML-EUPs [5, 48]. Understanding the workings of
ML models requires a thorough comprehension of programming
and mathematical concepts such as linear algebra and probability,
which can be challenging for ML-EUPs without a strong background
[5, 21, 25, 30, 32-34, 36, 38, 50]. Indeed, empirical studies have re-
ported challenges ML-EUPs face when developing ML software. For
example, Martinez-Fernandez et al. [33] reported that not having
end-to-end pipeline support can be challenging, especially when
deciding which algorithm to use [9, 21, 41]. Similarly, comprehend-
ing the actions and rationale of an ML model, as well as assessing
the accuracy of its predictions, is challenging [16]. Even experi-
enced ML-EUPs face challenges when handling intricate datasets
or unfamiliar issues. They often have to dedicate significant time
and effort to preprocess and fine-tune the input before creating and
running ML models [4, 16].

In software engineering, ML models are used to detect bugs, per-
form code repair, and facilitate DevOps, to name a few applications
[24, 45]. As more and more software development tasks depend
on ML, a larger population of software engineers are using ML in
their daily tasks. Incorrect ML models can lead to inefficiencies and
errors [4]. While automating parts of the ML pipeline can help, the
large variety of ML-EUPs with varying levels of experience makes
it difficult to serve the needs of all users (i.e., solutions for advanced
users do not match the needs of ML novices) [16].

Researchers often recommend learning from an expert while col-
laborating on a task as a strategy to overcome these challenges [16,
19, 21]. However, not all ML-EUPs have access to ML experts, and
many ML experts do not have the time to teach ML novices.

To bridge this gap, in this paper, we explore how a conversational

https://doi.org/10.1145/3597503.3608130
https://doi.org/10.1145/3597503.3608130
https://doi.org/10.1145/3597503.3608130

ICSE 2024, April 14-20, 2024, Lisbon, Portugal

Phase 1 - Identify the needs of ML-EUP

Search: 8 / 47 34 Q
—, Snowballing: +8 challenges
6 challenges

Total: 16 pap:rs] @ <

Literature Open Negotiated /%

! - ~
Review Coding Agreement 5 strategies

Phase 2 - Conversational Agent Design

Wizard WoZ
.- Features ¢ [=] 5 .
ROE itr Script
® L e a5 ek
- Newton Sandboxing ML
6 challenges 5 strategies Design N=10 Mining

Phase 3 - Wizard of Oz Study

o3)

Post experiment

E — Questionnaires Observations S
' I Hs Challenges

Experimental/Control = Inter-actlon‘PatFerns
N=12 Design Guidelines

Within-Subjects

Transcripts

Data Collection Evaluation Results

Figure 1: Method overview showing the three phases in our
study.

agent can serve the role of an expert and scaffold ML-EUPs in their
tasks. For the agent to effectively role-play as an expert, it must
provide advice specific to the task at hand and elucidate the purpose
of each ML action upon request, providing contextualized guidance
as needed.

To create an effective conversational agent, the first key step is
to comprehensively understand ML-EUPs’ challenges, needs, and
interaction patterns. While some papers discuss educational chal-
lenges using conversational agents [8, 31, 42, 51], to the best of our
knowledge, no research has investigated the use of conversational
agents to support ML-EUPs in completing ML tasks. Consequently,
there’s a notable absence of guidance on designing such agents. In
this sense, this paper seeks to answer: How can a conversational
agent support ML-EUPs?

Toward this goal, we adopted a systematic approach to design a
conversational agent tailored for ML-EUP assistance, as illustrated
in Figure 1. In Phase 1, we determined the key challenges (and
recommended solutions) that researchers have identified for ML
users. We reviewed existing work discussing the challenges in us-
ing ML, which we qualitatively analyzed using open coding and
negotiated agreement. In Phase 2, we designed a conversational
agent (Newton) to incorporate the recommended solutions as a
plugin for Python Jupyter lab. In Phase 3, we conducted a Wizard
of Oz (WoZ) lab study. Within the WoZ approach, human experts
simulate all or parts of the system responses. The WoZ method of-
fers a cost-effective, adaptable, and user-centric method for system
design and evaluation, especially when existing technology falls
short of the desired functionality [15, 17].

Our lab study adopted a counterbalanced, within-subjects de-
sign. Participants tackled a classification problem sourced from
two distinct Kaggle competitions. In the Experimental group, par-
ticipants used Newton; in the Control group, they could use any
online resource. We logged the interactions with Newton, specifi-
cally noting features or strategies that effectively aided participants
in overcoming challenges as they crafted their ML models.

Emily Arteaga Garcia, Jodo Felipe Pimentel, Zixuan Feng, Marco Gerosa, Igor Steinmacher, and Anita Sarma

Our research revealed a significant decrease in challenges faced
by participants when using Newton compared to not using it. We
found that Newton’s features such as decomposing into a set of
steps and presenting them as dynamic checklists, generating code
snippets, and providing help through predetermined help buttons,
on-demand documentation, and chat responses are helpful in suc-
cessful task completion. However, some features occasionally had
unintended consequences. For instance, when participants grew
impatient waiting for Newton’s response, they would experiment
on their own. This occasionally led to receiving out-of-context
responses from the agent. Informed by the study insights, we for-
mulated 6 design guidelines to optimize conversational agents that
facilitate software development for ML-EUPs.

2 CHALLENGES AND STRATEGIES IN
ADOPTING ML

In our initial phase of designing the conversational agent, we re-
viewed existing literature to identify challenges faced by ML-EUPs
in applying ML and recommended mitigation strategies. The first
three researchers conducted this process. We surveyed IEEE and
ACM digital libraries using keywords pertinent to our study: “Chal-
lenges in Machine Learning,” “Challenges in applying Machine
Learning,” “Challenges in Machine Learning for Software Engi-
neers,” and “Challenges and Strategies for learning ML Our initial
search yielded 47 publications.

We filtered out papers with fewer than eight pages because hav-
ing more than eight is a typical requirement for full papers [49].
Then, based on reviewed abstracts and titles, we filtered out publi-
cations that did not explicitly focus on investigating challenges and
strategies in learning and applying ML. Finally, we selected eight
papers and then performed an iteration of backward snowballing
as suggested by Wohlin [52], resulting in eight additional papers.
Our final list comprised 16 papers.

To identify the challenges in ML, the same three researchers
independently analyzed the papers following the open coding pro-
tocol [20]. We held weekly meetings to present and discuss our
findings until we reached an agreement. We extracted 34 challenges
from the papers and agreed to classify them into ten categories. We
then filtered out four categories not focused on the initial stages of
applying ML, namely: ethics, different disciplines, project manage-
ment, and security. The final categorization is described below.

2.1 Challenges in Using ML

Challenges associated with using ML were split into two groups:
overarching challenges and pipeline-specific challenges. The former
includes three challenges that occur through different stages of
using ML: decision-making, programming, and explainability. The
second group refers to specific steps of the ML pipeline, including:
data wrangling, modeling, and quality evaluation. Table 1 presents
the challenges with the papers that reported them.

Table 1: Summary of challenges reported in literature.

Code Challenge Publications
C1 Decision Making [9. 21,41]
Cc2 Programming [3. 4,9, 21, 25, 32, 41, 53]
C3 Explainability [5, 21, 30, 32, 48]
C4 Data Wrangling [4, 9. 16, 21, 25, 30, 32, 33, 41]
C5 Modeling [16, 36, 38]

Cé Quality of Evaluation [5, 16, 21, 32, 34, 36, 41, 48]

How to Support ML End-User Programmers through a Conversational Agent

C1. Decision-Making is challenging because developing an ML
model requires many decisions beyond programming expertise. For
instance, users must decide which algorithm to use, what hyperpa-
rameters to tune, and how to preprocess/clean data before training
ML models [9, 21, 41].

C2. Programming is challenging since ML modeling differs
from traditional software development [9, 53]. The performance of
each model highly depends on the quality, quantity, and variability
of data [3, 4, 9, 21, 41]. For example, feature engineering in ML can
be challenging when data is high-dimensional, noisy, and unstruc-
tured, which may require particular ML programming expertise
such as deletions, additions, combinations, or mutation of models
[25, 32].

C3. Explainability poses a challenge for large and compli-
cated models, especially for users who lack background knowl-
edge/expertise [5, 48]. ML models are inherently complex, often
functioning as black boxes where users mainly adjust parameters
to optimize performance for a particular task. This opacity compli-
cates the task for ML-EUPs, making it challenging to discern the
model’s actions and interpret its results [21, 30, 32].

C4. Data Wrangling is an initial step in the ML pipeline and is
often complicated by uncertainties in data preparation. Insufficient
knowledge regarding data cleaning and preprocessing makes this
step intricate due to data variability [4, 9, 30]. Numerous studies
concur that inadequate data preparation and manipulation before
model training present significant challenges [16, 21, 25, 32, 33, 41].

C5. Modeling can be challenging for end users as it requires un-
derstanding how to build the model and involves various decisions
(crosscuts C1), such as capturing relevant variables and using the
right functions [36]. Model development may result in overfitting,
leading to inaccurate or suboptimal predictions [16, 38]. Moreover,
modeling is intrinsically linked to programming (C2), as it demands
the seamless integration of various functions, accompanied by the
appropriate parameters and interdependencies [16].

C6. Quality of Evaluation. Understanding the quality of the
evaluation requires users to understand how the model was trained,
tested, and measured [5, 16, 32, 34, 41]. ML-EUPs may have unrealis-
tic expectations of the model’s performance, such as expecting 100%
accuracy. It can be challenging for these ML-EUPs to accept the
imperfections of ML models, leading to disappointment, distrust,
and frustration [21, 36, 48].

2.2 Recommended Strategies

Next, we reviewed the 16 publications to identify their recom-
mended strategies for addressing these challenges. We identified
five strategies (as reported in Table 2), three of which are related to
guidance and documentation (S1, 82, $3). The other two relate to
technical and efficiency optimization (S4, S5).

S1. Using Checklists is a strategy for guiding users through
their decisions (C1) while training ML Models. Checklists can also
ensure particular ML stages are not skipped or overlooked [16].

Table 2: Solutions identified in the literature.

Code Solution Publications
S1 Using Checklists [5,9, 16, 41]
S2 24/7 Expert Availability [9, 16]

S3 On-hand API Documentation [9, 30]
S4 Code Generation [32, 53]
S5 Automated Features [21, 32]

ICSE 2024, April 14-20, 2024, Lisbon, Portugal

For example, a detailed checklist of steps can provide conceptual
tutorials and examples beyond conventional API documentation
that can serve as a reference book for engineers to troubleshoot
issues and optimize performance [5, 9, 41].

$2. 24/7 Expert Availability can mitigate the following chal-
lenges: (1) Data wrangling (C4), an expert can provide valuable and
instructive insights into data extraction and pre-processing [9]; (2)
Explainability (C3), experts can help interpret the output and guide
ML-EUPs to understand the background working of ML models
[9, 16]; and (3) Quality of evaluation (C6), an expert can help users
validate, assess the results, and guide them in tuning ML models
appropriately to optimize performance [9]. While 24/7 access to
an expert can alleviate these challenges, securing such continuous
availability of a human expert is impractical.

$3. On-hand API Documentation that is provided on the same
page as the editor can help in data wrangling (C4), decision-making
(C1), and explainability (C3). On-hand documentation reduces the
need for context switching and can be more efficient. Documen-
tation can help ML-EUPs understand the data formatting require-
ments (e.g., a need for continuous and factorized variables) for
specific ML models [9] and how to transform data into such for-
mats. Documentation can provide details of different ML models
regarding their computational complexity, accuracy, and context of
use, which can help ML-EUPs select appropriate functions and al-
gorithms [9]. Finally, documentation can improve explainability by
explaining the meaning of different metrics/results (e.g., F1, recall,
ROCQ). Technical documentation that discusses the mathematical
foundation and mathematical solution samples can help users with
the appropriate background understand the different models and
the approaches to optimize model performance [30].

$4. Code generation can mitigate challenges in data wrangling
(C4) and programming (C2). Code generators can contribute to
better programming practices by generating code that adheres to
established standards for reproducibility and maintainability (e.g.,
including comments within the code) [32, 53]. Studies have shown
that using code generators can enhance the overall quality of ML
projects and contribute to their success [32, 53].

S5. Automated Features that automate parts of the ML pipeline
can alleviate challenges related to programming (C2) and quality of
evaluation (C6). Automation can be useful in reducing the amount
of programming necessary for data preprocessing or feature engi-
neering. This is achieved by automated default data preprocessing
or feature engineering, as noted by L’heureux et al. [32]. Automated
features can also play a vital role in identifying significant charac-
teristics from raw data, which can be time-consuming when coding
manually, as highlighted in the literature [32, 33]. By automati-
cally identifying relevant features from raw data to be used in the
model, automated features can bolster confidence in the results and
diminish the likelihood of human-induced errors or biases [21].

3 CONVERSATIONAL AGENT: NEWTON

In this section, we detail the design of our conversational agent,
informed by the strategies outlined in Section 2.2. Our choice to
create Newton, the conversational agent, stems from its ability to
provide 24/7 expert advice, to be adapted across platforms, and
to be seamlessly integrated into development environments via
extensions (i.e., plugins) [15]. Conversational agents have been

ICSE 2024, April 14-20, 2024, Lisbon, Portugal

shown to effectively support novices in educational contexts [28].
Newton was designed as a plugin for Jupyter Lab [23]—a popular
interactive computational notebook extensively utilized by ML-
EUPs [13, 43]. Newton integrates the chosen strategies via a suite of
features detailed in Sect. 3.1. Furthermore, Newton offers a 'wizard
mode’ to facilitate User-Newton interactions, which was especially
important for our WoZ experiment, as described in Sect. 3.2.

3.1 Newton Features

S1. Dynamic checklist: Newton presents a checklist with the stages
of the ML pipeline to guide ML-EUPs. Each step is clickable to allow
ML-EUPs to interact with the agent. The checklist also includes an
option to explain the steps. A dynamic checklist, contextualized
to the task, provides a clear view of the steps to be followed [37].

S2. 24/7 Expert availability: Cerezo et al. [11] recommend a con-
versational agent to improve communication quality by allowing
ML-EUP to contact an expert anytime. To support this, we incorpo-
rated three features in Newton: input text, help me decide buttons,
and three convenient ways to reply to previous questions (text field,
reply-box after a giving answer, and reply button to highlight the
question the user wants to reply to).

53. On-hand API documentation: Newton displays documenta-
tion by (1) providing links to the methods webpage, and (2) opening
a panel in the notebook with the relevant portion of the documen-
tation. As Mehrpour et al. [35] proposed, on-hand documentation
helps ML-EUP implement code faster, learn the design behind code,
follow examples, and receive immediate feedback.

S4. Code Generation: As per Kirwan et al. [26] guidelines, Newton
provides auto-generated code associated with the different stages of
ML contextualized to the task. Newton has access to all the context
of the notebook, including existing variables in memory, previously
executed code in order of execution, and previous chat messages.
All this information is used to generate the contextualized code.

55. Automated features: L’heureux et al. [32] posit that auto-
mated features help reduce the number of manual steps needed
by ML-EUPs by quickly providing relevant, common features. We
incorporated two automated features in Newton. The first allows
autocompleting suggestions when typing a query. The second al-
lows multiple ways of copy-pasting Newton’s provided code into a
notebook (e.g., in a cell above, in a cell below, clipboard, etc.).

3.2 Wizardmode

To incorporate WoZ support, we designed a wizard mode, where a
human expert can access and role-play as a conversational agent.
This wizard mode allows the “wizard” to access Newton’s inspection
features, reply to user queries with different types of messages,
and open side panels with custom documentation. To establish
communication with the user, the wizard mode leverages Jupyter
Lab collaborative mode, which allows different users to connect
and work on the same notebook simultaneously.

To ensure consistent responses across participants and reduce
response times—enhancing the perception of Newton as a genuine
conversational agent—the wizard adhered to a script, as recom-
mended in the literature [27, 46]. The wizard role was undertaken
by the second author of this study, who possesses extensive exper-
tise in Python programming and machine learning.

We crafted and fine-tuned the wizard’s script based on two tasks

Emily Arteaga Garcia, Jodo Felipe Pimentel, Zixuan Feng, Marco Gerosa, Igor Steinmacher, and Anita Sarma

derived from Kaggle competitions. These competitions centered
around devising classification models for heart disease and heart
mortality datasets. The methodologies adopted by competition par-
ticipants informed the script’s design. In addition, we used the
scikit-learn documentation on the classification algorithms utilized
by these competitors. This documentation elucidated definitions
and offered examples for applying scikit-learn functions. To further
optimize the script, we ran sandbox tests with ten colleagues from
the authors’ research labs.

The final script [6] contained a total of 110 messages, without
counting the ones that were built into the autocomplete engine as
those were generated from scikit-learn documentation. The script
is structured as a graph. Once the user asks a question included in
the script, the wizard follows the graph path of the topic, giving
suggestions and sub-topics as options. Most topics have other sub-
topics independent of each other. Hence, the graph has a tree-like
shape, but some sub-topics are shared and some flows trigger loops
where the wizard can follow the same flow with minor variations.

3.3 Newton Walkthrough

Consider a scenario where an ML-EUP, Danny—a professional
Python developer—wants to build an ML classification model. Fig-
ure 2 presents a snapshot of Danny’s interactions with Newton and
tags Newton features with letters (c.g..).

[Launcher X [A Classifier.ipynb x + NEWTON - CLASSIFIER IPYNB o
+ XD O» = » O\'Laauamﬁammmpmm -
20249 AM ®
.pe Copy the following code to the -~
Classifier etebock (D)

import pandas as pd
df =

import pandas as pd pd.read_csv("samplel.csv™)

df = pd.read_csv("samplel.csv") df .head()

df.head() O
0 & F EO

Suggestions (clickable)

age anaemia creatinine phosph 1. Read'read csv Documentation |

Ask a different question

0 750 o

-
1 550 o . 203:43 AM

@ Supervised learning > Linear X + | How tacreate a classifier?

URL: https://scikit- 20400 AM @
Keep fleam.org/stable/modules/linear_model html#logisti. [o0 four staps to create @] -
regression classifier. Which one dao you wantta
perform?
eea”t f— Suggestions (clickable)
. O o 1. Preprocess the data

1.1.11. Logistic regression ey mnasl

4. Validate model O
All

6. Can you explain the steps?

The logistic regression is implemented in Logisti
rather than regression in terms of the scikit-learn, Ask a different question
gression, maximum-entropy classification (MaxEn

® 20410 AM
outcomes of a single trial are modeled using a o O\
Supenvi

This implementation can fit binary, One-vs-Rest, ¢

Supervised learning > Neural network models >
Regression ®

Note: Regularization

Regularization is applied by default, which is cor Supervised learning > Stochastic Gradient Descent

> Regression ®

that it improves numerical stability. No regulariz. Supervised learning > Suppart Vectar Machines »

Regression ®
Note: Logistic Regression as a special case o | Supervised leaming > Decision Trees » Regression
) -
Logistic regression is a special case of Generaliz
The numerical output of the logistic regression, regression O

Figure 2: Newton with tagged features.
» At the beginning of the chat, Danny asks Newton to load a file (.
Newton replies to this message with the generated code to load
the file @. Most messages in the chat are responses to previous
questions. Clicking on the eye button @ highlights the question

How to Support ML End-User Programmers through a Conversational Agent

that was answered. Users can respond to an earlier question by
clicking the back-arrow button next to the question ©. which can
create parallel conversations.

» Danny adds the code to the notebook (& using the “insert cell at
the end” button @ and execute it. The user can copy the generated
code into the notebook by copying it to the clipboard and clicking
the option to put it directly in a new cell above, in a new cell below,
or in a new cell at the end of the notebook.

» After the execution, Danny asks Newton how to create a classifier,
and Newton provides a list of steps to build a classifier model @.
These steps are clickable and provide paths to different dialog flows.
They also include options such as “explain the steps,” which can
help users understand their actions and build confidence in the
output.

» Danny clicks on the “Can you explain the steps?” option, sending
it to Newton as a chat message @)). Newton replies with a follow-up
list, asking which step Danny wants to know about [Not visible in
the figure]. Clicking on a button has the same effect as replying
to the message with the button. Users can use the eye button to
see the message that was answered. Similarly, Danny could have
used the “Ask a different question” text input to reply directly to a
message and start a natural language conversation with Newton.
» In the current snapshot, Danny is using the main text field @
to find out about “regression” algorithms. He uses Newton’'s au-
tocomplete @ to see a list of autocomplete and the eye buttons
in the “Logistic regression” autocomplete option to load the doc-
umentation in the browser (3. The autocomplete feature gives
suggestions while the user is typing in the text field. This feature
can be turned on/off based on user preference. Similarly, users can
close and open multiple documentation panels at any time. Besides
presenting documentation through autocomplete options, Newton
can send messages with links to open documentation panels inside
the notebook.

4 NEWTON EVALUATION

We evaluated Newton through a counterbalanced, within-subjects
study, where participants were asked to solve a classification prob-
lem. The following evaluation questions guided our study: Q1. How
do ML-EUPs perceive the challenges when performing an ML task?
Q2. How do ML-EUPs interact with a conversational agent to solve
an ML task? Q3. What common patterns emerge when ML-EUPs
perform ML tasks?

4.1 Method

Recruitment. We recruited graduated software engineers and com-
puter science students through emails from the university lists,
direct recruitment from CS classes, and snowball sampling. Poten-
tial participants completed a survey gauging their self-perceived
proficiency in Python (given that Newton operates as a Jupyter Lab
plugin), machine learning, and general programming. In total, 48
individuals responded to the questionnaire.

Participants. From the responses, we selected 12 participants
with medium to high confidence in Python and CS programming
and very low to medium confidence in ML.

Table 3 summarizes our participants’ demographics and the ex-
periment task order and completion. All participants reported hav-
ing a CS background. Ten were Master’s students, one was a Ph.D.

ICSE 2024, April 14-20, 2024, Lisbon, Portugal

candidate, and one was a professional with a bachelor’s in CS. As a
token of appreciation, students received a $20 gift card, while the
professional received compensation of $50 in gift cards.

Study Protocol. Once the participants were selected, we emailed
the informed consent document. The studies were conducted re-
motely and followed the university IRB protocol. The experiment
sessions were recorded with the participant’s consent and lasted
around 70 minutes each.

The sessions consisted of two classification tasks performed with
and without Newton in a counterbalanced within-subjects design,
a questionnaire after each task, and a post-study questionnaire. We
defined the classification problems based on two Kaggle competition
scripts (see section 3.2). Moreover, we made small non-breaking
changes to the datasets to ensure both tasks were equivalent, had
the same complexity, and could be completed within 25 minutes.
For instance, the categorical columns of the heart mortality dataset
were originally encoded as numeric columns with @ and 1. We
changed these values to N and Y to match the notation in the heart
disease dataset, which requires an explicit encoding step.

We counterbalanced the tasks, as we show in the tasks column
in Table 3. Half of the participants started the experiment with
the heart mortality dataset (represented as a circle), and the other
half started with the heart disease dataset (represented as a square).
This counterbalancing also considered the division of control and
experiment tasks, represented by the letters C (Control—without
Newton) and E (Experiment—with Newton). After each task, par-
ticipants answered questions about the task and Newton (in the
Experimental condition).

Each task was time-boxed to 25 minutes to allow participants to
complete both treatments; in both tasks, participants were asked to
think aloud. The Control participants could use any online tool or
help to complete the task. For the Experimental task, we introduced
Newton to the participants. To familiarize them with Newton, we
showed them its different features and let them practice with a
warm-up task (e.g., asking Newton to plot a normal distribution).
After completing the warm-up task, the participants started the
task. Participants were asked to only use Newton.

Analysis. To analyze the results, three authors qualitatively ana-
lyzed Newton's log messages following a constructivist approach [12].
We inductively applied open coding whereby we identified the types

Table 3: Demographics of Participants.

ID Gend Education Preferred Confidence Tasks
ender - Language Prog. Python ML -

P1 Woman MSc [IP] Python, JS, C++ High High Low

P2 Man MSec [IP] C, C++, Python, C# High High Low

P3 Man MSc[IP]
P4 Woman MSe [IP]

Python, C++,TS Very High Very High Medium

Python, Java, C++, R Medium High Medium

[
P5 Man MSe [IP] Python, Java Medium High Low
Pe Man MSe [IP] Python Medium High Medium
P7 Man MSe [IP] Java, C, Python High High Medium

@rNEPEEe®E®MN
FeoMceEERRE®

P8 Man MSe [IP] Java, Python, C Very High High Low

P9 Man Late PhD R Medium Medium Medium

P10 Man Bachelor IS, Python High High Medium

P11 Woman MSc [IP] Python High High Medium

P12 Woman MSc [IP] IS, Python Medium Medium Low E ©

* [IP] indicates “in progress”

** The letters indicate the use of Newton (E: Experiment with Newton, C: Control without it), the
colors indicate the completion (green: success), the shapes indicate the dataset used in the task, and
the tasks are in order.

ICSE 2024, April 14-20, 2024, Lisbon, Portugal

of user-agent interaction. After multiple rounds of comparison, we
ended up further categorizing our codes into five types of inter-
actions: (a) Newton Hint: the features in which Newton displays
a hint (i.e., auto-complete messages and documentation panels),
(b) Enacted Suggestion: interactions in which the participant clicked
on a suggestion given by Newton, (c) Newton Reply: Newton mes-
sages in the chat, including the ones that contain text, options,
forms, and code suggestions, (d) User Input, and (e) Submission of
form elements by participants.

Using these categories, we analyzed the pattern of user-agent
interactions to understand how ML-EUPs would interact with a
conversational agent when building an ML model. The audio files
of the study sessions were transcribed by the first and third authors
and analyzed using an inductive, open coding process. First, we
assigned a code to the different patterns the participants applied
during the study (e.g., how the participants interacted with New-
ton, did they use one feature more than others?). These were then
merged or split as necessary to denote descriptive interaction types.

Next, we analyzed the different answers to each task. We grouped
similar responses to identify more in-depth interactions between
the participants and Newton. We also used the questionnaires to
verify if the challenges were reduced while using Newton.

4.2 Results

The study’s primary goal was not task completion, but rather to ob-
serve how participants interacted with the tasks and how Newton’s
features helped participants in their tasks. Participants were asked
to rate the tasks on a Likert scale from very bad (1) to very good (5);
All participants rated the tasks as 3 or above, indicating that they
generally thought the tasks were good, despite some participants
not being able to finish them.

Two of the participants (P4, P7) could not complete the task in
the Control condition but succeeded when using Newton. Four (P1,
P2, P3, P10) completed the task both independently and with the
assistance of Newton and six (P5, P6, P8, P9, P11, P12) were unable
to complete the task under either condition.

In the following section, we present participants’ perceptions
of challenges across both conditions (with and without Newton),
categorized based on the challenges identified in Section 2.1. Next,
we show which of Newton’s features were useful in mitigating those
challenges, from which we derive a set of design guidelines (DG).
Finally, we describe some common patterns among the participants
when performing the tasks.

4.2.1 Q1. How do ML-EUPs perceive the challenges? Figure 3 pic-
tures the post-task questionnaire responses about participants’ per-
ception of challenges (with and without Newton).

Fcontrol A 25% 42% 17%
Data Wrangling Control 2) =
Fewton B%sh 3%
F 17% 33% 3% 8%
Decision Making Control 2 °
FNewton 8% 17% 33%
Explainabilits rControl 25% 17% 42% 17%
P YL Newton 8% 25% 42%
I 179 ¥/ 25% 25%
Quality of Evaluation Control B30 506 °
FNewton 8% 17% 33%
+
Programming| CONtr®! 25% 25% 33%
[ewton e 2%
Bl strongly challenging very neutral not very Bl not challenging at all I

Figure 3: Challenges perception.

Emily Arteaga Garcia, Jodo Felipe Pimentel, Zixuan Feng, Marco Gerosa, Igor Steinmacher, and Anita Sarma

A majority of the participants in the Control group found the
different aspects of ML modeling challenging (ranging from 42%
to 50%) except for the category Programming, where the partici-
pants were split fairly evenly (33% answering very and strongly
challenging and 42% answering not very and not challenging at
all. This could be because participants were confident in program-
ming in Python (see Table 3). Our results indicate that ML-EUPs
need better support to help them face challenges related to Data
Wrangling (reported as very/strongly challenging by 42% of the par-
ticipants), Decision Making (50%), Explainability (42%), and Quality
of Evaluation (50%). These findings are in line with existing studies
[4, 9, 30].

In contrast, when using Newton, very few participants perceived
the ML steps as challenging. Interestingly, the fact that participants
did not finish the task did not impact these results.

Table 4 presents the results of the Mann-Whitney U test and
p-values. These results comparing the Control and Experimental
groups consistently showed statistically significant differences (all
p-values below the 0.05 threshold). This suggests that incorporating
the strategies identified in Section 2.2 in a conversational agent
helps reduce the perception of challenges by ML-EUPs.

In addition to filling out the Likert scale questions about chal-
lenges, participants also had the option to list any additional chal-
lenges they encountered via open-text responses. During the task
without Newton, four participants noted such challenges, which
we subsequently categorized into two groups.

Feeling overwhelmed: This challenge corresponds to users being
overwhelmed with the amount of information available online and
the difficulty in finding the right resource to build the model. P7,
P9, and P12 experienced this challenge. P12 mentioned: “...too
consuming to search for data and understand stuff since too many
options” P9 experienced similar issues: “infinite recursive googling
for syntax or function using [model parameter]”

Feeling inadequate: P1 and P5 reported potential issues with
self-confidence while developing the model. For example, P1 said:
“I'would also add that I felt low confidence. I wasn’t super sure what I
was doing but I tried to fill my knowledge gaps by looking up tutorials”
Similarly, P5, who stayed on the same step (loading data) and after
trying different methods for a long time, expressed their frustration:
“I had an issue in loading the dataset. I don’t know why!”

Only one participant reported an additional challenge (P1) for
the Experimental condition (with Newton). They mentioned their
lack of self-confidence when working on their task “I think the only
other challenge was again low self-confidence. Newton helped me
figure out the series of steps I should take to build the model, but I

was still unsure of how to correctly interpret the results ...”
4.2.2 Q2. How do ML-EUPs interact with the different features of

Newton? Here we analyze how participants interacted with the
different Newton features, which serves as an evaluation of the
strategies identified from the literature as discussed in Section 2.2.
Figure 4 presents a visual overview of the different interactions

Table 4: Mann-Whitney U test results.

Challenge U-value P-value
Data Wrangling 17.0 0.0012
Decision Making 245 0.0054
Explainability 26.5 0.0072
Quality of Evaluation 23.0 0.0041
Programming 31.5 0.0166

How to Support ML End-User Programmers through a Conversational Agent

ICSE 2024, April 14-20, 2024, Lisbon, Portugal

Newton Hint P1
Enacted Suggestion “/ &‘/ d?
Newton Reply v*#%“)
User Input
Submission - ¥

:20 ’@eoooq.ﬁ

r2a V \‘

.QQ‘Q(d‘/Qo

Newton Hint 4 P3 P,
Enacted Suggestion & &
ewon oy | megsegendesddd SUh
User Input A
Submission - ¥ ¥

P4
qpsp % éqqooeuiicﬁq' Qdd6q¥,o
rap®

Newton Hint
Enacted Suggestion -

User Input
Submission r5a o r5b

Newton Reply % 0 & e ‘9@’... ‘q&’?“‘.

W’V“W

v

Newton Hint 4
Enacted Suggestion

e e %"‘““‘C‘%@“"“

Submission -

Types of Interactions

g ese 6‘0

Newton Hint
Enacted Suggestion -

Newton Reply Q‘&.. .“‘? ? &xRx’
r9a

Submission -

PI0 5 mo

@sase md\o,?uqu"w’o

o 100

Newton Hint 4
Enacted Suggestion P11
Newton Reply 1 @ @G
User Input -
Submission 1 r11a rllb

User Input
éq:‘dc?%‘q.gv@/pddddo

P12
TR

Newton Hint Enacted Suggestion Newton Reply User Input Submission
Newton displays a hint User clicks a suggested button Newton replies a message User writes a message User submits a form
Autocomplete I Option Help I Reply N Code NN Reply Query Continue . Valid
Help (Documentation) Continue I * Success N Wrong Help Autocomplete N Wrong

Figure 4: Participants’ interactions with Newton. Each participant interaction is represented as a dot in a specific color (e.g.,
orange: creates a query; pink: help). The vertical axis in each block shows different types of user-agent interactions (as presented
in Section 4.1). The horizontal axis indicates the order of interactions between users and Newton. The lines between each dot
indicate the interaction between the participants and Newton. Capital letters inside the dots signify a step that is repeated (e.g.,

P10 repeated steps denoted by ‘A’

’ consecutively). For each scenario, we mark in the graph whether the participant successfully

finished the task (e.g., P7 completed successfully, but not P9). Please consult the supplemental material [6] for a detailed

step-by-step tutorial on interpreting the figure.

participants had with Newton. We use this figure to guide our
analysis of participants’ interaction patterns.

We first discuss the features that incorporate strategies related
to guidance (S1, S2, 8$3). Then, we discuss the ones that refer to
technical and efficiency optimization (S4, S5).

81 - Checklist. All participants trusted Newton at some point. P1
trusted completely and completed the task without spending effort
trying to figure out the next steps. As P1 indicated, “the ability to
see an overview of the steps and keep clicking continue were helpful”
P1 began the task by typing a query (orange dot in Figure 4) asking
“How to perform classification”. Newton responded by giving a list
of steps (checklist) explaining the process of building a classification
model. P1 followed all the suggestions, leading to task completion
(green dot in Figure 4). This shows that dynamic checklists can help
participants overcome decision-making challenges (C1).

However, some participants did not use Newton’s suggestions
at first. Instead, they typed their own code, refined their queries
by asking Newton to try to get different answers, or tried their
own steps. For instance, P4 began by asking queries (orange dots
in Figure 4), but rejected the suggested steps. Only after they got
errors and could not continue with the task, they started to follow
Newton’s recommendations (region Figure 4:r4b) which helped
them to complete the task. On the contrary, P5 did not heed New-
ton’s recommendations and skipped important steps by typing new
queries (Figure 4:r5b). This led P5 to errors and an unfinished task.

We realized that the agent needs to reiterate prior steps if a user

gets stuck in a step or faces an error. For instance, Newton helped
P6 to fix an execution error related to data wrangling at the end of
the split data step, but did not say that the participant had to go
through the previous checklist steps before proceeding to the next
ones. The participant kept trying to proceed with the execution
using outdated values, which led to more errors.
DG 1: Provide insights into what is currently needed when
performing a task. A conversational agent should guide the users
through the task, giving information on what happened and what
is coming next, and not rely on a dynamic checklist alone.

82 24/7 Expert Availability. Newton provides contextualized help
to participants based on the step in the task that they were perform-
ing or having difficulty with. P5 described Newton as “an online
chatbot which helps us with coding and documentation info to clear
the doubts,” suggesting that such help is valuable to get “unstuck”

Participants asked for contextualized help in one of two ways.
Some participants (P2, P4, P5, P6, P8, P10, P12) used help buttons,
such as “help me decide” Others (P2, P11) preferred open-ended
text to ask for help or ask for additional information about how
to perform the steps (e.g., “How can I know that?”). For example,
during the data wrangling step (C4), P2 clicked on “why is encoding
important” suggestion (Figure 4:r2b). Only after understanding the
need for data encoding (changing categorical data to numerical) by
reviewing Newton’s response, P2 proceeded to complete this step.

ICSE 2024, April 14-20, 2024, Lisbon, Portugal

After several completed steps, P2 then asked Newton “can you help
me out with some suggestions?” (Figure 4:r2b) referring to which
columns could be classified. Newton indicated that all the columns
in the dataset could work as a classifier output. The participant then
selected the column that was given for this task and kept following
Newton’s suggestions until completing the task.

On the other hand, some participants, despite having the opportu-
nity to ask Newton questions, eschewed doing so, and proceeded to
execute steps on their own. For instance, among the data-wrangling
steps, participants were expected to check for invalid zero values
and remove them if they exist (they do not exist for the user study
tasks). P12 decided to remove the zero values without checking
for validity and asked Newton for the code to do so, which New-
ton provided. The participant executed this code, which made it
impossible to correctly complete the classification task, since this
operation removed valid categories from the dataset.

When participants asked Newton how to perform a ML task,

Newton, serving as an expert, reminded participants about the
required steps. For example, P10 asked Newton to perform “data
scaling” before encoding categorical values. Newton gave P10 the
option to either proceed with the scaling for numerical columns or
encode categorical ones and scale all at once. P10 chose the latter
option and was able to complete the task.
DG 2: Evaluate the output of current steps and remind users
of missed steps based on the context of the workflow. The
agent should provide context-specific reminders to ensure that all
necessary steps in the workflow are completed.

$3 On-hand API Documentation. Newton provides relevant doc-
umentation about ML libraries for the code it generates; taking
the user to a specific method or function call. P1 and P2 were the
most motivated to read about ML functions. P1 opened the docu-
mentation panel three times, first to read about StandardScaler
after splitting data into testing and training. The second time they
read about “Linear Regression,” and the third time - after com-
pleting the task — they wanted to understand more about the
classification_report function. Similarly, P2 opened the doc-
umentation panel twice, the first time to get insights from the
train_test_split function, and the second time to look at the
predict function. In the post-task form, P2 indicated that they
liked the “guidance when I am stuck and providing documentation
of all the things that were used in the suggested code snippet.” Other
participants (P3, P8, and P11) also used the documentation panel.

We designed Newton WoZ to provide documentation in response
to participants’ queries or user actions. However, there were cases
where proactively providing documentation would have been use-
ful. For example, P4 faced an exception when trying to build the
model. The wizard noted the exception and found a guide (external
resource) to help. But, as per our WoZ script, the wizard had to
wait for a user action, and, in the meantime, P4 fixed the error
by repeating the data-wrangling steps. In the post-task form, P4
indicated that Newton was missing “error handling”

DG 3: Guide users proactively. A conversational agent should
integrate output monitoring to be able to anticipate user actions.

84 Code Generation. Auto-generated code by Newton helped
participants to reduce programming efforts (C2). As P4 stated: “it
made coding easier, write efficient code fast”. Participants P4, P6,
and P10 also pointed “code generation” as the most helpful feature

Emily Arteaga Garcia, Jodo Felipe Pimentel, Zixuan Feng, Marco Gerosa, Igor Steinmacher, and Anita Sarma

» o«

in Newton in the post-task form: “pre-written code,” “giving the
code,” “code generation,” respectively. These participants had high
confidence in Python (see Table 3), suggesting that code generation
can be useful even for experienced developers.

To reduce effort reduction and help participants avoid errors,
Newton provided the code in the right formatted structure, con-
textualized to the task, which means users could use the code as is.
The agent (wizard) had access to the notebook session to know the
variable names and types to provide the correct code. For example,
P11 used a dataframe with a different name (data) from that pro-
vided in Newton’s script (df). So, when P11 requested a code in a
subsequent step, the code had to be adjusted.

Besides contextualizing the code to the participants’ notebook
(current task), we enriched the code generation with code comments
on complex operations, and the aforementioned documentation on
all the invoked functions (83). The goal was to help users understand
the generated code and be able to maintain it in the future.

Most participants trusted the auto-generated code and copied

it to the notebook. P1 was the only participant who changed the
code to move an import statement to the first cell—which is a good
practice [43]. After executing the code, half of the participants (P1,
P2, P3, P4, P6, P10) attempted to see what happened in the data by
checking the output. They did not change the code after visualizing
the results, indicating that their confidence (C6) in the results was
high. Hence, we can further enrich future code generation by also
including functions that display the output.
DG 4: Enrich code generation for understanding. The agent
should include code comments, display the results, and give the
option of accessing the documentation of generated functions to
improve the understanding of the generated code.

S5 Automated features. While code generation reduced partic-
ipants’ effort, the auto-complete features did not help. Since the
autocomplete was a pre-built Newton feature that was not con-
trolled by the wizard, the list of suggestions may not have been
presented in the best possible way, leading participants to disable
the feature. For instance, P4 and P5 only used this feature at the
beginning of the conversation (regions Figure 4:r4a and r5a), but
disabled it after a few interactions that did not lead to the solu-
tion of the problem. P11 used this feature while typing to receive
information about support vector machine classifiers, but did not
follow that path and decided to disable the function (regions Fig-
ure 4:r11a and r11b). The rest of the participants deactivated the
feature even before they started typing (“How do I close this thing”,
P8). Autocomplete turned out to be the least-used feature.

On the other hand, the copy-paste buttons were widely used.
They allowed the users to automatically paste the code into note-
book cells in the desired order. All participants widely used this
feature after receiving code from Newton. P1 stated, “I really liked
the ability to click on a button to add the recommended code snippets
into a new cell at the bottom of the notebook for each step”

DG 5: Contextualize auto-complete features. Auto-complete
functions need to be contextualized to the task to be useful.

4.2.3 Q3. What common patterns emerge when ML-EUPs perform
ML tasks? We examined the video transcripts and observation logs
of participants’ interactions in both the Control and Experimental
conditions to identify patterns or prevalent behaviors.

How to Support ML End-User Programmers through a Conversational Agent

(1) Backtracking: The most common interaction pattern was
backtracking. Even though the situations were different, partici-
pants returned to a previous step in both conditions.

Without Newton: participants performed backtracking by search-
ing, copy-pasting, testing, erroring, and going back to searching.
Participants felt backtracking was more time-consuming without
the assistance of Newton: “I looked frequently and referred to web-
sites for my solutions” (P8). Similarly, P10, P11, and P12 searched
online for code solutions using queries like “ML classifier in Python”
or “classify a column using Python.” After getting the search results,
the participants went directly to the first three pages that popped
out from the browser. From all the pages open, they just skimmed
the tutorials trying to find keywords. They then copied what they
believed to be relevant code into the notebook for testing. This
cycle persisted until they ran into an error or the code produced
results differing from their expectations.

With Newton: in this case, backtracking occurred when the
user went to a previous Newton’s reply—either by replying to it
directly using the arrow icon () or enacting a suggested option by
clicking on its button) —to explore alternative paths and topics
in the conversation. In Figure 4, backtracking usually appears as
edges that run across the different interaction nodes. With the
exception of P9, all participants had an episode of backtracking.
Figure 4 shows several examples of backtracking. For instance,
backtracking occurred when participants took steps to read some
documentation and went back to the ML steps. For instance, P1
and P3 opened documentation, then continued performing the
next ML steps until successfully completing the task. On the other
hand, backtracking did not work as well for some participants. For
example, the interactions of participants P8 and P12 show how they
had to backtrack several steps, resulting in errors and ultimately
leading to an incomplete task.

(2) Tinkering: This was a recurring behavior, where participants
experimented with multiple options in pursuit of a desired outcome.

Without Newton: to find a desired explanation or code, some
participants (P2, P5, P6, P10, P11) investigated on as many links
as their search result list showed. They used the open pages as a
type of external cognition of useful resources to follow. However,
these participants did not do a comprehensive review. Instead, they
acted on the first relevant information source they identified. There-
fore, some pages remained unopened, and once the participants
completed the ML step they were working on, they closed all the
pages and repeated this pattern when they searched for other code
functions or other explanations. While this strategy worked in most
cases, in others, participants selected the wrong resource and had
to backtrack (P5, P6, P11). For instance, P11 opened several pages,
such as TensorFlow tutorials, W3schools, Thispointer tutorials, and
GitHub, in search of training code. However, after trying the code
from each page, P11 realized it was not suitable and had to refine the
search. This process was repeated twice until P11 found the desired
code, but unfortunately, they ran out of time and were unable to
complete the task. However, this behavior worked for participants
P2 and P10.

With Newton: This pattern was common when participants
received a checklist from Newton. For instance, when Newton pro-
vided a list of steps to perform classification, P2 clicked twice on
the option All on the list (Figure 4:r2a). Then, they changed their

ICSE 2024, April 14-20, 2024, Lisbon, Portugal

mind before Newton’s reply and acted on with the first option
from the checklist. By doing so, they created multiple conversa-
tion threads since the answers from Newton occurred in the order
each option was clicked on. The participant then received a slew
of answers to different questions and had trouble deciding which
one to choose. P10 also had a similar situation: they were impatient
and clicked on other options before Newton could respond (Fig-
ure 4:r10a). Such (mindless) tinkering in quick succession caused
errors in some cases. For instance, P11 clicked under submission
many times, which brought errors (submission forms were not filled
correctly) and finally to the participant not being able to complete
the task. A large part of this issue can be attributed to the WoZ
study setup, where the wizard had to send the response. Neverthe-
less, even in a fully automated conversation agent, tinkering with
the different UI options can lead to multiple conversation threads
that might cause user confusion.

DG 6: Manage multiple conversation threads clearly A con-
versational agent should efficiently manage multiple conversation
threads and clearly show which path is currently being followed.

5 DISCUSSION

Newton consistently demonstrated its value, regardless of whether
the participants completed their tasks. Our results underscore that
incorporating the identified strategies into a conversational agent
can effectively address the challenges encountered by ML-EUPs.

Challenges of ML-EUPs. The challenges that participants found
during the study align with those we found in the literature. For
instance, P7, P9, and P12 found themselves in a loop, searching
for the perfect outcome. This loop is related to several challenges
such as explainability (C3) and quality of evaluation (C6). The
convergence of challenges identified in the literature with those
observed during our study establishes a solid foundation for the
need for strategies to counteract these challenges.

All challenges were reduced using Newton’s features. Although
only half of our participants finished the task using Newton, all
participants found Newton’s features helpful and expressed con-
fidence in the responses. P1 stated: “I think for me I'm still in the
beginner stage of looking up tutorials and trying things out, but I
liked having the support of Newton right there in the notebook. I felt
like at least I could rely on Newton’s answers a bit more than more
random answers off the internet, which is what I use for doing other
ML-related tasks....”

Participants who could not complete the task without Newton
made progress by at least taking one step forward with the help of
Newton. For instance, P5, who reported moderate programming
skills but limited ML knowledge, struggled to complete even the
initial step of data loading without Newton. However, with New-
ton’s guidance, P5 advanced to the data wrangling stage: “I had
a lot of choices and saw things I didn’t know. Conversely, P6, who
had a moderate level of expertise in both programming and ML,
remarked, “Newton helped me. From scratch, I was unable to perform
the classification using my own resources, but with Newton, it was a lot
easier” It’s worth noting that P6 began with the Newton condition
before transitioning to the without-Newton scenario. Thus, any
potential learning effects would have carried over to the Control
condition.

Social characteristics of a conversational agent. Conversations

ICSE 2024, April 14-20, 2024, Lisbon, Portugal

inherently possess a social dimension, making it crucial for a con-
versational agent’s design to embody social attributes. As Chaves
and Gerosa [15] highlight, integrating elements related to conver-
sational intelligence, social intelligence, and personification can
significantly enhance human-agent interactions. In alignment with
this perspective, we incorporated several of these attributes in our
experiment’s design and execution. Notably, proactivity emerged
as a design guideline in our study.

We personified the agent by calling it Newton and writing an-
swers as a knowledgeable expert who adapts the writing to how
the user interacts with it. For example, when the user sent a query
with a greeting, Newton replied with a variation of the planned
answer to include a personalized greeting. When the user sent in-
formal messages, Newton adjusted its tone to use contractions and
appropriate slang (e.g., “Got it”). These characteristics are related to
the social intelligence of an agent. Chaves et al. [14] highlight the
importance of following the situational register when designing
conversational agents.

We designed Newton with an emphasis on replicating the natural
rhythms and cadences of human dialogue. Each interface element,
including buttons, was crafted to mirror common conversational
prompts. For instance, the button for users to ask for help is la-
beled “Can you explain the steps?”, and when the user clicks it, the
message appears as a seamless addition to the ongoing chat, enhanc-
ing the feeling of a genuine conversation with a knowledgeable
counterpart.

We also applied conversational intelligence characteristics to
Newton’s responses. When faced with ambiguous queries, Newton
rephrased the question and asked if the expressed intention was
correct. In other situations where the message was completely out
of the scope of ML and programming, Newton managed the users’
expectations by indicating that the specific subject was not in its
database.

Despite our efforts, there is still room for improvement. First,
multiple participants had an exception when applying some algo-
rithms because their datasets had categorical variables as strings,
and the algorithms required numeric variables. In these cases, New-
ton waited for the participant to interact (e.g., ask for help, send
a query, click on a different button). A better solution would be
to identify the exception from a catalog of known exceptions and
proactively send a message to warn the user.

Second, due to the nature of WoZ, we had to deal with unex-
pected situations, and Newton lacked the knowledge to respond.
In many situations, the wizard attempted to reply to unexpected
questions by drafting responses in real-time. Because of this, par-
ticipants got impatient with the delay and started clicking on other
buttons and typing new questions. According to Nielsen [39], the
limit for keeping the user’s attention focused on the dialogue is ap-
proximately 10 seconds. In a WoZ study, crafting human responses
within this time is difficult to achieve in unexpected situations. We
tried to mitigate this problem by activating a loading icon when the
message preparation was taking too long, but it was not enough, as
users got impatient. We recommend that even in a fully automated
conversation agent, designers monitor response times.

Finally, Newton also had limitations in keeping multiple conver-
sations on track. The possibility of backtracking and replying to
previous messages made some interactions with Newton confusing

Emily Arteaga Garcia, Jodo Felipe Pimentel, Zixuan Feng, Marco Gerosa, Igor Steinmacher, and Anita Sarma

and intertwined. For instance, P2 wanted to advance on a task when
they mistakenly clicked on the help button of a previous checklist,
leading to an unhelpful reply from Newton (for the task at hand)
instead of advancing to the next task.

Integrating existing Generative Al agents into Newton. The re-
cent advances in Generative Al [1, 7, 40] that are trained on Large
Language Models (e.g., GPT-4, LLaMA, PaLM) can be incorporated
into Newton to facilitate natural language conversation with users.
Newton can provide the interface to interact with the user in the
notebook environment, and the back end can generate appropri-
ate prompts to interface with the generative Al This way, New-
ton would serve as a mediator, receiving the queries, creating the
prompts automatically, and returning the information to the user.
Newton can also decompose the ML workflow for a task into smaller
sets of steps (the way we did it in our WoZ script (see Section 3.2)).
Newton could then act as a dialogue management system [29, 44].
On the other hand, a drawback in using current generative Al is the
possibility of hallucinations [2] (i.e., the Al provides an incorrect
answer but makes it sound correct so people believe it). This could
be mitigated by implementing a dialogue management system that
covers concepts in the usual workflows and collects answers from
the generative Al for explanations that are not planned.

6 THREATS TO VALIDITY

Scientific research, regardless of its rigor, is subject to potential
limitations and biases that can affect the validity of its findings.
This section delineates possible threats to both the internal and
external validity of our study and some actions we took to mitigate
them.

Literature Review: We recognize that our literature review might
have biases like selection (missing relevant work), subjectivity (pos-
sible data misinterpretation), and publication (literature favors pos-
itive results). Such biases could skew our understanding. However,
the challenges identified in the literature match our human par-
ticipant study findings, reinforcing the validity of the identified
challenges. Besides, to address these biases, we followed a sys-
tematic approach to finding primary studies, piloted the queries,
employed multiple researchers, and discussed all the steps of the
analysis as a group through a negotiated consensus protocol.
Participant Selection Bias: Given our recruitment process, there’s
a possibility that our participants are not truly representative of
all ML-EUPs. To address this concern, we drew participants from
a varied pool, including both graduated software engineers and
computer science students, from multiple sources. Nevertheless,
we acknowledge that our sample size is small, and broader studies
with more participants would offer more comprehensive insights.
Learning Effect: As participants engaged with both the Control
and Experimental conditions, there is potential for a learning effect
where their experience from one condition influences their perfor-
mance in the other. To counteract this, we randomized the order in
which participants encountered the conditions.

Hawthorne Effect: The awareness of being observed might alter
participants’ behavior. To mitigate this, we ensured participants
that there were no “right” or “wrong” answers and that they should
behave as they would in a real-world scenario.

Social Desirability Bias: Participants might act in ways they think
researchers expect or desire, rather than their natural behavior.

How to Support ML End-User Programmers through a Conversational Agent

Given that we introduced a “novel” conversational agent, they
might feel inclined to perform better and favor the Experimental
setup. We triangulated multiple data sources, including observa-
tions and records, to counteract this bias. We also emphasized to
participants that they were not being evaluated. Researchers also
tried to remain as neutral as possible during the studies.

Limited Scope: While our study centered around two Kaggle com-
petitions, the broader challenges of ML might vary with different
datasets and problems. Our findings, therefore, might have limited
generalizability. We picked competitions that represented typical
challenges in ML to maximize relevance.

Construct validity: We acknowledge another potential threat
which is the possibility of participants misinterpreting the questions
in the questionnaires. To address this, we piloted the questionnaires
with developers of varying levels of expertise before administering
them to the study participants.

Wizard of Oz Methodology: The use of the Wizard of Oz method,
where a human simulated Newton’s responses, can lead to inconsis-
tent replies and potential biases. We mitigated this by following a
strict script and ensuring the wizard was well-trained. Nevertheless,
exhaustion and distraction may have affected the WoZ in remote
settings. To minimize it, each session was capped at 70 minutes.
We also made an effort to provide distraction-free environments
through virtual machines to the participants and the wizard.
Wizard of Oz vs. real agents: We used the Wizard of Oz tech-
nique inspired by previous studies on chatbots [15, 28]. However,
relying on a human wizard instead of automated systems can in-
troduce time delays, as the wizard cannot match computational
speed. We addressed this by using a script to reduce response times.
Furthermore, as our primary focus was on understanding ML-EUPs’
interaction patterns, the effects of these delays are less critical when
compared to performance metrics.

External Validity: Our study was structured using Python and
Jupyter Lab, the most commonly used tools in data science and
machine learning. Therefore, we trade off generalizability for depth
in these specific settings, and our results may not apply to other
programming languages or environments.

7 CONCLUSION

“Newton is incredibly helpful for anyone who even has a rudimen-
tary understanding of math and a few machine learning algorithms.
Actually, they don’t even need to be aware of that” — P3

In our study, we created a conversational agent, Newton, embed-
ding five suggested strategies to assist ML-EUPs. In a Wizard of Oz
experiment involving 12 participants, half succeeded in construct-
ing the ML model with Newton’s aid, and two of these individuals
could not achieve this without Newton. Furthermore, participants
found tasks less daunting with Newton, regardless of being able to
complete the tasks.

While analyzing how participants interacted with Newton, we
noticed that participants liked to follow checklists with predefined
actions, used Newton’s assistance features, and trusted automated
code generation. Two patterns emerged from the interactions with
and without Newton: backtracking and tinkering. Backtracking oc-
curred when participants explored alternative paths (with and with-
out Newton), was time-consuming, and required multiple search
refinements (without Newton), or when they wanted to continue

ICSE 2024, April 14-20, 2024, Lisbon, Portugal

the steps from a checklist (with Newton). Tinkering occurred when
participants clicked on several links one after the other, trying to
find information (without Newton), when they got impatient with
the wizard’s slowness in response (with Newton), or when they
wanted to explore different paths in checklists (with Newton). From
these patterns and tasks we derived a set of six design guidelines
for conversational agents supporting ML-EUPs.

The results reported in this work lay the foundation for future
conversational agents that can support ML-EUPs, and form a step-
ping stone toward a low-code approach to ML. We plan to use
the lessons learned in this study to implement and evaluate an ac-
tual conversational agent by prompt engineering a large-language
model, such as GPT-4. We also foresee using the infrastructure we
built for the Woz experiment in other contexts, such as designing
conversational agents for programming education.

The replication package for this study with the WoZ script, forms,
Newton implementation, and analysis is available online [6].

ACKNOWLEDGMENTS

We thank Souti Chattopadhyay for her valuable feedback in the
early stages of our research, and our universities’ research groups:
EPICLab at Oregon State University, and NAU-OSL at Northern
Arizona University. This work was supported by the National Sci-
ence Foundation under Grant Numbers 2236198, 2235601, 2247929,
2303042, and 2303043.

REFERENCES

[1] Generative AL 2023. https://generativeainet/.

[2] Hussam Alkaissi and Samy I McFarlane. 2023. Artificial hallucinations in Chat-
GPT: implications in scientific writing. Cureus 15, 2 (2023), 1-4.

[3] Hamza Hussein Altarturi, Keng-Yap Ng, Mohd Izuan Hafez Ninggal, Azree
Shahrel Ahmad Nazri, and Abdul Azim Abd Ghani. 2017. A requirement en-
gineering model for big data software. In 2017 IEEE Conference on Big Data
and Analytics (ICBDA). SciTePress, Prague, Czech Republic, 111-117. https:
//doi.org/10.1109/ICBDAA.2017.8284116

[4] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece
Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.
Software Engineering for Machine Learning: A Case Study. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE / ACM, Montreal, QC, Canada, 291-300. https://doi.
org/10.1109/ICSE-SEIP.2019.00042

[5] Anders Arpteg, Bjérn Brinne, Luka Crnkovic-Friis, and Jan Bosch. 2018. Software
engineering challenges of deep learning. In 2018 44th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). IEEE, IEEE Computer
Society, Prague, Czech Republic, 50-59.

[6] Emily Arteaga Garcia, Jodo Felipe Pimentel, Zixuan Feng, Marco Gerosa, Igor
Steinmacher, and Anita Sarma. 2023. Replication Package for ML-EUP Conver-
sational Agent Study. Oregon State University, Northern Arizona University.
https://doi.org/10.5281/zenodo.8327190

[7] Bloomberg. 2023. A Cheat Sheet to Al Buzzwords and Their Meanings: QuickTake
— https://news.bloomberglaw.com/tech-and- telecom-law/a- cheat- sheet- to-ai-
buzzwords-and- their-meanings- quicktake.

[8] Christopher Bull and Ahmed Kharrufa. 2023. Generative Al Assistants in Software
Development Education: A vision for integrating Generative Al into educational
practice, not instinctively defending against it. IEEE Software (2023), 1-9. https:
//doi.org/10.1109/MS.2023.3300574

[9] Carrie J Cai and Philip J Guo. 2019. Software developers learning machine
learning: Motivations, hurdles, and desires. In 2019 IEEE symposium on visual
languages and human-centric computing (VL/HCC). IEEE, Memphis, USA, 25-34.

[10] Arif Cam, Michael Chui, and Bryce Hall. 2019. Global AI survey: Al proves its

worth but few scale impact. Technical Report. McKinsey Analytics.

[11] Jhonny Cerezo, Juraj Kubelka, Romain Robbes, and Alexandre Bergel. 2019.
Building an Expert Recommender Chatbot. In 2019 IEEE/ACM 1st International
Workshop on Bots in Software Engineering (BotSE). IEEE / ACM, Montreal, QC,
Canada, 59-63. https://doi.org/10.1109/BotSE.2019.00022

Kathy Charmaz. 2006. Constructing grounded theory: A practical guide through
qualitative analysis. sage, Newbury Park, CA, USA.

Souti Chattopadhyay, Ishita Prasad, Austin Z Henley, Anita Sarma, and Titus

[12

(13

https://generativeai.net/
https://doi.org/10.1109/ICBDAA.2017.8284116
https://doi.org/10.1109/ICBDAA.2017.8284116
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.5281/zenodo.8327190
https://news.bloomberglaw.com/tech-and-telecom-law/a-cheat-sheet-to-ai-buzzwords-and-their-meanings-quicktake
https://news.bloomberglaw.com/tech-and-telecom-law/a-cheat-sheet-to-ai-buzzwords-and-their-meanings-quicktake
https://doi.org/10.1109/MS.2023.3300574
https://doi.org/10.1109/MS.2023.3300574
https://doi.org/10.1109/BotSE.2019.00022

ICSE 2024, April 14-20, 2024, Lisbon, Portugal

Barik. 2020. What’s wrong with computational notebooks? Pain points, needs,
and design opportunities. In Proceedings of the 2020 CHI conference on human
factors in computing systems. ACM, Honolulu, HI, USA, 1-12.

Ana Paula Chaves, Jesse Egbert, Toby Hocking, Eck Doerry, and Marco Aurelio
Gerosa. 2022. Chatbots language design: The influence of language variation on
user experience with tourist assistant chatbots. ACM Transactions on Computer-
Human Interaction 29, 2 (2022), 1-38.

Ana Paula Chaves and Marco Aurélio Gerosa. 2019. How Should My Chatbot
Interact? A Survey on Social Characteristics in Human-Chatbot Interaction
Design. Int. J. Hum. Comput. Interact. 37, 8 (2019), 729-758. https://doi.org/10.
1080/10447318.2020.1841438 arXiv:1904.02743

Jodo Lucas Correia, Juliana Alves Pereira, Rafael Mello, Alessandro Garcia,
Baldoino Fonseca, Marcio Ribeiro, Rohit Gheyi, Marcos Kalinowski, Renato
Cerqueira, and Willy Tiengo. 2020. Brazilian data scientists: revealing their
challenges and practices on machine learning model development. In 19th Brazil-
ian Symposium on Software Quality. ACM, Sao Luis, Brazil, 1-10.

N. Dahlback, A. Jénsson, and L. Ahrenberg. 1993. Wizard of Oz studies — why and
how. Knowledge-Based Systems 6, 4 (1993), 258-266. https://doi.org/10.1016/0950-
7051(93)90017-N Special Issue: Intelligent User Interfaces.

Rajeev Davenport, Thomas H.and Ronanki. 2018. Artificial intelligence for the
real world. Technical Report. Harvard business review.

Zixuan Feng, Amreeta Chatterjee, Anita Sarma, and Iftekhar Ahmed. 2022. A case
study of implicit mentoring, its prevalence, and impact in Apache. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ACM, Singapore, Singapore, 797-809.
Barney G Glaser. 2016. Open coding descriptions. Grounded theory review 15, 2
(2016), 108-110.

Fuyuki Ishikawa and Nobukazu Yoshioka. 2019. How Do Engineers Perceive
Difficulties in Engineering of Machine-Learning Systems? - Questionnaire Survey.
In 2019 IEEE/ACM joint 7th International Workshop on Conducting Empirical
Studies in Industry (CESI) and 6th International Workshop on Software Engineering
Research and Industrial Practice (SER&IP). IEEE / ACM, Montreal, QC, Canada,
2-9. https://doi.org/10.1109/CESSER-IP.2019.00009

Michael I Jordan and Tom M Mitchell. 2015. Machine learning: Trends, perspec-
tives, and prospects. Science 349, 6245 (2015), 255-260.

Project Jupyter. 2022. Jupyter. https://jupyter.org/

Toannis Karamitsos, Saeed Albarhami, and Charalampos Apostolopoulos. 2020.
Applying DevOps practices of continuous automation for machine learning.
Information 11, 7 (2020), 363.

Anuj Karpatne, Imme Ebert-Uphoff, Sai Ravela, Hassan Ali Babaie, and Vipin Ku-
mar. 2019. Machine Learning for the Geosciences: Challenges and Opportunities.
IEEE Transactions on Knowledge and Data Engineering 31, 8 (2019), 1544-1554.
https://doi.org/10.1109/TKDE.2018.2861006

Ryan Kirwan, Javihn Che, Woo Jia Le, and Stefan Sarin. 2021. A Visualization
and Analysis tool for VCL Auto-generation Code Framework. In 2021 IEEE Inter-
national Conference on Service Operations and Logistics, and Informatics (SOLI).
IEEE, Singapore, 1-5. https://doi.org/10.1109/SOLI54607.2021.9672425

Scott R. Klemmer, Anoop K. Sinha, Jack Chen, James A. Landay, Nadeem
Aboobaker, and Annie Wang. 2000. Suede: A Wizard of Oz Prototyping Tool
for Speech User Interfaces. In Proceedings of the 13th Annual ACM Sympo-
sium on User Interface Software and Technology (San Diego, California, USA)
(UIST °00). Association for Computing Machinery, New York, NY, USA, 1-10.
https://doi.org/10.1145/354401.354406

Mohammad Amin Kuhail, Nazik Alturki, Salwa Alramlawi, and Kholood Alhejori.
2022. Interacting with educational chatbots: A systematic review. Education and
Information Technologies 28, 1 (2022), 1-46.

Jonas Kulhanek, Vojtéch Hudecek, Tomas Nekvinda, and Ondiej Dusek. 2021.
AuGPT: Auxiliary tasks and data augmentation for end-to-end dialogue with
pre-trained language models. arXiv preprint arXiv:2102.05126 2102, 05126 (2021),
1-13.

Fumihiro Kumeno. 2019. Sofware engineering challenges for machine learning
applications: A literature review. Intelligent Decision Technologies 13, 4 (2019),
463-476.

Sam Lau and Philip J Guo. 2023. From" Ban It Till We Understand It" to" Re-
sistance is Futile": How University Programming Instructors Plan to Adapt as
More Students Use AI Code Generation and Explanation Tools such as ChatGPT
and GitHub Copilot. In ICER 2023: ACM Conference on International Computing
Education Research. ACM, Chicago, IL, USA, 16 pages.

Alexandra L’heureux, Katarina Grolinger, Hany F Elyamany, and Miriam AM
Capretz. 2017. Machine learning with big data: Challenges and approaches. Jeee
Access 5 (2017), 7776-7797.

Silverio Martinez-Fernandez, Justus Bogner, Xavier Franch, Marc Oriol, Julien
Siebert, Adam Trendowicz, Anna Maria Vollmer, and Stefan Wagner. 2022. Soft-
ware Engineering for Al-Based Systems: A Survey. ACM Trans. Softw. Eng.
Methodol. 31, 2, Article 37e (apr 2022), 59 pages. https://doi.org/10.1145/3487043
Satoshi Masuda, Kohichi Ono, Toshiaki Yasue, and Nobuhiro Hosokawa. 2018.
A Survey of Software Quality for Machine Learning Applications. In 2018 IEEE
International Conference on Software Testing, Verification and Validation Workshops

[35

[36]

[37

[38

[43

(44

[45

=
&

[47

(48

[49

o
=

[51

[52

[53

Emily Arteaga Garcia, Jodo Felipe Pimentel, Zixuan Feng, Marco Gerosa, Igor Steinmacher, and Anita Sarma

(ICSTW). IEEE Computer Society, Vasteras, Sweden, 279-284. https://doi.org/10.
1109/ICSTW.2018.00061

Sahar Mehrpour, Thomas D. LaToza, and Rahul K. Kindi. 2019. Active Documenta-
tion: Helping Developers Follow Design Decisions. In 2019 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC). IEEE Computer Society,
Memphis, Tennessee, USA, 87-96. https://doi.org/10.1109/VLHCC.2019.8818816
Dane Morgan and Ryan Jacobs. 2020. Opportunities and challenges for machine
learning in materials science. Annual Review of Materials Research 50 (2020),
71-103.

Shan Nan, Pieter Van Gorp, Hendrikus H. M. Korsten, Uzay Kaymak, Richard
Vdovjak, Xudong Lu, and Huilong Duan. 2015. DCCSS: A meta-model for dy-
namic clinical checklist support systems. In 2015 3rd International Conference on
Model-Driven Engineering and Software Development (MODELSWARD). SciTePress,
Angers, Loire Valley, France, 272-279.

Anh Nguyen Duc, Ingrid Sundbe, Elizamary Nascimento, Tayana Conte, Iftekhar
Ahmed, and Pekka Abrahamsson. 2020. A Multiple Case Study of Artificial
Intelligent System Development in Industry. In Evaluation and Assessment in
Software Engineering. ACM, Trondheim, Norway, 1-10. https://doi.org/10.1145/
3383219.3383220

Jakob Nielsen. 1994. Usability engineering. Morgan Kaufmann, San Francisco,
CA, USA.

OpenAl 2023. GPT-4. https://openai.com/product/gpt-4.

Andrei Paleyes, Raoul-Gabriel Urma, and Neil D Lawrence. 2020. Challenges in
deploying machine learning: a survey of case studies. ACM Computing Surveys
(CSUR) 55, 6 (2020), 114:1-114:29.

Tung Phung, Victor-Alexandru Padurean, José Cambronero, Sumit Gulwani, To-
bias Kohn, Rupak Majumdar, Adish Singla, and Gustavo Soares. 2023. Generative
Al for Programming Education: Benchmarking ChatGPT, GPT-4, and Human
Tutors. International Journal of Management 21, 2 (2023), 100790.

Joao Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2021. Understanding and improving the quality and reproducibility of Jupyter
notebooks. Empirical Software Engineering 26, 4 (2021), 65.

Mahdin Rohmatillah and Jen-Tzung Chien. 2021. Corrective Guidance and Learn-
ing for Dialogue Management. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management (Virtual Event, Queensland,
Australia) (CIKM °21). Association for Computing Machinery, New York, NY,
USA, 1548-1557. https://doi.org/10.1145/3459637.3482333

Dhia Elhaq Rzig, Foyzul Hassan, and Marouane Kessentini. 2022. An empirical
study on ML DevOps adoption trends, efforts, and benefits analysis. Information
and Software Technology 152 (2022), 107037.

Vidya Setlur and Melanie Tory. 2022. How Do You Converse with an Analytical
Chatbot? Revisiting Gricean Maxims for Designing Analytical Conversational Be-
havior. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (New Orleans, LA, USA) (CHI "22). Association for Computing Machinery,
New York, NY, USA, Article 29, 17 pages. https://doi.org/10.1145/3491102.3501972
Royal Society. 2017. Machine Learning: The Power and Promise of Computers that
Learn by Example: an Introduction. Technical Report. Royal Society.

Andreas Vogelsang and Markus Borg. 2019. Requirements Engineering for Ma-
chine Learning: Perspectives from Data Scientists. In 2019 IEEE 27th International
Requirements Engineering Conference Workshops (REW). IEEE, Jeju Island, South
Korea, 245-251. https://doi.org/10.1109/REW.2019.00050

George Vrettas and Mark Sanderson. 2015. Conferences versus journals in com-
puter science. Journal of the Association for Information Science and Technology
66, 12 (2015), 2674-2684.

Zhiyuan Wan, Xin Xia, David Lo, and Gail C. Murphy. 2021. How does Machine
Learning Change Software Development Practices? IEEE Transactions on Software
Engineering 47, 9 (2021), 1857-1871. https://doi.org/10.1109/TSE.2019.2937083
Daniel Weitekamp, Erik Harpstead, and Ken R Koedinger. 2020. An interaction
design for machine teaching to develop Al tutors. In Proceedings of the 2020 CHI
conference on human factors in computing systems. ACM, Honolulu, HI, USA,
1-11.

Claes Wohlin. 2014. Guidelines for Snowballing in Systematic Literature Studies
and a Replication in Software Engineering. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering (London, Eng-
land, United Kingdom) (EASE ’14). Association for Computing Machinery, New
York, NY, USA, Article 38, 10 pages. https://doi.org/10.1145/2601248.2601268
Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. 2022. In-IDE Code Genera-
tion from Natural Language: Promise and Challenges. ACM Trans. Softw. Eng.
Methodol. 31, 2, Article 29 (mar 2022), 47 pages. https://doi.org/10.1145/3487569

https://doi.org/10.1080/10447318.2020.1841438
https://doi.org/10.1080/10447318.2020.1841438
https://arxiv.org/abs/1904.02743
https://doi.org/10.1016/0950-7051(93)90017-N
https://doi.org/10.1016/0950-7051(93)90017-N
https://doi.org/10.1109/CESSER-IP.2019.00009
https://jupyter.org/
https://doi.org/10.1109/TKDE.2018.2861006
https://doi.org/10.1109/SOLI54607.2021.9672425
https://doi.org/10.1145/354401.354406
https://doi.org/10.1145/3487043
https://doi.org/10.1109/ICSTW.2018.00061
https://doi.org/10.1109/ICSTW.2018.00061
https://doi.org/10.1109/VLHCC.2019.8818816
https://doi.org/10.1145/3383219.3383220
https://doi.org/10.1145/3383219.3383220
https://openai.com/product/gpt-4
https://doi.org/10.1145/3459637.3482333
https://doi.org/10.1145/3491102.3501972
https://doi.org/10.1109/REW.2019.00050
https://doi.org/10.1109/TSE.2019.2937083
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/3487569

	Abstract
	1 Introduction
	2 Challenges and Strategies in Adopting ML
	2.1 Challenges in Using ML
	2.2 Recommended Strategies

	3 Conversational Agent: Newton
	3.1 Newton Features
	3.2 Wizardmode
	3.3 Newton Walkthrough

	4 Newton Evaluation
	4.1 Method
	4.2 Results

	5 Discussion
	6 Threats to Validity
	7 Conclusion
	Acknowledgments
	References

