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A B S T R A C T

Modeling phase change problems numerically is vital for understanding many natural (e.g., ice formation,
steam generation) and engineering processes (e.g., casting, welding, additive manufacturing). Almost all
phase change materials (PCMs) exhibit density/volume changes during melting, solidification, boiling, or
condensation, causing additional fluid flow during this transition. Most numerical works consider only two
phase flows (either solid–liquid or liquid–gas) for modeling phase change phenomena and some also neglect
volume/density change of PCMs in the models. This paper presents a novel low Mach enthalpy method for
simulating solidification and melting problems with variable thermophysical properties, including density.
Additionally, this formulation allows coupling a solid–liquid PCM with a gas phase in order to simulate the
free surface dynamics of PCMs undergoing melting and solidification. We revisit the two-phase Stefan problem
involving a density jump between two material phases. We propose a possible means to include the kinetic
energy jump in the Stefan condition while still allowing for an analytical solution. The new low Mach enthalpy
method is validated against analytical solutions for a PCM undergoing a large density change during its phase
transition. Additionally, a few simple sanity checks are proposed to benchmark computational fluid dynamics
(CFD) algorithms that aim to capture the volume change effects of PCMs.

1. Introduction

The numerical modeling and simulation of phase change materials
(PCMs) is a very active area of research because they play a key role
in energy systems (e.g., concentrated solar power plants and latent
thermal energy storage units El Khadraoui et al., 2017; Allouhi et al.,
2018; Badiei et al., 2020; Hossain et al., 2019; Nie et al., 2020),
geophysical processes (e.g., sea ice formation and glacier melting Buffo
et al., 2021a,b), and manufacturing technologies (e.g., casting, welding,
and metal 3D printing King et al., 2015b,a; Khairallah et al., 2016; Ly
et al., 2017). The numerical modeling of PCMs is difficult because the
energy equation is nonlinear, and most problems involve liquid flows,
and some also involve gas flows and solid motion. As an example,
consider selective laser melting (SLM) of metal powder as PCM for
additively printing complex parts. During the SLM process, a thin
powder layer of thickness 20–100 �m is deposited with the aid of a
roller or a blade, and then fused by a directed laser source that typically
scans at a rate of 0.1–1 m/s. After each laser pass over the powder bed,
the solid powder particles melt and evaporate, and the molten metal
pool solidifies to create the print (Kruth et al., 1996). The solidifying
metal can entrain gas plumes from the surface, causing porosity and
keyhole defects (Karayagiz et al., 2019; Heeling et al., 2017; Matthews
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et al., 2016; Khairallah et al., 2016) in the finished product. The
aforementioned application of metal (powder) as a PCM illustrates the
importance of resolving large density gradients (gas-metal density ratio
is Ì104) within multiphysics PCM simulations, which pose stability
issues for numerical schemes (Nangia et al., 2019a; Pathak and Raessi,
2016; Patel and Natarajan, 2018).

Computational fluid dynamics (CFD) models for simulating the
phase change of materials began to be developed in the late 80s
and early 90s. According to the way they handle the moving phase
boundary, these models can be categorized into two main groups:
(1) deforming and (2) fixed grid schemes. Fixed grid schemes offer
greater flexibility for incorporating additional physics into heat transfer
problems (e.g., fluid flow) and are easier to implement than deforming
grid schemes. They also naturally handle complex topological changes
of the interface (merging, pinching, break-up, self-folding), which the
deforming grid methods cannot. In the early development of fixed
grid numerical methods, the volume change in PCM with melting
or solidification was ignored and the variable density in the liquid
was described by the Boussinesq approximation. This is still prac-
ticed today (Panwisawas et al., 2017b; Wu et al., 2018b,a; Gürtler
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et al., 2013; Attar and Körner, 2011; Panwisawas et al., 2017a; Aggar-
wal and Kumar, 2018), despite significant improvements in numerical
methodologies and the fact that solid–liquid phase changes are al-
ways accompanied by a volume change. Since most existing numerical
methods can only deal with constant density PCMs, the gas phase is
neglected and only melting and solidification are simulated. In the
context of metal AM simulations, a recent review paper by Cook and
Murphy (Cook and Murphy, 2020) demonstrates that in most of the
existing studies, the effect of the surrounding gas flow has been ignored.
This is mainly due to the assumption that the powder or substrate
cannot move. In reality, surrounding gas flows are prominent near the
laser-interaction zone, where extreme thermo-capillary forces can drive
gaseous pores out of the melt-pool and/or entrain particles in the melt-
pool, resulting in deeper keyhole formation, which has been observed
experimentally (Wolff et al., 2019; Ly et al., 2017).

In this paper, a fixed-grid low Mach enthalpy method is devel-
oped to capture density change-induced flow during PCM melting and
solidification. In this formulation a gas phase is also incorporated
and coupled to the solid–liquid PCM region. Our ultimate goal is to
develop a simulation method that can handle simultaneous occurrences
of evaporation, condensation, melting, and solidification. A method
such as this would allow realistic modeling of manufacturing processes
such as metal additive manufacturing, in which all four modes of phase
change are present at the same time. The original enthalpy method
(EM) introduced by Voller and colleagues (Voller and Prakash, 1987;
Voller and Swaminathan, 1991) for modeling melting and solidification
of PCMs assumes the two material phases have the same density. Some
recent works (Galione et al., 2015; Hassab et al., 2017; Dallaire and
Gosselin, 2017; Faden et al., 2019) have relaxed the constant density
requirement of the enthalpy method, but none to our knowledge have
explicitly or carefully accounted for the volume change effect in this
technique. This becomes even more critical for CFD models (Yan et al.,
2018; Lin et al., 2020; Panwisawas et al., 2017b) that consider three
phase gas–liquid–solid flows. Furthermore, existing numerical works
have not verified whether using variable thermophysical properties
(density, specific heat, thermal conductivity) in the enthalpy method
produces an accurate numerical solution when such properties vary
widely between phases1. The new low Mach EM is validated using the
analytical solution to the two-phase Stefan problem for a PCM that
undergoes a substantial volume change during solidification. The two-
phase Stefan problem has a non-standard Stefan condition that involves
additional jumps in the specific heat and kinetic energy. To derive
analytical solutions, the kinetic energy jump term is dropped from the
Stefan condition as it is usually small in comparison to latent heat. We
discuss a way to retain it in the Stefan condition while still allowing
for an analytical solution.

2. Jump conditions across the phase-changing interface

We follow Myers et al. (2020) to derive the jump conditions across
the phase-changing liquid–solid interface. The enthalpy equation and
energy equation are distinguished at the end of this section. In addition,
we will see how certain jump terms get omitted if the enthalpy equation
is used as the starting point for the derivation. To derive the jump
conditions, it is convenient to express the governing equations for
mass balance, momentum, and energy in conservative form and apply
the Rankine–Hugoniot condition across the interface. The conservation
laws in differential form2 read as
)⇢

)t
+ ( � (⇢u) = 0, (1)

1 This is primarily due to the fact that in enthalpy methods, any thermo-
physical property is expressed as a function of a liquid fraction variable that
also needs to be solved for. Variable thermophysical properties increase the
nonlinearity of enthalpy methods.

2 Alternatively, one can start with the integral form of the conservation
principle and derive the jump condition(s); see, for example, Delhaye (1974).

)⇢u
)t

+ ( � (⇢u‰ u + pI) * �C�(x * s)n = 0, (2)
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In momentum Eq. (2), � is the surface tension coefficient between
the two phases (liquid and solid in this context), C represents the
mean local curvature of the interface, s represents the position of the
interface, � is the Dirac delta distribution, and n is the outward unit
normal vector of the interface (pointing outwards from the solid and
into the liquid phase in Fig. 1 (A)). In energy Eq. (3), e denotes the
internal energy and q = *(T is the conductive heat flux. Integrating
Eqs. (1)–(3) across a finite region around the liquid–solid interface and
then letting the volume of the region tend to zero, gives

1. Mass jump across the interface:

(⇢L * ⇢S)u< = (⇢LuL * ⇢SuS) � n = (⇢LuLn * ⇢SuSn). (4)

Here, u< = u � n represent the normal velocity of the interface,
and uLn = uL �n and uSn = uS �n represent the near-interface normal
component of velocity of the liquid and solid phase, respectively.
The following relation can be obtained by taking the velocity in
the solid to be zero uS = 0

u
L
n =

0

1 * ⇢
S

⇢L

1

u
<
. (5)

2. Momentum jump across the interface:
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�
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�
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(6)

The above vector equation can be expressed in terms of normal
and tangential jumps. Taking an inner product of Eq. (6) with
the unit normal vector n yields

(⇢LuLn * ⇢SuSn)u
< = ⇢

L(uLn )
2 * ⇢S(uSn)
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< + �C, (7)

in which we used Eq. (4) to express pressure jump in terms of ⇢S.
Likewise, jump in the tangential momentum across the interface
is obtained by taking the inner product of Eq. (6) with the unit
tangent vector t

(⇢LuLt * ⇢SuSt )u
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u
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n u

L
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Here, uLt = uL � t and u
S
t = uS � t denote the tangential

velocity component of the liquid and solid phase, respectively.
In addition, we invoked the no-slip condition at the interface to
equate the tangential velocities of the two phases, uLt = u

S
t . The

no-slip assumption makes the mass and tangential momentum
jumps equivalent.

3. Energy jump across the interface:
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(9)

in which Eqs. (4) and (5) have been used to simplify some terms.

The Stefan condition is obtained from the energy jump Eq. (9) by
expressing internal energy in terms of temperature T and latent heat L

e
S = C

S(T S * T
r
) * p

S

⇢S
, (10)
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Fig. 1. Schematics of the (A) two-phase and (B) three-phase problems examined in this study. A liquid phase is represented by blue, a solid phase by yellow, and a gas phase
by white. Gas and PCM regions are tracked using the Heaviside function H , which is defined to be 1 in the PCM domain and 0 in the gas domain. Liquid and solid phases are
tracked by the liquid fraction variable ', which is equal to 1 in the liquid phase and 0 in the solid phase. A mushy region is defined by 0 < ' < 1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

e
L = C

L(T L * T
r
) + L * p

L

⇢L
. (11)

Substituting Eqs. (10) and (11) into Eq. (9) and using Eqs. (4) and (7)
for further simplifications, yields the Stefan condition

⇢
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m
* T

r
) + L * 1

2

H

1 *
0

⇢
S

⇢L

12I
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Here, T
m
denotes the melting/solidification temperature attained by the

two phases at the interface and T
r
is the phase change temperature in

the bulk measured at a reference pressure. T
r
is used as a reference

temperature for measuring enthalpies in Eqs. (10) and (11).
Note that the Stefan condition (Eq. (12)) is derived from the energy

jump Eq. (9), which considers the change in kinetic energy between
liquid and solid across the interface. Several textbooks derive the
Stefan condition from the enthalpy equation and do not include jumps
related to kinetic energy. The reason for this can be traced back to the
derivation of the enthalpy equation, which is determined by subtracting
the kinetic energy equation from the energy equation. The subtraction
eliminates terms like 1

2 u
2. The kinetic energy equation is obtained

by taking an inner product of velocity with the momentum equation
and manipulating derivatives of velocity and pressure to obtain terms
like ( � ( 12 u

2) and ( � (pu). It is not possible to manipulate derivatives
for a phase change problem since both velocity and pressure are
discontinuous across the interface.

3. Analytical solution to the two phase Stefan problem with den-
sity change

In this section, we revisit the two-phase Stefan problem involving
a density jump from Alexiades and Solomon’s textbook (Alexiades and
Solomon, 2018). Unfortunately, despite its simplicity, this problem has
not received much attention in the CFD literature. Meanwhile, the
single phase Stefan problem, where only the heat equation is used
and no density change-induced fluid flow is involved, remains the gold
standard for validating advanced CFD algorithms for modeling melting
and solidification (Huang et al., 2022; Yan et al., 2018; Javierre et al.,
2006) and boiling and condensation (Gibou et al., 2007; Khalloufi
et al., 2020) phenomena. In their textbook (Alexiades and Solomon,
2018), the authors drop the kinetic energy jump term from the Stefan
condition because it ‘‘destroys’’ the similarity solution. As we show
in this section, this is not the case. A method for including it in the
analytical solution is discussed. In the early stages of solidification, the
interface velocity is infinite and the kinetic energy term dominates.
Likewise, when a cylindrical or spherical material melts, its melting rate
tends to infinity towards the end of the process. There are situations
(certain time periods and length scales) where the kinetic energy term
becomes important, and our analytical solution may prove useful in
those instances.

Consider solidification of a liquid in a large static domain ⌦ :=
0 f x f l that is closed on the left and open on the right. The
same setup and analytical methodology can also be applied to the
evaporation/condensation problem. Liquid occupies the whole domain
at t = 0 and has a uniform temperature T

i
greater than that of solidifi-

cation temperature T
m
. The temperature at the left boundary (x = 0)

is suddenly lowered to T
o
< T

m
at t = 0+, which remains constant

thereafter. The solidification front having position x
< = s(t) moves

in the positive x-direction as shown in Fig. 1(A). The thermophysical
properties, i.e., density, specific heat, and thermal conductivity of the
liquid phase are denoted ⇢L, CL, and L, respectively. The respective
quantities for the solid phase are denoted ⇢

S, CS, and 
S. Solid-to-

liquid density ratio is denoted R
⇢
= ⇢

S_⇢L. In the case where R
⇢
< 1,

the liquid expands as it solidifies, causing an additional flow in the
direction of solidification. Alternatively, if R

⇢
> 1, the fluid shrinks as

it solidifies, causing a flow in the opposite direction. We seek analytical
solutions for temperature, velocity, and pressure in the liquid and solid
domains. Starting with the Rankine–Hugoniot relation for the mass
balance equation (see Eq. (4)) the jump in velocity across the interface
is obtained

[[u]] = u
L(s+, t) * uS(s*, t) = u

L(s+, t) = (1 *R
⇢
) dsdt . (13)

Here, s+ and s* represent spatial locations just ahead and behind the
interface, and u< = ds_dt represents interface speed. The velocity in the
solid domain ⌦S(t) := 0 f x < s(t) is taken to be zero3, i.e., uS(⌦S

, t) í 0,
while in the liquid domain ⌦L(t) := s(t) < x f l, it is uniform as per
the continuity equation )uL_)x = 0. Therefore, liquid velocity can be
obtained directly from interface speed as uL(⌦L

, t) í u
L(s+, t). Once the

solid and fluid velocities have been determined, it is possible to solve
the phase change problem with volume change effects by solving the
energy equation for both solid and liquid phases

⇢
S
C

S
0
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)x2
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L(t), (15)

by taking uS(x, t) í 0 and uL(x, t) í u
L(s+, t). Five boundary conditions

are required to determine T S(x, t), T L(x, t) and x< = s(t) completely.
These include two boundary conditions T S(0, t) = T

o
and T L(l, t) = T

i

and three interfacial conditions:

T
S(x<, t) = T

L(x<, t) = T
m
, (16)

3 In the case of evaporation and condensation, the solid phase will be
replaced by gas/vapor in the analytical model. In the vapor phase, the velocity
is also zero everywhere u

G
í 0. It follows from the continuity equation

)u
G_)x = 0 and the zero-velocity boundary condition imposed at the left end

(x = 0).
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Here, T
r
is the bulk phase change temperature measured at a specified

reference pressure p
r
, and L is the latent heat of melting/solidification.

Eq. (17), which is commonly referred to as the Stefan condition,
contains terms related to latent heat and jumps in the specific heat,
density, and kinetic energy of the two material phases; see Section 2.

As shown in the Appendix A, Eqs. (14) and (15) admit similarity
solution of the form

T
S(x, t) = T

o
+ A(�(t)) erf

H

x

2
˘

↵St

I

, (18)

T
L(x, t) = T
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+ B(�(t)) erfc

H
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2
˘

↵Lt
* s(t)
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˘

↵Lt
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)
I

, (19)

in which ↵
S = 

S_(⇢SCS) and ↵
L = 

L_(⇢LCL) are the solid and
liquid thermal diffusivities, respectively, and �(t) = s(t)

2
˘

↵Lt
is a yet

to be determined function of time. These temperature profiles satisfy
the boundary and initial conditions of their respective equations. The
unknown functions A and B appearing in the temperature profiles
T
S(x, t) and T L(x, t) implicitly depend on time through �(t). If �(t) is

time-(in)dependent, so are A and B. To our knowledge, all textbooks
and papers first assume that A and B are constants4, and then deduce
that � has to be a time-independent constant. In contrast, we posit that
A and B should actually be determined the other way around. To wit,
the interface temperature condition written in Eq. (16)

T
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H
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allows us to express A and B as a function of �(t):
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The temperature distribution in the solid phase is therefore
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and in the liquid phase is
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By substituting Eqs. (21), (22), and s(t) = 2�(t)
˘

↵Lt into the Stefan
condition (Eq. (17)), we obtain a governing equation for �(t)5
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,
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4
A and B cannot be functions of their respective similarity variables. This

is required when we integrate Eqs. (A.10) and (A.11). However, they can be
functions of � without causing inconsistency.

5 Due to the absence of the solid phase at the beginning, T S(x, t = 0) is
not defined. Furthermore, since � is derived using the solutions to T S(x, t) and
T

L(x, t), it is defined for t > 0. This can also be argued from the definition
of interface position s(t) = 2�(t)

˘

↵Lt, which does not exist at t = 0. On the
other hand T L(x, t = 0) is defined and is independent of � thanks to the erfc(.)
function in the numerator of Eq. (22), which approaches zero as tô 0.

in which Leff = L + (CL * CS)(T
m
* T

r
) is the effective latent heat. In

the equation above O(...) contains terms related to the time derivatives
of �(t), which arise from differentiating s(t)

ds
dt = �

u

↵L

t
+ 2

˘

↵Lt
d�
dt . (24)

At the beginning of the solidification process, the interface speed
ds_dt ô ÿ due to the leading-order 1_

˘

t term. By retaining only
this term for ds

dt in the Stefan condition, we obtain a time-dependent
transcendental equation for �(t) instead of a differential one

⇢
S
L

L
eff *

(1 * R2
⇢
)

2

0

�
2
↵
L

t

1

M

�

˘

↵L =


S T

m
* T

o

erf
0

�

t

↵L

↵S

1

e
*�2↵L_↵S
˘

⇡↵S
+ L

T
m
* T

i

erfc
�

�R
⇢

�

e
*�2R2

⇢

˘

⇡↵L
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Furthermore, we demonstrate that the d�_dt terms can be omitted from
Eq. (25) through numerical experiments in Section 6.1.6.

From Eq. (25) (and also Eq. (23)), it is clear that if we keep the
density/kinetic energy jump term in the Stefan condition, � is an
explicit function of time, so A(�) and B(�) are implicit functions of
time. By dropping the density/kinetic energy jump term from the Stefan
condition, which is done in the literature, � becomes independent of
time. In this situation, A(�) and B(�) are constants.

The closed form solution for T S(x, t), T L(x, t), and u
L(x, t) can be

written once �(t) has been found from Eq. (25) (without considering
d�_dt terms). When R

⇢
= 1 and Leff = L, the present analytical solution

reduces to the standard Stefan problem solution given in the Hahn and
Özi≥ik textbook (Hahn and Özisik, 2012).

Next we find the variation of pressure inside the fluid and solid
phases. First consider the fluid momentum equation
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which simplifies to
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2
s

dt2
= * )p

L

)x
(27)

when uL í (1 * R
⇢
) dsdt is substituted in Eq. (26). Integrating the above

equation yields a linear variation of pressure within ⌦L(t): s(t) < x f l

as

p
L(x, t) = p

i
* �(t)

2
˘

t3
(l * x)
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⇢
L * ⇢S

�

˘

↵L. (28)

Here, p
i
is the pressure of the liquid phase at the right end (x = l). Due

to the assumption that the liquid phase is incompressible, the domain
length l needs to be finite. l, however, is large enough to accommodate
the plateau region of the error function used in Eq. (19). In the solid
phase, we obtain a uniform pressure by considering the momentum
equation with uS í 0

p
S(x, t) = p

L(s+, t) * [[p]]

= p
i
* �(t)

2
˘

t3
(l * s(t))

�

⇢
L * ⇢S

�

˘

↵L * [[p]], (29)

in which [[p]] = p
L(s+, t) * p

S(s*, t) = ⇢
S(1 * R

⇢
)
⇠

ds
dt

⇡2
is the jump in

pressure across the interface; see Eq. (7).
This completes the analytical derivation of the Stefan problem

involving jumps in liquid and solid thermophysical properties and we
now proceed to the new low Mach enthalpy method formulation.

4. A low Mach enthalpy method

The fixed-grid CFD techniques for modeling phase change phenom-
ena can be divided into two main categories: (1) sharp and (2) diffuse
interface methods. A sharp technique treats the phase boundary as an
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infinitesimally thin surface, whereas a diffuse technique smears it over
a few grid cells. Therefore, the former class of methods can explicitly
impose the jump conditions of the governing equations within the
solution methodology. Using a diffuse interface formulation, the phase
transition occurs across a finite ‘‘mushy’’ region, and thus there is no
jump in the governing equations as all quantities vary continuously.
In spite of this, diffuse interface methods are quite popular in the
literature due to their simplicity of implementation, robustness, and
ability to handle more than two phases simultaneously. We consider
the diffuse interface method for simulating solidification/melting of
a PCM in this study. In addition, the proposed method allows us to
couple a solid–liquid PCM with a passive gas phase without posing
major problems.

Specifically, we consider the enthalpy method (EM) pioneered by
Voller and colleagues (Voller and Prakash, 1987; Voller and Swami-
nathan, 1991) for modeling melting and solidification of PCMs. Phase
field methods (PFM) are another popular diffuse domain approach for
modeling phase change phenomena (Boettinger et al., 2002; Huang
et al., 2022). A major advantage of EM over PFM is that, unlike
PFM, the EM does not require additional material parameters (such
as mobility, Gibbs-Thompson, linear kinetic coefficients, mixing energy
density, double-well potential function, etc.) that are usually empiri-
cally selected during numerical simulation. The solid–liquid interface
is implicitly tracked in the EM using the liquid fraction variable '(x, t)
that is defined over the entire domain (x denotes a spatial location in
⌦). ' is defined as 1 in the liquid phase, 0 in the solid phase, and
between 0 and 1 in the transition/mushy zone. A temperature interval
of �T = T

liq * T sol (where T liq represents the liquidus temperature at
which solidification begins, and T sol represents the solidus temperature
at which full solidification occurs) is chosen to represent the range over
which the phase change occurs. This assumption is based on the fact
that for metal alloys and glassy substances there is no single melting
temperature T

m
because the phase change occurs over an extended

range of temperatures from T
sol to T

liq, and there is a mushy zone
between the all solid and all liquid regions (Hahn and Özisik, 2012).
The energy/enthalpy equation implicitly models phase change—upon
changing phase, the grid cell’s enthalpy adjusts to account for latent
heat release or absorption, which in turn changes the ' value. EMs
are typically implemented as source-based methods (Voller and Swami-
nathan, 1991), where the material enthalpy is divided into sensible
and latent components. Newton’s method is used to solve the nonlinear
energy equation containing latent heat as a source term. Many CFD soft-
wares, including ANSYS Fluent and OpenFOAM, support source-based
EM (SB-EM). Studies using SB-EM have often ignored the phase change
induced fluid motion resulting from a density jump between liquid and
solid phases. Where applicable, the Boussinesq approximation is used
in the momentum equation to account for density variations within the
liquid phase (e.g., to model natural convection in a melting PCM (Hu
and Argyropoulos, 1996)).

Some authors have only recently begun considering solid and liquid
densities differently when utilizing the EM method (Galione et al.,
2015; Hassab et al., 2017; Dallaire and Gosselin, 2017; Faden et al.,
2019). To solve variable-density mass, momentum, and energy equa-
tions, these works have employed classical finite volume algorithms
such as SIMPLE and PISO (Moukalled et al., 2016; Patankar, 2018).
These works suffer from the following shortcomings:

1. While the density field is defined by the liquid-fraction variable
', i.e., an equation of state (EOS) is defined for the system, it
is not explicitly used to constrain the velocity field. In other
words, the continuous formulation does not explicitly distinguish
between the bulk of phases with no change in material volume
(where velocity is divergence-free) and the narrow mushy region
that allows changes in material volume (where velocity is not
divergence-free). The previous formulations also do not guar-
antee that when all of the liquid has solidified, or when all of
the solid has melted, there are no further volume changes in the
system.

2. A temperature equation is derived from the enthalpy equation. It
is done by expressing enthalpy as a function of temperature, for
example, by using h = C(T * T

r
) type of relations. Here, h = e +

p_⇢ denotes the specific enthalpy. However, this conversion has
a disadvantage in that the specification of specific heat C, that
depends on ', becomes ambiguous. This is because ' evolves
with T and it must also be solved for along with temperature.
When solving for T and ', C is usually held constant in the
numerical implementation. As a result, the h = C(T *T

r
) relation

can be satisfied only weakly.
3. The advection of temperature or enthalpy involves a mass flux
term m⇢ = ⇢u. The discrete versions of mass and energy fluxes
must be strongly coupled to each other to ensure the numerical
stability of high density ratio flows. Prior works had not ensured
this coupling.

4. Lastly, the prior numerical algorithms are only qualitatively
validated against complex experiments (Tan et al., 2009; Beck-
ermann and Viskanta, 1988) (in complicated geometries and
configurations). This includes qualitatively comparing the inter-
face evolution between simulations and experiments (Tan et al.,
2009; Galione et al., 2015). As a consequence, it is unclear
how well the prior continuous and discrete formulations capture
density-induced flows or volume changes in PCMs.

To overcome the aforementioned shortcomings in the prior works,
we re-formulate the original enthalpy method as a low Mach tech-
nique. A low Mach approach has been traditionally applied to gas
dynamics applications, like combustion (Fiveland and Jessee, 1998;
Hosseini et al., 2022) and astrophysical flows (Bell et al., 2004; Gilet
et al., 2013), however it can also be applied to fluid flow problems.
Bell, Donev, and colleagues used a low Mach formulation to simulate
multispecies liquid flows at mesoscales (Donev et al., 2014, 2015;
Nonaka et al., 2015). Our new low Mach EM formulation keeps the
flow velocity divergence-free (div-free for short) in the bulk of solid and
liquid phases. In the narrow mushy region between solid and liquid,
where the material volume changes, the velocity is not divergence-free
(non-div-free for short). The conditions on the velocity field are made
explicit in both the continuous and discrete versions of our low Mach
EM. A minor change in the EOS allows us to include a (passive) gas
phase in the original solid–liquid PCM system. We assume that gas
is incompressible and the formulation ensures that the gas domain’s
velocity is div-free. We solve the nonlinear enthalpy equation as it is
without dividing it into sensible and latent components, i.e., we do not
follow the source-based approach. This makes the method more general
and allows us to incorporate the gas phase more easily. Furthermore,
this avoids the ambiguity of defining specific heat in the domain when
solving for enthalpy and liquid fraction. We also solve an additional
mass balance equation to strongly couple mass advection with energy
and momentum advection. For high density ratio flows, this step en-
sures that the numerical scheme remains stable. The new low Mach
EM is validated using the analytical solution to the two-phase Stefan
problem for a PCM that undergoes a substantial volume change during
solidification. To illustrate the practical utility of our formulation, we
simulate a metal casting problem showing a pipe defect (Stefanescu,
2015) caused by the volume shrinkage of solidifying metal. Pipe defects
are captured only when the velocity field is non-div-free, i.e., they
cannot be captured by relying solely on a variable density field in the
momentum and energy equations.

4.1. Mathematical formulation

In our technique the gas-PCM interface � (t) is tracked using the
zero-contour of the signed distance function �(x, t). � is defined to be
positive in the PCM region ⌦P(t) = ⌦

S(t)‰⌦L(t) and negative in the gas
region ⌦G(t). It is advected with the non-div-free velocity u(x, t)
D�
Dt = )�

)t
+ u � (� = 0. (30)
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A smoothed Heaviside function H(x, t) is used in conjunction with the
SDF � to distinguish the gas and PCM regions: H takes a value of
0 in the gas region, 1 in the solid–liquid PCM region, and smoothly
transitions from 0 to 1 around � = ⌦

G „ ⌦P with a prescribed width
of 2 grid cells on either side of the gas-PCM interface; see Fig. 1(B).
Using the Heaviside function H and the liquid fraction variable '

any thermophysical property � (e.g., ⇢, C, ) can be uniquely defined
throughout the domain

� = �
G + (�S * �G)H + (�L * �S)H'. (31a)

⇢ = ⇢
G + (⇢S * ⇢G)H + (⇢L * ⇢S)H'. (31b)

When � = ⇢, we get the EOS written in Eq. (31b).
The EOS and the mass balance equation provide a kinematic con-

straint on the velocity field
)⇢

)t
+ ( � (⇢u) = 0,

±
)⇢

)t
+ ⇢( � u + u � (⇢ = 0,

±( � u = * 1
⇢

0

)⇢

)t
+ u � (⇢

1

= * 1
⇢

D⇢
Dt . (32)

The velocity divergence constraint can be expressed in terms of liquid
fraction ' and Heaviside function H using the EOS (Eq. (31b)) as

( � u = * 1
⇢

D⇢
Dt

= * 1
⇢

0

(⇢S * ⇢G)DHDt + (⇢L * ⇢S)D (H')
Dt

1

= * 1
⇢

0

(⇢S * ⇢G)DHDt + (⇢L * ⇢S)
0

H
D'
Dt + 'DH

Dt

11

= (⇢S * ⇢L)
⇢

H
D'
Dt . (33)

In Eq. (33) we have used DH
Dt = 0 asH follows the same linear advection

equation (Eq. (30)) as �. Having derived the low Mach Eq. (33) above,
we now provide a physical rationale for the low Mach formulation of
the enthalpy method.

Since solid and liquid phases are assumed to be incompressible, the
characteristic sound speed is infinite in both solid and liquid regions.
This means that in the bulk of both phases, the Mach number of the
flow is zero. The mushy region between all solid and liquid phases
is a very narrow area that is of the order of a few atomic/molecular
diameters. Consequently, the characteristic sound speed in the mushy
region is expected not to deviate significantly from the bulk solid and
liquid phases, and it remains close to infinity. This ansatz allows us to
employ a low Mach model to express density as a function of liquid
fraction, which in turn is a function of enthalpy. A derivation of ' * h
relation will be provided in this section. Low Mach models also imply
that variations in density do not affect thermodynamic pressure Ép.
Additionally, the pressure variable p which appears in the momentum
equation is mechanical in origin. It serves as a Lagrange multiplier that
enforces the kinematic constraint on the velocity field as written in
Eq. (33). We remark that although we call the new EM a ‘‘low Mach’’
method, it is actually a zero Mach method. This is the common name
for the class of models described by equations such as (33) and (31b).
It is similar to how ‘‘low Reynolds number’’ is most commonly used to
mean ‘‘zero Reynolds number’’.

The material derivative of the liquid fraction D'
Dt required on the

right-hand side of the low Mach Eq. (33) is obtained from the energy
equation, which is written in terms of specific enthalpy h
) (⇢h)
)t

+ ( � (⇢uh) = ⇢
Dh
Dt = ( � ((T ) +Qsrc. (34)

Here, Qsrc represents any heat source/sink term, such as a scanning
laser beam. Note that the enthalpy equation is obtained by subtracting
the kinetic energy equation from the conservation of energy equation
by manipulating derivatives associated with velocity u and pressure p.

For a diffuse interface formulation this is acceptable because veloc-
ity/kinetic energy and pressure are assumed to be continuous across
the interface. For a sharp interface approach this leads to the loss of
kinetic energy jump terms; see Section 2 for further discussion on jump
conditions.

Specific enthalpy h of the PCM is defined in terms of its temperature
T as

h =

h

n

n

l

n

n

j

C
S(T * T

r
), T < T

sol
,

ÑC(T * T sol) + hsol + '⇢
L

⇢
L, T

sol
f T f T

liq
,

C
L(T * T liq) + hliq, T > T

liq
,

(35)

and of the gas as

h = C
G(T * T

r
). (36)

In Eq. (35), hsol = C
S(T sol * T

r
),hliq = ÑC(T liq * T sol) + hsol + L, and ÑC =

C
S+CL

2 . ÑC is the specific heat of the mushy region, which is taken
as an average of liquid and solid specific heats. Eqs. (35) and (36)
imply that PCM and gas enthalpies are zero at T = T

r
. The numerical

solution is not affected by this arbitrary choice of reference temperature
T
r
, and in the numerical simulations we set the melting/solidification

temperature as the reference temperature T
r
= T

m
6. We use a mixture

model to express density and specific enthalpy in terms of liquid
fraction in the mushy region

⇢ = '⇢
L + (1 * ')⇢S, (37)

⇢h = '⇢
L
h
liq + (1 * ')⇢Shsol. (38)

Eqs. (37) and (38) can be derived from the general Eq. (31a) by
substituting H = 1 (which holds true in the PCM region) and � = ⇢

or ⇢h.
Substituting h from Eq. (35) and ⇢ from Eq. (37) into Eq. (38), we

obtain a ' * T relation for the mushy region

' = ⇢

⇢
L
T * T sol

T
liq * T sol . (39)

Knowing ' in terms of T (Eq. (39)) allows us to invert h* T relations.
The temperature in the PCM region

T =

h

n

n

l

n

n

j

h

C
S + T

r
, h < h

sol
,

T
sol + h * hsol

h
liq * hsol

(T liq * T sol), h
sol

f h f h
liq
,

T
liq + h * hliq

C
L , h > h

liq
,

(40)

and in the gas region

T = h

C
G + T

r
(41)

can be written in terms of h. These T *h relations are used in the New-
ton’s iterations to solve the nonlinear Eq. (34). Similarly, substituting
⇢ from Eq. (37) into Eq. (38), we get a ' * h relation

' =

h

n

n

l

n

n

j

0, h < h
sol
,

⇢
S(hsol * h)

h(⇢L * ⇢S) * ⇢Lhliq + ⇢Shsol
, h

sol
f h f h

liq
,

1, h > h
liq
.

(42)

Although arbitrary, ' in the gas region is defined to be zero.
Finally, Eq. (42) allows us to define D'

Dt for the low Mach Eq. (33)
as

D'
Dt =

h

n

n

l

n

n

j

0, h < h
sol
,

*⇢S⇢L(hsol * hliq)
(h(⇢L * ⇢S) * ⇢Lhliq + ⇢Shsol)2

Dh
Dt , h

sol
f h f h

liq
,

0, h > h
liq
.

(43)

6 Another reasonable choice is to set T
r
= 0.
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The material derivative of h in Eq. (43) is obtained from the enthalpy
Eq. (34) as
Dh
Dt = 1

⇢

�

( � ((T ) +Qsrc
�

.

It is clear from Eq. (43) that D'
Dt ë 0 only in the mushy region where

h
sol

f h f h
liq and T

sol
f T f T

liq. This results in a non-div-free
velocity field in the mushy region, but div-free elsewhere. Therefore,
in the absence of mushy regions, velocity is div-free. This can happen
when a liquid phase has solidified completely or when a solid phase has
melted completely. Our formulation, therefore, guarantees that there
will be no change in the volume of the system in the absence of phase
change. It can also be seen from Eq. (33) that when the densities of the
solid and liquid phases match, there is no induced flow and the velocity
is div-free.

The low Mach Eq. (33) is solved in conjunction with the momentum
equation
) (⇢u)
)t

+ ( � (⇢u‰ u) = *(p + ( �
⌅

�
�

(u + (uT
�⇧

+ ⇢g * A
d
u + fst , (44)

to obtain the Eulerian velocity u(x, t) and pressure p(x, t) in all three
phases. Here, �(x, t) is the spatiotemporally varying viscosity that is
defined using Eq. (31a), g is the acceleration due to gravity, and

A
d

= C
d

'S
2

(1 * 'S)3 + ✏
is the Carman-Kozeny drag coefficient that is

used to retard any flow in the solid domain, 'S = H(1 * ') is the
solid fraction of the grid cell, and ✏ = 10*3 is a small number to avoid
a division by zero and to control the strength of penalty parameter
(C

d
_✏) in the solid region. To retard fluid motion within the solid

domain, the model parameter C
d
takes a large value. By comparing the

magnitudes of the drag force and the first term on the left hand side
of the momentum equation (i.e., equating inertial force to drag force),
we obtain a sufficiently large value for C

d
= ⇢

S_�t. Here, �t denotes
the time step size of the simulation. fst is the surface tension force that
acts on the liquid–gas interface. The next section details the numerical
algorithm and the time stepping scheme. Due to the large density differ-
ence between the solid, liquid, and gas phases, special care is needed
to avoid numerical instabilities. This is explained in the next section
as well. Observe that the momentum equation is expressed using a
diffuse interface formulation, where all quantities are assumed to vary
continuously across the (three) phases. In addition, the Carman-Kozeny
drag force strongly influences the pressure jump/gradient across the
mushy region, which is similar to the Darcy-Brinkman equation for
modeling flows in porous media (Durlofsky and Brady, 1987). When
a diffuse interface formulation is used for the momentum equation, p
and [[p]] will generally have numerical values that differ (perhaps by
orders of magnitude) from those of a sharp interface formulation. This
is discussed further in the context of the Stefan problem in the next
section.

4.2. Complete solution algorithm

In this section we describe the time stepping algorithm used to
solve the coupled mass, momentum and enthalpy equations described
above. We assume that all quantities of interest, denoted ✓, have been
computed or are known at time t = t

n. To advance the solution to the
next time level n + 1, we employ p number of fixed point iterations
(with k = 0, 1,… , p * 1 denoting the iteration number) within a single
time step to approximate ✓

n+1 = ✓
n+1,p*1. Within each fixed point

iteration, we employ qmax number of Newton’s iterations (with m =
0, 1,… , qmax * 1 denoting the Newton’s iteration number) to solve the
nonlinear enthalpy equation. At the beginning of the time step, we
initialize ✓n+1,k=0 = ✓

n for variables u, ⇢,�, and H . The temperature
variable is initialized similarly T n+1,k=0,m=0 = T

n. Hence, within a single
time step (of size �t = t

n+1 * t
n), the Navier–Stokes system and the

level-set and Heaviside advection equations are solved for p times and
the enthalpy equation is solved (possibly) for p ù qmax times. For all

cases presented in this work, we use p = 2 fixed-point iterations and set
qmax = 5 for the Newton solver, unless otherwise stated. The governing
equations are solved in the order described next.

1. The level set function �n is first advected with the non-div-free
velocity u to obtain �n+1,k+1

�
n+1,k+1 * �n

�t
+ (( � [�u])n+1,k = (�( � u)n+1,k. (45)

Under (linear) advection, � does not maintain its signed distance
property. A reinitialization procedure suggested by Sussman
et al. (1994) is used to restore the signed distance property of
�. Implementation details about the level set method, and its
reinitialization can be found in our prior work (Nangia et al.,
2019a).

2. A smooth Heaviside function H is used to track the gas-PCM
interface. H takes a value of 0 in the gas region, 1 in the solid–
liquid PCM region, and transitions smoothly from 0 to 1 around
the interface with a prescribed width of ncells = 2 grid cells (of
size �) on either side of the gas-PCM interface

H =
h

n

l

n

j

0, �(x) < *ncells �,
1
2

⌧

1 + 1
ncells �

�(x) + 1
⇡
sin

⇠

⇡

ncells �
�(x)

⇡�

, �(x) f ncells �,

1, otherwise.

(46)

Although Hn+1,k+1 can be defined directly in terms of �n+1,k+1,
we instead advect Hn (defined in terms of �n using Eq. (46)) to
approximate Hn+1,k+1

H
n+1,k+1 *Hn

�t
+ (( � [Hu])n+1,k = (H( � u)n+1,k. (47)

This is done to obtain the advective flux of Heaviside Hu,
which could be used to advect additional scalar variables of a
more involved problem. At the end of the time step H

n+1 is
synchronized with �n+1 using Eq. (46). A third-order accurate
cubic upwind interpolation (CUI) scheme (Nangia et al., 2019a)
is used for advecting � and H in Eqs. (45) and (47). CUI
satisfies both the convection-boundedness criterion (CBC) (see
chapter 12 of Moukalled et al. (2016) for a discussion on high-
resolution schemes) as well as the total variation diminishing
(TVD) property. Both properties are essential to bound H (0 f

H f 1) during its advection.
3. In practical applications, the density contrast between PCM and
gas is usually very large. The metal to gas density ratio, for
example, is ⇢S_⇢G Ì 104. It is important to ensure numerical
stability of the scheme when advecting energy/enthalpy and
momentum in the domain with very high density ratios. Our
recent work proposed an efficient approach for maintaining the
stability of isothermal flows (no phase change) with a high
density ratio. It involves solving an additional mass balance
equation and computing the mass flux m⇢ = ⇢u. The same mass
flux m⇢ is used in the convective operator of the momentum
equation, i.e., ( � (⇢u ‰ u) is discretized as ( � (m⇢ ‰ u) in
the momentum equation. The same idea is applied to advect
enthalpy h as well, i.e., ( � (⇢uh) = ( � (m⇢h).
The discrete mass balance equation reads as

Ö⇢
n+1,k+1 * ⇢n

�t
+ (( �m⇢)n+1,k = 0, (48)

which is solved to obtain Ö⇢
n+1,k+1 and the discrete mass flux m⇢.

We use a second-order accurate explicit Runge–Kutta scheme
(mid-point rule) for time integrating Eq. (48). CUI is used as a
limiter to ensure that ⇢ remains bounded during advection. In
Eq. (48) ⇢n is defined through EOS. In other words, approxima-
tion to the new density Ö⇢

n+1,k+1 is only temporarily used within
a time step, after which it is synchronized with the EOS. The
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synchronization step ensures that (i) density does not deviate
from the EOS; and (ii) gas-PCM interface remains sharp. The
latter is due to the use of reinitialized level set function in the
EOS.

4. Using the discrete approximation for the new density Ö⇢ and mass
flux m⇢, the nonlinear enthalpy equation is solved to update
enthalpy h, temperature T , and liquid fraction '.  and C are
defined as functions of ', which is in turn a function of h. As a
result, the enthalpy equation is highly nonlinear.
The discrete enthalpy equation reads as

Ö⇢
n+1,k+1

h
n+1,k+1 * ⇢nhn
�t

+ (( �m⇢h)n+1,k = (( � (T )n+1,k+1 +Qsrc.

(49)

In the examples considered in this work, there are no additional
heat source/sink terms, i.e., Qsrc = 0 in Eq. (49). This term could
be treated implicitly or explicitly depending upon the numerical
stiffness and/or its complexity. We omit the Qsrc term in the
remainder of the algorithm.

(a) The nonlinear enthalpy equation is solved using Newton’s
iteration to obtain h

n+1,k+1. Specifically, h is linearized
using Taylor’s expansion as

h
n+1,k+1,m+1 = h

n+1,k+1,m+ )h

)T

Û

Û

Û

Û

n+1,k+1,m(T n+1,k+1,m+1*T n+1,k+1,m),

(50)

in which m is the inner (Newton) iteration level. Substi-
tuting the above equation into Eq. (49), we get

É⇢
n+1,k+1

0

h
n+1,k+1,m + )h

)T

Û

Û

Û

Û

n+1,k+1,m �

T
n+1,k+1,m+1 * T n+1,k+1,m

�

1

* ⇢nhn

�t

+ ( � (m⇢h)n+1,k

= (( � (T )n+1,k+1,m+1 (51)

Eq. (51) is solved to obtain T n+1,k+1,m+1. The h*T relations
written in Eq. (35) allows an analytical evaluation of
)h

)T
. Specifically, in the PCM domain, the derivative )h

)T

is given by

)h

)T

Û

Û

Û

Û

ÛPCM
=
h

n

l

n

j

C
S
, T < T

sol
,

ÑC + L_(T liq * T sol), T
sol

f T f T
liq
,

C
L
, T > T

liq
,

(52)

and in the gas )h

)T

Û

Û

Ûgas
= C

G. Note that the specific enthalpy
of the PCM is defined to be a C

0 piecewise-continuous
function7 of T , and its derivative (with respect to T )
jumps at T sol and T

liq. The PCM and gas regions are
distinguished by the Heaviside contour H = 0.5 (or
alternatively by the � = 0 contour). Therefore, )h

)T
in the

entire domain is defined as:

)h

)T
=

h

n

n

l

n

n

j

)h

)T

Û

Û

ÛPCM
, H g 0.5,

)h

)T

Û

Û

Ûgas
, otherwise.

(53)

)h

)T
defined in Eq. (53) can be made ‘‘more smooth’’

by defining it as )h

)t
= H

)h

)T

Û

Û

ÛPCM
+ (1 * H) )h

)T

Û

Û

Ûgas
. In

7 Strictly speaking, the specific enthalpy h of a pure PCM cannot be a
C
0 continuous function. This is because a large amount of latent heat is
released/absorbed at its solidification/melting temperature T

m
and h jumps

at T
m
. In enthalpy methods, this condition is relaxed and the latent heat is

assumed to be released over a temperature interval �T = T
liq * T sol.

our numerical experiments we did not observe any ma-
jor improvement in the Newton solver (in term of its
convergence rate) using the ‘‘smoother’’ version of )h

)t
.

Hence, we make use of Eq. (53) in the code. The linear
system of Eq. (51) is solved using a geometric multigrid
preconditioned FGMRES solver with a relative tolerance
of 10*9.

(b) Update enthalpy hn+1,k+1,m+1 using the Taylor series ex-
pansion (Eq. (50)) and T n+1,k+1,m+1.

(c) Update T n+1,k+1,m+1 and 'n+1,k+1.m+1 using hn+1,k+1,m+1 and
analytical T *h and '*h relations written in Section 4.1,
respectively.

(d) Update thermophysical properties (,C, and �) using
'
n+1,k+1,m+1. In spite of the fact that the model does
not need specific heat C directly, we update it for con-
sistency reasons. The updated C values can be used
for post-processing or to model additional physics, for
example.

(e) Compute the relative change in liquid fraction

✏ =
Ò'

n+1,k+1,m+1 * 'n+1,k+1,mÒ2
1 + Ò'n+1,k+1,mÒ2

(54)

The Newton solver is deemed to be converged if ✏ f 10*8
or if m + 1 = qmax = 5 iterations have completed.

5. Finally we solve the momentum and low Mach equations to-
gether

Ö⇢
n+1,k+1un+1,k+1 * ⇢nun

�t
+ (( � [m⇢ ‰ u])n+1,k

= *(pn+
1
2 ,k+1 + (( �

⌅

�
�

(u + (uT
�⇧

)n+
1
2 ,k+1

* A
n+1,k+1
d

un+1,k+1 + fst n+
1
2 ,k+1, (55)

( � u =

h

n

n

n

n

n

l

n

n

n

n

n

j

0, H < 0.5
(i.e., in the gas phase),

0, h < h
sol
,

* ⇢
S
⇢
L

⇢2
(⇢L * ⇢S)H

ù (hliq * hsol)
�

h(⇢L * ⇢S) * ⇢Lhliq + ⇢Shsol
�2

ù (( � (T ) , h
sol

f h f h
liq
,

0, h > h
liq
.

(56)

to update velocity un+1,k+1 and pressure pn+
1
2 ,k+1. In Eq. (55)

we use the same discrete density Ö⇢
n+1,k+1 and mass flux m⇢

that we obtained from solving Eq. (48). This maintains consis-
tency between mass and momentum transport for high-density
ratio flows. The Carman-Kozeny drag coefficient A

d
employs an

updated value of 'n+1,k+1 obtained from solving the enthalpy
Eq. (49). The surface tension force fst acting on the liquid–
gas interface is modeled using the continuous surface tension
formulation (Brackbill et al., 1992; Saldi, 2012; Francois et al.,
2006). The continuous surface tension force reads as

fst = '
2 Ö⇢

⇢L + ⇢G
⇠

�C( õB
⇡

, (57)

in which � is the uniform liquid–gas surface tension coefficient
and C(�) is the curvature of the interface computed from the
level set function C

n+ 1
2 ,k+1 = *( �

⇠

(�
Ò(�Ò

⇡

. In Eq. (57), õB(�)
represents a mollified Heaviside function that ensures the surface
tension force only acts near the PCM-gas region. In addition, the
multiplier ' limits the influence of surface tension to liquid and
gas. We use the mid-point value of �n+

1
2 ,k+1 = 1

2
�

�
n+1,k+1 + �n

�

in computing C and õB. The right-hand side of the discrete low
Mach Eq. (56) is evaluated by using the most updated values
of Hn+1,k+1

,h
n+1,k+1

, T
n+1,k+1, and ⇢n+1,k+1. The linear system of
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Table 1
Thermophysical properties used to simulate the Stefan problem.
Property Value

Thermal conductivity of solid S 211 W/m K
Thermal conductivity of liquid L 91 W/m K
Specific heat of solid CS 910 J/kg K
Specific heat of liquid CL 1042.4 J/kg K
Solidification temperature T

m
933.6 K

Bulk phase change temperature T
r

933.6 K
Liquidus temperature T liq 938.6 K
Solidus temperature T sol 928.6 K
Latent heat L 383840 J/kg

Eqs. (55) and (56) is solved monolithically for the coupled u* p
system using an FGMRES solver with a relative tolerance of
10*9. The FGMRES solver employs a projection method-based
preconditioner as explained in Thirumalaisamy et al. (2023).

Each case presented in this work uses a uniform time step size �t,
and the CFL number does not exceed 0.5. All of the spatial derivatives
appearing in Eqs. (45)–(56) are approximated using second-order ac-
curate finite differences. In Appendix B we briefly describe the spatial
discretization framework employed in this work. More details on the
discretization technique and variable coefficient (density and viscosity)
flow solver are provided in our prior works (Nangia et al., 2019a,b).

5. Software implementation

The numerical algorithm detailed above is implemented within
the IBAMR library (IBAMR, 2023). IBAMR is an open-source C++
software enabling simulation of CFD and fluid–structure interaction
problems on block-structured Cartesian grids. The code is hosted on
GitHub at https://github.com/IBAMR/IBAMR/pull/1627. IBAMR relies
on SAMRAI (Hornung and Kohn, 2002; SAMRAI, 2023) for Cartesian
grid management. Solver support in IBAMR is provided by the PETSc
library (Balay et al., 2015a,b). CFD results are post-processed using a
combination of in-house MATLAB and Python scripts, as well as using
the open-source VisIt visualization software (Childs et al., 2012).

6. Results and discussion

6.1. Validation of the low Mach enthalpy method with analytical solutions

We validate the novel low Mach EM by examining the Stefan
problem (solidification of a liquid PCM) discussed in Section 3, with
three different density ratios R

⇢
= ⇢

S_⇢L that lead to: (1) no flow
(R

⇢
= 1); (2) flow with volume expansion (R

⇢
< 1); and (3) flow

with volume shrinkage (R
⇢
> 1). The numerical model consists of a

quasi one-dimensional computational domain ⌦ À [0, 1] ù [0, 0.05] with
N
x
ùN

y
= 1280ù64 grid cells. The domain is periodic in the y-direction.

Initially, liquid occupies the entire domain at T
i
= 973.6 K. The left

boundary (x = 0) is set to T
o
= 298.6 K and the right boundary (x =

1) is adiabatic (homogeneous Neumann). The flow solver uses zero-
velocity and zero-pressure/outflow boundary conditions at the left and
right ends, respectively. PCM’s thermophysical properties are largely
aluminum-based, and are listed in Table 1. In this case, both fluid and
solid viscosities are set to zero. For simplicity, we take the bulk phase
change temperature T

r
equal to the solidification temperature T

m
, so

L
eff = L. The temperature interval �T between solidus and liquidus

and the grid size are selected based on convergence studies presented
in Sections 6.1.4 and 6.1.5, respectively.

6.1.1. The no volume change case
Fig. 2(A) compares CFD results8 for the interface position x< = s(t)

and temperature distribution in the solid and liquid phases against
the analytical solutions for R

⇢
= 1 case. We take solid and liquid

densities to be the same ⇢S = ⇢
L = 2475 kg/m3. Table 1 lists the

rest of the thermophysical properties. Simulation is run until t = 10
s with a uniform time step size of �t = 10*3 s. The numerical solid–
liquid interface is defined by an iso-contour value of 0.5 of the liquid
fraction '. It is evident from the figure that the interface position
and temperature profiles match the analytical solution very well at
different times. The analytical solution derived in this work reduces to
the solution of the standard Stefan problem when R

⇢
equals 1. The top

row of Fig. 2 shows both the new and standard Stefan problem solutions
for x<; the latter solution is from the Hahn and Özi≥ik textbook (Hahn
and Özisik, 2012).

6.1.2. The expansion case
For this case, the liquid and solid densities are assumed to be ⇢L =

2700 and ⇢S = 500 kg/m3, respectively. Other thermophysical properties
of aluminum-based PCM can be found in Table 1. A uniform time step
size of �t = 10*4 s is used throughout the simulation to maintain the
CFL number below 0.5. Analytical and CFD solutions9 are compared
in Fig. 2(B). There is excellent agreement between the two. As can be
seen, the standard Stefan solution underpredicts the interface position.
This is because it does not take into account the additional flow that
is generated in the direction of interface propagation. In addition,
the temperature and liquid velocity profiles agree well with the new
analytical model. At t = 0+ the interface velocity u< = ds_dt ◊ 1_

˘

t ô
ÿ. As fluid velocity is proportional to interface speed (see Eq. (13)),
the CFD simulation produces large uL values at the beginning10. The
pressure profiles from CFD and analytical methods for this case are
compared in Section 6.1.7.

6.1.3. The shrinkage case
In order to simulate shrinkage, liquid and solid densities are as-

sumed to be ⇢L = 500 and ⇢S = 2700 kg/m3, respectively. All other
simulation and thermophysical parameters are kept the same as in the
expansion case. Results11 are shown in Fig. 2(C). Liquid–solid interface
location matches the analytical solution very well. Temperature and
velocity profiles are also in good agreement with the analytical solu-
tion. R

⇢
> 1 results in fluid flow opposite to the interface propagation,

since fluid shrinks as it solidifies. Solidification rate is (slightly) reduced
as additional hot fluid is pulled towards the solidifying front. Both the
new analytical solution and standard Stefan solution (without a density
jump) predict an interface position that is qualitatively similar. Volume
shrinkage during solidification may seem insignificant based on this
analysis. This argument is refuted in Section 6.3, in which we present
a modeling study that highlights the importance of volume shrinkage
in causing pipe defects during metal casting.

6.1.4. �T convergence study for the Stefan problem with volume change
The thickness of the mushy zone for the enthalpy method depends

on the temperature interval �T = T
liq * T sol around the phase change

temperature T
m
. The numerical solution is expected to approach the

analytical one as �T ô 0. In practice �T is kept finite so that the
latent heat can be absorbed or released within the grid-resolved mushy
region. While simulating, if �T is set too small (but finite), the mushy

8 This benchmark test is provided in IBAMR GitHub within the directory
examples/phase_change/ex0.

9 This benchmark test is provided in IBAMR GitHub within the directory
examples/phase_change/ex1.
10 At t = 0, the liquid is taken to be quiescent. uL starts with a zero value
but jumps to a large value immediately for CFD velocity profiles.
11 This benchmark test is provided in IBAMR GitHub within the directory

examples/phase_change/ex1.

https://github.com/IBAMR/IBAMR/pull/1627
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Fig. 2. Comparison of CFD and analytical solutions to the Stefan problem at various density ratios R
⇢
= ⇢

S_⇢L. (A) Comparison of the solid–liquid interface position and temperature
distribution in the domain when the liquid and solid densities are the same. In this case, there is no fluid flow. (B) and (C), respectively, compare CFD and analytical solutions
(interface position and temperature and [uniform] velocity distributions) for the expansion (R

⇢
= 0.185) and shrinkage (R

⇢
= 5.4) cases.

region becomes very narrow and falls in the sub-grid region. Numerical
oscillations are produced by intermittent appearances and disappear-
ances of the mushy region during simulation. In order to select grid size
and temperature interval for the EM, a convergence study is necessary.

For the Stefan problem simulated in this section, we consider �T =
{10, 20, 40, 60} K. A convergence study is performed for the expansion
problem R

⇢
= 0.185. A fixed grid size of Nx ù Ny = 1280 ù 64

is chosen for the study. Results for the interface position x
< = s(t)

at various temperature intervals are shown in Fig. 3. As expected,
a smaller temperature interval leads to a more accurate solution for
the EM. Additionally, we also considered �T = 2.5 and 5 K; the
numerical solutions either did not change appreciably or exhibited
minor oscillations at coarse grid resolutions for these values of �T
(data not presented). Therefore, we use �T = 10 K in the numerical
simulations for a PCM that is largely aluminum-based, unless otherwise
stated. We also perform a grid convergence study using three grids:
coarse, medium and fine of size N

x
ù N

y
= 640 ù 32, 1280 ù 64, 2560 ù

128, respectively. �T = 10 K is used for three grids. As observed in
Fig. 4, the analytical and numerical solutions agree reasonably well.
Consequently, we use medium grid to simulate the Stefan problems of
this section.

6.1.5. Spatio-temporal convergence rate of the low Mach enthalpy method
This section investigates the spatio-temporal convergence rate of

the proposed low Mach enthalpy method. A grid convergence study is
conducted for the three Stefan problems of Sections 6.1.1- 6.1.3 using
four grid sizes: N

x
ù N

y
= {320 ù 16, 640 ù 32, 1280 ù 64, 2560 ù 128}.

A uniform time step size of �t = 4 ù 10*4 s is employed for the coarse
grid N

x
ù N

y
= 320 ù 16 and for each successive grid, the time step

size is halved. This ensures the CFL number stays below 0.5 for all four
grids. The temperature interval between liquidus and solidus is taken
to be �T = 10 K, as determined by the results of the previous section.
The L

2 error for a quantity  is defined to be the root mean squared
error (RMSE) of the vector ÒE

 
ÒRMSE = Ò reference *  numericalÒ2_

˘

N .
Here, N denotes the size of the vector E

 
. Two different reference

solutions are considered here: (i) analytical and (ii) numerical solutions
obtained using the finest grid resolution (2560 ù 128). Errors based
on analytical solutions indicate the convergence of the present diffuse
interface approach to its sharp interface counterpart. This is when the
thickness of the mushy zone decreases. In contrast, errors based on
the finest grid solutions indicate the spatio-temporal convergence rate
of the diffuse interface model itself. We present errors as a function
of mesh resolution for the interface position x

< = s(t) for the entire
simulation period (0 f t f 10 s) and for temperature T (x, t) in the entire
domain (0 f x f l) at t = 5 s. The uniform velocity in the liquid domain
is a scalar multiple of the interface position (see Eq. (5)). Therefore,
error in the interface position is also a measure of error in the flow
field.

Fig. 5 illustrates the spatio-temporal convergence rate of the nu-
merical solution to the Stefan problem for the matched density case
(⇢L = ⇢

S). Convergence rates based on the analytical solution are
shown in Fig. 5 (A). As can be observed in the figure the present
method exhibits close to first order with respect to the temperature
solution. In the case of interface position, the present method exhibits
a convergence rate between first and second order. We note that the
interface location in diffuse interface enthalpy methods is implicitly
defined as the 0.5 contour of the liquid fraction variable '. Extracting
the interface location x< itself introduces an unavoidable interpolation
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Fig. 3. Effect of temperature interval �T = T
liq * T

sol on the numerical solution of
the Stefan problem with volume expansion (R

⇢
= 0.185). The grid size considered is

N
x
ù N

y
= 1280 ù 64. A uniform time step size of �t = 10*4 s is used for all the

temperature intervals.

error that also contributes to the non-uniform convergence rate of
E
x< . In this work we rely on VisIt software’s (Childs et al., 2012)
excellent post-processing capabilities to extract the interface location
from the (distributed memory parallel) ' data. Fig. 5 (B) illustrates the
convergence rates based on the finest grid numerical solutions of x<
and T . Here, the convergence rate between first and second order is
observed for both quantities.

Figs. 6 (A) and (B) present the convergence rates for the Stefan
problem exhibiting material expansion upon solidification (R

⇢
< 1)

using analytical and finest grid numerical solutions, respectively. The
temperature convergence rate trend is the same as in the constant
density case: close to first order convergence rate with respect to the
analytical solution and between first and second order with respect to
the finest grid numerical solution. Errors for interface position exhibit
a non-monotonic convergence rate, however error magnitudes are low
(on the order of 10*3). For larger temperature intervals (�T > 10 K)
the convergence rate of the interface position error is slightly better,
but the error magnitude is higher (data not presented for brevity).

Finally, the method’s accuracy is tested for the Stefan problem
exhibiting material shrinkage upon solidification (R

⇢
> 1) and the

results are presented in Fig. 7. Similar to the previous two cases, we
observe close to first order convergence rate of temperature errors
with respect to the analytical solution. We also observe close to second
order convergence rate with respect to finest grid numerical solution.
Interface position errors, though small saturate at fine grids.

6.1.6. Solution to the transcendental equation
In Fig. 8, we plot � versus t that is obtained by solving the tran-

scendental Eq. (25) for the expansion and shrinkage cases considered
in this section. It is evident from the plot that � varies during the early
stages of solidification (when kinetic energy dominates in the Stefan
condition) before reaching a steady state. The relative magnitude of
two terms comprising the interface velocity ds_dt (see Eq. (24)) are
also compared for the expansion and shrinkage case in Fig. 8. We
can observe that the second term involving d�_dt is much smaller
(at least six orders of magnitude) than the first term �_

˘

t, so it is
justified to solve the simpler Eq. (25) rather than the original, more
complex Eq. (23) for �(t). For the thermophysical properties considered

Fig. 4. Grid convergence study for the Stefan problem with volume expansion (R
⇢
=

0.185). �T = 10 K is used for all grids. Uniform time step sizes used for the coarse,
medium, and fine grids are �t = 10*3 , 10*4, and 5 ù 10*5 s, respectively.

in this work, � variation is quite small and can arguably be ignored.
Nevertheless, it is possible to include the kinetic energy jump term in
the analytical solution to the two-phase Stefan problem.

6.1.7. Pressure jump across the interface for the Stefan problem exhibiting
volume change

Based on the analytical solution of the one-dimensional Stefan
problem considering fluid flow, pressure varies linearly in the liquid
phase and remains uniform in the solid phase. The numerical solution
also exhibits this behavior of pressure variation. Figs. 9(A) and 9(B)
show pressure in the entire domain at t = 5 and 10 s, respectively
for the expansion case (R

⇢
= 0.185). Zoomed-in plots are required to

discern variation in liquid pressure since solid pressure is much greater.
Although the numerical and analytical models predict the same trend in
pressure variation, the numerical values differ substantially; numerical
pressure values are much larger than the analytical ones (data not
shown for brevity). This is due to the diffuse-interface formulation of
the EM. Specifically, a Carman-Kozeny drag model is used in the EM to
enforce no flow in the solid phase. In a diffuse formulation, velocity
changes continuously from zero to a finite value within the mushy
region. The pressure jump across the mushy region helps the fluid to
‘‘squeeze’’ through. This is similar to the Darcy-Brinkman model of flow
through porous regions

u ◊ *(p.

The numerical pressure jump [[p]] = p
L * p

S (Ì (p) across the mushy
region is plotted as a function of liquid velocity uL. When the flow has
subsided and the Darcy-Brinkman model becomes applicable, the curve
is shown for t > 2 s. There is a linear relationship between [[p]] and uL,
confirming our hypothesis that the numerical pressure jump occurs to
push fluid through the mushy region. Additionally, the diffuse-domain
momentum equation provides a magnitude scale of [[p]]

* )p
)x

Ì A
d
u
L

± p
S * pL = [[*p]] Ì A

d
� u

L
, (58)

in which � is the cell size and A
d
('S) is the drag coefficient. Here,

we have ignored the convective scale (⇢ )u
L

)t
) in the mushy zone as it

is several orders lower than the pressure gradient and drag force terms
(data not shown). Eq. (58) suggests that the slope of [[*p]] versus uL
curve is A

d
�. This is confirmed from Fig. 9 where a line of slope A

d
�

evaluated at a solid fraction 'S = 0.833 (this value of 'S is obtained by
equating the slope of the best-fit linear curve to A

d
�, and then solving

for 'S) captures the [[*p]] versus uL trend reasonably well.
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Fig. 5. Convergence rates of the low Mach enthalpy method considering the Stefan problem with matched densities of solid and liquid phases (⇢L = ⇢
S). The L

2 error for a quantity
 is defined to be the root mean squared error (RMSE) of the vector ÒE

 
ÒRMSE = Ò reference * numericalÒ2_

˘

N , in which N denotes the size of the vector E
 
. Here,  represents the

interface position x< = s(t) and temperature T (x, t) in the domain. The reference solutions are (A) the analytical solutions and (B) the finest grid (N
x
ùN

y
= 2560 ù 128) numerical

solutions. Errors are presented as a function of mesh resolution for the interface position x< = s(t) for the entire simulation period (0 f t f 10 s) and for temperature T (x, t) in the
entire domain (0 f x f l) at t = 5 s. The temperature interval between liquidus and solidus is �T = 10 K.

6.2. Metal melting

As our next example12, we simulate melting of aluminum metal with
a free surface to highlight two salient features of the new low Mach
enthalpy method: (1) the ability to capture volume change effects of
the PCM in the presence of gas phase; and (2) the ability to handle
phase appearance or disappearance from the domain. This problem is
inspired by Huang et al. (2022) who solved a similar problem using
a phase-field method (PFM), but using hypothetical13 thermophysical
properties of the PCM. The computational domain is considered to be

12 This benchmark test is provided in IBAMR GitHub within the directory
examples/phase_change/ex3.
13 As mentioned earlier it is difficult to estimate/measure various material
properties that is required in a PFM.

a unit square ⌦ À [0, 1]2 that is discretized by N ùN = 256 ù 256 grid
cells. At t = 0 the heavier liquid phase of density ⇢L = 2700 kg_m3

occupies the region below y = 0.3 m, and the lighter solid phase of
density ⇢

S = 2475 kg_m3 rests above the liquid phase and fills the
domain until y = 0.45m; see Fig. 10 (A). The gas occupies the remaining
domain (0.45 < y <= 1). Both liquid and solid phases are assumed
to have the same viscosity �L = �

S = 1.4 ù 10*3 kg/m�s. Viscosity in
the solid phase is fictitious and does not affect numerical results. The
rest of the thermophysical properties for the liquid and solid phases
are taken from Table 1. The thermophysical properties of the gas are
based on air and are taken to be ⇢G = 0.4 kg_m3, G = 6.1 ù 10*2
W/m�K, CG = 1100 J/kg�K and �G = 4ù10*5 kg/m�s. In the x-direction,
periodic boundary conditions are applied. On the top boundary (y = 0),
we use zero-pressure/outflow and no heat flux boundary conditions,
while on the bottom wall (y = 0), we use zero-velocity and fixed
temperature boundary conditions (T = 6T

m
). T

m
= 933.6 K is the melting
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Fig. 6. Convergence rates of the low Mach enthalpy method considering the Stefan problem with the solid phase density lower than the liquid phase (R
⇢
< 1). The L

2 error for
a quantity  is defined to be the root mean squared error (RMSE) of the vector ÒE

 
ÒRMSE = Ò reference *  numericalÒ2_

˘

N , in which N denotes the size of the vector E
 
. Here,

 represents the interface position x
< = s(t) and temperature T (x, t) in the domain. The reference solutions are (A) the analytical and (B) the finest grid (N

x
ùN

y
= 2560 ù 128)

numerical solutions. Errors are presented as a function of mesh resolution for the interface position x
< = s(t) for the entire simulation period (0 f t f 10 s) and for temperature

T (x, t) in the entire domain (0 f x f l) at t = 5 s. The temperature interval between liquidus and solidus is �T = 10 K.

temperature of aluminum. For the liquid region, the initial temperature
is 5T

m
, whereas for the solid and gas regions, it is 0.9T

m
. The simulation

is performed till t = 250 s with a uniform time step size of �t = 10*3 s.
The solid melts when heat is transferred from the bottom wall to

the liquid. As the melting process continues, the solid phase disappears
after t = 150 s. To ensure that no spurious phase changes or interfacial
dynamics exist, the simulation is continued until t = 250 s. As shown
in panels (C) and (D) of Fig. 10, this is indeed the case. Since liquid
density is larger than solid density, the gas–liquid interface position
(y = 0.4375 m) at t = 150 s is lower than the initial gas–solid interface
position (y = 0.45 m). It provides a simple ‘‘sanity check’’ for a CFD
method that seeks to capture the volume change effect of the PCM; the
final position of the gas–liquid interface indicates the success of the
method. Additionally, the initial and final gas-metal interface locations

can be used to quantify the percentage change in metal mass. It should
ideally be zero. For the present simulation (using 256ù 256 grid), it is
approximately E ˘ 0.027%. Even though the percentage mass change
is quite small, it is not near machine precision. This is attributed to
two factors: (1) the non-conservative nature of the level set method,
which is used to track the gas-PCM interface in our formulation; and (2)
the errors incurred in computing the right-hand side of the low Mach
Eq. (33) numerically. We show in Appendix C that E decreases with in-
creasing grid resolution. It also decreases with decreasing time step size
�t (data not presented). We expect mass change errors would be lower
if the level set method were replaced by a more conservative interface
capturing technique like the volume of fluid technique. However, this
needs to be verified.
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Fig. 7. Convergence rates of the low Mach enthalpy method considering the Stefan problem with the solid phase density higher than the liquid phase (R
⇢
> 1). The L

2 error for
a quantity  is defined to be the root mean squared error (RMSE) of the vector ÒE

 
ÒRMSE = Ò reference *  numericalÒ2_

˘

N , in which N denotes the size of the vector E
 
. Here,

 represents the interface position x
< = s(t) and temperature T (x, t) in the domain. The reference solutions are (A) the analytical and (B) the finest grid (N

x
ùN

y
= 2560 ù 128)

numerical solutions. Errors are presented as a function of mesh resolution for the interface position x
< = s(t) for the entire simulation period (0 f t f 10 s) and for temperature

T (x, t) in the entire domain (0 f x f l) at t = 5 s. The temperature interval between liquidus and solidus is �T = 10 K.

6.3. Metal solidification

We consider the opposite scenario of the previous section in our
final example: molten aluminum solidifying in a cast14. A common
casting defect is solidification shrinkage. Metals that are denser in their
solid form than in their liquid form (which is almost always the case)
suffer from this defect. As liquid metal solidifies, its volume contracts
due to the density contrast between phases. Macroscopically, the free
surface of the metal is recessed down into the solidified metal, giving
it the appearance of a pipe. The goal of this example is to demonstrate

14 This benchmark test is provided in IBAMR GitHub within the directory
examples/phase_change/ex4.

that pipe defects are captured only when velocity is taken to be non-
div-free, and the prior inconsistent enthalpy methods (Yan et al., 2018;
Lin et al., 2020; Panwisawas et al., 2017b) would not be able to capture
this feature of phase change process. In those works, a divergence-free
(div-free) velocity condition is used, which means that no additional
flow is generated when the solid phase changes to liquid or vice versa.
In the momentum and energy equations, the two phases (liquid and
solid) are allowed to have different densities, which is at odds with the
div-free velocity assumption.

Solidification of aluminum occurs within a square computational
domain of extents ⌦ À [0, 8ù10*3]2, which is discretized into 256 ù 256
uniform cells. Initially, liquid metal is filled below the region y =
5 ù 10*3 m, and the rest of the domain is occupied by gas (air); see
Fig. 11(A). In contrast to the previous example, there is no solid phase
at the beginning of the simulation. The densities of liquid and solid are
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Fig. 8. Variation of � and interface speed’s two components �
t

↵L

t
and 2

˘

↵Lt d�
dt
(see Eq. (24)) as a function of time for the Stefan problem with (A) volume expansion and (B)

volume shrinkage. �(t) is obtained by solving the transcendental equation (Eq. (25)) using MATLAB’s fzero function. The transcendental equation is solved at t = �t and onwards.
d�
dt
is computed from � in a post-processing step.

assumed to be ⇢L = 2475 kg_m3 and ⇢S = 2700 kg_m3, respectively. The
other thermophysical properties for liquid, solid, and gas are taken from
the previous section. The surface tension coefficient between liquid
aluminum and gas is taken to be � = 0.87 N_m. On the top surface, zero-
pressure/outflow boundary conditions are applied, while zero-velocity
boundary conditions are applied elsewhere. On all boundaries, the
temperature is fixed at T = 0.5T

m
(T
m

= 933.6 K is the solidification
temperature of aluminum), except at the bottom wall, where a zero-flux
(homogeneous Neumann) condition is imposed. The initial temperature
in the liquid domain is set to 2T

m
, whereas in the gas domain it is 0.5T

m
.

As a result of the imposed boundary conditions, solidification begins
on the right and left sides of the domain. Solidification is not affected
by the top boundary since air has a low thermal conductivity. The
simulation runs until t = 1 s with a uniform time step size of �t = 10*5
s.

First, we present the simulation results assuming that velocity in
the domain is div-free. Results are shown in Fig. 11. In this case, the
liquid metal solidifies completely without deforming the free surface or
changing its volume. This solution is unphysical because PCM volume
must change to accommodate a change in density during phase change.
It is important to note that variable density and gravitational body
forces are taken into account in the momentum Eq. (44). However, this
is not enough to cause caving of the free surface (gas–liquid).

The results differ significantly when velocity is not treated as div-
free. Fig. 12 shows the dynamics of solidification. Around t = 0.25 s, the
liquid metal solidifies completely, and no further phase changes occur.
Supplementary video S1 shows the solidification dynamics. There are

no spurious flows or interfacial motions at the gas–solid interface
beyond t = 0.25 s. It is clear that the gas–liquid surface has caved
and a pipe defect has formed. Material volume shrinks as density
increases, so this is a physically correct result. In addition, we quantify
the simulation results by computing the percentage mass change of
the metal as a function of grid resolution. This is presented in the
Appendix C.

Next, consider a hypothetical case where aluminum liquid and solid
phase densities are reversed to ⇢

L = 2700 and ⇢
S = 2475 kg_m3,

respectively. As a result, metal expands during solidification. Fig. 13
shows the dynamics of metal expansion during solidification. It takes
t = 0.25 s for solidification to complete in this case as well, but we
observe a protrusion defect instead of a pipe defect. Supplementary
video S2 shows the solidification dynamics for this case.

7. Discussion

In this study we presented analytical and numerical methodologies
to model phase change phenomena exhibiting density/volume changes.
All materials of practical interest change density, and consequently, ma-
terial volume to conserve mass when they melt, solidify, evaporate, or
condense. Different phases of the same material also exhibit differences
in other thermophysical properties, such as specific heat and conduc-
tivity. By retaining all jump terms arising from the energy equation in
the Stefan condition, we derived an analytical solution to the two-phase
Stefan problem with variable thermophysical properties. For validation
purposes, CFD algorithms that aim to model the phase change of mate-
rials can benefit greatly from the two-phase Stefan problem solutions,
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Fig. 9. Stefan problem with volume expansion (R
⇢
= 0.185): Pressure distribution along the length of the channel and zoomed-in views for the liquid and solid domains at (A)

t = 5 s and (B) t = 10 s. (C) Plot of the numerical pressure jump ([[*p]] = p
S * pL) across the interface as a function of liquid velocity uL. The dashed line has a slope of value A

d
�,

in which the Carman-Kozeny drag coefficient A
d
is computed using a solid fraction value of 'S = 0.833. We remark that for the purposes of this plot only the temperature interval

is taken to be �T = 60 K. This is done to obtain a relatively smoother [[*p]] versus uL curve. Using �T = 10 K, pressure jump across the mushy region exhibited larger oscillations
as a function of fluid velocity. The grid size and time step size used for this case are N

x
ùN

y
= 1280 ù 64 and �t = 10*4 s, respectively.

Fig. 10. Time evolution of the solid, liquid, and gas domains during metal melting.

but these have gone largely unnoticed in the literature. We also pre-
sented a novel low Mach version of the enthalpy method that takes into
account the density change of PCMs during melting and solidification.
Furthermore, the solid–liquid PCM was coupled to a gas phase within
the low Mach framework. Evaporation and condensation may also be
modeled with the proposed low Mach enthalpy method, but further
studies are needed to evaluate its accuracy. Another possibility is to
model evaporation and condensation through the level-set or volume
of fluid machinery and melting and solidification via the proposed low
Mach enthalpy method. In this scenario DH

Dt and D�
Dt are not equal to

zero in the low Mach Eq. (33). By using such a framework, all four
modes of phase change can be handled in a single simulation, which
will enhance the existing modeling fidelity of engineering applications
like metal additive manufacturing. Besides presenting novel techniques

for modeling phase change processes, this work opens up several new
directions for future research.
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Fig. 11. Time evolution of the solid, liquid, and gas domains during metal solidification considering ( � u = 0.

Fig. 12. Time evolution of the solid, liquid, and gas domains during metal solidification (shrinkage) considering ( � u ë 0.

Fig. 13. Time evolution of the solid, liquid, and gas domains during metal solidification (expansion) considering ( � u ë 0.
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Appendix A. Similarity solution

Here, we derive a similarity solution of the heat equations governing
temperature in the solid ⌦S and liquid ⌦L domains

)T
S

)t
= ↵

S )
2
T
S

)x2
À ⌦

S(t), (A.1)

)T
L

)t
+
�

1 * R
⇢

� ds
dt
)T

L

)x
= ↵

L )
2
T
L

)x2
À ⌦

L(t). (A.2)

Interface position s(t) can be expressed as s(t) = �(t)2
˘

↵Lt, where �(t)
is an unknown function of time. Eqs. (14) and (15) can be written in
terms of similarity variables ⌘S and ⌘L, respectively:

T
S(x, t) = T

S(⌘S) with ⌘
S = x

2
˘

↵St
, (A.3)

T
L(x, t) = T

L(⌘L) with ⌘
L = x

2
˘

↵Lt
+ b(t). (A.4)

b(t) in ⌘L is yet to be determined. The similarity transformation reduces
partial differential Eqs. (14) and (15) in x and t to ordinary differential
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Fig. B.14. Schematic representation of a 2D staggered Cartesian grid. (a) shows the coordinate system for the staggered grid. (b) shows a single grid cell with velocity components
u and v approximated at the cell faces (ô) and scalar variables pressure p, specific enthalpy h and temperature T approximated at the cell center (÷).

equations in ⌘S and ⌘L, respectively. The steps involved in the similarity
transformation of (15) are detailed in the remainder of this section
as this equation is different from the standard heat (14), which has
been treated in several textbooks. The main steps involve rewriting the
derivatives of T L and s(t)

)T
L

)x
= dT L

d⌘L
)⌘
L

)x
= dT L

d⌘L
1

2
˘

↵Lt
(A.5)

)
2
T
L

)x2
= d2T L

d⌘L2
)⌘
L

)x

1
2
˘

↵Lt
= dT L

d2⌘L2
1

4↵Lt
(A.6)

)T
L

)t
= dT L

d⌘L
)⌘
L

)t
= dT L

d⌘L

H

*x
4t
˘

↵Lt
+ db

dt

I

(A.7)

ds
dt = �

u

↵L

t
+ 2

˘

↵Lt
d�
dt (A.8)

and substituting them in (15). This yields

d2T L

d⌘L2
+ 2

⇠

⌘
L * b * �(1 * R

⇢
) * 2tdbdt * 2t(1 * R

⇢
) d�dt

⇡ dT L

d⌘L
= 0. (A.9)

Here, d2T L

d⌘L2
= d

d⌘L

⇠

dT L

d⌘L

⇡

. Choosing b(t) = *�(t)(1*R
⇢
) in (A.9) simplifies

the similarity transformation of (15) to

d2T L

d⌘L2
+ 2⌘L dT

L

d⌘L
= 0. (A.10)

Following similar (but less involved) steps, the similarity transforma-
tion of (14) reads as

d2T S

d⌘S2
+ 2⌘S dT

S

d⌘S
= 0. (A.11)

Eqs. (A.10) and (A.11) can be integrated analytically and the closed-
form expressions of T S(x, t) = T

S(⌘S) and T L(x, t) = T
L(⌘L) (satisfying

boundary and interface conditions) are provided in the main text.

Appendix B. Spatial discretization

In this work, a staggered Cartesian grid is used to discretize the
continuous equations of motion. The computational domain ⌦ is dis-
cretized into uniform N

x
ù N

y
cells with grid spacing of �x and �y

in each direction as shown in Fig. B.14(a). The bottom left corner
of the computational domain ⌦ is assumed to align with the origin
(0, 0). The position of each grid cell center is then given by x

i,j
=

⇠

(i + 1
2 )�x, (j +

1
2 )�y

⇡

, where i = 0,… ,N
x
* 1 and j = 0,… ,N

y
* 1.

The face center in the x*direction which is half grid space away
from the cell center x

i,j
in negative x direction is given by x

i* 1
2 ,j

=
⇠

i�x, (j + 1
2 )�y

⇡

, where i = 0,… ,N
x
and j = 0,… ,N

y
* 1. Other face

center physical locations are analogous. The scalar variables such as
pressure p, specific enthalpy h, and temperature T are stored at the cell
centers. The x-component of the velocity (u) is stored at the x-direction
cell faces while the y-component of the velocities is stored at the y-
direction cell faces, as shown in Fig. B.14(b). All the material properties
including density are stored at the cell centers along with the interface
tracking variables ' and �. Second-order interpolation is used when the
cell-centered quantities are sought at the face. The momentum forcing
terms such as surface tension, gravity, and Carman-Kozeny drag force
are stored at the cell faces as the velocity components.

We use standard second-order finite differences to approximate the
spatial differential operators. The following are the spatial discretiza-
tions of the key continuous operators:

• The gradient of cell-centered quantities (i.e., p) is approximated
at cell faces by

Gp = (Gxp,Gyp), (B.1)

(Gxp)
i* 1

2 ,j
=
p
i,j

* p
i*1,j

�x
, (B.2)

(Gyv)
i,j* 1

2
=
p
i,j

* p
i,j*1

�y
. (B.3)

• The continuous strain rate tensor form of the viscous term is

( �
⌅

�
�

(u + (u⇧
�⇧

=
b

f

f

d

2 )

)x

⇠

�
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+ )
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⇠

�
)u

)y
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⇡
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⇠

�
)v
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⇡

+ )

)x

⇠

�
)v
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⇡

c

g

g

e

, (B.4)

which couples the velocity components through spatially variable
viscosity

L�u =
b

f

f

f

d

(L�u)x
i* 1

2 ,j

(L�u)
y

i,j* 1
2

c

g

g

g

e

. (B.5)

• The viscous operator is discretized using standard second-order,
centered finite differences

(L�u)x
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2 ,j
= 2
�x

L

�
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u
i+ 1

2 ,j
* u
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Fig. C.15. Percentage change in PCM mass E as a function of time for the metal melting case at different grids. Each grid uses a uniform time step size of �t = 10*3 s and a
temperature interval of �T = 10 K.

Fig. C.16. Percentage change in PCM mass E as a function of time for the metal solidification case that exhibits pipe shrinkage defect at different grids. The temperature interval
is taken to be �T = 10 K for all grids. A uniform time step size is used for all the grids: for coarse grids N = 32 and N = 64, �t = 10*4 s is used; for medium grids N = 128 and
N = 256, �t = 10*5 s is used; and for the fine grid N = 512, �t = 10*6 s is used.
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in which viscosity is required on both cell centers and nodes of the
staggered grid (i.e., �

i± 1
2 ,j±

1
2
). Node-centered quantities are ob-

tained via interpolation by either arithmetically or harmonically
averaging the neighboring cell-centered quantities. In this work,
we use harmonic averaging.

All other equations such as energy, level-set and Heaviside advection,
and low Mach are discretized at the cell centers as follows:

• The divergence of the velocity field u = (u, v) is approximated at
cell centers by

D � u = D
x
u +Dy

v, (B.8)

(Dx
u)
i,j

=
u
i+ 1

2 ,j
* u

i* 1
2 ,j

�x
, (B.9)

(Dy
v)
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=
v
i,j+ 1

2
* v

i,j* 1
2

�y
. (B.10)

• The diffusion term in the energy equation is approximated as
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(B.11)

Harmonic average is employed to interpolate thermal conductivity
 from cell centers to cell faces. Extending these discretizations to
three-dimensional Cartesian grids is straightforward. For convective
discretization, we use third-order accurate cubic upwind interpolation
(CUI). CUI satisfies both the convection-boundedness criterion (CBC)
and the total variation diminishing (TVD) property. The CUI scheme
exhibits third-order spatial accuracy in monotonic regions (specifically
where the gradient of the advected quantity remains monotone) and
reduces to first-order spatial accuracy (due to upwinding) in non-
monotonic regions. For brevity, we omit the spatial discretization of
the advection equation using CUI, but it can be found in our previous
work (Nangia et al., 2019a).
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Appendix C. Grid convergence study for mass conservation

For the metal melting and solidification cases discussed in the main
text, we present the percentage change in the PCM mass. The mass of
PCM (solid+liquid) in the domain at time t can be computed using

m(t) =
 
⌦

⌅

⇢
L(H') + ⇢S(H *H')

⇧

d⌦. (C.1)

The relative percentage error in PCM mass is defined as

E(t) =
m * m0

m0
ù 100, (C.2)

in which m0 is the initial (at time t = 0) mass of the PCM. Fig. C.15 plots
E versus t for various grids of size N

x
ùN

y
= N

2. With increasing grid
refinement, E decreases and at finer grids there is about 0.007% change
in the PCM mass. Fig. C.16 plots E versus t for the metal solidification
case that exhibits pipe shrinkage. A similar conclusion can be drawn
for this case as well: E decreases with grid refinement and at finer
grids PCM mass changes by approximately 0.39%. E also decreases with
decreasing �t (data not shown).

Appendix D. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ijmultiphaseflow.2023.104605.
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