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 32 

Abstract: 33 

 34 

Buying land to establish protected areas is a common conservation strategy, particularly in countries 35 

with strong private property rights. Accurately accounting for spatial heterogeneity in land cost could 36 

lead to large efficiency savings when planning future acquisitions. However, lack of data regarding 37 

actual acquisition costs faced by conservation organizations has led planners to rely on more readily 38 



available proxies, such as agricultural land value. Using data on nearly 36,000 parcels acquired for 39 

conservation by public agencies and land trusts in the continental U.S., we built a model predicting 40 

protected area acquisition costs. While costs of land for agriculture or development are useful 41 

predictors of variation in protected area acquisition costs, they are not, by themselves, good 42 

approximations of those costs. For example, using a more comprehensive combination of variables, 43 

our model explained almost four times as much variation in actual acquisition costs as those. We 44 

found that agricultural land value loses most of its explanatory power once other predictors are used, 45 

confirming that it acts as a partial proxy for actual acquisition costs. We then used an optimization 46 

model to compare prioritization recommendations with our new cost estimates to those suggested 47 

when relying on agricultural land values alone. Locations of highest conservation return on investment 48 

shifted from coastal regions toward the country's center, when using actual cost data. Cost estimates 49 

used in conservation planning should be based on actual protected area acquisitions, because the 50 

type of properties and motivations of buyers and sellers differ from those of other land transactions. 51 

 52 

Introduction: 53 

 54 

Protected areas have long been a primary strategy for conservation, especially in terrestrial systems 55 

(Haaland et al., 2021; Le Saout et al., 2013; Margules and Pressey, 2000; Watson et al., 2014). In 56 

the face of continued biodiversity erosion and limited funding (Lerner et al., 2007; McCarthy et al., 57 

2012), conservation organizations have adopted systematic approaches to identify parcels for 58 

protection, relying on strategic work-flows to organize planning efforts and optimization tools when 59 

appropriate (Amundsen, 2011; McIntosh et al., 2017). Many of these methods aim to maximize the 60 

ecological return on investment (ROI) when selecting a set of areas to acquire (Moilanen et al., 2009). 61 

Conservation ROI has been defined in various ways, but most definitions are based around the ratio 62 

of the ecological benefit of a conservation action divided by the economic cost of the action (Boyd et 63 

al., 2015). When conservation costs were first included in large-scale planning studies, large efficiency 64 

savings were reported, suggesting more biodiversity could be protected for a given budget (Ando et 65 

al., 1998; Carwardine et al., 2008; Naidoo and Iwamura, 2007; Venter et al., 2014). ROI approaches, 66 

notably, promise large efficiency gains provided they can rely on reasonable estimates for both 67 

ecological benefits and economic costs of protection (Cullen, 2013). 68 

 69 

In countries with strong private property rights, expansion of protected area networks often depends 70 

on buying or receiving donations of land from private landowners (Nolte, 2018). When purchases are 71 

involved, the cost of upfront land acquisition is a significant component of the overall cost of securing 72 

long-term conservation goals on a site (Le Bouille et al., 2022). Unfortunately, reliable data on the 73 

costs of protecting land are rarely available (Armsworth, 2014). Instead, many conservation studies 74 

rely on indicators of protected area acquisition costs, such as costs estimated from agricultural rental 75 

rates nearby (Lawler et al., 2020; Venter et al., 2014; Withey et al., 2012), gross margins of agricultural 76 

production (Adams et al., 2010; Chiozza et al., 2010; Jantke et al., 2013; Jantke and Schneider, 2011), 77 



population density nearby (Luck et al., 2004) or even GDP per capita (Eklund et al., 2011). However, 78 

protected parcels commonly include steeper terrain and higher elevation habitats than most 79 

agricultural lands (Sutton et al., 2016). In addition, dynamics associated with conservation 80 

transactions, such as motivations to buy and to sell between conservation organizations and existing 81 

private landowners, can be very different from those involved in conventional land sales (Armsworth, 82 

2014; Clark, 2007; Knight et al., 2011). 83 

 84 

Improving the accuracy of cost data promises further efficiency gains by avoiding costly misallocations 85 

of limited resources (Armsworth et al., 2020; Sutton et al., 2016). Indeed, priorities that emerge in 86 

conservation planning may be more sensitive to the cost data used than to particular biodiversity data 87 

(Kujala et al., 2018). Improved cost estimation is also necessary if we are to more accurately project 88 

what it will cost to deliver particular conservation objectives (Nolte, 2020). Improved data on land 89 

costs in the U.S. are becoming more readily available. For example, Nolte (2020) and Wentland et al. 90 

(2020) present new predictive models estimating the fair market value of individual land transactions 91 

from data collated by Zillow, a commercial real estate database company. However, for the reasons 92 

we mentioned above, land value for conservation may not reflect the full cost that would be faced by 93 

a commercial developer or other private purchaser. Instead, conservation organizations are often able 94 

to acquire land for less than fair market value, by way of a form of charitable donation on the part of 95 

sellers. With their focus on fair market value, Nolte (2020) and Wentland et al. (2020) used a different 96 

sample of transactions than we did. For example, Nolte validates his model against some of the same 97 

data we use here, but retaining only parcels sold at or close to (no more than 20% discount) the 98 

estimated land's fair market value. In contrast, we focus on exploring variation in the actual acquisition 99 

costs faced by conservation organizations when protecting a property, not in the commercial real 100 

estate value of that land. For this reason, we use records of actual prices paid, including the portion 101 

of acquisition costs attributable to landowners selling to conservation organizations for below fair 102 

market value, i.e. land discounted or donated. 103 

 104 

In this study, we sought to understand large-scale patterns in the costs of acquiring land to establish 105 

new protected areas (also often referred to as "fee simple acquisition"). We used statistical regression 106 

to relate the patterns we found to socioeconomic, geographical and ecological covariates. The 107 

resulting model produced a national map of protected area acquisition costs. We also compared our 108 

cost estimates to estimates of agricultural land value and urban land value used in past studies. 109 

Finally, we show how prioritizations for future protection change when relying on our new conservation 110 

cost estimates. 111 

 112 

Material and Methods 113 

 114 

Acquisition Cost Data 115 



We used data on 35,880 land transactions made to protect land in the continental U.S. These data 116 

include 31,332 land transactions made by local, state and federal governments across the U.S. that 117 

were collated by the Trust for Public Land (TPL) in their Conservation Almanac (The Trust for Public 118 

Land, 2019). Exact dates vary by states, but most states records start in the 90’s, with around one 119 

third starting in the 80’s. The most recent records for most states are from 2014 or 2013. The data 120 

also include 4,548 additional land transactions made between 1980 and 2014 by The Nature 121 

Conservancy, the largest private land trust in the U.S. (Carr, 2006), which is another major contributor 122 

to expansions of the U.S. protected area network (Fishburn et al., 2013; LTA, 2015). We corrected 123 

the costs for inflation and reported them as 2016-dollars, using the Consumer Price Index (U.S. 124 

Bureau of Labor Statistics 2019). Because we want to explore costs of acquiring land for protection 125 

as actually faced by conservation organizations, we retained sites that were fully or partially donated 126 

in our main analyses, but see below for relevant sensitivity tests. 127 

 128 

We focus our analysis on the average cost per hectare of purchasing land for protected areas within 129 

a county. While recognizing other choices would also make sense, we chose to work at the county 130 

level for several reasons. First, based on conversations with practitioners, we believe counties provide 131 

a relevant spatial grain when deciding how to allocate conservation dollars and working over a large 132 

spatial extent. Organizations and government programs that conduct conservation planning to inform 133 

protection strategies over large spatial scales tend to leave the final decisions over just which parcels 134 

should be acquired to staff in local field offices – while the large-scale budget planning itself, deciding 135 

which parts of the country should be priorities for future investment, is conducted at coarser spatial 136 

units such as counties. Second, counties are a relevant administrative and political unit in the U.S. for 137 

regional and local land-use planning. Third, several of our chosen socio-economic variables are 138 

available only at county-level. Finally, and partly for these other reasons, county-grain is also a scale 139 

at which many return on investment (ROI) based optimizations have previously been formulated, 140 

making it easier to compare our results with existing literature (Ando et al., 1998; Armsworth et al., 141 

2020; Boyd et al., 2015; Dobson et al., 1997; Kroetz et al., 2014; Withey et al., 2012). That being said, 142 

county sizes are far from being homogeneous across the U.S. In case that would affect any of the 143 

above, we included county area as one of our model’s predictive variables. We used county 144 

boundaries as recorded by  the U.S. Census Bureau (TIGER, 2015). The transactions in our dataset 145 

span 1927 counties, 63% of the total number of counties in the continental U.S (Figure 1). 146 

 147 

Covariates 148 

The model we fit to explain variation in protected area acquisition costs included both ecological and 149 

socioeconomic covariates (Table 1). The choice of variables was based on hypotheses about factors 150 

that might explain cost variation. We first included measures of the value of alternative land uses, 151 

both agricultural land value (USDA-NASS 2012) and urban land value (Davis et al., 2021), because 152 

acquisition cost is likely to reflect the foregone value (opportunity cost) incurred when protecting land. 153 



For counties where these estimates were unavailable, we used the state average for the relevant 154 

variable. 155 

 156 

The amount paid by a conservation organization to acquire a property also depends on the willingness 157 

of the landowner to sell below market value as a form of philanthropic donation to conservation (Clark, 158 

2007). Others have found environmental philanthropy in the form of monetary donations to be 159 

associated with higher household incomes (Mount, 1996), higher levels of education (Greenspan et 160 

al., 2012), higher employment rates as well as living in larger urban centers (Chen et al., 2011) and 161 

more prevalent left-leaning political beliefs (Fovargue et al., 2019). As such, we included poverty 162 

percentage (United States Census Bureau, 2021), education levels, as the percentage of adults with 163 

a bachelor's degree or more (United States Census Bureau, 2021), unemployment rate and 164 

population density (Friesenhahn, 2016), and democratic leaning (MIT Election Data and Science Lab, 165 

2018) as possible predictors of land donations. 166 

 167 

We accounted for the proportion of the county already covered by protected areas with explicit 168 

mandates for biodiversity protection, using data from the Protected Area Database of the United 169 

States - GAP categories  1, 2 and 3 (USGS Gap Analysis Project, 2018). We also included the 170 

proportion of the county that had already been converted to either urban land, crop or pasture, as well 171 

as the proportion that is projected to be converted to these land cover types by 2030. We took these 172 

proportions from U.S. Forest Service's 2010 RPA assessment (Wear, 2011). We converted the later 173 

into an indicator of short-term conversion threat by calculating the ratio of additional converted area 174 

to the current total converted area within the county. We also obtained the mean elevation (NASA-175 

JPL, 2013) for each county. Finally, we calculated how many vertebrate species that were evaluated 176 

by IUCN (2016) as being vulnerable to extinction or worse were present in the county. 177 

 178 

Recognizing that there may be broad spatial patterns not accounted for by these variables, we also 179 

included categorical variables summarizing whether counties were located in particular parts of the 180 

country. We used ecoregional boundaries associated with broad biophysical attributes when 181 

specifying these categorical variables. Specifically, we included categorical variables describing 182 

whether a given county was included in one of 85 EPA-3 ecoregions (U.S. Environmental Protection 183 

Agency, 2015), which are mapped in Figure S.I.-1. We tested two alternative specifications for 184 

categorical variables that focused on larger regions. For these, we used state boundaries and 8 EPA-185 

1 ecoregions, but these more aggregated descriptors were not retained by our fitting procedure (S.I. 186 

Section I). 187 

 188 

Analyses 189 

We used a regression approach to examine covariation between our socioeconomic and ecological 190 

variables and our acquisition cost data. We started with a simple linear regression model, weighted 191 

by the number of transactions in each county. The analysis was conducted in R (R Core Team, 2018), 192 



with packages MuMIn (Bartón, 2023), lmerTest (Kuznetsova et al., 2017), ape (Paradis and Schliep, 193 

2019) and DMwR (Torgo, 2016). The average cost per hectare of buying land for conservation per 194 

county was log-transformed with an offset of 1 to reduce skewness while accounting for zeroes in the 195 

data. For the same reason as well as for consistency, we also log-transformed the average urban and 196 

agricultural land values per hectare for each county. Our basic model structure was: 197 

𝑌 = 𝛼 + ∑ 𝛽𝑖 ∗  𝑋𝑖

𝑖

+  𝜀 198 

Where 𝑌 is the acquisition cost of a protected area of land and 𝛽𝑖 are the coefficients to be estimated 199 

for each 𝑋𝑖 covariate described above, 𝛼 is the intercept and 𝜀 is the error term. When generating a 200 

proximity matrix with all pairwise distances between counties and applying a Moran’s test to the 201 

residuals weighted by those distances, some spatial auto-correlation in the error terms was found. 202 

The model fit was significantly improved, based on AIC comparison as well as thorough model 203 

validation (see S.I. section II for more model validation details), by retaining EPA-3 ecoregions but 204 

some spatial autocorrelation still remained. We then tried explicitly adjusting the model’s error 205 

structure. We fitted the model once more, using generalized least squares, and compared the fits 206 

obtained when assuming five different autocorrelation structures (S.I. section I). While improving the 207 

model’s AIC, they did not significantly decrease the remaining autocorrelation in the residuals. The 208 

covariate estimates were very similar across all model structures, which points to functional form of 209 

our model as being robust and correctly specified. Therefore, we proceeded with the base model, 210 

without a spatially autocorrelated error structure. 211 

 212 

We tested the robustness of the resulting fitted model in both time and space. We subjected our model 213 

to both an out of sample cross-validation routine (repeated k-fold with 100 repeats of 10-fold random 214 

sets - Kohavi, 1995) and an in-sample validation check by fitting predicted values against observed 215 

values across our whole dataset (Figure 2a). Additionally, we repeated our model fitting when only 216 

using transactions from the most recent decade included in the dataset. We also checked for other 217 

possible temporal trends by calculating the difference between individual parcel cost and county land 218 

cost average and then testing for significant changes in this quantity through time; there was no 219 

significant trend in the spread of data points around the county averages over time (ANOVA, P-value 220 

= 0.458). Finally, some parcels within our dataset (15%) were fully donated by the original landowner, 221 

meaning the cost per hectare was USD$0. To examine whether our results were sensitive to their 222 

inclusion, we repeated our analyses omitting these fully donated transactions. In all cases, spatial and 223 

temporal, in and out of sample, with and without donations, parameters estimates and predictions of 224 

our model remained largely consistent (S.I. section III). 225 

 226 

ROI Prioritization 227 

To illustrate how conservation recommendations would change when drawing on our new cost 228 

estimates, we used a spatial prioritization approach to identify future priority locations for establishing 229 

protected areas. Specifically, we used the prioritization model presented in Armsworth et al. (2020) 230 



that focuses on enhancing the protection of 1514 terrestrial vertebrate species (birds, mammals, 231 

reptiles and amphibians). This formulation accounts for ecological complementarity in the set of 232 

species being protected, conservation costs, existing protected areas, projected habitat conversion 233 

threats, contributions to species protection from unprotected private land, and a range of other factors. 234 

The conservation objective is assumed to be one of maximizing expected future species richness 235 

when considering the probability of a species persisting to be a function of the amount of protected 236 

area and unconverted private land found within the species range. Conservation funds allocated to a 237 

county are used to acquire new protected areas, thus changing future land cover and species 238 

persistence probabilities. Armsworth et al. (2020) compare different assumptions regarding subcounty 239 

siting of protected areas relative to species ranges. Here we adopt their “pessimistic” scenario where 240 

each hectare of additional protected area covers species ranges in proportion to their range area in 241 

the county. This prioritization approach and its assumptions are explored fully in that earlier 242 

Armsworth et al. (2020) paper. Here we focus on applying it as a demonstration of how the priorities 243 

one arrives at through a conservation planning process depend on the underlying cost data being 244 

used. 245 

 246 

We compared the ROI offered by investing in each county when using our new cost estimate with the 247 

ROI estimate obtained when using average agricultural land value in the county, a proxy commonly 248 

used in past studies. We defined the return on investment in terms of the change in the number of 249 

species expected to persist across the conterminous US when allocating a small additional budget 250 

for land protection to each county over status quo protection levels. The ROI available from investing 251 

in further land protection in county i takes the form: 252 

 253 

The summation in the numerator is taken across species, meaning counties with higher species 254 

richness tend to be higher priorities. The first term in the numerator represents the improvement 255 

possible in the future persistence probability for a species by improving conditions for it on the 256 

landscape by a small amount. While this term is positive for most species, the potential gains 257 

eventually dissipate for those common species for which conditions are sufficiently favorable across 258 

the landscape that their persistence is assured. The second term in the numerator focuses on the 259 

county being targeted for investment and indicates by how much ecological conditions for the species 260 

in the future would be improved in that county by creating an additional hectare of protected area 261 



today. This term tends to be larger for counties where future conversion threat would be higher, absent 262 

the additional protection and so the added value of new protected area is large. Finally, the 263 

denominator is just the cost per hectare in the county, which is the term we are most interested in 264 

here. All else being equal, lower cost counties have higher ROI values. 265 

 266 

To focus attention only on top priority counties that reside in the upper tail of the ROI distributions, we 267 

reported the overlap of the top 5, 10 and 15% of counties when ranked by ROI when assuming each 268 

cost dataset. 269 

 270 

Finally, we pushed beyond ROI and calculated optimal budget allocations when using each cost 271 

estimate. When optimizing, we treated the conservation budget allocated to a county as a continuous 272 

control variable. We report the congruence in the optimized budgets, defined as the proportion of 273 

overall funding for which the two optimized strategies agree on the allocation. Additional details of our 274 

prioritization specification are given in the S.I. The optimization indicates the optimal funding allocation 275 

when considering species complementarity, which sometimes involves focusing investment into a 276 

relatively small number of priority counties. In contrast, a focus on ROI more broadly allows a 277 

comparison of spatial patterns across the whole landscape. 278 

 279 

Results 280 

The total cost per parcel, the cost per hectare and parcel size were all heavily skewed (Table 1). In 281 

general, transactions included in the dataset were for small parcels; more than 87% of the parcels 282 

acquired were smaller than 100 hectares. The prevalence of small area transactions in the dataset is 283 

to be expected, both given our focus on the individual transactions used to build protected areas and 284 

because, by number, most protected areas are small (Deguignet et al., 2014). There was also a great 285 

deal of spatial variability in the data. Even after averaging per county, cost per hectare and parcel 286 

size both varied by ~6 orders of magnitude across the U.S (Table 1). 287 

 288 

Among our covariates, urban land value is a significant predictor of protected area acquisitions costs, 289 

while agricultural land value is not (Table 2). All other covariates are positively associated with 290 

protected area acquisition costs except for average deal size in the county, which is negatively 291 

correlated to acquisition costs, denoting economies of scale that are still visible at county level. County 292 

size, poverty prevalence and political leaning do not have a significant (at P-value < 0.05) relationship 293 

with acquisition costs. The direction of most of these associations aligned with our a priori 294 

expectations. We did not, however, anticipate the positive associations with elevation, which is likely 295 

attributable to us employing a multiple regression approach. i.e., the positive association with 296 

elevation here describes the relationship after controlling for the effects of broad ecoregion, county 297 

size, etc., rather than a simpler bivariate association between elevation and protected area acquisition 298 

costs. Semi partial R² are one way of measuring effect size for parameters in a linear model, by 299 

calculating the portion of residual variance explained by adding a given covariate to the full model 300 



specified without it. In this model, ecoregions, urban land value, population density, and 301 

unemployment are the covariates that explain the largest proportion of unique shared variance 302 

between the predictors and the response variable (Table 2). 303 

 304 

In our sensitivity test of the model fitting procedure, parameter estimates and predictions of our model 305 

remained consistent across our different spatial specifications and our in and out of sample validation 306 

checks (S.I. section III-A). When refitting the model using only transactions from the most recent 307 

decade, the model estimates remained similar, though there was a slight loss in significance of some 308 

parameters as would be expected given the smaller sample sizes involved (S.I. section III-B). We also 309 

included a sensitivity test where we re-estimated the model when dropping any transactions that were 310 

fully donated. Our findings are that the results remain largely unaffected by this change, except for 311 

county area, which became a significant factor (S.I. section III-C). 312 

 313 

While the value of both agricultural and urban land in a county might be expected to be a significant 314 

predictor of variation for protected area acquisition costs, our hypothesis was that relying on either of 315 

these variables as a direct estimate of acquisition costs for protected areas would miss much of the 316 

relevant variation. In Figure 2, we plotted simpler bivariate associations between actual average cost 317 

per hectare of acquiring land for conservation (y-axis) per county against average urban (Figure 2b) 318 

or agricultural (Figure 2c) hectare value per county. Note the difference of scale between x and y axes 319 

on each graph: urban land value and agricultural land value greatly under-represent the magnitude 320 

of the variation in observed costs. Also, urban land value and agricultural land value explain almost 4 321 

times less variation in actual acquisition costs than does our model (comparing R² values in Figures 322 

2b and 2c with those in Table 2). 323 

 324 

Figure 3 maps the predicted land acquisition costs from our model, including extrapolating to counties 325 

where we did not observe transactions (standard errors for these predictions are mapped in Figure 326 

S.I.-6). As would be expected, predicted costs of acquiring protected areas tend to be higher in the 327 

North East, in coastal counties on the West Coast and Florida and around major conurbations in the 328 

interior U.S. (Chicago, Atlanta, Phoenix, etc.). In contrast, acquisition costs appear lower in rural 329 

counties in the interior of the U.S., particularly in the Great Plains (stretching from North Dakota and 330 

parts of Montana down into Texas and New Mexico), where admittedly, more extrapolation is involved. 331 

The model fit is highly significant (P-value <0.0001) and it explains 59% of the overall variation in 332 

protected area costs that we observe. 333 

 334 

We used the prioritization framework from Armsworth et al. (2020) to illustrate how different cost data 335 

would affect conservation priorities. We compared the ROI offered by additional protection efforts in 336 

each county within the U.S., when using the two different cost datasets. The ROI estimates per county 337 

obtained with each cost dataset are positively correlated (R² = 0.29, p << 0.001, n = 1918, after log 338 

transforming and dropping 9 counties where the ROI is zero for both cost datasets because species 339 



in those counties are already fully protected, Figure 4a). This correlation indicates that when relying 340 

on either source of cost data, conservation planners would broadly agree on the relative ranking to 341 

attribute to individual counties. However, there are still important changes in those ranks: the 342 

prevalence of blue in Figure 4c on the North-East and West coasts indicates that these counties would 343 

present lower ROI, and as a result be ranked lower for investment, when relying on our new cost data. 344 

As a result, priority would overall switch toward the Great Plains, whose counties tend to rank higher 345 

for investment with the new cost data. These broad patterns reflect the underlying cost gradient 346 

reported in our cost data (Figure 3). 347 

 348 

Focusing more narrowly on only those counties offering the highest ROI with each cost dataset, we 349 

find that agreement levels over priorities depend on how many counties are being considered. Figure 350 

4b shows the percent overlap in counties that would appear priorities when focusing on the top 5, 10 351 

or 15% in terms of ROI with cost dataset. The more focused the spatial targeting with each dataset, 352 

the less they agree on priorities. Pushing further to compare optimal budget allocations that result, 353 

the two optimized recommendations disagree on where funding should be allocated Figure 4b). If 354 

relying on the average agricultural land value data, the optimization recommends concentrating 355 

investment into Arizona (notably, Gila County) and New Mexico (Hidalgo County), marked with red 356 

points in Figure 4a. When relying on our new cost estimates, the optimal solution favors investment 357 

in Texas and coastal Louisiana (including the counties marked with blue points in Figure 4a). It also 358 

favors a more dispersed investment strategy with 11 counties each receiving more than $30M to 359 

enable large projects in the Gulf Prairie and Marshes, South Texas Plains, Edwards Plateau, and 360 

Trans Pecos ecoregions (Texas Parks & Wildlife Department, 2022). 361 

 362 

 363 

Discussion 364 

 365 

Ongoing losses of biodiversity and ecosystem services (Millennium Ecosystem Assessment, 2005; 366 

Pimm et al., 2014) and limited resources for conservation mean there is a pressing need to allocate 367 

what resources are available optimally (Le Saout et al., 2013; Waldron et al., 2013). This requires 368 

having a good understanding of how much conservation will cost in different places. However, 369 

conservation costs are often poorly documented. We examined what parameters drive acquisition 370 

costs of protected areas, used that knowledge to better predict protected area acquisition costs across 371 

the conterminous U.S. and then examined the consequences this would have on prioritization 372 

analyses. 373 

 374 

The model we present provides insight into some of the factors that consistently make some 375 

acquisitions more expensive than others. First, we hypothesized that social-economic factors usually 376 

associated with environmental philanthropy, in the form of monetary donations, could also be 377 

associated to land donations, partial or total, during land transactions for conservation. This would 378 



effectively result in decreased acquisition costs. However, our model finds the effect of those 379 

parameters is either not present or associations are different when considering land acquisitions. In 380 

particular, selling land at a lower cost is more common in less densely populated areas, with lower 381 

education levels and where unemployment remains low. In contrast monetary donations for 382 

conservation are concentrated in and around cities, which are often characterized by having higher 383 

education and unemployment levels (Chen et al., 2011; Greenspan et al., 2012). Second, we also 384 

found that a higher proportion of already converted land, as well as a higher threat of further 385 

conversion were both associated with higher land acquisition costs. Past and future land conversion 386 

trends can correlate with land trusts' willingness to buy, pushing them to accept less favorable pricings 387 

(Boyd et al., 2015; Murdoch et al., 2007). Similarly, protected area acquisitions cost per hectare was 388 

positively associated with the number of species listed as endangered by the IUCN. This increasing 389 

effect on land cost possibly indicates a greater willingness to pay for protected areas in these 390 

locations, by conservation organizations.  The presence of species of interest might also offer 391 

leverage to landowners for donateing prices up (Lennox and Armsworth, 2013) or act to reduce 392 

conservation organizations flexibility to seek out low cost parcels. Finally, higher density of already 393 

existing protected areas was associated with increased cost of securing new deals in that county. 394 

This might be a consequence of the lowest cost opportunities within a given county already having 395 

been protected. However, while the role of these covariates was consistent across our different spatial 396 

specifications, we found several associations were no longer significant when we only considered 397 

areas protected within the most recent decade, likely reflecting the smaller sample size involved. 398 

 399 

Market-based (agricultural or urban) land value are common proxies that have often been used as 400 

direct estimates of protected area acquisition costs. While our model found urban land value to be 401 

positively associated with protected area acquisition costs, the predictive power of agricultural land 402 

value seems to have been almost completely picked up by the other covariates. In either case, we 403 

would caution against using either of those in isolation as proxy for land value, in the context of 404 

conservation. Protected area acquisition costs across the U.S. proved to be extremely variable and 405 

also highly skewed (see also Davies et al., 2010). Capturing that high degree of variability is important 406 

when evaluating the potential efficacy of conservation programs. Schöttker et al. (2016), for example, 407 

found that more variation in land prices across the landscape would increase the efficiency of buying 408 

land, as opposed to contract easements. Yet, observed variation in the cost of land for conservation 409 

is under-represented when substituting agricultural or urban land value for conservation land value 410 

(Figure 2b and c). 411 

 412 

Using a prioritization framework, we further investigated how conservation recommendations could 413 

be affected by using our predicted costs versus using agricultural land value as a proxy for these 414 

costs. The conclusions one would draw about the sensitivity of priorities to the cost data used would 415 

depend on whether someone focused on only the best opportunities for conservation or on broad 416 

patterns in ROI across the country. In particular, the top sites and optimized budget allocation that 417 



emerged when using our new cost data are quite different to that obtained when relying on agricultural 418 

land values to approximate costs. Different counties are prioritized and different sets of species would 419 

benefit. At the same time, agreement levels improve with less stringent targeting (Figure 4b), 420 

something to be expected given the overall correlation in ROI we find when considering all of the 421 

counties. Also, even if no longer optimal, counties picked by the optimization when assuming one cost 422 

dataset still offered a very good ROI when evaluated against the other cost dataset (e.g., colored 423 

points in Figure 4a). Optimization tends to be more demanding about the underlying data, responding 424 

as it does to the upper tail of the ROI distribution only. In contrast, our correlation statistic summarizes 425 

patterns across all of the counties, most of which would not be in consideration for investment under 426 

an optimized strategy. This suggests that analyses considering policy interventions that would apply 427 

across many counties (e.g., large-scale payment programs to private landowners, Lubowski et al., 428 

2006) may be less sensitive to the underlying cost data used than those seeking to inform more 429 

concentrated conservation investments, like protected area acquisition programs. Other aspects of 430 

the optimal funding allocations and ROI distributions can be understood by considering the interaction 431 

of the cost datasets with the other relevant input variables. For example, that both optimized 432 

allocations favor southern counties reflects the latitudinal gradient in species richness across the US, 433 

while the shift further from the East and West Coasts with the new cost data reflects the longitudinal 434 

pattern in costs in Figure 3. 435 

 436 

In this study, we made choices and assumptions that should be kept in mind when interpreting our 437 

results. First, we conducted this analysis at the county level which we maintain is a relevant unit of 438 

aggregation for large-scale spatial planning. But we also recognize that fine-grain information is lost 439 

when doing so. Nolte (2020), for example, focuses on parcel-grain prediction. Sub-county variation of 440 

acquisition costs can translate into potential additional low-cost opportunities for conservation (Sutton 441 

and Armsworth, 2014). But we should note that such variations would also be missed by using county 442 

averages of agricultural or urban land values, as has previously been done. Sub-county variation still 443 

play an important role in translating larger scale plans, as we addressed here, into local measures 444 

(Pressey et al., 2013) and there is a need to harness that potential in conservation planning (Gotway 445 

and Young, 2002; Holzkämper and Seppelt, 2007).  446 

 447 

Second, we have little information regarding acquisition costs for several states in the central U.S. 448 

For example, we only have ~75 land transactions or less for Kansas, North and South Dakota (Figure 449 

1). These tend to be states where land protection approaches other than fee ownership are more 450 

prevalent, particularly term contract agreements made as part of the U.S. Farm Bill’s Conservation 451 

Reserve Program (Farm Service Agency (USDA), 2019; Jackson et al., 2021). We favored a linear 452 

regression, as opposed to a more flexible regression structure such as that presented by Nolte (2020), 453 

in part out of concerns about possible errors that could result from highly nonlinear specifications 454 

when extrapolating costs to parts of the country where we have little to no data. 455 

 456 



Third, although our model explains roughly four times as much variation in acquisition costs as 457 

substituting agricultural land values did, it still leaves a non-negligible amount of variation unexplained. 458 

One reason the explanatory power of the model might be lower than it otherwise might be is because 459 

we chose to focus on how much it costs a conservation organization to protect land, instead of only 460 

focusing on predicting fair market value. Conservation organizations are often able to acquire 461 

properties for less than fair market values via a form of donation by the original landowner. In extremis, 462 

land may be fully donated, but partial donations where some cost is incurred but less than would be 463 

the case for a commercial buyer are also common. Factors affecting the tendency of private 464 

landowners to make such donations are also likely characterized by spatial variability and securing 465 

such donations may be easier for conservation organizations in some counties than others. To 466 

accommodate this in our model, we included covariates we hypothesized were associated with 467 

donation behavior alongside factors we hypothesized would be associated with setting fair market 468 

values. Our results however suggest we may not yet be predicting the donative component of 469 

conservation costs as well as we are aspects tied to fair market value. For example, Figure 2a shows 470 

that full donations of land (in red) encompass the whole range of predicted values. Also, regression 471 

fits produced larger R² values in a sensitivity test where we excluded fully donated parcels, which 472 

again only represent a fraction of the overall amount of donation activity that is going on (Table S.I.-473 

6). Thus, a deeper investigation of when and how much landowners are willing to donate when selling 474 

for conservation, including both full donations and partial donations, would be warranted. 475 

Unfortunately, it is often difficult to quantify the prevalence and magnitude of partial donations 476 

because most conservation organizations do not record fair market value at the time of purchase, for 477 

their land transactions. This was the case for the majority (~87%) of the data we used in this analysis. 478 

 479 

Coomes et al. (2018) called for improved access to land cost data. They argue that such data should 480 

be a public good and is vital to the future of global change science and policy at large. Understanding 481 

and being able to predict the cost of land bought for conservation, in particular, are necessary 482 

conditions for the development of useful and reliable optimization tools. In the face of ever-increasing 483 

threats to biodiversity and the limited resources available to conservation organizations, such tools 484 

are urgently needed. With this work, we are providing a national map of protected area acquisition 485 

costs to empower national scale conservation planning exercises for the U.S., such as the 30x30 486 

initiative (Haaland et al., 2021) Beyond the U.S. context, our findings are also relevant to conservation 487 

researchers examining costs in other settings. For example, our results highlight the importance of 488 

focusing research effort directly on estimating the costs that conservation organizations face when 489 

implementing conservation actions, instead of on costs associated with other types of land use. 490 

Focusing on the costs faced by conservation organizations is important because the factors 491 

influencing costs they face may be different to those shaping costs with competing land uses. 492 

 493 
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[FIGURE 1 = Number of land parcels bought for protection, since 1980, in our dataset. 

Records for the Great Plains region are scarce, with many counties containing less than 5 land 

deals (grey), while the Lake region and both coasts are more densely represented (color scale).] 

  



 

 

[TABLE 1 = Definition and distribution (given as the 25%, 50% and 75% quartiles) for variables used 

in our model.] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acquisition cost Quartiles Description 

Cost per hectare (parcel) 1,923 - 8,649 - 35,522] Purchase price per hectare across parcels 

Cost per hectare (county) [2,853 - 7,353 - 28,828] 
Equal weight average of the purchase price for protected areas in a 

county (in dollar per hectare) 

Covariates Quartiles Description 

County Area [113k – 162k – 242k] County area, in hectares 

Average Deal Size [22 - 50 - 128] Average area of protected areas bought in this county, in hectares 

IUCN Listed Species [3 - 3 - 4] Number of vertebrate species listed as vulnerable or worse by IUCN 

Elevation [144 - 277 - 487] Mean county elevation, in meter 

Urban Land Value [94k - 148k – 234k] Urban land value, in dollar per hectare 

Agricultural Land Value [5k - 7k – 12k] Agricultural land value, in dollar per hectare 

Education [15 - 19 - 25] Percentage of 25+ year old adults with a bachelor's degree or above 

Poverty [11 - 14 - 18] Percentage of people living below the poverty limit 

Unemployment Rate [5 - 7 - 8] Unemployment rate as percentage of the total population 

Population Density [0.07 - 0.18 - 0.44] Density of population, per hectare 

Proportion Land Converted [0.19 - 0.38 - 0.64] Proportion of the county area that is either urban, crop or pasture 

Proportion Land Protected [0.009 - 0.036 - 0.137] Proportion of the county area protected under PAD-US cat. 1, 2 or 3 

Future Conversion Threat [0.3 - 2.3 - 8.7] Percent increase of the converted area projected by 2030  

Democratic Leaning [0.3 - 0.4 - 0.5] Proportion of total votes that were casted for the Democratic party  

Ecoregion NA (factor) EPA-3 ecoregion denomination 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[TABLE 2= Estimated coefficients for the covariates used in the land value model to fit the log-

transformed average purchase price per hectare, in 2016 U.S. dollars (n=35,880). Covariates 

marked with ¤ were log-transformed, when fitting the model. R² = 0.59, significance levels are 

marked as follow: . at 0.1, * at 0.05, ** at 0.01 and *** at 0.001] 

  

Covariates Value Std.Error P-value 
Semi partial R² 

(x E-03) 

(Intercept) 4.60 1.02 *** 0.24 

County Area 5.12 E-08 7.79 E-08  5.04 

Average Deal Size -2.97 E-04 9.73 E-05 ** 3.64 

IUCN Listed Species 3.79 E-02 1.47 E-02 ** 9.75 

Elevation 9.07 E-04 2.14 E-04 *** 22.56 

Urban Land Value ¤ 0.41 0.06 *** 0.93 

Agricultural Land Value ¤ -0.10 0.08  4.40 

Education 1.63 E-02 0.57 E-02 ** 0.19 

Democratic Leaning -0.25 0.43  0.93 

Population Density ¤ 0.55 0.04 *** 76.90 

Poverty -2.27 E-02 1.16 E-02 . 2.09 

Unemployment Rate 0.14 0.03 *** 12.31 

Proportion Land Converted ¤ 1.37 0.40 *** 6.46 

Proportion Land Protected ¤ 1.19 0.32 *** 7.36 

Development Threat 0.41 0.16 ** 3.68 

Ecoregions factor factor *** 213.96 



 

 

[FIGURE 2 = Observed average county purchase costs against model predicted average county 

purchase costs (a), urban land value (b) or agricultural land value (c). In all cases, costs are log-

transformed (base e) and red points are counties where all acquisitions were fully donated. Lines 

are each models’ fit (red) and y=x (orange). Intercepts are significantly different from 0 for 

regressions with urban (b) or agricultural (c) land values but is not for the regression observed 

against predicted estimates (a).] 

 

 

2 4 6 8 10 12 14

0
5

1
0

1
5

(a) Comparison of Predictions against Observations

Predicted Purchase Costs

O
b
s
e
rv

e
d
 P

u
rc

h
a
s
e
 C

o
s
ts

R
2

0.29
p 0.001

10 12 14 16 18

0
5

1
0

1
5

2
0

(b) Land Costs and Urban Land Value

Urban Land Value

O
b
s
e
rv

e
d
 P

u
rc

h
a
s
e
 C

o
s
ts

R
2

0.13
p 0.001

6 8 10 12 14 16

0
5

1
0

1
5

2
0

(c) Land Costs and Agri. Land Value

Agricultural Land Value

O
b
s
e
rv

e
d
 P

u
rc

h
a
s
e
 C

o
s
ts

R
2

0.15
p 0.001



 

 

 

 

 

 

 

 

 [FIGURE 3 = Complete map of predicted acquisition costs (in dollars per hectare) for all counties of 

the conterminous U.S. using parameter estimates from our model, presented in Table 2.] 
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[FIGURE 4: Patterns in ROI with new cost data and average agricultural land value. (a) Correlation 

of ROI estimates using each dataset (R²=0.29, p<<0.001, n=1918, after log transforming and 

omitting 9 counties where the estimated ROI is zero) and (b) agreement levels over priorities with 

new cost data and average agricultural land value (grey bars show the percent agreement in the 

sets of counties that fall within the top 5, 10 and 15% of counties by ROI with each cost dataset; no 

funding was allocated to the same counties for the fully optimized solution). (c) Comparison of ROI 

ranks per county (blue counties appear to be a relatively higher priority for protection when relying 

on average agricultural land value than our predicted purchase costs, while pink counties appear to 

be a relatively higher priority with the predicted purchase costs).] 


