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Abstract:

Buying land to establish protected areas is a common conservation strategy, particularly in countries
with strong private property rights. Accurately accounting for spatial heterogeneity in land cost could
lead to large efficiency savings when planning future acquisitions. However, lack of data regarding

actual acquisition costs faced by conservation organizations has led planners to rely on more readily
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available proxies, such as agricultural land value. Using data on nearly 36,000 parcels acquired for
conservation by public agencies and land trusts in the continental U.S., we built a model predicting
protected area acquisition costs. While costs of land for agriculture or development are useful
predictors of variation in protected area acquisition costs, they are not, by themselves, good
approximations of those costs. For example, using a more comprehensive combination of variables,
our model explained almost four times as much variation in actual acquisition costs as those. We
found that agricultural land value loses most of its explanatory power once other predictors are used,
confirming that it acts as a partial proxy for actual acquisition costs. We then used an optimization
model to compare prioritization recommendations with our new cost estimates to those suggested
when relying on agricultural land values alone. Locations of highest conservation return on investment
shifted from coastal regions toward the country's center, when using actual cost data. Cost estimates
used in conservation planning should be based on actual protected area acquisitions, because the

type of properties and motivations of buyers and sellers differ from those of other land transactions.

Introduction:

Protected areas have long been a primary strategy for conservation, especially in terrestrial systems
(Haaland et al., 2021; Le Saout et al., 2013; Margules and Pressey, 2000; Watson et al., 2014). In
the face of continued biodiversity erosion and limited funding (Lerner et al., 2007; McCarthy et al.,
2012), conservation organizations have adopted systematic approaches to identify parcels for
protection, relying on strategic work-flows to organize planning efforts and optimization tools when
appropriate (Amundsen, 2011; Mcintosh et al., 2017). Many of these methods aim to maximize the
ecological return on investment (ROI) when selecting a set of areas to acquire (Moilanen et al., 2009).
Conservation ROI has been defined in various ways, but most definitions are based around the ratio
of the ecological benefit of a conservation action divided by the economic cost of the action (Boyd et
al., 2015). When conservation costs were first included in large-scale planning studies, large efficiency
savings were reported, suggesting more biodiversity could be protected for a given budget (Ando et
al., 1998; Carwardine et al., 2008; Naidoo and Iwamura, 2007; Venter et al., 2014). ROl approaches,
notably, promise large efficiency gains provided they can rely on reasonable estimates for both

ecological benefits and economic costs of protection (Cullen, 2013).

In countries with strong private property rights, expansion of protected area networks often depends
on buying or receiving donations of land from private landowners (Nolte, 2018). When purchases are
involved, the cost of upfront land acquisition is a significant component of the overall cost of securing
long-term conservation goals on a site (Le Bouille et al., 2022). Unfortunately, reliable data on the
costs of protecting land are rarely available (Armsworth, 2014). Instead, many conservation studies
rely on indicators of protected area acquisition costs, such as costs estimated from agricultural rental
rates nearby (Lawler et al., 2020; Venter et al., 2014; Withey et al., 2012), gross margins of agricultural
production (Adams et al., 2010; Chiozza et al., 2010; Jantke et al., 2013; Jantke and Schneider, 2011),
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population density nearby (Luck et al., 2004) or even GDP per capita (Eklund et al., 2011). However,
protected parcels commonly include steeper terrain and higher elevation habitats than most
agricultural lands (Sutton et al., 2016). In addition, dynamics associated with conservation
transactions, such as motivations to buy and to sell between conservation organizations and existing
private landowners, can be very different from those involved in conventional land sales (Armsworth,
2014; Clark, 2007; Knight et al., 2011).

Improving the accuracy of cost data promises further efficiency gains by avoiding costly misallocations
of limited resources (Armsworth et al., 2020; Sutton et al., 2016). Indeed, priorities that emerge in
conservation planning may be more sensitive to the cost data used than to particular biodiversity data
(Kujala et al., 2018). Improved cost estimation is also necessary if we are to more accurately project
what it will cost to deliver particular conservation objectives (Nolte, 2020). Improved data on land
costs in the U.S. are becoming more readily available. For example, Nolte (2020) and Wentland et al.
(2020) present new predictive models estimating the fair market value of individual land transactions
from data collated by Zillow, a commercial real estate database company. However, for the reasons
we mentioned above, land value for conservation may not reflect the full cost that would be faced by
a commercial developer or other private purchaser. Instead, conservation organizations are often able
to acquire land for less than fair market value, by way of a form of charitable donation on the part of
sellers. With their focus on fair market value, Nolte (2020) and Wentland et al. (2020) used a different
sample of transactions than we did. For example, Nolte validates his model against some of the same
data we use here, but retaining only parcels sold at or close to (no more than 20% discount) the
estimated land's fair market value. In contrast, we focus on exploring variation in the actual acquisition
costs faced by conservation organizations when protecting a property, not in the commercial real
estate value of that land. For this reason, we use records of actual prices paid, including the portion
of acquisition costs attributable to landowners selling to conservation organizations for below fair

market value, i.e. land discounted or donated.

In this study, we sought to understand large-scale patterns in the costs of acquiring land to establish
new protected areas (also often referred to as "fee simple acquisition"). We used statistical regression
to relate the patterns we found to socioeconomic, geographical and ecological covariates. The
resulting model produced a national map of protected area acquisition costs. We also compared our
cost estimates to estimates of agricultural land value and urban land value used in past studies.
Finally, we show how prioritizations for future protection change when relying on our new conservation

cost estimates.

Material and Methods

Acquisition Cost Data
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We used data on 35,880 land transactions made to protect land in the continental U.S. These data
include 31,332 land transactions made by local, state and federal governments across the U.S. that
were collated by the Trust for Public Land (TPL) in their Conservation Almanac (The Trust for Public
Land, 2019). Exact dates vary by states, but most states records start in the 90’s, with around one
third starting in the 80’s. The most recent records for most states are from 2014 or 2013. The data
also include 4,548 additional land transactions made between 1980 and 2014 by The Nature
Conservancy, the largest private land trust in the U.S. (Carr, 2006), which is another major contributor
to expansions of the U.S. protected area network (Fishburn et al., 2013; LTA, 2015). We corrected
the costs for inflation and reported them as 2016-dollars, using the Consumer Price Index (U.S.
Bureau of Labor Statistics 2019). Because we want to explore costs of acquiring land for protection
as actually faced by conservation organizations, we retained sites that were fully or partially donated

in our main analyses, but see below for relevant sensitivity tests.

We focus our analysis on the average cost per hectare of purchasing land for protected areas within
a county. While recognizing other choices would also make sense, we chose to work at the county
level for several reasons. First, based on conversations with practitioners, we believe counties provide
a relevant spatial grain when deciding how to allocate conservation dollars and working over a large
spatial extent. Organizations and government programs that conduct conservation planning to inform
protection strategies over large spatial scales tend to leave the final decisions over just which parcels
should be acquired to staff in local field offices — while the large-scale budget planning itself, deciding
which parts of the country should be priorities for future investment, is conducted at coarser spatial
units such as counties. Second, counties are a relevant administrative and political unit in the U.S. for
regional and local land-use planning. Third, several of our chosen socio-economic variables are
available only at county-level. Finally, and partly for these other reasons, county-grain is also a scale
at which many return on investment (ROI) based optimizations have previously been formulated,
making it easier to compare our results with existing literature (Ando et al., 1998; Armsworth et al.,
2020; Boyd et al., 2015; Dobson et al., 1997; Kroetz et al., 2014; Withey et al., 2012). That being said,
county sizes are far from being homogeneous across the U.S. In case that would affect any of the
above, we included county area as one of our model's predictive variables. We used county
boundaries as recorded by the U.S. Census Bureau (TIGER, 2015). The transactions in our dataset

span 1927 counties, 63% of the total number of counties in the continental U.S (Figure 1).

Covariates

The model we fit to explain variation in protected area acquisition costs included both ecological and
socioeconomic covariates (Table 1). The choice of variables was based on hypotheses about factors
that might explain cost variation. We first included measures of the value of alternative land uses,
both agricultural land value (USDA-NASS 2012) and urban land value (Davis et al., 2021), because

acquisition cost is likely to reflect the foregone value (opportunity cost) incurred when protecting land.
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For counties where these estimates were unavailable, we used the state average for the relevant

variable.

The amount paid by a conservation organization to acquire a property also depends on the willingness
of the landowner to sell below market value as a form of philanthropic donation to conservation (Clark,
2007). Others have found environmental philanthropy in the form of monetary donations to be
associated with higher household incomes (Mount, 1996), higher levels of education (Greenspan et
al., 2012), higher employment rates as well as living in larger urban centers (Chen et al., 2011) and
more prevalent left-leaning political beliefs (Fovargue et al., 2019). As such, we included poverty
percentage (United States Census Bureau, 2021), education levels, as the percentage of adults with
a bachelor's degree or more (United States Census Bureau, 2021), unemployment rate and
population density (Friesenhahn, 2016), and democratic leaning (MIT Election Data and Science Lab,

2018) as possible predictors of land donations.

We accounted for the proportion of the county already covered by protected areas with explicit
mandates for biodiversity protection, using data from the Protected Area Database of the United
States - GAP categories 1, 2 and 3 (USGS Gap Analysis Project, 2018). We also included the
proportion of the county that had already been converted to either urban land, crop or pasture, as well
as the proportion that is projected to be converted to these land cover types by 2030. We took these
proportions from U.S. Forest Service's 2010 RPA assessment (Wear, 2011). We converted the later
into an indicator of short-term conversion threat by calculating the ratio of additional converted area
to the current total converted area within the county. We also obtained the mean elevation (NASA-
JPL, 2013) for each county. Finally, we calculated how many vertebrate species that were evaluated

by IUCN (2016) as being vulnerable to extinction or worse were present in the county.

Recognizing that there may be broad spatial patterns not accounted for by these variables, we also
included categorical variables summarizing whether counties were located in particular parts of the
country. We used ecoregional boundaries associated with broad biophysical attributes when
specifying these categorical variables. Specifically, we included categorical variables describing
whether a given county was included in one of 85 EPA-3 ecoregions (U.S. Environmental Protection
Agency, 2015), which are mapped in Figure S.l.-1. We tested two alternative specifications for
categorical variables that focused on larger regions. For these, we used state boundaries and 8 EPA-
1 ecoregions, but these more aggregated descriptors were not retained by our fitting procedure (S.1.

Section I).

Analyses
We used a regression approach to examine covariation between our socioeconomic and ecological

variables and our acquisition cost data. We started with a simple linear regression model, weighted

by the number of transactions in each county. The analysis was conducted in R (R Core Team, 2018),
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with packages MuMIn (Barton, 2023), ImerTest (Kuznetsova et al., 2017), ape (Paradis and Schliep,
2019) and DMwR (Torgo, 2016). The average cost per hectare of buying land for conservation per
county was log-transformed with an offset of 1 to reduce skewness while accounting for zeroes in the
data. For the same reason as well as for consistency, we also log-transformed the average urban and

agricultural land values per hectare for each county. Our basic model structure was:
Y=a+Zﬁi* X+ €
i

Where Y is the acquisition cost of a protected area of land and ; are the coefficients to be estimated
for each X; covariate described above, a is the intercept and ¢ is the error term. When generating a
proximity matrix with all pairwise distances between counties and applying a Moran’s test to the
residuals weighted by those distances, some spatial auto-correlation in the error terms was found.
The model fit was significantly improved, based on AIC comparison as well as thorough model
validation (see S.I. section Il for more model validation details), by retaining EPA-3 ecoregions but
some spatial autocorrelation still remained. We then tried explicitly adjusting the model’s error
structure. We fitted the model once more, using generalized least squares, and compared the fits
obtained when assuming five different autocorrelation structures (S.l. section I). While improving the
model’s AIC, they did not significantly decrease the remaining autocorrelation in the residuals. The
covariate estimates were very similar across all model structures, which points to functional form of
our model as being robust and correctly specified. Therefore, we proceeded with the base model,

without a spatially autocorrelated error structure.

We tested the robustness of the resulting fitted model in both time and space. We subjected our model
to both an out of sample cross-validation routine (repeated k-fold with 100 repeats of 10-fold random
sets - Kohavi, 1995) and an in-sample validation check by fitting predicted values against observed
values across our whole dataset (Figure 2a). Additionally, we repeated our model fitting when only
using transactions from the most recent decade included in the dataset. We also checked for other
possible temporal trends by calculating the difference between individual parcel cost and county land
cost average and then testing for significant changes in this quantity through time; there was no
significant trend in the spread of data points around the county averages over time (ANOVA, P-value
= 0.458). Finally, some parcels within our dataset (15%) were fully donated by the original landowner,
meaning the cost per hectare was USD$0. To examine whether our results were sensitive to their
inclusion, we repeated our analyses omitting these fully donated transactions. In all cases, spatial and
temporal, in and out of sample, with and without donations, parameters estimates and predictions of

our model remained largely consistent (S.l. section Ill).

ROI Prioritization

To illustrate how conservation recommendations would change when drawing on our new cost
estimates, we used a spatial prioritization approach to identify future priority locations for establishing

protected areas. Specifically, we used the prioritization model presented in Armsworth et al. (2020)
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that focuses on enhancing the protection of 1514 terrestrial vertebrate species (birds, mammals,
reptiles and amphibians). This formulation accounts for ecological complementarity in the set of
species being protected, conservation costs, existing protected areas, projected habitat conversion
threats, contributions to species protection from unprotected private land, and a range of other factors.
The conservation objective is assumed to be one of maximizing expected future species richness
when considering the probability of a species persisting to be a function of the amount of protected
area and unconverted private land found within the species range. Conservation funds allocated to a
county are used to acquire new protected areas, thus changing future land cover and species
persistence probabilities. Armsworth et al. (2020) compare different assumptions regarding subcounty
siting of protected areas relative to species ranges. Here we adopt their “pessimistic” scenario where
each hectare of additional protected area covers species ranges in proportion to their range area in
the county. This prioritization approach and its assumptions are explored fully in that earlier
Armsworth et al. (2020) paper. Here we focus on applying it as a demonstration of how the priorities
one arrives at through a conservation planning process depend on the underlying cost data being

used.

We compared the ROI offered by investing in each county when using our new cost estimate with the
ROI estimate obtained when using average agricultural land value in the county, a proxy commonly
used in past studies. We defined the return on investment in terms of the change in the number of
species expected to persist across the conterminous US when allocating a small additional budget
for land protection to each county over status quo protection levels. The ROI available from investing

in further land protection in county i takes the form:

TOtgl Marginalchange in Marginal change in future
Specles | persistence prob. of species ecological condition of the
Z j with improvementin X landscape for species j from
future ecological condition additional hectare of
j=1 of landscape for species j protected area in county/
ROI countyi =

‘ Cost per hectare of new protected area in county i

The summation in the numerator is taken across species, meaning counties with higher species
richness tend to be higher priorities. The first term in the numerator represents the improvement
possible in the future persistence probability for a species by improving conditions for it on the
landscape by a small amount. While this term is positive for most species, the potential gains
eventually dissipate for those common species for which conditions are sufficiently favorable across
the landscape that their persistence is assured. The second term in the numerator focuses on the
county being targeted for investment and indicates by how much ecological conditions for the species

in the future would be improved in that county by creating an additional hectare of protected area
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today. This term tends to be larger for counties where future conversion threat would be higher, absent
the additional protection and so the added value of new protected area is large. Finally, the
denominator is just the cost per hectare in the county, which is the term we are most interested in

here. All else being equal, lower cost counties have higher ROI values.

To focus attention only on top priority counties that reside in the upper tail of the ROI distributions, we
reported the overlap of the top 5, 10 and 15% of counties when ranked by ROl when assuming each

cost dataset.

Finally, we pushed beyond ROI and calculated optimal budget allocations when using each cost
estimate. When optimizing, we treated the conservation budget allocated to a county as a continuous
control variable. We report the congruence in the optimized budgets, defined as the proportion of
overall funding for which the two optimized strategies agree on the allocation. Additional details of our
prioritization specification are given in the S.1. The optimization indicates the optimal funding allocation
when considering species complementarity, which sometimes involves focusing investment into a
relatively small number of priority counties. In contrast, a focus on ROl more broadly allows a

comparison of spatial patterns across the whole landscape.

Results

The total cost per parcel, the cost per hectare and parcel size were all heavily skewed (Table 1). In
general, transactions included in the dataset were for small parcels; more than 87% of the parcels
acquired were smaller than 100 hectares. The prevalence of small area transactions in the dataset is
to be expected, both given our focus on the individual transactions used to build protected areas and
because, by number, most protected areas are small (Deguignet et al., 2014). There was also a great
deal of spatial variability in the data. Even after averaging per county, cost per hectare and parcel

size both varied by ~6 orders of magnitude across the U.S (Table 1).

Among our covariates, urban land value is a significant predictor of protected area acquisitions costs,
while agricultural land value is not (Table 2). All other covariates are positively associated with
protected area acquisition costs except for average deal size in the county, which is negatively
correlated to acquisition costs, denoting economies of scale that are still visible at county level. County
size, poverty prevalence and political leaning do not have a significant (at P-value < 0.05) relationship
with acquisition costs. The direction of most of these associations aligned with our a priori
expectations. We did not, however, anticipate the positive associations with elevation, which is likely
attributable to us employing a multiple regression approach. i.e., the positive association with
elevation here describes the relationship after controlling for the effects of broad ecoregion, county
size, etc., rather than a simpler bivariate association between elevation and protected area acquisition
costs. Semi partial R? are one way of measuring effect size for parameters in a linear model, by

calculating the portion of residual variance explained by adding a given covariate to the full model
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specified without it. In this model, ecoregions, urban land value, population density, and
unemployment are the covariates that explain the largest proportion of unique shared variance

between the predictors and the response variable (Table 2).

In our sensitivity test of the model fitting procedure, parameter estimates and predictions of our model
remained consistent across our different spatial specifications and our in and out of sample validation
checks (S.I. section IlI-A). When refitting the model using only transactions from the most recent
decade, the model estimates remained similar, though there was a slight loss in significance of some
parameters as would be expected given the smaller sample sizes involved (S.I. section lI-B). We also
included a sensitivity test where we re-estimated the model when dropping any transactions that were
fully donated. Our findings are that the results remain largely unaffected by this change, except for

county area, which became a significant factor (S.I. section IlI-C).

While the value of both agricultural and urban land in a county might be expected to be a significant
predictor of variation for protected area acquisition costs, our hypothesis was that relying on either of
these variables as a direct estimate of acquisition costs for protected areas would miss much of the
relevant variation. In Figure 2, we plotted simpler bivariate associations between actual average cost
per hectare of acquiring land for conservation (y-axis) per county against average urban (Figure 2b)
or agricultural (Figure 2c) hectare value per county. Note the difference of scale between x and y axes
on each graph: urban land value and agricultural land value greatly under-represent the magnitude
of the variation in observed costs. Also, urban land value and agricultural land value explain almost 4
times less variation in actual acquisition costs than does our model (comparing R? values in Figures
2b and 2c with those in Table 2).

Figure 3 maps the predicted land acquisition costs from our model, including extrapolating to counties
where we did not observe transactions (standard errors for these predictions are mapped in Figure
S.1.-6). As would be expected, predicted costs of acquiring protected areas tend to be higher in the
North East, in coastal counties on the West Coast and Florida and around major conurbations in the
interior U.S. (Chicago, Atlanta, Phoenix, etc.). In contrast, acquisition costs appear lower in rural
counties in the interior of the U.S., particularly in the Great Plains (stretching from North Dakota and
parts of Montana down into Texas and New Mexico), where admittedly, more extrapolation is involved.
The model fit is highly significant (P-value <0.0001) and it explains 59% of the overall variation in

protected area costs that we observe.

We used the prioritization framework from Armsworth et al. (2020) to illustrate how different cost data
would affect conservation priorities. We compared the ROI offered by additional protection efforts in
each county within the U.S., when using the two different cost datasets. The ROI estimates per county
obtained with each cost dataset are positively correlated (R? = 0.29, p << 0.001, n = 1918, after log

transforming and dropping 9 counties where the ROl is zero for both cost datasets because species
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in those counties are already fully protected, Figure 4a). This correlation indicates that when relying
on either source of cost data, conservation planners would broadly agree on the relative ranking to
attribute to individual counties. However, there are still important changes in those ranks: the
prevalence of blue in Figure 4c on the North-East and West coasts indicates that these counties would
present lower ROI, and as a result be ranked lower for investment, when relying on our new cost data.
As a result, priority would overall switch toward the Great Plains, whose counties tend to rank higher
for investment with the new cost data. These broad patterns reflect the underlying cost gradient

reported in our cost data (Figure 3).

Focusing more narrowly on only those counties offering the highest ROl with each cost dataset, we
find that agreement levels over priorities depend on how many counties are being considered. Figure
4b shows the percent overlap in counties that would appear priorities when focusing on the top 5, 10
or 15% in terms of ROI with cost dataset. The more focused the spatial targeting with each dataset,
the less they agree on priorities. Pushing further to compare optimal budget allocations that result,
the two optimized recommendations disagree on where funding should be allocated Figure 4b). If
relying on the average agricultural land value data, the optimization recommends concentrating
investment into Arizona (notably, Gila County) and New Mexico (Hidalgo County), marked with red
points in Figure 4a. When relying on our new cost estimates, the optimal solution favors investment
in Texas and coastal Louisiana (including the counties marked with blue points in Figure 4a). It also
favors a more dispersed investment strategy with 11 counties each receiving more than $30M to
enable large projects in the Gulf Prairie and Marshes, South Texas Plains, Edwards Plateau, and

Trans Pecos ecoregions (Texas Parks & Wildlife Department, 2022).

Discussion

Ongoing losses of biodiversity and ecosystem services (Millennium Ecosystem Assessment, 2005;
Pimm et al., 2014) and limited resources for conservation mean there is a pressing need to allocate
what resources are available optimally (Le Saout et al., 2013; Waldron et al., 2013). This requires
having a good understanding of how much conservation will cost in different places. However,
conservation costs are often poorly documented. We examined what parameters drive acquisition
costs of protected areas, used that knowledge to better predict protected area acquisition costs across
the conterminous U.S. and then examined the consequences this would have on prioritization

analyses.

The model we present provides insight into some of the factors that consistently make some
acquisitions more expensive than others. First, we hypothesized that social-economic factors usually
associated with environmental philanthropy, in the form of monetary donations, could also be

associated to land donations, partial or total, during land transactions for conservation. This would
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effectively result in decreased acquisition costs. However, our model finds the effect of those
parameters is either not present or associations are different when considering land acquisitions. In
particular, selling land at a lower cost is more common in less densely populated areas, with lower
education levels and where unemployment remains low. In contrast monetary donations for
conservation are concentrated in and around cities, which are often characterized by having higher
education and unemployment levels (Chen et al., 2011; Greenspan et al., 2012). Second, we also
found that a higher proportion of already converted land, as well as a higher threat of further
conversion were both associated with higher land acquisition costs. Past and future land conversion
trends can correlate with land trusts' willingness to buy, pushing them to accept less favorable pricings
(Boyd et al., 2015; Murdoch et al., 2007). Similarly, protected area acquisitions cost per hectare was
positively associated with the number of species listed as endangered by the IUCN. This increasing
effect on land cost possibly indicates a greater willingness to pay for protected areas in these
locations, by conservation organizations. The presence of species of interest might also offer
leverage to landowners for donateing prices up (Lennox and Armsworth, 2013) or act to reduce
conservation organizations flexibility to seek out low cost parcels. Finally, higher density of already
existing protected areas was associated with increased cost of securing new deals in that county.
This might be a consequence of the lowest cost opportunities within a given county already having
been protected. However, while the role of these covariates was consistent across our different spatial
specifications, we found several associations were no longer significant when we only considered

areas protected within the most recent decade, likely reflecting the smaller sample size involved.

Market-based (agricultural or urban) land value are common proxies that have often been used as
direct estimates of protected area acquisition costs. While our model found urban land value to be
positively associated with protected area acquisition costs, the predictive power of agricultural land
value seems to have been almost completely picked up by the other covariates. In either case, we
would caution against using either of those in isolation as proxy for land value, in the context of
conservation. Protected area acquisition costs across the U.S. proved to be extremely variable and
also highly skewed (see also Davies et al., 2010). Capturing that high degree of variability is important
when evaluating the potential efficacy of conservation programs. Schéttker et al. (2016), for example,
found that more variation in land prices across the landscape would increase the efficiency of buying
land, as opposed to contract easements. Yet, observed variation in the cost of land for conservation
is under-represented when substituting agricultural or urban land value for conservation land value
(Figure 2b and c).

Using a prioritization framework, we further investigated how conservation recommendations could
be affected by using our predicted costs versus using agricultural land value as a proxy for these
costs. The conclusions one would draw about the sensitivity of priorities to the cost data used would
depend on whether someone focused on only the best opportunities for conservation or on broad

patterns in ROI across the country. In particular, the top sites and optimized budget allocation that
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emerged when using our new cost data are quite different to that obtained when relying on agricultural
land values to approximate costs. Different counties are prioritized and different sets of species would
benefit. At the same time, agreement levels improve with less stringent targeting (Figure 4b),
something to be expected given the overall correlation in ROl we find when considering all of the
counties. Also, even if no longer optimal, counties picked by the optimization when assuming one cost
dataset still offered a very good ROl when evaluated against the other cost dataset (e.g., colored
points in Figure 4a). Optimization tends to be more demanding about the underlying data, responding
as it does to the upper tail of the ROI distribution only. In contrast, our correlation statistic summarizes
patterns across all of the counties, most of which would not be in consideration for investment under
an optimized strategy. This suggests that analyses considering policy interventions that would apply
across many counties (e.g., large-scale payment programs to private landowners, Lubowski et al.,
2006) may be less sensitive to the underlying cost data used than those seeking to inform more
concentrated conservation investments, like protected area acquisition programs. Other aspects of
the optimal funding allocations and ROI distributions can be understood by considering the interaction
of the cost datasets with the other relevant input variables. For example, that both optimized
allocations favor southern counties reflects the latitudinal gradient in species richness across the US,
while the shift further from the East and West Coasts with the new cost data reflects the longitudinal

pattern in costs in Figure 3.

In this study, we made choices and assumptions that should be kept in mind when interpreting our
results. First, we conducted this analysis at the county level which we maintain is a relevant unit of
aggregation for large-scale spatial planning. But we also recognize that fine-grain information is lost
when doing so. Nolte (2020), for example, focuses on parcel-grain prediction. Sub-county variation of
acquisition costs can translate into potential additional low-cost opportunities for conservation (Sutton
and Armsworth, 2014). But we should note that such variations would also be missed by using county
averages of agricultural or urban land values, as has previously been done. Sub-county variation still
play an important role in translating larger scale plans, as we addressed here, into local measures
(Pressey et al., 2013) and there is a need to harness that potential in conservation planning (Gotway
and Young, 2002; Holzkamper and Seppelt, 2007).

Second, we have little information regarding acquisition costs for several states in the central U.S.
For example, we only have ~75 land transactions or less for Kansas, North and South Dakota (Figure
1). These tend to be states where land protection approaches other than fee ownership are more
prevalent, particularly term contract agreements made as part of the U.S. Farm Bill's Conservation
Reserve Program (Farm Service Agency (USDA), 2019; Jackson et al., 2021). We favored a linear
regression, as opposed to a more flexible regression structure such as that presented by Nolte (2020),
in part out of concerns about possible errors that could result from highly nonlinear specifications

when extrapolating costs to parts of the country where we have little to no data.
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Third, although our model explains roughly four times as much variation in acquisition costs as
substituting agricultural land values did, it still leaves a non-negligible amount of variation unexplained.
One reason the explanatory power of the model might be lower than it otherwise might be is because
we chose to focus on how much it costs a conservation organization to protect land, instead of only
focusing on predicting fair market value. Conservation organizations are often able to acquire
properties for less than fair market values via a form of donation by the original landowner. In extremis,
land may be fully donated, but partial donations where some cost is incurred but less than would be
the case for a commercial buyer are also common. Factors affecting the tendency of private
landowners to make such donations are also likely characterized by spatial variability and securing
such donations may be easier for conservation organizations in some counties than others. To
accommodate this in our model, we included covariates we hypothesized were associated with
donation behavior alongside factors we hypothesized would be associated with setting fair market
values. Our results however suggest we may not yet be predicting the donative component of
conservation costs as well as we are aspects tied to fair market value. For example, Figure 2a shows
that full donations of land (in red) encompass the whole range of predicted values. Also, regression
fits produced larger R? values in a sensitivity test where we excluded fully donated parcels, which
again only represent a fraction of the overall amount of donation activity that is going on (Table S.I.-
6). Thus, a deeper investigation of when and how much landowners are willing to donate when selling
for conservation, including both full donations and partial donations, would be warranted.
Unfortunately, it is often difficult to quantify the prevalence and magnitude of partial donations
because most conservation organizations do not record fair market value at the time of purchase, for

their land transactions. This was the case for the majority (~87%) of the data we used in this analysis.

Coomes et al. (2018) called for improved access to land cost data. They argue that such data should
be a public good and is vital to the future of global change science and policy at large. Understanding
and being able to predict the cost of land bought for conservation, in particular, are necessary
conditions for the development of useful and reliable optimization tools. In the face of ever-increasing
threats to biodiversity and the limited resources available to conservation organizations, such tools
are urgently needed. With this work, we are providing a national map of protected area acquisition
costs to empower national scale conservation planning exercises for the U.S., such as the 30x30
initiative (Haaland et al., 2021) Beyond the U.S. context, our findings are also relevant to conservation
researchers examining costs in other settings. For example, our results highlight the importance of
focusing research effort directly on estimating the costs that conservation organizations face when
implementing conservation actions, instead of on costs associated with other types of land use.
Focusing on the costs faced by conservation organizations is important because the factors

influencing costs they face may be different to those shaping costs with competing land uses.

References:



496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

Adams, V.M., Pressey, R.L., Naidoo, R., 2010. Opportunity costs: Who really pays for conservation?
Biol. Conserv. 143, 439—-448. https://doi.org/10.1016/j.biocon.2009.11.011

Amundsen, O., 2011. Strategic Conservation Planning module, Land Trust Alliance Publications.
Land Trust Alliance, Washington, DC.

Ando, A., Camm, J., Polasky, S., Solow, A., 1998. Species distributions, land values, and efficient
conservation. Science (80-. ). 279, 2126-2128. https://doi.org/10.1126/science.279.5359.2126

Armsworth, P.R., 2014. Inclusion of costs in conservation planning depends on limited datasets and
hopeful assumptions. Ann. N. Y. Acad. Sci. 1322, 61-76. https://doi.org/10.1111/nyas.12455

Armsworth, P.R., Benefield, A.E., Dilkina, B., Fovargue, R., Jackson, H.B., Le Bouille, D., Nolte, C.,
2020. Allocating resources for land protection using continuous optimization: biodiversity
conservation in the United States. Ecol. Appl. 30, 1-13. https://doi.org/10.1002/eap.2118

Barton, K., 2023. MuMIn: multi-model inference.

Boyd, J., Epanchin-Niell, R., Siikamaki, J., 2015. Conservation planning: A review of return on
investment analysis. Rev. Environ. Econ. Policy 9, 23—42. https://doi.org/10.1093/reep/reu014

Carr, A.F., 2006. Book Review: Nature’s Keepers: The Remarkable Story of How the Nature
Conservancy Became the Largest Environmental Organization in the World, 1st ed, Science
Communication. Jossey-Bass. https://doi.org/10.1177/1075547006292272

Carwardine, J., Wilson, K.A., Ceballos, G., Ehrlich, P.R., Naidoo, R., Iwamura, T., Hajkowicz, S.A.,
Possingham, H.P., 2008. Cost-effective priorities for global mammal conservation. Proc. Natl.
Acad. Sci. U. S. A. 105, 11446-11450. https://doi.org/10.1073/pnas.0707157105

Chen, X., Peterson, M.N., Hull, V., Lu, C., Lee, G.D., Hong, D., Liu, J., 2011. Effects of attitudinal
and sociodemographic factors on pro-environmental behaviour in urban China. Environ.
Conserv. 38, 45-52. https://doi.org/10.1017/S037689291000086X

Chiozza, F., Boitani, L., Rondinini, C., 2010. The Opportunity Cost of Conserving Amphibians and
Mammals in Uganda. Brazilian J. Nat. Conserv. Res. Lett. Nat. Conserv. 8, 177-183.
https://doi.org/10.4322/natcon.00802012

Clark, S., 2007. A Field Guide to Conservation Finance. Island Press.

Coomes, O.T., Macdonald, G.K., De Waroux, Y.L.P., 2018. Geospatial land price data: a public
good for global change science and policy. Bioscience 68, 481-484.
https://doi.org/10.1093/biosci/biy047

Cullen, R., 2013. Biodiversity protection prioritisation: A 25-year review. Wildl. Res. 40, 108-116.
https://doi.org/10.1071/WR12065

Davies, Z.G., Kareiva, P., Armsworth, P.R., 2010. Temporal patterns in the size of conservation land
transactions. Conserv. Lett. 3, 29-37. https://doi.org/10.1111/j.1755-263X.2009.00091.x

Davis, M.A., Larson, W.D., Oliner, S.D., Shui, J., 2021. The price of residential land for counties, ZIP
codes, and census tracts in the United States, Journal of Monetary Economics.
https://doi.org/10.1016/j.jmoneco.2020.12.005

Deguignet, M., Juffe-Bignoli, D., Harrison, J., Macsharry, B., Burgess, N., Kingston, N., 2014. 2014
United Nations list of Protected Areas, UNEP-WCMC : cambrige, UK.



535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

Dobson, A.P., Rodriguez, J.P., Roberts, W.M., Wilcove, D.S., 1997. Geographic distribution of
endangered species in the United States. Science (80-. ). 275, 550-553.
https://doi.org/10.1126/science.275.5299.550

Eklund, J., Arponen, A., Visconti, P., Cabeza, M., 2011. Governance factors in the identification of
global conservation priorities for mammals. Philos. Trans. R. Soc. B Biol. Sci. 366, 2661.
https://doi.org/10.1098/RSTB.2011.0114

Farm Service Agency (USDA), 2019. Current CRP Enrollment - 2019.

Fishburn, I.S., Boyer, A.G., Kareiva, P., Gaston, K.J., Armsworth, P.R., 2013. Changing spatial
patterns of conservation investment by a major land trust. Biol. Conserv. 161, 223-229.
https://doi.org/10.1016/j.biocon.2013.02.007

Fovargue, R., Fisher, M., Harris, J., Armsworth, P.R., 2019. A landscape of conservation
philanthropy for U.S. land trusts. Conserv. Biol. 33, 176—184.
https://doi.org/10.1111/cobi.13146

Friesenhahn, E., 2016. Nonprofits in America: New research data on employment, wages, and
establishments, Monthly Labor Review. https://doi.org/10.21916/mir.2016.9

Gotway, C.A., Young, L.J., 2002. Combining incompatible spatial data. J. Am. Stat. Assoc. 97, 632—
648. https://doi.org/10.1198/016214502760047140

Greenspan, I., Handy, F., Katz-Gerro, T., 2012. Environmental Philanthropy: Is It Similar to Other
Types of Environmental Behavior? Organ. Environ. 25, 111-130.
https://doi.org/10.1177/1086026612449339

Haaland, D., Vilsack, T.J., Raimondo, G.M., Mallory, B., 2021. Conserving and Restoring America
the Beautiful.

Holzkamper, A., Seppelt, R., 2007. Evaluating cost-effectiveness of conservation management
actions in an agricultural landscape on a regional scale. Biol. Conserv. 136, 117-127.
https://doi.org/10.1016/j.biocon.2006.11.011

IUCN, 2016. IUCN Red List of Threatened Species, Choice Reviews Online.
https://doi.org/10.5860/choice.49-6872

Jackson, H.B., Kroetz, K., Sanchirico, J.N., Thompson, A., Armsworth, P.R., 2021. Protected area,
easement, and rental contract data reveal five communities of land protection in the United
States. Ecol. Appl. 31. https://doi.org/10.1002/EAP.2322

Jantke, K., Schleupner, C., Schneider, U.A., 2013. Benefits of earth observation data for
conservation planning in the case of European wetland biodiversity. Environ. Conserv. 40, 37—
47. https://doi.org/10.1017/S0376892912000331

Jantke, K., Schneider, U.A., 2011. Integrating Land Market Feedbacks into Conservation Planning-
A Mathematical Programming Approach. Environ. Model. Assess. 16, 227-238.
https://doi.org/10.1007/s10666-010-9242-2

Knight, A.T., Grantham, H.S., Smith, R.J., McGregor, G.K., Possingham, H.P., Cowling, R.M., 2011.
Land managers’ willingness-to-sell defines conservation opportunity for protected area
expansion. Biol. Conserv. 144, 2623-2630. https://doi.org/10.1016/j.biocon.2011.07.013



574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

Kohavi, R., 1995. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model
Selection, International Joint Conference of Artificial Intelligence.

Kroetz, K., Sanchirico, J.N., Armsworth, P.R., Spencer Banzhaf, H., 2014. Benefits of the ballot box
for species conservation. Ecol. Lett. 17, 294-302. https://doi.org/10.1111/ele.12230

Kujala, H., Lahoz-Monfort, J.J., Elith, J., Moilanen, A., 2018. Not all data are equal: Influence of data
type and amount in spatial conservation prioritisation. Methods Ecol. Evol. 9, 2249-2261.
https://doi.org/10.1111/2041-210X.13084

Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. ImerTest Package: Tests in Linear
Mixed Effects Models . J. Stat. Softw. 82. https://doi.org/10.18637/jss.v082.i13

Lawler, J.J., Rinnan, D.S., Michalak, J.L., Withey, J.C., Randels, C.R., Possingham, H.P., 2020.
Planning for climate change through additions to a national protected area network:
Implications for cost and configuration. Philos. Trans. R. Soc. B Biol. Sci. 375.
https://doi.org/10.1098/rstb.2019.0117

Le Bouille, D., Fargione, J., Armsworth, P.R., 2022. Spatiotemporal variation in costs of managing
protected areas. Conserv. Sci. Pract. https://doi.org/10.1111/CSP2.12697

Le Saout, S., Hoffmann, M., Shi, Y., Hughes, A., Bernard, C., Brooks, T.M., Bertzky, B., Butchart,
S.H.M., Stuart, S.N., Badman, T., Rodrigues, A.S.L., 2013. Protected areas and effective
biodiversity conservation. Science (80-. ). https://doi.org/10.1126/science.1239268

Lennox, G.D., Armsworth, P.R., 2013. The Ability of Landowners and Their Cooperatives to
Leverage Payments Greater Than Opportunity Costs from Conservation Contracts. Conserv.
Biol. 27, 625-634. https://doi.org/10.1111/cobi.12039

Lerner, J., Mackey, J., Casey, F., 2007. What's in Noah’s wallet? Land conservation spending in the
United States. Bioscience 57, 419-423. https://doi.org/10.1641/B570507

LTA, 2015. National Land Trust Census Report, Land Trust Alliance Publications.

Lubowski, R.N., Plantinga, A.J., Stavins, R.N., 2006. Land-use change and carbon sinks:
Econometric estimation of the carbon sequestration supply function. J. Environ. Econ. Manage.
51, 135-152. https://doi.org/10.1016/j.jeem.2005.08.001

Luck, G.W., Rickettst, T.H., Daily, G.C., Imhoff, M., 2004. Alleviating spatial conflict between people
and biodiversity. Proc. Natl. Acad. Sci. U. S. A. 101, 182-186.
https://doi.org/10.1073/PNAS.2237148100/ASSET/7E76F46C-8D1E-4EBC-A476-
DDO0OB7A329897/ASSETS/GRAPHIC/ZPQ0260333230004.JPEG

Margules, C.R., Pressey, R.L., 2000. Systematic conservation planning. Nature 405, 243-253.
https://doi.org/10.1038/35012251

McCarthy, D.P., Donald, P.F., Scharlemann, J.P.W., Buchanan, G.M., Balmford, A., Green, J.M.H.,
Bennun, L.A., Burgess, N.D., Fishpool, L.D.C., Garnett, S.T., Leonard, D.L., Maloney, R.F.,
Morling, P., Schaefer, H.M., Symes, A., Wiedenfeld, D.A., Butchart, S.H.M., 2012. Financial
costs of meeting global biodiversity conservation targets: Current spending and unmet needs.
Science (80-. ). 338, 946—-949. https://doi.org/10.1126/science.1229803

Mclintosh, E.J., Pressey, R.L., Lloyd, S., Smith, R.J., Grenyer, R., 2017. The Impact of Systematic



613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

Conservation Planning. Annu. Rev. Environ. Resour. 42, 677-697.
https://doi.org/10.1146/annurev-environ-102016-060902

Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Biodiversity
Synthesis, World Resources Institute. Washington, DC.

MIT Election Data and Science Lab, 2018. County Presidential Election Returns 2000-2016,
Harvard Dataverse.

Moilanen, A., Wilson, K.A., Possingham, H.P., 2009. Spatial conservation prioritization: quantitative
methods and computational tools. New York, NY.

Mount, J., 1996. Why donors give. Nonprofit Manag. Leadersh. 7, 3—14.
https://doi.org/10.1002/nml.4130070103

Murdoch, W., Polasky, S., Wilson, K.A., Possingham, H.P., Kareiva, P., Shaw, R., 2007. Maximizing
return on investment in conservation. Biol. Conserv. 139, 375-388.
https://doi.org/10.1016/j.biocon.2007.07.011

Naidoo, R., lwamura, T., 2007. Global-scale mapping of economic benefits from agricultural lands:
Implications for conservation priorities. Biol. Conserv. 140, 40—49.
https://doi.org/10.1016/j.biocon.2007.07.025

NASA-JPL, 2013. NASA Shuttle Radar Topography Mission Global 1 arc second number. Nasa Lp
Daac. https://doi.org/https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003

Nolte, C., 2020. High-resolution land value maps reveal underestimation of conservation costs in
the United States. Proc. Natl. Acad. Sci. U. S. A. 117, 29577-29583.
https://doi.org/10.1073/pnas.2012865117

Nolte, C., 2018. Buying forests for conservation: contours of a global trend. Curr. Opin. Environ.
Sustain. https://doi.org/10.1016/j.cosust.2018.05.003

Paradis, E., Schliep, K., 2019. Ape 5.0: An environment for modern phylogenetics and evolutionary
analyses in R. Bioinformatics 35, 526-528. https://doi.org/10.1093/bioinformatics/bty633

Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., Raven, P.H.,
Roberts, C.M., Sexton, J.O., 2014. The biodiversity of species and their rates of extinction,
distribution, and protection. Science (80-. ). 344, 1246752—-1246752.
https://doi.org/10.1126/science.1246752

Pressey, R.L., Mills, M., Weeks, R., Day, J.C., 2013. The plan of the day: Managing the dynamic
transition from regional conservation designs to local conservation actions. Biol. Conserv.
https://doi.org/10.1016/j.biocon.2013.06.025

R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Found. Stat.
Comput.

Schoéttker, O., Johst, K., Drechsler, M., Watzold, F., 2016. Land for biodiversity conservation - To
buy or borrow? Ecol. Econ. 129, 94—-103. https://doi.org/10.1016/j.ecolecon.2016.06.011

Sutton, N.J., Armsworth, P.R., 2014. The Grain of Spatially Referenced Economic Cost and
Biodiversity Benefit Data and the Effectiveness of a Cost Targeting Strategy. Conserv. Biol. 28,
1451-1461. https://doi.org/10.1111/cobi.12405



652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

Sutton, N.J., Cho, S., Armsworth, P.R., 2016. A reliance on agricultural land values in conservation
planning alters the spatial distribution of priorities and overestimates the acquisition costs of
protected areas. Biol. Conserv. 194, 2—10. https://doi.org/10.1016/j.biocon.2015.11.021

Texas Parks & Wildlife Department, 2022. Texas Ecoregions [WWW Document]. Texas Park. Wildl.
Dep. Website. URL https://tpwd.texas.gov/education/hunter-education/online-course/wildlife-
conservation/texas-ecoregions (accessed 2.6.23).

The Trust for Public Land, 2019. The Conservation Almanac [WWW Document]. URL
https://www.conservationalmanac.org/ (accessed 11.21.19).

Torgo, L., 2016. Data mining with R: Learning with case studies, second edition, 1st Editio. ed, Data
Mining with R: Learning with Case Studies, Second Edition. CRC Press.
https://doi.org/10.1201/9781315399102

U.S. Bureau of Labor Statistics, 2019. CPI (Consumer Price Index) - Inflation Calculator.

U.S. Census Bureau, 2015. TIGER/Line Shapefiles.

U.S. Environmental Protection Agency, 2015. ArcGIS- Ecoregions of North America [WWW
Document]. URL
http://www.arcgis.com/home/webmap/viewer.html?webmap=69e678375433435eabf537cc020e
03a6 (accessed 6.12.20).

United States Census Bureau, 2021. American Community Survey, Chicago [WWW Document].
URL https://www.ers.usda.gov/data-products/county-level-data-sets/download-data/ (accessed
11.21.19).

United States Department of Agriculture (USDA), 2012. Land Values - National Agricultural
Statistics Service (NASS).

USGS Gap Ananlysis Project, 2018. Protected Areas Database of the United States (PADUS)
version 2.0. https://doi.org/https://doi.org/10.5066/P955KPLE

Venter, O., Fuller, R.A., Segan, D.B., Carwardine, J., Brooks, T., Butchart, S.H.M., Di Marco, M.,
Iwamura, T., Joseph, L., O'Grady, D., Possingham, H.P., Rondinini, C., Smith, R.J., Venter, M.,
Watson, J.E.M., 2014. Targeting Global Protected Area Expansion for Imperiled Biodiversity.
PLoS Biol. 12, e1001891. https://doi.org/10.1371/journal.pbio.1001891

Waldron, A., Mooers, A.O., Miller, D.C., Nibbelink, N., Redding, D., Kuhn, T.S., Roberts, J.T.,
Gittleman, J.L., 2013. Targeting global conservation funding to limit immediate biodiversity
declines. Proc. Natl. Acad. Sci. U. S. A. 110, 12144-12148.
https://doi.org/10.1073/pnas.1221370110

Watson, J.E.M., Dudley, N., Segan, D.B., Hockings, M., 2014. The performance and potential of
protected areas. Nature. https://doi.org/10.1038/nature13947

Wear, D.N., 2011. Forecasts of county-level land uses under three future scenarios: a technical
document supporting the Forest Service 2010 RPA Assessment. Gen. Tech. Rep. SRS-141.,
Gen. Tech. Rep.

Wentland, S.A., Ancona, Z.H., Bagstad, K.J., Boyd, J., Hass, J.L., Gindelsky, M., Moulton, J.G.,

2020. Accounting for land in the United States: Integrating physical land cover, land use, and



691
692
693
694
695
696

monetary valuation. Ecosyst. Serv. 46, 101178. https://doi.org/10.1016/j.ecoser.2020.101178
Withey, J.C., Lawler, J.J., Polasky, S., Plantinga, A.J., Nelson, E.J., Kareiva, P., Wilsey, C.B.,
Schloss, C.A., Nogeire, T.M., Ruesch, A., Ramos, J., Reid, W., 2012. Maximising return on
conservation investment in the conterminous USA. Ecol. Lett. 15, 1249-1256.
https://doi.org/10.1111/j.1461-0248.2012.01847 .x



Protected Area Count
Mo i L. I
1.5 : -
610

|
- =1

[FIGURE 1 = Number of land parcels bought for protection, since 1980, in our dataset.
Records for the Great Plains region are scarce, with many counties containing less than 5 land
deals (grey), while the Lake region and both coasts are more densely represented (color scale).]



Acquisition cost

Quartiles

Description

Cost per hectare (parcel)

Cost per hectare (county)

1,923 - 8,649 - 35,522]

[2,853 - 7,353 - 28,828]

Purchase price per hectare across parcels

Equal weight average of the purchase price for protected areas in a

county (in dollar per hectare)

Covariates

Quartiles

Description

County Area

Average Deal Size

IUCN Listed Species
Elevation

Urban Land Value
Agricultural Land Value
Education

Poverty

Unemployment Rate
Population Density
Proportion Land Converted
Proportion Land Protected
Future Conversion Threat
Democratic Leaning

Ecoregion

[113k — 162k — 242K]
[22 - 50 - 128]
[3-3-4]

[144 - 277 - 487]
[94k - 148k — 234K]
[5k - 7k — 12K]
[15-19 - 25]
[11-14-18]
[5-7-8]

[0.07 - 0.18 - 0.44]
[0.19 - 0.38 - 0.64]
[0.009 - 0.036 - 0.137]
[0.3-2.3-8.7]
[0.3-0.4-0.5]
NA (factor)

County area, in hectares

Average area of protected areas bought in this county, in hectares
Number of vertebrate species listed as vulnerable or worse by IUCN
Mean county elevation, in meter

Urban land value, in dollar per hectare

Agricultural land value, in dollar per hectare

Percentage of 25+ year old adults with a bachelor's degree or above
Percentage of people living below the poverty limit

Unemployment rate as percentage of the total population

Density of population, per hectare

Proportion of the county area that is either urban, crop or pasture
Proportion of the county area protected under PAD-US cat. 1,2 or 3
Percent increase of the converted area projected by 2030
Proportion of total votes that were casted for the Democratic party

EPA-3 ecoregion denomination

[TABLE 1 = Definition and distribution (given as the 25%, 50% and 75% quartiles) for variables used

in our model.]



. Semi partial R?
Covariates Value Std.Error P-value P

(x E-03)
(Intercept) 4.60 1.02 Hokx 0.24
County Area 5.12 E-08 7.79 E-08 5.04
Average Deal Size -2.97E-04 9.73 E-05 ok 3.64
IUCN Listed Species 3.79 E-02 1.47 E-02 ok 9.75
Elevation 9.07 E-04 2.14 E-04 Hokx 22.56
Urban Land Value * 0.41 0.06 HAE 0.93
Agricultural Land Value * -0.10 0.08 4.40
Education 1.63 E-02 0.57 E-02 ok 0.19
Democratic Leaning -0.25 0.43 0.93
Population Density * 0.55 0.04 *kx 76.90
Poverty -2.27 E-02 1.16 E-02 . 2.09
Unemployment Rate 0.14 0.03 Hokk 12.31
Proportion Land Converted * 1.37 0.40 rokx 6.46
Proportion Land Protected * 1.19 0.32 Hokk 7.36
Development Threat 0.41 0.16 *k 3.68
Ecoregions factor factor ok 213.96

[TABLE 2= Estimated coefficients for the covariates used in the land value model to fit the log-

transformed average purchase price per hectare, in 2016 U.S. dollars (n=35,880). Covariates

marked with @ were log-transformed, when fitting the model. R? = 0.59, significance levels are
marked as follow: . at 0.1, * at 0.05, ** at 0.01 and *** at 0.001]



(a) Comparison of Predictions against Observations
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[FIGURE 2 = Observed average county purchase costs against model predicted average county
purchase costs (a), urban land value (b) or agricultural land value (c). In all cases, costs are log-
transformed (base e) and red points are counties where all acquisitions were fully donated. Lines
are each models’ fit (red) and y=x (orange). Intercepts are significantly different from O for
regressions with urban (b) or agricultural (c) land values but is not for the regression observed

against predicted estimates (a).]



Predicted Acquisition
Cost ($/ha)

[FIGURE 3 = Complete map of predicted acquisition costs (in dollars per hectare) for all counties of
the conterminous U.S. using parameter estimates from our model, presented in Table 2.]



(b) Agreement levels

(a) Correlation of ROl Estimates T
over Prioritization
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(c) Change in ROl Ranks

[FIGURE 4: Patterns in ROI with new cost data and average agricultural land value. (a) Correlation
of ROI estimates using each dataset (R?=0.29, p<<0.001, n=1918, after log transforming and
omitting 9 counties where the estimated ROl is zero) and (b) agreement levels over priorities with
new cost data and average agricultural land value (grey bars show the percent agreement in the
sets of counties that fall within the top 5, 10 and 15% of counties by ROI with each cost dataset; no
funding was allocated to the same counties for the fully optimized solution). (¢c) Comparison of ROI
ranks per county (blue counties appear to be a relatively higher priority for protection when relying
on average agricultural land value than our predicted purchase costs, while pink counties appear to

be a relatively higher priority with the predicted purchase costs).]



