K-LEAK: Towards Automating the Generation of
Multi-Step Infoleak Exploits against the Linux
Kernel

Xiaochen Zou
UC Riverside
xzou017 @ucr.edu

Zhengchuan Liang
UC Riverside
zlian064 @ucr.edu

Abstract—The severity of information leak (infoleak for short)
in OS kernels cannot be underestimated, and various exploitation
techniques have been proposed to achieve infoleak in OS kernels.
Among them, memory-error-based infoleak is powerful and
widely used in real-world exploits. However, existing approaches
to finding memory-error-based infoleak lack the systematic rea-
soning about its search space, and do not fully explore the search
space. Consequently, they fail to exploit a large number of mem-
ory errors in the kernel. According to a theoretical modeling of
memory errors, the actual search space of such approach is huge,
as multiple steps could be involved in the exploitation process, and
virtually any memory error can be exploited to achieve infoleak.
To bridge the gap between the theory and reality, we propose a
framework K-LEAK to facilitate generating memory-error-based
infoleak exploits in the Linux kernel. K-LEAK considers infoleak
exploit generation as a data-flow search problem. By modeling
unintended data flows introduced by memory errors, and how
existing memory errors can create new memory errors, K-LEAK
can systematically search for infoleak data-flow paths in a multi-
step manner. We implement a prototype of K-LEAK and evaluate
it with memory errors from syzbot and CVEs. The evaluation
results demonstrate the effectiveness of K-LEAK in generating
diverse infoleak exploits using various multi-step strategies.

I. INTRODUCTION

As the trusted computing base for computer systems, the
operating system (OS) kernel plays an important role in the
security of computer systems. For this reason, OS kernels
are major targets of attackers. Because popular OS kernels
like the Linux kernel are mostly written in memory unsafe
languages like C and assembly, exploiting memory errors (e.g.,
out-of-bound and use-after-free) remains the main attack vector
against kernels. To mitigate such attacks, modern OS kernels
have adopted several exploit mitigation techniques [6], [17],
[19]. For example, the kernel address space layout randomiza-
tion (KASLR) has made it difficult to launch reliable control-
flow hijacking attacks. Consequently, lots of efforts have been
dedicated to developing techniques that can circumvent these
exploit mitigation mechanisms [31], [41]. One of such attacks
is information leak (infoleak for short), which can be used to

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA

ISBN 1-891562-93-2

https://dx.doi.org/10.14722/ndss.2024.24935
www.ndss-symposium.org

Chengyu Song
UC Riverside
csong@cs.ucr.edu

Zhiyun Qian
UC Riverside
zhiyunq@cs.ucr.edu

bypass KASLR [19] and disclose sensitive information such
as cryptographic keys.

Information leaks are the consequences of exploiting soft-
ware vulnerabilities to disclose randomized memory layout or
sensitive contents of program memory [39]. There are two
broad categories of approaches to exploiting OS kernels to leak
information. One category is side-channel-based approaches,
like micro-architectural side-channel attacks [22], [24]. The
other category is memory-error-based approaches [33], where
attackers exploit memory errors present in kernels to leak
information. The second category is the focus of this paper.
In general, memory errors allow the attackers to read and/or
write the target program’s memory in unintended ways [44].
For example, a spatial memory error like out-of-bound (OOB)
allows attackers to access memory outside the boundary deter-
mined by the underlying memory object’s type or allocation
size. Similarly, a temporal memory error like use-after-free
(UAF) allows attackers to access the memory object resid-
ing in the reallocated memory location. A successful kernel
infoleak exploit leverages these unintended reads and writes
as primitives to create a data-flow that propagates sensitive
information to userspace [36], [38].

While infoleak is a critical step in bypassing KASLR
and achieving other goals like privilege escalation, how to
automate the generation of memory-error-based kernel infoleak
has received little attention. The 2013 SoK paper [44] pro-
posed a conceptual framework to reason about how memory
errors can be exploited. Based on this conceptual framework,
any memory error has the potential to be exploited to leak
information. However, in practice, we only observe limited
number of infoleak exploit strategies. Moreover, the concep-
tual framework is program agnostic, so it lacks modeling
of program-specific behaviors and cannot be directly used
to generated a concrete exploit. In a recent study [46], a
more concrete reasoning framework is proposed for the Linux
kernel. Unfortunately, since the main focus of it is to find
kernel object that may be used in exploits and infoleak is not
their focus, it also misses important information for generating
infoleak exploits. Specifically, due to the large search space,
generating infoleak exploits requires precisely modeling and
reasoning of data-flow; but the data-flow analysis used in [46]
is very imprecise.

Our work fills the gap by developing a novel graph-based
data-flow reasoning and search framework. At a basic level,

we formulate the problem of crafting an infoleak exploit
as searching for a series of data-flow fragments. Under this
formulation, we offer several unique features that allow our
solution to maximize the opportunity to identify infoleaks:
(1) It unifies the handling of intended and unintended data-
flow fragments that connect secret information to a leaking
sink (e.g., copy_to_user). (2) It supports reasoning across
the boundary of syscalls. (3) It allows the reasoning of the
derivation of intermediate primitives (i.e., new memory errors)
before finally discovering an infoleak. All of the above are
cleanly packaged in our graph-based reasoning framework.
Even though there can be multiple ways to achieve infoleaks,
our solution can streamline the process through a unified graph
search. For example, it easily handles the case where some
sensitive information read by an unintended read primitive
(UAF or OOB) propagates through multiple syscalls to a
sink. It also handles the elastic-object-based infoleaks [14],
where attackers corrupt the length field of an object' with
an unintended write primitive first, and then cause an out-of-
bound read of the data, which is then copied to userspace. In
addition to finding infoleak paths, similar to Sleak [26], our
framework can also track how the leaked info is transformed,
and reconstruct its original value (e.g., a kernel pointer).

To validate our idea, we develop a prototype named
K-LEAK, and apply it to test 250 real-world fuzzer-exposed
memory bugs in the Linux kernel, i.e., syzbot bugs. K-LEAK is
able to find infoleak paths in 21 bug reports (which are dynam-
ically verified) through a variety of strategies, including simple
single-syscall leaks as well as multi-syscall ones that start with
either a read or write primitive. Many of our findings are not
previously known. Based on the results, we developed seven
end-to-end infoleak exploits to further demonstrate K-LEAK’s
effectiveness.

In summary, this paper makes following contributions:

e We propose a unified graph-based reasoning and search
framework that enables us to identify infoleak paths in
the Linux kernel. It has a number of unique features that
maximize its opportunity to discover infoleaks.

e We develop a prototype solution called K-LEAK which
leverages advanced static analysis to derive a specialized
data-flow graph, amendable to infoleak reasoning. The
source code can be found at https://github.com/seclab-ucr/
K-LEAK for the purpose of reproduction of results and
further research.

o We demonstrate the effectiveness of K-LEAK by evaluating
it on a large-scale dataset of syzbot bugs. The results show
that K-LEAK uncovers various exploit strategies, enabling
us to find previously unknown infoleak opportunities.

II. BACKGROUND

In this section, we introduce the necessary background
to understand the rest of the paper. We start with a brief
introduction to data-flow analysis and data-flow graph. Then
we describe the points-to analysis and data-flow analysis we
use in this work.

IThese objects have variable sizes and hence called elastic objects.

A. Data-flow Analysis and Data-flow graph

Data-flow analysis is a body of techniques widely used
in program optimization and analysis [9]. The primary goal
of the data-flow analysis is to understand the flow of some
property of interest within a program, e.g., the possible values
of variables and expressions at different program points, as
well as the relationships between them. Finding an infoleak
exploit is a form of data-flow analysis—we aim to find (1)
whether a piece of sensitive information (e.g., a kernel function
pointer) can flow to user space, and if so (2) in what form (e.g.,
in its original value or has been transformed).

Data-flow analysis can be performed in many different
ways. The most known way is using the monotone framework
that combines a complete lattice and a space of monotone
functions and applies the fixed-point algorithm [35]. Data-flow
graph is another way to perform data-flow analysis. Such graph
is used in analyzing the property of data dependency, which is
an important research question [43], and benefits bug finding
and other security research [29]. Data-flow graph (DFG, a.k.a.,
data dependence graph or value flow graph [43]) is a program
representation that captures the data dependencies in programs.
Such graph enables quick queries regarding data dependency,
thus benefiting broad themes of program analysis and compiler
optimization research [20], [29], [37], [43]. Regarding the goal
of infoleak in this paper, DFG can help quickly answer the
query of whether a piece of sensitive information can flow to
user space. DFG can serve this purpose by modeling infoleak
as sensitive information being passed on along the data-flow
edges in DFG. Although the DFGs defined in previous works
might have different appearances for different applications,
they are fundamentally similar in terms of capturing program
data dependencies. Usually, a node in DFG represents a
program element (e.g. program statement and variable), and
an edge represents an immediate data dependency. Since data
dependency is viewed as data flow in the narrow sense, we will
use data flow (analysis) instead of data dependency (analysis)
in the rest of the paper.

However, DFGs of existing works assume the correct
execution of program and only model intended data flows.
They don’t take into account the presence of memory errors,
failing to model the resulting unintended data flows. The ability
to model them is crucial in infoleak exploit generation in which
memory errors are taken advantage of. To this end, we develop
our version of DFG, named Memory-error-augmented data-
flow graph (M-DFG) as the data-flow representation of the
kernel in this work. It captures both intended and unintended
data flows in the kernel. In M-DFG, nodes represent program
elements, and edges represent both intended and unintended
data flows among them. M-DFG are specifically designed for
our iterative search algorithm, which searches for infoleak
paths and controlled pointers that derive new memory errors.
We describe M-DFG in detail in $III and §IV.

B. Cross-syscall Points-to Analysis and Data-flow Analysis

Points-to analysis is needed to track data flow through
memory. It would be impossible to produce useful data-flow
analysis results without points-to analysis [35]. Specifically,
when we have two memory operations [; : vy = *p; and
lo : *py = w9, an essential question in any data-flow analysis

https://github.com/seclab-ucr/K-LEAK
https://github.com/seclab-ucr/K-LEAK

is: whether v; and v can be the same? To answer this question,
we need to know whether p; and py can be the same (i.e.,
aliasing). The analysis to answer it is points-to analysis, which
attempts to determine what storage locations (i.e., points-to set)
a pointer can point to [28]. Andersen’s Algorithm [10] and
Steensgaard’s Algorithm [42] are two well-known algorithms
to compute points-to results. After getting points-to analysis
results, data-flow analysis can be done in the way we want.

Unfortunately, these points-to analysis and data-flow analy-
sis algorithms cannot be directly applied to OS kernels as they
assume the input is a complete program. However, the kernel
has the characteristic of multi-interaction [13]. It has multiple
program entry points since a user-level program can make
multiple system calls (syscall for short) to interact with the
kernel. As a result, data flows can propagate through multiple
syscalls through global memory. In the context of infoleak,
this means that a piece of sensitive information can be passed
along the data flows that stretch across multiple syscalls. For
instance, in syscall A, some sensitive information is stored to
some global memory; later, in syscall B, the information is
read from the global memory and propagated to some leaking
sink. The multi-interaction nature of the kernel creates a large
search space in complicating the reasoning of its data flows.
For this reason, we need the ability to track data flow across
syscalls.

SUTURE [51] is a static analysis framework for points-
to analysis and data-flow analysis for the Linux kernel. It
solves the multi-interaction problem using a summary-based
approach. It performs points-to analysis and data-flow analysis
for each kernel entry point (i.e., syscall entries) individually
and produces points-to summary and data-flow summary for
the entry. Both analyses are inter-procedural flow-, context-
, field-sensitive. In its points-to analysis, it creates abstract
memory objects for each entry and then uses access path to
determine memory object aliases (e.g., memory object o1 in
entry A aliases with memory object 02 in entry B) among
entries. In its data-flow analysis, after obtaining the data-flow
summaries for all entries, it “concatenates” the data flows of
different entries into cross-syscall data flows.

SUTURE does not use Data-flow graph to perform the
data-flow analysis. Instead it uses taint analysis (i.e., taint
propagation) to reason about program data flows. Taint analysis
works by propagating taints and check what program elements
are tainted. In our work, for the points-to analysis part, we use
the same approach as SUTURE. However, for the data-flow
analysis part, instead of doing taint analysis, we make use of
M-DFG, which is a more efficient data structure and more
suitable for infoleak exploit generation, as will be discussed.

III. OVERVIEW

Problem Scope and Assumptions. In this work, we aim
to automate the generation of memory-error-based infoleak
against he Linux kernel. We consider exploiting side-channel
vulnerabilities as out-of-scope. We assume attackers already
know the existence of a kernel memory-error (i.e., a use-after-
free or out-of bound vulnerability) and the corresponding bug
triggering input (i.e., a bug reproducer program). This assump-
tion is standard among existing automated exploit generation
work [14] and can be satisfied by using a kernel address

BUG: KASAN: use-after-free in ax25_fillin_cb_from_dev
Read of size 4 at addr ffff8881ccecc438

Call Trace:

ax25_fillin_cb_from_dev net/ax25/af_ax25.c:450 [inline]
ax25_fillin_cb+0x6d5/0x810 net/ax25/af_ax25.c:477
ax25_setsockopt+0x92a/0xa20 net/ax25/af_ax25.c:663
__x64_sys_setsockopt+@xbe/@x150 net/socket.c:1910

The buggy address belongs to the object at ffff8881ccecc400
which belongs to the cache kmalloc-192 of size 192
The buggy address is located 56 bytes inside of

192-byte region [ffff8881ccecc400, ffff8881ccecc4cd)

Listing 1: KASAN report for the demonstrative example

sanitizer (KASAN) report from syzbot as the starting point
(Listing 1). The goal is to leak sensitive information out of
the kernel (e.g., to user space or to network) by leveraging
the initial memory error. During the generation of the exploit,
we assume that attackers cannot hijack the kernel control-
flow. We make this assumption because using infoleak to
bypass KASLR is usually a prerequisite for kernel control-flow
hijacking. Because automated kernel infoleak exploit genera-
tion itself is challenging enough, we assume the kernel does
not employ any mitigation technique that regulates data-flow,
such as data-flow integrity [11]. We leave such undeployed
mitigation bypassing for future work.

Key Insight. The biggest hurdle to generate a memory-error-
based kernel infoleak exploit is the huge search space—there
are a massive number of data-flows in the kernel and most
of them are not helpful towards an infoleak exploit. Existing
approaches solve this problem by only looking for data-flow
fragments or patterns that are known to be exploitable, such
as “elastic objects” [14]. While this approach can effectively
prune the search space, the drawback is also obvious: not all
memory errors can be exploited in this way to achieve infoleak,
as will be seen from our evaluation results §VII. Therefore,
we aim to design a more general approach. Conceptually,
finding an infoleak path is a typical data-flow analysis problem
(e.g., similar to detecting potential privacy leaks in mobile
apps [34]). However, existing data-flow analyses cannot be
directly applied in searching for memory-error-based infoleak
exploit because they lack the modeling of unintended data-
flows introduced by memory errors. This leads to the key
insight behind our approach—by additionally modeling the
unintended data-flows introduced by memory errors, we can
utilize existing data-flow analyses, especially efficient ones, to
generate infoleak exploits.

Technical Challenges. While our idea may sound straight-
forward, realizing it faces a few technical challenges.

(1) Modeling unintended data-flow. The first challenge
we need to address is how to model unintended data-flow
introduced by memory errors. Our observation is that, memory
errors are essentially dereferences of invalid pointers (i.e.,
pointers that are out-of-bound or pointing to freed/uninitialized
memory). From the data-flow analysis perspective, the effect of
an invalid pointer is enabling new data-flow between memory
load (read) and store (write) operations. In other words, an
invalid pointer enables unintended aliasing between pointers
used in load and store operations. Based on this observation,
we design a special alias analysis for invalid pointers §IV-D.

Somel Clang M-DFG
ouree Compil Build
Code ompiler ullaer

Points-to
Analysis

Points-to
Info

Initial
Memory

Intended
M-DFG

M-DFG
Extender

M-DFG
Searcher

Infoleak
Paths

Extended
M-DFG

New

Error

Memory
Error

Fig. 1: High-level workflow of K-LEAK

(2) Modeling data-flow across system calls. One particular
challenge in generating kernel infoleak exploits is that the
exploit may involve multiple syscalls. The data-flow can cross
the boundary of syscalls, in an intended way or unintended
way. Intended cross-syscall data-flows result from the multi-
interaction characteristic of the kernel, as has been described in
§II-B. Without the ability to model them, some memory errors
may not be exploitable [S1]. We address this challenge by
leveraging the cross-syscall point-to analysis from [51], as well
as our DFG-based cross-syscall data-flow analysis. Unintended
cross-syscall data-flows occur when a syscall unintendedly
writes to or reads from memory that is used by other syscalls
through memory errors. Such cases are handled by our solution
to technical challenge (1).

(3) Modeling additional memory errors. In many cases, a
single memory error may not directly be exploitable to achieve
infoleak. For example, in elastic-object-based exploits, attack-
ers first exploited an unintended write operation to overwrite
the length field of an elastic object. This introduces a new
out-of-bound read memory error when the elastic object is ac-
cessed. Specifically, the corrupted length field will influence
how far a data pointer can reach during a copy_to_user()
call. We address this challenge by designing an iterative
search algorithm, where in each iteration, besides looking for
potential infoleak path(s), it also searches for pointers that
may be controlled by attackers. We then check whether those
attacker-controlled pointers can derive new memory errors. If
so, unintended data-flows introduced by these newly derived
memory errors will be used in the next iteration for exploit
generation.

Workflow. Figure 1 depicts the high-level workflow of
K-LEAK. In the figure, a rectangle represents an analysis
component that takes in input data and produces output data,
and an oval represents data (input data or output data for
analyses). K-LEAK takes as input the source code of the
Linux kernel and an initial memory error (i.e., a KASAN
memory error report along with the corresponding triggering
input), and outputs potential infoleak data-flow paths. The
central piece of our approach is a graph-based representation
of data-flow named Memory-error-augmented data-flow graph
(M-DFG). M-DFG is constructed by first extracting (done by
M-DFG Builder in the figure) the intended data-flows from the
kernel LLVM IR, then extended with unintended data-flows
introduced by memory errors (done by M-DFG Extender in
the figure). Potential infoleak data-flows are generated using
an iterative search. In each iteration, K-LEAK leverages an
efficient graph search algorithm (done by M-DFG Searcher in
the figure) to find (1) potential infoleak paths and (2) pointers
controllable by attackers. If new memory errors are found,

VAT T T TS [entry 1] a><25,setsockopt *kkKkKKKKKK/

int ax25_setsockopt(struct socket *sock, int level,
int optname, char __user *optval, unsigned int optlen) {
struct sock *sk = sock->sk;
ax25_cb *ax25 = sk_to_ax25(sk);
ax25_fillin_cb(ax25, ax25->ax25_dev);

}

void ax25_fillin_cb(ax25_cb *ax25, ax25_dev *ax25_dev) {
ax25_fillin_cb_from_dev(ax25, ax25_dev);

R T T e

0}

11 void ax25_fillin_cb_from_dev(ax25_cb *ax25, ax25_dev
— *ax25_dev) {

12 ax25->n2 = ax25_dev->values[N2]; // UAF read. Both ax25
< and ax25_dev are heap pointers

13 }

15 [*FxxxKkxkxkxx [entry 2] mon_bus_init #xkkxkkxxk/
16 void mon_bus_init(struct usb_bus xubus) {
17 mbus->u_bus = ubus; // mbus is a heap pointer

18 }

20 /**xxxxkxkxkx%x [entry 3] ax25_getsockopt #xkkxkkxkx*/
21 int ax25_getsockopt(struct socket *sock, int level,

2 int optname, char __user *optval, int __user =*optlen) {
23 int val;

24 void *valptr = (void *) &val; // valptr is a stack pointer
25 length = min_t(unsigned int, maxlen, sizeof(int));

26 struct sock *sk = sock->sk;

27 ax25_cb *ax25 = sk_to_ax25(sk);

28 val = ax25->n2; // ax25 is a heap pointer

29 return copy_to_user(optval, valptr, length) ? -EFAULT : 0;
30}

Listing 2: Kernel code for the demonstrative example

M-DFG is further extended with new unintended data-flows
before the next iteration. The iterative search stops when a
threshold is reached (e.g., after some iterations or enough
infoleak paths are found).

A Demonstrative Example. Here we use an example to
demonstrate the basic idea of our K-LEAK approach. In this
example, the starting point is a UAF memory error [7] found
by syzbot. Listing 1 shows the KASAN report from syzbot, and
Listing 2 shows the corresponding buggy code for which the
report is produced. In function ax25_fillin_cb_from_dev()
in Listing 2, the heap object that ax25_dev *ax25_dev points
to is already freed. When ax25_dev is dereferenced at line
12, there is a UAF read. Then the read value is stored to a
ax25_cb object that ax25_cb *ax25 points to.

In order to exploit such memory error to achieve infoleak,
an attacker can reallocate a heap object struct mon_bus (see
mon_bus_init() in Listing 2) to reoccupy the location of the
free ax25_cb object. The reallocated heap object contains sen-
sitive information (field u_bus, a pointer) at the same offset as
offsetof (ax25_dev, values[N2]). After the reallocation,

when the UAF read is triggered at line 12, the value of sensitive
pointer (u_bus) will be read out and stored to ax25_cb object.
In addition, the attacker needs to invoke getsockopt() system
call that reaches entry ax25_getsockopt(). It first reads out
the sensitive pointer from ax25_cb object at line 28, and then
it copies it to user space at line 29.

Figure 2 shows the corresponding M-DFG for the demon-
strative example. The horizontal path in the figure is the
infoleak data-flow path that leaks the sensitive pointer to user
space. The infoleak path consists of three segments (Figure 2
has three big rectangle areas), each belonging to a separate
syscall entry. In the first entry when the kernel is executing
mon_bus_init(), there is a store node that stores the sensitive
pointer to object struct mon_bus (corresponding to line 17).
There are two incoming edges for a store or a load node: data
edge and pointer edge. A data edge (solid line in Figure 2)
represents the data to be stored / loaded; the pointer edge
(dash line in Figure 2) represents the address to store / load.
Here, bus is stored to address &mbus->u_bus (some location
inside object struct mon_bus). In ax25_setsockopt(), the
load node (corresponding to line 12 where UAF happens) loads
some memory content from address &ax25_dev->values[N2].
Since &mbus->u_bus and &ax25_dev->values[N2] alias due
to reallocation, the load nodes actually loads the content that
the previous store node stores. Therefore there is a data edge
(the edge in red) linking the store node to the load node. This
is also called read-after-write dependency. The edge is marked
red because it is an unintended edge caused by a memory error
(i.e., UAF). Similar idea applies to the data edge between the
store node and copy_to_user node (a special kind of load
node) in the third segment in Figure 2. Corresponding to line
28, a temporary register value is stored to a stack address
valptr=&val; and the copy_to_user copies the content at
address valptr to user space. Therefore, there is a data edge
linking the store node to the copy_to_user node. The edge is
not marked red because it an intended edge (i.e., not caused
by any memory error).

Note that in traditional data-flow analyses, the red read-
after-write data edge will not exist because they do not
model memory errors. K-LEAK is able to capture this data-
flow due to our memory-error-aware aliasing analysis §IV-D,
which understands that object ax25_cb could alias with
struct mon_bus because of UAF.

In summary, the attacker’s goal is to follow all the solid
edges (i.e., data edges) in Figure 2 to find an infoleak path,
starting from sensitive information and ending at leaking sink.

IV. MEMORY-ERROR-AUGMENTED DATA-FLOW GRAPH

M-DFG is the central data structure in our framework to
generate infoleak exploit. In this section, we define M-DFG
and describe how it is constructed.

A. Pre-Analysis

As shown in Figure 1, M-DFG is constructed based on two
inputs: (1) the Linux kernel in LLVM’s partial static single
assignment (SSA) form, and (2) the point-to information gen-
erated by a flow-, context-, and field-sensitive inter-procedural
static analysis [51]. We consider most LLVM instructions when
constructing M-DFG, including:

e Binary operations (BINOP): vz = v; @ vs.

e Conversion operations (CONOP): vy = (7)v1.

e Phi operation (PHI): v = ¢(¢1 : v1,..., 4, 1 V).

e Memory access: (LOAD) v = #*p, and (STORE) *p = v.

e Addressing operations (ADDROF): p = &v (alloca), p =
&v. f; (struct field), and p = &v[idz] (array element).

e Function calls and returns (CALL): ret = f(v1,...,0,).

e Instructions unrelated to data-flows like icmp and br are not
supported.

Following prior conventions, we use abstract memory ob-
jects to represent distinct memory regions. Let ¥V = AU T
be all variables in LLVM, A be possible point-to targets, and
T be all top-level variables whose address is not taken. To
provide field-sensitive, addresses of different fields in a C/C++
struct is considered as distinct memory regions. For arrays, all
elements are considered as a single memory region. The points-
to information includes the set of abstract memory objects, and
the set of points-to relations.

e An abstract memory object o € A is an abstract storage
location in static point-to analysis. They are field-sensitive
address-taken variables (i.e., &wv,&wv.f;,&v[0]). For each
object, we track how it is allocated (i.e., on stack or in
heap) and its allocation site.

o A points-to relation relates a top-level variable to a set of
abstract memory objects it may point to v — 0 € T x A; or
from a abstract memory object to another abstract memory
object po ~~» 0 € A x A.

To preserve the context-sensitivity of the point-to analysis
results, when constructing M-DFG, we clone each LLVM
instruction ¢ and associate it with a context string £°**. For
abbreviation, we use £ to denote instruction with context string.
We use the memory usage of the static analysis as a threshold
to determine the maximum context level. In our evaluation,
we used S0GB as the threshold, and the corresponding context
level is 7.

B. Graph Definition

Memory-error-augmented data-flow graph (or M-DFG for
short) G = (N, E) is a directed graph. Its nodes N represent
program elements, and its edges F represent data dependencies
between program elements. There are three kinds of nodes in
M-DFG, representing different kinds of program elements in
the partial SSA form:

o A variable node represents a definition of a top-level vari-
able v in the program.

o A load node represents a memory read (LOAD) instruction
in the program.

e A store node represents a memory write (STORE) instruction
in the program.

Note that we choose to explicitly model LOAD and STORE
instructions to assist identifying new memory errors (§V-C)
and updating M-DFG with memory-error-induced data depen-
dencies.

Edges E are directed. An edge £; — £, represent data
dependencies: £; defines one or more variables used in £5.

ax25_setsockopt()

ax25_getsockopt()
(leaking syscall)

mon_bus_init() (buggy syscall)
&mbus 8ax25 dev | [gax25>n2 || | [sax25->n2
->u_bus ->values[N2] - -

{ load }—»{ tmp Hstore}

l bus Hst:)re}

o[i0ad |—{ tmp |——[store}—>popy_to_user]

Fig. 2: Part of the M-DFG for the demonstrative example

To facilitate the identification of new memory errors, we
distinguish two kinds of edges in M-DFG, data edges and
pointer edges.

e A data edge represents a direct data-flow (def-use) that
transfers data from the source node to the destination node
(e.g., solid edge in Figure 2).

e A pointer edge represents a special data-flow only applicable
to a LOAD or a STORE instruction, that is, the memory
location depends on the source code (e.g., dashed edge in
Figure 2).

C. M-DFG Builder

With the intended points-to information pre-computed, the
intended M-DFG is built by creating nodes and link them
with edges. This is done by the M-DFG Builder in Figure 1.
Nodes and edges are added according to the rules in Table I.
Recall that LLVM instructions are cloned and associated with a
context string when added to the graph. Following the rules, we
build a graph for each syscall entry separately, which will be
merged into the whole graph later. Following are the detailed
descriptions of the rules.

For BINOP, CONOP, and PHI instructions, nodes are
created for each defined high-level variable v. Then data edges
are added according to the standard def-use relation.

Our analysis is inter-procedural. For each function defi-
nition f(...,p,...) — 7, nodes are created for each for-
mal argument p and the return value r. For each call site
L :ret = f(...,a,...), nodes are created for each actual
argument a and the variable ret to receive the return value.
Then data edges are added from each actual argument to the
corresponding formal argument a — p, and from the return
value to the variable that receives the return value r — ret.
To reduce false positives, we use dynamic tracing to resolve
indirect calls (see §VI for details).

For a LOAD instruction £ : v = *p, nodes are created for
the defined value variable v, and the load instruction £ itself. A
data edge is added from the load node to the defined variable
£ — v to capture the data flow, and a pointer edge is added
from the pointer variable node to the load node p — £ to
facilitate discovery of new memory errors. To detect infoleak,
copy_to_user(to,from,len) and a number of other APIs
that perform load/store-like memory operations are treated as
special kind of load/store nodes. Nodes are created for from,
len and copy_to_user. Then two pointer edges are added
from from and len to copy_to_user.

For a STORE instruction £ : x¢ = v, a node is created for
the store instruction £. Then a data edge is added from the

value variable node to the store node v — £, and a pointer
edge from the pointer variable node to the store node g = £.

To model data-flow through abstract memory objects, we
add data edges from store node to load node according to
the read-after-write (RAW) rule. Specifically, if the pointer
variables of the store £; : ¢ = v and pointer variable of
the load £; : v = *p are aliases (i.e., may point to the same
abstract memory object o), then a data edge is added from the
store node to the load node £, — ¥;.

A special note is that only things present in LLVM are han-
dled and things on stack (e.g., stack pointer, frame pointer) are
not; Moreover, to reduce potential false positives introduced by
static analysis, when building M-DFG, we only analyze syscall
entries that can are covered by existing test cases from syzbot
and those in published works [13]-[15] (more details in §VI).

Model cross-syscall data-flow. To address technical challenge
(2), we model intended cross-sycall data-flow in M-DFG
as follows. We connect the M-DFG of each syscall using
cross-syscall RAW edges. Using the cross-syscall points-to
information generated by SUTURE [51], we look at all pairs
of syscall entries and try to apply RAW rule to connect the
store node of one syscall entry to the load node of another.

D. M-DFG Extender

One main innovation of K-LEAK is modeling both in-
tended and unintended data-flow in M-DFG. Specifically,
RAW edges are used to model the data-flow through both
intended and unintended memory accesses, which result from
the execution without and with memory error, respectively.
The key challenge, as mentioned before in §III, is that given
a memory error, what RAW edges should be added.

An unintended memory access occurs when the pointer
variable node becomes invalid and points to some unintended
memory location (e.g., out-of-bound or freed). The question,
therefore, is what unintended memory location the invalid
pointer can point to. Traditionally, this question is answered
by a point-to analysis like SUTURE [51]. However, existing
point-to analysis only models correct execution semantics,
thus cannot be used to answer this question. Therefore, we
developed a memory-error-aware point-to analysis to answer
this question.

From a high level, an out-of-bound (OOB) pointer allows
attackers to access data in “adjacent” objects. Therefore, to
answer the question of what abstract memory object an OOB
pointer can point to, we need to know (1) what memory object
may be allocated adjacently and (2) how far away the pointer
can go OOB, or in other words, what is the capability of the

TABLE I: Rules for adding nodes and edges into M-DFG.

| Instruction | Program Statement (SSA) | Nodes [Data Edges | Pointer Edges |
BINOP L:v3=v1 Dy v1, Vg, U3 V1 — U3, Vg —> U3 -
CoNOP vy = (T)’Ul V1, U2 V1 — V2 -
PHI £:vg =0 :v1,.... 8, :vy) | V4, 01,...,0, | Vi > vg,0 €{1,...,n} -
LoAD £:v=xp v,p, L L — v p=4£
STORE L:.xqg=v v,q, L v— £ q=17
CALL £ 7}225 : fgflf()_;%ﬂ’) a,p,r,ret a—p,r—ret -

TABLE II: Rule to add read-after-write data edges in M-DFG.

| Rule | Program Statement | Nodes | Data Edges | Pointer Edges |

£ :ixq =0 [qg— 0]

RAw £ v =xp [p o

ES—>£l -

OOB pointer. Similarly, for a dangling pointer, what abstract
memory objects it can point to depends on what kind of object
may be reallocated into the same memory region. Similar
to prior work, we need to understand the behaviors of the
heap allocator in order to pair the capability with appropriate
objects [13], [46].

To answer the first question about memory objects, we rely
on previously summarized objects in published work [13]-
[15]. Specifically, we make the assumption that the syscalls
capable of allocating and utilizing these objects are pro-
vided. By adopting this approach, we can statically conduct
a memory-error-aware points-to analysis and generate aliases
by incorporating new pointer edges into the graph (later in §V
we also talk about how to dynamically verify the aliases).

To answer the second question about capabilities, we
leverage the KASAN report to extract the required information.
In other words, we prefer concrete capabilities over potential
capabilities. For example, Listing 1 is a sample bug report,
which shows that a memory read reads the 56 bytes inside the
use-after-free slab cache slot. Listing 2 shows the line where
the use-after-free happens. From both we know the pointer
variable &ax25_dev->values[N2] points to the use-after-free
memory location. We can assume the attacker can reallocate
some object at the UAF slot to create unintended aliases. We
update the points-to set of the pointer variable, letting it point
to all objects that can be reallocated in the UAF location. By
doing so, we can apply RAW rule to add unintended RAW
edges. In the example, when the attacker reallocates an object
struct mon_bus in the use-after-free slot, the store node that
stores the pointer will be linked to the load node at line 3.
As we can see, when the memory error (e.g. UAF and OOB)
occurs at kernel heap, we assume the success of using heap
manipulation technique [49], and update the points-to set for
the pointer variable to be all objects allocated in the same slab
spot (Elastic objects are considered in multiple slab caches).
We check each object in the set of abstract memory objects in
points-to information (described in §IV-A).

In cases where we can confidently confirm that the capabil-
ity of a pointer is arbitrary (i.e. attacker can fully control the
value of the pointer), we follow prior conventions from [14],

[46]: for arbitrary read, we assume it can pair with all locations
inside all objects and add corresponding RAW edges; for
arbitrary write, we assume it cannot pair with any objects. This
is because when the panic_on_oops kernel configuration is off
(by default in popular distributions like Ubuntu), the kernel
will only kill the current process even if an illegal memory
access has caused a page fault in the kernel space. Therefore,
an attacker can exploit an arbitrary read to continuously probe
the address space. However, arbitrary write may corrupt kernel
data structures and lead to unwanted side-effects.

V. SEARCH ON M-DFG

In this section, we describe the benefits of M-DFG, how
M-DFG can be used to search for infoleak and new memory
errors, and our iterative algorithm on M-DFG that combines
the two searches and systematically covers the search space
for infoleak exploits. With M-DFG, we are able to reduce
infoleak exploit generation problem to a graph search problem.
The graph searcher in Figure 1 performs the searches and
applies the iterative algorithm. Intended points-to information,
intended M-DFG and an initial memory error are prepared as
initial inputs, and M-DFG will be updated per iteration.

As a reminder, we believe precision (i.e., reducing false
positives) is more important than recall (i.e., reducing false
negatives) for exploit generation; so, when there is a trade-off,
we prefer precision over recall. For example, when building
M-DFG, we only analyze kernel code that can be covered
by existing test cases (i.e., syzbot proof-of-concept (PoC)) or
those already analyzed by [13]-[15]. And when extending
M-DFG with new memory errors, we only consider kernel
objects that can be allocated by [13]-[15].

A. Benefits of M-DFG

Comparing to existing data-flow analysis solutions, our
M-DFG solution has benefits in infoleak generation.

SUTURE [51] solves the data dependency problem with
taint analysis, instead of building DFG data structure. It main-
tains and propagates taint records, and creates taint summary
(i.e. from what taint source to what taint sink). However, taint

summary is not an efficient data structure in expressing data
flows. It is basically a path-like data structure. The number of
taint summaries and taint records can grow exponentially and
incur large memory footprint; Also, it is not efficient to do
data flow query on top of such summary. In contrast, M-DFG
allows us to use multiple graph algorithms to reason about the
data flows.

Other DFGs from existing work like [43] usually has
variable nodes to represent top-level variables and memory
nodes to represent memory locations. M-DFG removes
memory nodes and adds load nodes and store nodes, as well
as pointer edge that links a pointer variable node to a load or
store node. We argue that both representation of data-flows
are equivalent in expressing data flows. Specifically, we use
stored_value->store_node->load_node->loaded_value
to model read-after-write; others use stored_value->
memory_node->loaded_value to model the same read-after-
write. However, the biggest advantage of our representation is
being able to reason about creating new memory errors. This
is because our M-DFG design has pointer edge while existing
DFG does not. This helps us to reason about additional
memory errors by tracking whether the attacker can control
a load or store node through a pointer edge, which will
be discussed in §V-C. Moreover, our representation makes
it easier to model the unintended data-flow resulting from
memory errors and to perform the two searches.

Finally, because searching for infoleak and searching for
new memory errors can both be modeled as data-flow analysis
over M-DFG, in each iteration, we only need to search the
graph once, instead of searching twice (one for infoleak and
one for new memory errors).

B. Infoleak Search

In M-DFG, a data edge can transfer data from its source
node to its target node. A path in M-DFG consisting of data
edges can therefore transfer data from its start to its end. Given
a M-DFG, one is able to statically check whether some data
flows from a specified source node to a specified sink node by
checking whether there exists a path in M-DFG linking them.

For each memory error (including the initial memory error),
we add unintended RAW edge(s) as is described in §IV-D.
Once they are added, we get all the unintended data-flow
paths going through them. For each unintended data-flow,
we check whether it starts from a sensitive information and
ends with a kernel leaking sink (e.g., copy_to_user). If so,
we find a potential infoleak data-flow path. In this work, we
consider kernel pointers (function pointer, data pointer), keys
and network & IPC messages (which may contain sensitive
user data) as sensitive information (i.e., source nodes). For
leaking sinks, we show the complete list in Table III. Given an
M-DFG extended with unintended data-flow, we use a standard
breath-first search (BFS) to find all paths between sources and
sinks. For instance, in Figure 2, once the unintended RAW
edge (red edge) is added, we can find a path from bus to
copy_to_user going through the red edge.

When an infoleak path is found due to the adding of
an unintended RAW edge resulting from a read primitive,
we deem the infoleak path “read-induced infoleak™ (Rjnfo for
short); If it is due to the adding of an unintended RAW edge

resulting from a write primitive, we deem the infoleak path
“write-induced infoleak” (Wing for short);

Not all infoleak data-flow paths in M-DFG will correspond
to valid infoleak exploits. First, the feasibility of a data-
flow relies on the feasibility of the corresponding control-
flow path. For instance, consider a RAW edge, if there is no
feasible control-flow path between a store node and the load
node, then this RAW edge is actually infeasible. Therefore,
an entire data-flow path is feasible iff there is at least on
feasible control-flow path between every pair of data-flow
nodes. However, because we omitted control-flow information
when constructing M-DFG to make it scalable, we cannot
reason about control-flow feasibility based on M-DFG. Second,
due to the inherent imprecision of static points-to analysis, the
RAW edges in M-DFG which are constructed based on static
points-to analysis are not always feasible. As a result, the real
data-flow may not follow the RAW edges in M-DFG.

To reduce false positives introduced by aforementioned im-
precision in static analysis, we develop a dynamic verification
process to verify each found data-flow path, before moving
to the next iteration. For an infoleak data-flow path found
in M-DFG, we verify two properties to ensure its feasibility:
(1) its corresponding control-flow is feasible and (2) all RAW
edges in the data-flow path are feasible. If so, the path is kept;
otherwise it will be removed.

In this work, we first use symbolic execution to verify the
feasibility of data-flow paths. Due to the scalability limitation
of the symbolic execution engine we use (from [54]), if a data-
flow path goes across multiple system calls (as in Figure 2),
we divide it into multiple segments, each corresponds to a
single system calls. These segments are connected through
(intended or unintended) cross-syscall RAW edges (i.e., one
syscall stores some data, and another syscall loads it). To verify
the feasibility of the entire data-flow, we verify it segment
by segment. If each segment is feasible and the RAW edges
connecting them are feasible, then the entire data-flow is
feasible. For instance, for the example in Figure 2, we need
to run 3 symbolic executions for the 3 segments.

For each data-flow segment, we first find or construct a
dynamic test case (e.g., from the syzbot PoC [13]-[15]) that
can reach the starting point of the data-flow segment (e.g.
first load node inside ax25_setsockopt, first load node inside
ax25_getsockopt in Figure 2). Similar to SyzScope [54], we
use the input to drive the execution to the first node of the
data-flow segment, take a memory snapshot, and start symbolic
execution from the memory snapshot. Based on the assumption
of successful heap fengshui [49], we symbolize two types
of memory in the memory snapshot: (1) attacker-controlled
region (i.e., copy_from_user()’ed region (full control) and
other object fields that are not pointers (limited control)) and
(2) memory region containing the sensitive info (e.g., kernel
pointer field) to be leaked. Note that we only consider these
two types of memory within the UAF/OOB region or the
memory that the previous data-flow segment writes to. The first
type is used to explore execution paths that can be controlled
by attackers. The second type is used to check if the leak
indeed can happen and to track how the sensitive info will
be transformed [26]. Note that, since we do not start the
symbolic execution from the entry point of a syscall, we do
not symbolize syscall arguments, and leave it for future work.

TABLE III: List of infoleak sinks.

int _printk(const char *fmt, ...)

unsigned long copy_to_user(void __userx to, const void* from, unsigned long n);

int nla_put(struct sk_buffx skb, int attrtype, int attrlen, const void* data);

int nla_put_nohdr(struct sk_buff xskb, int attrlen, const voidx data);

int nla_put_64bit(struct sk_buff *xskb, int attrtype, int attrlen, const voidx data, int padattr);

void* nlmsg_data(const struct nlmsghdr* nlh); void* memcpy(void* dest, const void* src, size_t count);

void* nla_data(const structure nlattr *nla); void* memcpy(void* dest, const void* src, size_t count);

void* skb_put_data(struct sk_buffx skb, const voidx data, unsigned int len);

voidx skb_put(struct sk_buff* skb, unsigned int len); voidx memcpy(void* dest, const void* src, size_t count);

To check for (1) control-flow feasibility, we perform a
breadth-first search for feasible control-flow paths. If a feasible
control-flow path that connects all data edges in the segment
is found, we check for the second property. To check for (2)
feasibility of RAW edges, we leverage symbolic execution’s
abilities to precisely reason about memory aliasing and to
track data propagation. Specifically, after the symbolic execu-
tor find a feasible path, we check whether the data being
stored is a symbolic formula of the symbolized sensitive
information. If so, all RAW edges are feasible; otherwise
at least one RAW edge is not feasible. For instance, for
the ax25_setsockopt segment in Figure 2, we symbolize
&ax25_dev->values[N2] as the sensitive info (because in
previous segment mon_bus_init(), the same memory region
contains a pointer) and symbolize other non-pointer fields as
attacker-controlled, and check whether &ax25->n2 is a formula
of this symbolic value. Similarly, for the ax25_getsockopt
segment, we symbolize &ax25->n2 (because in previous seg-
ment the sensitive info will be written to the same memory)
and check if the data being copied to the userspace is a formula
of the symbolic value.

To check all segments as a whole are feasible, we record
the control-flow path constraints for each feasible segment,
then we put the constraints from all segments into constraints
solver to check the feasibility. If there is no solutions, we deem
it as infeasible. Right now we do not check the feasibility of
cross-syscall RAW edges. For intended cross-syscall edges,
we assume the point-to analysis [51] has accurately modeled
it (e.g., kernel object retrieved from the file descriptor will be
the same). For unintended cross-syscall edges, we assume it is
feasible to perform heap fengshui [49] such that the store and
load node will indeed access the same kernel object.

C. New Memory Error Search

To search for new memory errors, we look for pointers that
can be controlled by the attacker. This can be translated into
another searching for data-flow paths in M-DFG that starts
with a node with attacker-controlled data, and ends with a
pointer variable node. The pointer variable node is later used
by a load or store node (i.e. connected to a load or store
node through a pointer edge). If such data-flow path exists,
the pointer variable can point to some unintended memory
location, and a new memory error is created.

Similar to infoleak search, new memory error search also
started after unintended data-flow edges are added. Start with
nodes with attacker-controlled data, we propagate the data
through data edges using flooding, until no new nodes are
covered. Then we enumerate all data-flow paths that start from
a node with attacker-controlled value and ends with a pointer

variable node that is linked to a load / store node. Attacker-
controlled value are marked in the graph in advance using
prior knowledge. Specifically, we mark copy_from_user
node as attacker-controlled; . Again, though we are searching
for different types of data-flow paths (infoleak and attacker-
controllable pointers), thanks to M-DFG, we can combine both
searches into one round of breadth-first search.

We use the same dynamic verification process used in
infoleak search to verify the feasibility of the data-flow path.
Besides its feasibility, we also need to check on the value of
the pointer variable, which determines the capability of the
new memory error. Static analysis is one way to determine
the value. One technique is to lazily redo the static points-
to analysis along the path [43], updating the points-to set for
all nodes along the path, including the controlled pointer at
the end of the path, therefore reducing the overhead. This
technique reflects the fact that the attacker-controlled value
would propagate through the data-flow path to control the
pointer variable. However, since static pointer analysis is often
imprecise, the points-to set of the controlled pointer would
be imprecise, thus the capability of the new memory error
would not be precisely reason about in a static manner. In
contrast, symbolic execution can precisely analyze the value
of the controlled pointer. Therefore after knowing the con-
trolled pointer in static analysis, we use symbolic execution to
further determine the capability of the new error. A pointer is
controlled when it contains symbolic value. During symbolic
execution, we generate the feasible value for the controlled
pointer. The feasible value of the controlled pointer represents
its capability. If it is totally controllable (i.e. can take any
value), it has arbitrary capability; If it is not totally controllable
(i.e. can only take a limited range of value), then it is
limited. For copy_to_user() and similar sinks (elastic object
cases), in addition to the address argument, we additionally
check whether its len argument is symbolic and extracts its
constraints to understand how many bytes can be copied to
userspace. Currently, we limit the max number of bytes to
leak to 4KB.

When an new memory error is derived due to the adding of
an unintended RAW edge resulting from a read primitive, we
deem the new memory error “read-induced new error” (Rperr
for short). This means that a read error creates a new error; If it
is due to the adding of an unintended RAW edge resulting from
a write primitive, we deem the infoleak path “write-induced
new error” (Whyerr for short). This means that a write error
creates a new error;

D. Iterative Search Algorithm

The infoleak search and new memory error search are
combined into our iterative algorithm. The high-level workflow

has been shown in Figure 1: in each iteration, we first extend
M-DFG using newly added memory errors (the initial memory
error is considered as new for the first iteration), then we
search for infoleak paths and new memory errors; newly found
memory errors are then fed to the next iteration. This process
repeat until we have reached a threshold, or no new infoleak
and memory errors are found. In Algorithm 1, we give a
detailed algorithm.

Using our iterative search algorithm on top of M-DFG,
we are able to do a systematic search for infoleak exploits.
The iterative search algorithm naturally categorizes different
infoleak strategies, and thus the infoleak search space is
naturally divided by the algorithm. An infoleak strategy is
defined by how and in which iteration the infoleak path is
output in the iterative algorithm. Here are several examples: If
the initial memory error is a read error, and the first iteration of
the algorithm produces the infoleak, the strategy is considered
Rino; If the initial memory error is a write error, and the first
iteration of the algorithm produces the infoleak, the strategy is
considered Wiy If the initial memory error is a write error,
and the first iteration of the algorithm finds a new read error
(i.e. it is a write-induced error, Wherr), and a later iteration of
the algorithm finds an infoleak using the read error, then the
strategy is considered Wherr + Rinfo- S0 on and so forth.

E. Exploitability Verification

Once K-LEAK outputs a potential infoleak path, where
each data-flow segment has been verified by symbolic execu-
tion, we perform an additional manual analysis to further verify
its exploitability. We first construct a cross-syscall test case
(i.e., syscall sequences) that connects all data-flow segments.
Then we use this test case to confirm the control-flow and data-
flow feasibility of the infoleak path. The only assumption we
make in this step is the success of heap fengshui. That is, we
simulate an illegal read-after-write data-flow by using GDB to
“copy” stored value to the read value. For example, in Figure 2,
the leaking data-flow path starts with an UAF read that reads a
kernel pointer from the victim object mbus. In a real exploit, we
need to perform heap fengshui to reallocate an mbus object in
the freed heap slot previoiusly belongs to an ax25_dev object.
However, because automated heap fengshui in the kernel is
still an open problem, we simulate a successful fengshui by
using GDB to pass the kernel pointer mbus->u_bus to the
load instruction (i.e., tmp = mbus->u_bus). If we indeed can
observe the sensitive information being leaked by the test case,
we deem the corresponding memory error as exploitable.

VI. IMPLEMENTATION

We use static analysis and symbolic execution to implement
a prototype of the framework that runs our iterative algorithm
to generate infoleak exploits. In this section, we will describe
the implementation details of the prototype. The prototype
takes the source code of the kernel and a KASAN bug report
as input, and outputs potential infoleak exploit(s).

A. Input: Memory Error from syzbot

We choose the memory errors found by syzbot [23] as
the input to our prototype. Syzbot is a continuous fuzzer that
fuzzes the Linux kernel and releases a bug report and a bug

10

reproducer (i.e. syscall input sequence) for each found bug.
The underlying fuzzer used by syzbot is Syzkaller. With the
fuzzed kernel instrumented with different types of sanitizers,
syzbot is able to detect different types of bugs during fuzzing
and accordingly produce a bug report and a reproducer for each
found bug. Among the bugs found by syzbot, we focus on heap
use-after-free and heap out-of-bound memory errors, two most
common types of memory errors in real world. The reports are
generated by KASAN sanitizer. An example report is shown
in Listing 1. Syzbot will stop the kernel execution when the
first memory error is detected. Although the bug may trigger
multiple memory errors, the report from syzbot only contains
the first memory error, rendering the report being incomplete.
Syzscope [54] is able to obtain a more complete set of memory
errors. With the help of Syzscope, after the first memory error
is triggered, later errors can still be analyzed as the kernel
continues executing. Therefore, we use Syzscope to get the
set of memory errors (in the form of UAF/OOB capabilities)
for a single bug found by syzbot. They will be considered as
the set of initial memory errors as input to K-LEAK.

B. M-DFG Builder

Besides the initial memory errors, the kernel source code is
another piece of input to the prototype. Using clang compiler,
it is first compiled into LLVM IR, which subsequent static
analysis and the M-DFG data structure are based on. Our
analyses are implemented using the C++ LLVM Compiler
infrastructure. To deal with the symbol renaming issues in
the clang compiler, we process individual IR files instead of
linking them.

Based on the compiled IR files, we use SUTURE to do a
cross-syscall points-to analysis and collect the intended points-
to information. Since SUTURE is a summary-based points-to
analysis that summarize the behaviors each syscall entry, we
need to specify the set of syscall entries to be summarized.
To reduce the overhead, we only run the analysis on a limited
number of syscall entries: (1) the syscall entry that syzbot input
invokes to trigger the memory error (e.g. ax25_setsockopt in
Listing 2); (2) the syscall entries in the same kernel module as
the memory-error-triggering entry (e.g. ax25_getsockopt in
Listing 2). (3) the syscall entries that are analyzed by published
work [13]-[15]. The published works give concrete test cases,
so we collect them into a database. Since the number of them
are limited, we additionally craft some and add them to the
database. We also use such database to collect the dynamic
indirect call graph edges, and use them in cross-syscall points-
to analysis mentioned earlier.

We build and store M-DFG in C++ program. To store
M-DFG representation, we use the graph library [1] to main-
tain the vertices and edges. Also we use multiindex library [2]
to maintain the points-to information, as well as other auxiliary
information related to the vertices or edges, which speeds up
data retrieval using index.

C. Graph Searcher

When implementing our iterative algorithm, we limit the
number of iteration to 2. We found the results converged within
2 iterations, given our analysis scope (i.e. syscalls and objects).

Algorithm 1 Iterative Search Algorithm

Output infoleak paths leak Paths
leakPaths := ()
worklist := ()

ENQUEUE(worklist, E)
while worklist # () do
e := DEQUEUE (worklist)
9: paths := PATHS_THROUGH_EDGE(e)

1:
2:
3:
4:
5:
6:
7:
8

10: for each path € paths do

11: if IS_INFOLEAK_PATH(path) then

12: if VERIFY (path) then

13: leakPaths := leakPaths U {path}
14: end if

15: end if

16: if IS_ZNEWERROR_PATH(path) then

17: if VERIFY (path) then

18: nc := GET_CAP(path)

19: Extend M-DFG with E’ according to nc
20: ENQUEUE(worklist, E")

21: end if

22: end if

23: end for

24: end while

Extend M-DFG with a set of RAW edges E according to ic

Input Intended M-DFG, the capability of an initial memory error ic

When searching for data flow paths in M-DFG, we use
BFS to search for infoleak paths and new memory errors, and
we limit the search depth to avoid excessively long data-flow
paths. After interesting nodes are visited (e.g. infoleak sink,
pointer variable connecting to a load or store node), we use a
backward DFS to construct the data-flow path of interest (i.e.
infoleak path or path creating new memory error).

In symbolic execution, we use the same framework as [54],
which is a symbolic executor based on Angr [40]. It takes a
kernel snapshot as input, and runs dynamic symbolic execution
on it. It can explore about 2,000 basic blocks within the 4-hour
time budget. Its concretization strategy is similar to Angr’s
default one (e.g., a symbolic index will be concretized), which
can lead to false negatives during feasibility verification.

VII. EVALUATION

In this section, we evaluation our prototype of K-LEAK to
answer the following research questions:

e RQ1: how effective K-LEAK is on generating Linux kernel
infoleak exploit?

e RQ2: does modeling cross-syscall data-flow allow K-LEAK
to generate more exploits?

e RQ3: do new memory errors discovered during multi-
iteration search allow K-LEAK to generate more exploits?

e RQ4: is the graph-based search fast enough to handle Linux
kernel?

e RQS: how effective is K-LEAK compared to manual anal-
ysis?

11

A. Evaluation Data Set

We select from syzbot 250 real-world fuzzer-exposed mem-
ory bugs (found before 2022 and already fixed) for upstream
kernel to evaluate the ability of K-LEAK in generating infoleak
exploits. We use keywords “use-after-free” and “out-of-bound”
in the report titles to search for these bugs (e.g., the title
of Listing 1 contains keyword “use-after-free”). Within the
search results, we then select those that we can reliably trigger
(i.e., reproduce the KASAN warning message using the bug
reproducer). The distribution of the 250 bugs are: 180 heap
UAF/OOB read, 70 heap UAF/OOB write. For comparison
with ELOISE [14], we confirm that all 10 bugs from syzbot
used in ELOISE are included in our evaluation dataset.

B. Overall Results

The overall evaluation results are shown in Table IV.
Due to page limit, this table only contains bugs that have
verified infoleak paths, including the 10 bugs also used in
ELOISE [14]. Each row in the table contains the results for one
memory bug. The ID column shows the ID for each syzbot bug.
Those IDs followed by “(EL)” are also those used in [14]. The
Type column shows the type of the bug (i.e., UAF or OOB).
The Initial Memory Errors column shows the initial set of
memory errors of by each bug. “R” represents read error, and
“W” represents write error. For example, “14 R 3 W” means
the initial set of memory errors include 14 read errors and 3
write errors.

Since we use an iterative algorithm to search for infoleak,
we also show the intermediate results produced during the
iterative algorithm. The Ist Iteration and 2nd Iteration columns
shows the results from corresponding round when running
the iterative algorithm (Algorithm 1). It shows the number
of infoleak paths (denoted as “infoleak™) and the number of

TABLE IV: Exploit generation results. Each row in the table contains the results for one memory bug. The ID column shows
the syzbot bug ID. IDs marked with “(EL)” are those also evaluated in ELOISE [14]. Type column shows the type of the bug.
Initial Memory Errors column shows the initial set of memory errors (i.e., read and write operations using the invalid
pointer). R represents read error, and W represents write error. 1st Iteration and 2nd Iteration columns shows the results
when running the iterative algorithms. Results before the “/” are from the Static Analysis, and after are the results verified by
Symbolic Execution: infoleak means number of infoleak paths (the corresponding exploit strategy is in the parentheses), and
memerr means number of new memory errors (the type of created new memory error is in the parentheses). Infoleak Paths
column summarizes the overall numbers of infoleak paths for the case. Strategy Summary column shows the infoleak strategy
used to exploit each syzbot case. Cross syscall column shows whether any infoleak data-flow crosses more than one syscalls
(either intended or unintended), T means crosses.

Initial 1st Iteration 2nd Iteration Infoleak Strategy Cross-
ID Type | Memory ic A . i ic A . ifi
Errors Static Analysis / SE-Verified Static Analysis / SE-Verified Paths Summary | Syscall
01b3316 | UAF 1R 1 infoleak (Rinfo) / 1 infoleak (Ringo) -/ - 1 Rinto T
059cee5 | UAF 1R 1 infoleak (Rinfo) / 1 infoleak (Ringo) -/ - 1 Rinto
1c07845 | UAF | 11 R | 7 infoleak (Rinfo) / 3 infoleak (Ringo) -/ - 3 Rinto T
af50cf6 | UAF IR 1 infoleak (Rinfo) / 1 infoleak (Rinfo) - /- I Rinfo
cd4d85b | UAF I R 1 infoleak (Rinfo) / 1 infoleak (Rinfo) -/ - 1 Rinfo
S5aae242 | UAF 1R 2 infoleak (Rinfo) / 1 infoleak (Ringo) -/ - 1 Rinfo
. 1 memerr (R) / 1 memerr (R) .] .] Rinfo
148d2f1 | UAF 5R 1 infoleak (Ringo) / 1 infoleak (Ringo) 1 infoleak (Rperr + Rinfo) / 1 infoleak (Rperr + Rinfo) 2 Ruerr + Rinto
0655ccf | UAF ?\l; I memerr (R) / 1 memerr (R) 1 infoleak (Rnerr + Rinfo) / 1 infoleak (Rnerr + Rinfo) 1 Ruerr + Rinfo
1d22a2c¢ | UAF 2 W | 4 infoleak (Wingo) / 4 infoleak (Wingo) -/ - 4 Winfo T
2d4684c |UAF|] 8| 4 infoleak (Wing) / 4 infoleak (Winn) - 4 Wt T
64b6c15 | UAF 1 W |2 infoleak (Wingo) / 2 infoleak (Wing) -/ - 2 Winfo T
9ea5654 | OOB ;\l;v 4 infoleak (Wingo) / 4 infoleak (Wingo) -/ - 4 Winto T
45591ae | UAF 2 W | 4 infoleak (Wingo) / 4 infoleak (Wingo) -/ - 4 Winfo T
8670f2d | UAF 1w 1 infoleak (Wingo) / 1 infoleak (Wingo) -/ - 1 Winfo T
e2554a4 | UAF 23\12 4 infoleak (Wing) / 4 infoleak (Wingo) -/ - 4 Winfo T
e%9a87c1 | OOB :\l;v 4 infoleak (Wing,) / 4 infoleak (Wingo) -/ - 4 Winfo T
1379 (EL) | UAF 134\?1\} 10 memerr (R) / 1 memerr (R) 10 infoleak (Wherr + Rinfo) / 1 infoleak (Wherr + Rinfo) 1 Wherr + Rinfo
3d67 (EL) | OOB 1w -/ - -/ - 0
422a (EL) | OOB 1w -/ - -/ - 0 N
1 infoleak (Wingo) / 1 infoleak (Wingo) . ’] . j] Winto
5bb0 (EL) | UAF 1w 1 memerr (R) / 1 memerr (R) 1 infoleak (Wherr + Rinfo) / 1 infoleak (Wherr + Rinfo) 2 Waere + Rinto T
6a6f (EL) | UAF 1w 3 memerr (R) / 1 memerr (R) 3 infoleak (Wherr + Rinfo) / 1 infoleak (Wherr + Rinfo) 1 Wherr + Rinfo
a84d (EL) | OOB 1w 1 memerr (R) / 1 memerr (R) 1 infoleak (Wherr + Rinfo) / 1 infoleak (Wherr + Rinfo) 1 Wherr + Rinfo
bf96 (EL) | UAF 1w -/ - -/ - 0 -
edbe (EL) |OOB| 3 W 6 memerr (R) / 0 memerr (R) 6 infoleak (Wherr + Rinfo) / O infoleak (Wherr + Rinfo) 0
€928 (EL) | UAF 1w I memerr (R) / 0 memerr (R) 1 infoleak (Wherr + Rinfo) / 0 infoleak (Wherr + Rinfo) 0 -
1 infoleak (Wingo) / 1 infoleak (Wingo) ..] L.) Winfo
ebeb (EL) | UAF 1w | memerr (R) / 1 memerr (R) 1 infoleak (Wherr 4+ Rinfo) / 1 infoleak (Wherr + Rinfo) 2 Waerr + Rinto T

paths that create new memory errors (denoted as “memerr”).
Numbers go before the “/” are the static analysis results from
the iteration, and numbers after the “/” are the results verified
by symbolic execution. In the example of 148d2f1, in the first
iteration, the static analysis finds 1 data-flow path resulting in
a read primitive (marked as “R”), and the symbolic execution
verifies the primitive; the static analysis also finds 1 infoleak
path, and the symbolic execution verifies the path.

The Infoleak Paths column shows the overall number of
infoleak data flow paths for the case. The Strategy column
shows the infoleak strategies (see §V-D) used to exploit each
syzbot case. The Cross syscall column shows whether any of
the verified infoleak paths crosses more than one syscalls (in
an intended or unintended manner).

To answer RQ1, we look at the number of syzbot cases
that K-LEAK can find verified infoleak paths. Among the 250
syzbot bugs, K-LEAK is able to find infoleak paths for 40
cases. all 40 cases can leak full/transformed kernel pointers.
Table IV lists 21 cases that are promising (see definition

12

in §V-E) for end-to-end exploit. All the 10 infoleak cases
from ELOISE [14] can also be found by K-LEAK statically.
We are able to generate diverse exploits in terms of strategy
and the number of infoleak paths. There are a total of four
kinds of infoleak strategies used: Rinfo, Rnewerr + Finfo> Winfos
Wnewerr + Rinfo~ Rinfm Rnewerr + Rinfo and VVinfo cannot be
handled by [14]. Some cases (e.g. 148d2f1) can be exploited
using more than one strategy. Many cases have more than 1
infoleak paths. Based on these results, we think the answer to
RQL1 is yes.

K-LEAK can fail to generate exploits for the remaining
cases due to the following reasons. (1) In our current prototype,
we leverage SyzScope [54] to reason about the capability of
the initial memory error, since SyzScope uses a kernel context
prepared by the PoC input, the extracted capability may be
more restrictive than it could be. (2) When extending M-DFG
with unintended data-flow, we only consider a relatively small
number of kernel objects (see §IV-D). A combination of (1)
and/or (2) can result in K-LEAK failing to find unintended

data-flow that can read sensitive data or introduce new memory
error. (3) When verifying an infoleak path or new memory
error with symbolic execution, we use a testcase to prepare
the kernel context; Thus the syscall arguments are concrete
values from the test cases. This could make the context over-
constrained thus prevent SE from finding a feasible path. On
average for each case, 2,400 bytes of memory are symbolized
(other memory is concrete). Finally, (4) when constructing
M-DFG, we only consider syscalls that can be covered by
testcases, so K-LEAK can miss data-flow through syscalls it
does not know how to invoke.

To answer RQ2, we look at the number of infoleak
paths that cross syscalls (in an intended or an unintended
manner). The infoleak paths of 2 cases cross syscalls in an
intended manner, and those of 10 cases cross syscalls in
an unintended manner. We consider that an infoleak exploit
crosses syscall if it crosses syscall after the buggy syscall.
For example, in Figure 2, the red that links mon_bus_init()
to ax25_setsockopt() does not count; the edge that links
ax25_setsockopt() to ax25_getsockopt() does count.
When we count the number of infoleak paths, we also apply
the same criterion.

To answer RQ3, we look at the number of infoleak paths
that are output by the 2nd iteration. This indicates that the
infoleak paths result from new memory errors. The number is
9. Excluding those that use the strategy of elastic objects [14],
the number is 3. They are exploited by strategy Ryerr + Rinfo-

To answer RQ4, we look at the size of M-DFG and the
time it takes to statically search M-DFG for potential infoleak
paths and new memory errors. When doing the evaluation for
each syzbot memory bug, we log the size of M-DFG and the
search time. For the size of M-DFG, the average context-
sensitive CFG size being analyzed for each bug is around
500,000 basic blocks. The M-DFG built for each bug contains
roughly 1,000,000 nodes and edges, respectively, on average.
For the static search time, the shortest time is 7ms; The longest
time is 81ms; and the median time 51ms. The short static
search time is short, because the path in M-DFG is usually
short, resulting in the termination of search. During the graph
search, the average length of each data flow is 12 nodes. Also,
the infoleak paths found are usually short, typically under 10
nodes. But their corresponding CFG paths can span up to 100
basic blocks. To conclude, our graph-based search approach
is scalable to handle large programs like the Linux kernel.

To answer RQS5, we evaluate K-LEAK using public
exploits to determine if K-LEAK can discover infoleak
opportunities from the same vulnerabilities. This will
illustrate the effectiveness of K-LEAK in comparison with
manual analysis performed by human experts. To this end, We
include 11 additional CVEs (found between 2020 and 2022)
that have publicly available exploits with an infoleak based
on memory errors. We compared the exploits generated by
K-LEAK and public exploits by human experts. The results
are shown in Table V. K-LEAK is able to detect infoleaks
for 7 out of the 11 CVEs. For the remaining 4 CVEs, there
are 3 reasons why the infoleaks in public exploits can not be
found: (1) The exploitation process involves creating illegal
free primitives, which is currently not modeled in K-LEAK.
In the iterative algorithm, we search for new memory read
or write errors, which results from a controlled pointer being

13

TABLE V: Evaluation results using CVEs with public
exploits.

[ID [Strategy in public exploits [K-LEAK found strategy |

CVE-2020-8835 Rinfo Rinto
CVE-2021-22555 Creating free primitive -
CVE-2021-42008 | Wherr + Rinfo Wherr + Rinto
CVE-2021-43267 | Wherr + Rinfo Wherr + Rinto

CVE-2022-0185
CVE-2022-0995
CVE-2022-1015
CVE-2022-25636
CVE-2022-2639
CVE-2022-27666
CVE-2022-32250

Wherr + Rinfo

Creating free primitive

Stack & control-flow infoleak
Creating free primitive

Wherr + Rinfo

Wherr + Rinfo

VVinfn

Wherr + Rinfo

Wherr + Rinfo
Wherr + Rinfo
Winto

used to read or write. However, K-LEAK does not model
the scenario where the controlled pointer is used in a free
operation, e.g., kfree(). This can add additional memory error
exploitation search space — 3 public exploits make use of it
to illegally free some kernel objects. We believe in the future
we can additionally model this in M-DFG by introducing
a special free node. (2) The exploit utilizes stack memory
error, whereas K-LEAK only models heap memory errors
— this happens in the 4th public exploit. (3) The exploit
utilizes infoleak through control flow, whereas K-LEAK
only considers infoleak through data-flow — this happens
in the same 4th exploit. Here is a simplified version of it:
if(controlledVal==sensitivelInfo)print(”success");.
In this example, attackers can change controlledVal until
he sees a success message in order to leak sensitiveInfo.
Also note that among the syzbot dataset only 1 has public
exploit and K-LEAK did successfully find the infoleak.

End-to-end Exploits. With the ability of K-LEAK in help-
ing infoleak generation, we also develop end-to-end exploits
for 7 bugs: 1d22a2c, 9ea5654, 1379b6b, 059cee5, 2d4684c,
b8febdb, e9a87c1. K-LEAK outputs the infoleak data-flow
path as well as the correspondent control-flow path. Since
K-LEAK is not end-to-end, the main task remains is to man-
ually craft the exploit program to achieve heap manipulation.

C. Case Study

1) W strategy and unintended cross-syscall data flow:
We study the memory error reported by syzbot with case id
9ea5654 [8]. In this case, the set of initial memory errors
consists of 4 slab out-of-bound read errors and 5 slab out-
of-bound write errors (see Table IV). Among them three write
errors are of interest: one write writes a heap pointer (Listing 3
line 7), and the other two writes a function pointer to slab out-
of-bound memory belonging to kmalloc-192 (Listing 3 line 8
and line 9).

In the first iteration of the algorithm, since the
capability of the memory errors is in kmalloc-192,
K-LEAK pair the errors with kmalloc-192 memory object
struct user_key_payload. Then unintended RAW edges are
added to connect the memory error store nodes to a load node
(copy_to_user node, to be precise) that loads the memory of
object struct user_key_payload to user space. Therefore,
there will exist three data-flow paths that start with a sensitive
information and end with leaking sink. In this case, with the
leakage of kernel function pointer, KASLR can be bypassed.
We have developed an end-to-end exploit for this case.

// syzcall 1
int input_ff_create(struct input_dev *dev, unsigned int
— max_effects) {
struct ff_device *ff;
/] ...
ff = kzalloc(ff_dev_size, GFP_KERNEL);
/...
dev->ff = ff; // O0B Write: heap pointer
dev->flush = input_ff_flush; // O0B Write: function ptr
dev->event = input_ff_event; // O0B Write: function ptr
3

// syzcall 2

long user_read(const struct key *key, char __user *buffer,
size_t buflen) {

const struct user_key_payload *upayload;

upayload = user_key_payload_locked(key);

buflen = upayload->datalen;

if (copy_to_user(buffer, upayload->data, buflen) != 0)
ret = -EFAULT;

—

3

Listing 3: Wipgo strategy; Unintended cross-syscall data flow

long drm_ioctl(struct file *filp,
unsigned int cmd, unsigned long arg) {
retcode = drm_ioctl_kernel(filp, func, kdata,
ioctl->flags);
if (copy_to_user((void __user *)arg, kdata, out_size) != 0)
retcode = -EFAULT;

—

}

int drm_getunique(struct drm_device *dev, void xdata,
struct drm_file *file_priv) {
struct drm_unique *u = data;
struct drm_master *master = file_priv->master;
if (copy_to_user(u->unique, master->unique,
— master->unique_len)) {
mutex_unlock(&master->dev->master_mutex);
return -EFAULT;

}

u->unique_len = master->unique_len;

}

Listing 4: Exploited by two strategies: Rinfo and Rperr + Rinfo

2) Exploited using more than one strategy: We also
study the memory error reported by syzbot with case
id 148d2fl. In drm_getunique function in Listing 4,
struct drm_master *master is a dangling pointer.
Therefore, master->unique, master->unique_len are
two pointer controllable by attackers. They create a new
memory read error at copy_to_user. According to our
definition, this is exploited using Ryjerr + Rinfo Strategy.

Also, u->unique_len = master->unique_len; is a
memory read error among the initial set of memory errors.
In the first iteration, we find an infoleak sink at another
copy_to_user in drm_ioctl. According to our definition,
this is exploited using Ringo Strategy.

D. Threat to validity

Even though we successfully developed 7 end-to-end ex-
ploits of infoleaks, we discuss the potential threats to validity
of our general results here. Generally speaking, there are three
types of issues that can affect the end-to-end exploitability.

First, we assume heap fengshui or heap manipulation is
always successful. As mentioned in §V-E, our current solution

14

bypasses the step of heap manipulation by using GDB to
forcefully change the value of key objects across syscalls. In
reality, heap manipulation is challenging and can affect the
stability and success rate of exploits. Recently, there are several
approaches on automating heap manipulation strategies [21],
[27], [32], [47], [50]. Yet there are no open-sourced tools
for Linux kernel yet. Unfortunately, it is generally considered
much more difficult to handle race condition bugs which can
create uncertain memory layout and significant noises [49].
Nevertheless, we consider this an orthogonal step where heap
manipulation strategies can be fine-tuned to eventually improve
the infoleak success rate.

Second, kernel liveness issue can affect the end-to-end
exploitability. This happens when the attacker-controlled data
may crash the kernel. For example, the attacker-sprayed NULL
bytes may be used to as a pointer and dereferenced, which
crashes the kernel. From the 40 cases that we deemed po-
tentially exploitable, we find that 15 of them involve pointer
dereferences on attacker-controlled data. Even though this
issue may potentially be overcome by carefully crafting the
attacker-controlled data, we conservatively consider such cases
more difficult to exploit. Note that symbolic execution can
detect such issues, but a fully automated solution to address
them is left to future work.

Third, we observe that there can be constraints im-
posed over sensitive info such that it makes the infoleak
useless. For example, when the attacker-controlled data
is constrained to some other sensitive information (e.g.,
controlledData==kernel_ptr), it will require the attacker to
guess such info ahead of time before being able to leak what
we need (a chicken-and-egg problem). Through our analysis,
we find 11 out of the 40 cases that fall under this category.
Depending on the nature of the constraints, such bugs may
or may not be exploitable. To be conservative, we consider
such cases to be unlikely exploitable. Note that this issue can
be detected by symbolic execution automatically. However,
we leave a complete solution to automatically discern what
constraints are still exploitable to future work.

Overall, we conservatively define promising infoleaks to
be those that are free from the second and third issue, as they
can potentially invalidate the exploit completely. This leaves
21 out of the 40 cases considered promising (note that some
bugs experience both the second and third issue).

VIII. DiscUSsSION & FUTURE WORK
Comparison with AlphaEXP. AlphaEXP [46] is a reasoning
framework for memory-error-based kernel exploit. Compared
with our work, AlphaEXP has a larger scope as it reasons
about more types of kernel exploits (e.g. corrupting a pointer
to achieve control-flow-hijacking). However, the main focus of
AlphaEXP is to find objects useful for exploits, especially for
upgrading a weak primitive into a strong primitive. Infoleak
is not the focus of AlphaEXP and it misses precise modeling
and reasoning of data-flow for generating infoleak exploit.

Dynamic Traces. In this work, when building M-DFG for
syscall entries, we use those confirmed (e.g., by us or published
work) to have dynamic test cases. This is another hurdle to
automate infoleaks from end to end. Recent exploit generation

papers [14], [46] have not yet open-sourced or just a subset of
their verified dynamic traces. K-LEAK will benefit from recent
work that automates the recovery of syscall interfaces [12],
[18], [25] and performs better kernel fuzzing [45], [52], which
can facilitate the generation of more dynamic traces. Also, our
dynamic symbolic execution requires a dynamic trace to begin
with. We can avoid this issue by using a symbolic execution
starting at the beginning of the syscall.

Capability Reasoning. When reasoning about the capabil-
ity of OOB bug from syzbot, we rely on KASAN report.
However, the ability of KASAN to reason about OOB has
limitations [13]. In the future, we can utilize prior work such
as KOOBE [13] to better reason about its capability. Doing so
could increase the chance of successful exploit.

Future Use Cases of M-DFG. The benefit of M-DFG
is not limited to infoleak exploit generation. We believe
M-DFG can also be used in general memory-error-based
exploit generation. As modeled in the conceptual framework
for exploiting memory errors [44] and in the recent knowledge
graph [46], exploiting a Linux kernel memory error can usually
be partitioned into two stages: in the first stage, attackers try
to create as many unintended data flows as possible, including
introducing new memory errors; in the second stage, they
utilizes the unintended data flows to achieve the attacking
goals (e.g., arbitrary code execution, and privilege escalation).
Although the second stage will be different, M-DFG can be
used as a general infrastructure to search for exploitable Linux
kernel data flows. For example, when exploiting an initial
kernel use-after-free vulnerability to achieve arbitrary code
execution, attackers can first use M-DFG search for unintended
data flows that cause invalid writes; then use the invalid writes
to overwrite a function pointer to hijack the control-flow.

IX. RELATED WORK

Sleak [26] is a related work on userspace infoleak. It
reasons about how internal information can be leaked through
output functions, and reconstructs the original info. Both Sleak
and K-LEAK use static analysis and symbolic execution to
reason about the feasibility of a leak, and both can reconstruct
the original info if the leaked data has been transformed.
The main difference, however, is that Sleak only reason about
infoleak through legitimate data flows; while K-LEAK aims to
find memory-error-based infoleak. In particular, K-LEAK (1)
models illegal data flows introduced by memory errors, and
(2) reasons about how existing memory errors can introduce
new memory errors, and (3) reasons about cross-entry (cross-
syscall) data flows.

Kernel Information Leak. Kernel information leak can be
reached by multiple attack surface. ELOISE [14] uses static
taint analysis to locate the kernel objects that can transit kernel
data to userspace. It abuses the buffer size to create out-of-
bound read in kernel space. Cho’s work [16] solely focuses on
information leaks from uninitialized stack variables, it brought
a new leaking surface and their tool was proven efficient for
such leaks. Some studies [24], [30] proposed side-channel
based approach to bypass SMAP or KASLR. They achieve that
by utilizing the time difference between CPU cache delay.

15

Exploitability Assessment. Assessments of bug exploitability
contribute to kernel security. SyzScope [54] inspects common
kernel bugs and reveals their high-risk primitives. High-risk
primitives like use-after-free write, and out-of-bounds write,
are necessities for most kernel exploits [3]-[5] Some auto-
matic exploit generation tools target such primitives and try
to generate exploit without human supervision. KOOBE [13]
takes out-of-bounds bugs, applying fuzzing and symbolic ex-
ecution to explore the hidden exploitability and craft the final
exploits. FUZE [48] uses symbolic execution to search for
more capability within the use-after-free memory. Orthogo-
nally, SyzBridge [53] investigates the gap of bug exploitability
between upstream kernel and downstream kernel.

Exploit Knowledge Graph. Recent works also make use
of knowledge graph in aiding Linux kernel exploit generation.
The knowledge graph built by AlphaEXP [46] can help reason
about what objects are security sensitive in terms of creating
new memory corruptions by corrupting the objects. However,
such knowledge graph doesn’t fully reason about the data-flow
in the OS kernel, since it only maintains high-level relations
among different kernel entities (e.g. functions, objects).

X. CONCLUSION

In this paper, we propose a graph-based framework
K-LEAK that automate the exploit generation memory-error-
based infoleak exploits for the Linux kernel. We implement the
framework that utilizes static analysis and dynamic verification
to generate infoleak exploits for kernel memory errors. Eval-
uation our implementation with 250 fuzzer-exposed memory
errors from syzbot demonstrates that our approach can generate
diverse infoleak exploits, including new strategies that are not
explored in previous work. We open source our implementation
at https://github.com/seclab-uct/K-LEAK to facilitate future
research.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
valuable feedback during the revision process. This work is
supported by the National Science Foundation under Grant
#2155213, #1953933, #1652954 and #2046026.

REFERENCES

[1] “Boost Graph,” https://www.boost.org/doc/libs/1_81_0/libs/graph/doc/

index.html.

“Boost Multi Index,” https://www.boost.org/doc/libs/1_81_0/libs/multi_
index/doc/index.html.

“CVE-2022-0185,”

(2]

[3] https://www.willsroot.io/2022/01/cve-2022-

0185.html.

[4] “CVE-2022-1786,” https://blog.kylebot.net/2022/10/16/CVE-2022-
1786/.

[5S] “CVE-2022-27666,” https://etenal.me/archives/1825.

[6] “Kernel control flow integrity,” https://source.android.com/docs/
security/test/kcfi.

[7] “syzbot case 1c07845, https://syzkaller.appspot.com/bug?id=

1c07845d565d5e670218fde04599322aa81a3bf8.

“syzbot case 9ea5654,” https://syzkaller.appspot.com/bug?id=
9ea5654403357926bb929ff049fd64df3b0d260e.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
principles, techniques and tools, 2020.

(8]

(9]

https://github.com/seclab-ucr/K-LEAK
https://www.boost.org/doc/libs/1_81_0/libs/graph/doc/index.html
https://www.boost.org/doc/libs/1_81_0/libs/graph/doc/index.html
https://www.boost.org/doc/libs/1_81_0/libs/multi_index/doc/index.html
https://www.boost.org/doc/libs/1_81_0/libs/multi_index/doc/index.html
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://blog.kylebot.net/2022/10/16/CVE-2022-1786/
https://blog.kylebot.net/2022/10/16/CVE-2022-1786/
https://etenal.me/archives/1825
https://source.android.com/docs/security/test/kcfi
https://source.android.com/docs/security/test/kcfi
https://syzkaller.appspot.com/bug?id=1c07845d565d5e670218fde04599322aa81a3bf8
https://syzkaller.appspot.com/bug?id=1c07845d565d5e670218fde04599322aa81a3bf8
https://syzkaller.appspot.com/bug?id=9ea5654403357926bb929ff049fd64df3b0d260e
https://syzkaller.appspot.com/bug?id=9ea5654403357926bb929ff049fd64df3b0d260e

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

(30]

L. O. Andersen, “Program analysis and specialization for the ¢ pro-
gramming language,” Ph.D. dissertation, Citeseer, 1994.

M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proceedings of the 7th symposium on Operating
systems design and implementation, 2006, pp. 147-160.

W. Chen, Y. Wang, Z. Zhang, and Z. Qian, “Syzgen: Automated
generation of syscall specification of closed-source macos drivers,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS *21, 2021.

W. Chen, X. Zou, G. Li, and Z. Qian, “Koobe: Towards facilitating
exploit generation of kernel out-of-bounds write vulnerabilities,” in
Proceedings of the 29th USENIX Conference on Security Symposium,
2020, pp. 1093-1110.

Y. Chen, Z. Lin, and X. Xing, “A systematic study of elastic objects
in kernel exploitation,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp.
1165-1184.

Y. Chen and X. Xing, “Slake: Facilitating slab manipulation for ex-
ploiting vulnerabilities in the linux kernel,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
2019, pp. 1707-1722.

H. Cho, J. Park, J. Kang, T. Bao, R. Wang, Y. Shoshitaishvili, A. Doupé,
and G.-J. Ahn, “Exploiting uses of uninitialized stack variables in linux
kernels to leak kernel pointers,” in Proceedings of the 14th USENIX
Conference on Offensive Technologies, 2020, pp. 1-1.

J. Corbet, “Supervisor mode access prevention,” https://lwn.net/Articles/
517475/.

J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao,
C. Kruegel, and G. Vigna, “Difuze: Interface aware fuzzing for
kernel drivers,” ser. CCS ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 2123-2138. [Online]. Available:
https://doi.org/10.1145/3133956.3134069

J. Edge, “Kernel address space layout randomization,” https://lwn.net/
Articles/569635/.

J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program de-
pendence graph and its use in optimization,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 9, no. 3, pp.
319-349, 1987.

J. Gennissen and D. O’Keeffe, “Hack the heap: Heap layout manipula-
tion made easy,” in 2022 IEEE Security and Privacy Workshops (SPW).
IEEE, 2022, pp. 289-300.

E. Goktas, K. Razavi, G. Portokalidis, H. Bos, and C. Giuffrida, “Spec-
ulative probing: Hacking blind in the spectre era,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS °20, 2020.

Google, “syzbot,” https://syzkaller.appspot.com/upstream/, 2023.

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing smap and kernel aslr,” in Proceedings
of the 2016 ACM SIGSAC conference on computer and communications
security, 2016, pp. 368-379.

Y. Hao, G. Li, X. Zou, W. Chen, S. Zhu, Z. Qian, and A. A.
Sani, “Syzdescribe: Principled, automated, static generation of syscall
descriptions for kernel drivers,” in IEEE Symposium on Security and
Privacy, 2023.

C. Hauser, J. Menon, Y. Shoshitaishvili, R. Wang, G. Vigna, and
C. Kruegel, “Sleak: Automating address space layout derandomization,”
in Proceedings of the 35th Annual Computer Security Applications
Conference, 2019, pp. 190-202.

S. Heelan, T. Melham, and D. Kroening, “Automatic heap layout
manipulation for exploitation,” in USENIX Security Symposium, 2018.

M. Hind, “Pointer analysis: Haven’t we solved this problem yet?”
in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, 2001, pp. 54-61.

S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 12, no. 1, pp. 26-60, 1990.

R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks

against kernel space aslr,” in 2013 IEEE Symposium on Security and
Privacy, 2013, pp. 191-205.

16

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

A. Konovalov, “Exploiting the linux kernel via packet sock-
ets,” https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-
kernel-via-packet.html.

R. Li, B. Zhang, J. Chen, W. Lin, C. Feng, and C. Tang, “Towards
automatic and precise heap layout manipulation for general-purpose
programs,” in Network and Distributed System Security Symposium
(NDSS), 2023.

K. Lu, “Securing software systems by preventing information leaks.”
Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA, USA,
2017.

K. Lu, Z. Li, V. P. Kemerlis, Z. Wu, L. Lu, C. Zheng, Z. Qian, W. Lee,
and G. Jiang, “Checking more and alerting less: detecting privacy
leakages via enhanced data-flow analysis and peer voting.” in NDSS,
2015.

A. Mgller and M. I. Schwartzbach, “Static program analysis,” Notes.
Feb, 2012.

MosheKol, “Racing against the lock: Exploiting spinlock uaf in the
android kernel,” https://0xkol.github.io/assets/files/Racing_Against_the_
Lock__Exploiting_Spinlock_UAF_in_the_Android_Kernel.pdf.

A. Orailoglu and D. D. Gajski, “Flow graph representation,” in Pro-
ceedings of the 23rd ACM/IEEE Design Automation Conference, 1986,
pp- 503-509.

A. Popov, “Four bytes of power: Exploiting cve-2021-26708 in
the linux kernel,” https://al3xpOpOv.github.io/2021/02/09/CVE-2021-
26708.html.

F. J. Serna, “The info leak era on software exploitation,” Black Hat
USA, 2012.

Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

W. Song, “Bypassing smep+pti+smap,” https://github.com/prOcf5/
kernel-exploit-practice/blob/master/bypass-smap/README.md.

B. Steensgaard, “Points-to analysis in almost linear time,” in Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 1996, pp. 32-41.

Y. Sui and J. Xue, “Svf: interprocedural static value-flow analysis in
Ilvm,” in Proceedings of the 25th international conference on compiler
construction, 2016, pp. 265-266.

L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy. 1EEE,
2013, pp. 48-62.

D. Wang, Z. Zhang, H. Zhang, Z. Qian, S. V. Krishnamurthy, and
N. Abu-Ghazaleh, “SyzVegas: Beating kernel fuzzing odds with re-
inforcement learning,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021.

R. Wang, K. Chen, C. Zhang, Z. Pan, Q. Li, S. Qin, S. Xu, M. Zhang,
and Y. Li, “Alphaexp: An expert system for identifying security-
sensitive kernel objects,” in USENIX Security Symposium, 2023.

Y. Wang, C. Zhang, Z. Zhao, B. Zhang, X. Gong, and W. Zou, “Maze:
Towards automated heap feng shui.” in USENIX Security Symposium,
2021.

W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “FUZE:
Towards facilitating exploit generation for kernel Use-After-Free
vulnerabilities,” in 27th USENIX Security Symposium (USENIX
Security 18). Baltimore, MD: USENIX Association, Aug. 2018,
pp. 781-797. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 1 8/presentation/wu-wei

K. Zeng, Y. Chen, H. Cho, X. Xing, A. Doupé, Y. Shoshitaishvili,
and T. Bao, “Playing for {K (H) eaps}: Understanding and improving
linux kernel exploit reliability,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 71-88.

B. Zhang, J. Chen, R. Li, C. Feng, R. Li, and C. Tang, “Automated
exploitable heap layout generation for heap overflows through manipu-
lation distance-guided fuzzing,” in USENIX Security Symposium, 2023.
H. Zhang, W. Chen, Y. Hao, G. Li, Y. Zhai, X. Zou, and Z. Qian, “Stat-
ically discovering high-order taint style vulnerabilities in os kernels,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 811-824.

https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
https://doi.org/10.1145/3133956.3134069
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://syzkaller.appspot.com/upstream/
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://0xkol.github.io/assets/files/Racing_Against_the_Lock__Exploiting_Spinlock_UAF_in_the_Android_Kernel.pdf
https://0xkol.github.io/assets/files/Racing_Against_the_Lock__Exploiting_Spinlock_UAF_in_the_Android_Kernel.pdf
https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html
https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html
https://github.com/pr0cf5/kernel-exploit-practice/blob/master/bypass-smap/README.md
https://github.com/pr0cf5/kernel-exploit-practice/blob/master/bypass-smap/README.md
https://www.usenix.org/conference/usenixsecurity18/presentation/wu-wei
https://www.usenix.org/conference/usenixsecurity18/presentation/wu-wei

[52]

[53]

[54]

B. Zhao, Z. Li, S. Qin, Z. Ma, M. Yuan, W. Zhu, Z. Tian,
and C. Zhang, “StateFuzz: System Call-Based State-Aware linux
driver fuzzing,” in 3Ist USENIX Security Symposium (USENIX
Security 22). Boston, MA: USENIX Association, Aug. 2022, pp.
3273-3289. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/zhao-bodong

X. Zou, Y. Hao, Z. Zhang, J. Pu, W. Chen, and Z. Qian, “SyzBridge:
Bridging the Gap in Exploitability Assessment of Linux Kernel Bugs in
the Linux Ecosystem,” in 31st Annual Network and Distributed System
Security Symposium, NDSS, 2024.

X. Zou, G. Li, W. Chen, H. Zhang, and Z. Qian, “{SyzScope}:
Revealing {High-Risk} security impacts of {Fuzzer-Exposed} bugs in
linux kernel,” in 31st USENIX Security Symposium (USENIX Security
22), 2022, pp. 3201-3217.

17

https://www.usenix.org/conference/usenixsecurity22/presentation/zhao-bodong
https://www.usenix.org/conference/usenixsecurity22/presentation/zhao-bodong

	Introduction
	Background
	Data-flow Analysis and Data-flow graph
	Cross-syscall Points-to Analysis and Data-flow Analysis

	Overview
	Memory-error-augmented data-flow graph
	Pre-Analysis
	Graph Definition
	M-DFG Builder
	M-DFG Extender

	Search on M-DFG
	Benefits of M-DFG
	Infoleak Search
	New Memory Error Search
	Iterative Search Algorithm
	Exploitability Verification

	Implementation
	Input: Memory Error from syzbot
	M-DFG Builder
	Graph Searcher

	Evaluation
	Evaluation Data Set
	Overall Results
	Case Study
	W strategy and unintended cross-syscall data flow
	Exploited using more than one strategy

	Threat to validity

	Discussion & Future Work
	Related Work
	Conclusion
	References

