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In brief

The growing trend of overparameterizing
deep neural networks shows no sign of
slowing down and is beginning to outstrip
the capabilities of digital computing, with
large language models taking up to

6 months to train on more than 25,000
graphics processing units (GPUs).
Parallel search architectures with
compute-in-memory (CIM) represent a
promising response to this trend by
performing crucial similarity comparisons
up to 1,000 faster than GPUs, allowing
learning on greater amounts of data at a
faster rate.
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THE BIGGER PICTURE Compute-in-memory (CIM) integrates memory and processing units into the same
physical location, reducing the time and energy overhead of computing systems to address the increasing
demands of artificial intelligence (Al). In particular, Al applications of CIM beyond matrix multiplication, such
as parallel search, remain relatively unexplored. Analog content-addressable memory (ACAM) rapidly exe-
cutes high-accuracy similarity comparisons between inputs and a large number of stored data entries, an
operation that lies at the core of large language models, like the Generative Pre-trained Transformer 4
(GPT-4) and Contrastive Language-lmage Pre-training (CLIP). With the number of parameters within these
models reaching the order of trillions, building efficient in-memory parallel search is more important than
ever, offering to open avenues for more comprehensive data processing and richer Al applications ranging
from self-attention in transformers to classifier layers for few-shot learning.

SUMMARY

Despite recent advancements in non-volatile memory (NVM) for matrix multiplication, other critical data-
intensive operations like parallel search remain largely overlooked. Current parallel search architectures,
namely content-addressable memory (CAM), often use binary, which restricts density and functionality.
We present an analog CAM (ACAM) cell, built on two complementary ferroelectric field-effect transistors
(FeFETSs), that performs parallel search in the analog domain with over 40 distinct match windows. ACAM
not only offers a projected 3x denser memory architecture than ternary CAM (TCAM) but also yields a 5%
increase in inference accuracy on similarity search for few-shot learning simulated with the Omniglot dataset,
with an estimated speedup per similarity search of more than 100x when compared to a central processing
unit (CPU) and graphics processing unit (GPU) on scaled silicon-based complementary metal-oxide semi-
conductor (CMOS) nodes. Furthermore, we demonstrate one-step inference on a kernel regression model
in ACAM, with simulation results indicating 1,000x faster inference than a CPU and GPU.

INTRODUCTION

In the rapidly evolving field of artificial intelligence (Al), process-
ing vast amounts of data efficiently is critical. Computing archi-
tectures that incorporate in-memory processing are gaining trac-
tion, as they offer to potentially reduce power consumption
and cost." In particular, compute-in-memory (CIM) aims to
reduce the energy-intensive data movement limiting traditional
computing architectures by integrating memory and processing
within the same physical location.”® Recent studies have shown
progress in employing non-volatile memory (NVM) devices to

L))

accelerate matrix multiplication within memory arrays, in turn
aiding execution of complex Al tasks.””” However, expanding
these CIM architectures to accommodate other operations
intrinsic to Al, notably parallel search, presents a considerable
challenge.®® We define parallel search to be a single-step oper-
ation of comparing a query vector to an array of m stored vectors
and returning a degree of match between the query and each
stored vector.

Content-addressable memory (CAM) is well-suited to execute
operations that match an input datum to a collection of data pat-
terns stored in the CAM array. If this operation occurs in parallel,
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then we can obtain high-throughput comparisons with minimal
latency, a distinct advantage in applications such as network
routing, associative computing, and database management sys-
tems.'°""? In standard silicon-based complementary metal-ox-
ide semiconductor (CMOS) architectures, the construction of a
single CAM cell requires approximately 16 transistors, typically
configured with static random-access memory (SRAM), leading
to significant power consumption and relatively low memory
density.’®> NVM has emerged as a promising substitute within
CAM, given its reconfigurable functionality, as well as its superior
area and energy efficiency. There have already been successful
demonstrations of ternary CAM (TCAM) implemented using
various NVM technologies.'*'® However, most CAM designs
based on NVM employ designs akin to traditional SRAM, where
the memory device is restricted to encoding binary states exclu-
sively and is used for identifying exact matches or mismatches.
Given that CAM designs are primarily in the binary domain, cur-
rent architectures frequently require extensive analog-to-digital
conversion (ADC) and digital-to-analog conversion (DAC). ADC
and DAC serve as pivotal links between digital memory and
analog components (e.g., sensors and actuators), translating
various inputs into a form that CAM can handle. The consistent
need for conversion significantly diminishes both power and
speed, a particularly non-ideal energy overhead in the context
of edge computing.'® More recently, analog CAM (ACAM), which
leverages programmable analog conductances within NVM, has
been proposed.?’~?? As of now, the hardware development for
ACAM poses substantial difficulties and has hence rarely been
reported. A recently proposed ACAM cell based on resistive
RAM (ReRAM) demands 6 silicon CMOS transistors, resulting
in low area efficiency, high parasitic components, and elevated
static power consumption.”’ Another proposed ACAM with
ferroelectric field-effect transistors (FeFETs) is a theoretical
design that requires two search lines (SLs) and a complex analog
converter circuit to perform the search signal linear reversion
function.”?

In this work, we report an experimental demonstration of a
non-volatile and compact ACAM cell based on two complemen-
tary FeFETs. Our ACAM cell utilizes the adjustable threshold
voltages of FeFET devices to store over 40 distinct windows
within each cell and examines an analog input against this stored
range to identify a match or a mismatch. This cell neither requires
additional transistors nor an external analog converter circuit—it
only requires a single SL. Two key advantages arise from this
design: (1) parallel search is conducted where the data resides,
eliminating the power and latency costs of data transportation
between separate computing and memory units; (2) computa-
tion and ADC are merged, offering higher memory bit densities
and reduced power usage for a broader set of applications.

We go on to evaluate the performance of our ACAM design for
similarity search in a few-shot learning application, using match-
ing networks for inference on the Omniglot dataset and bench-
marking both the accuracy and runtime of ACAM against a cen-
tral processing unit (CPU), graphics processing unit (GPU), and
TCAM. Additionally, we can interpret the match operation in
ACAM as a kernel and hence deploy ACAM for kernel regression,
a model for fitting non-linear functions. Kernels in machine
learning are used to model the similarity between two inputs
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and form the basis for a wide variety of models, including support
vector machines (SVMs), kernel regression and classification
models, and, most recently, neural tangent kernels for deep
learning. Such models typically require intensive computation
of pairwise similarity between a test data point and each training
data point during inference that could benefit greatly from paral-
lel search.

RESULTS AND DISCUSSION

ACAM cell design and measurement
Different from conventional CAM architectures in which the dig-
ital query and keys are compared for identifying exact matches
or mismatches (shown in Figure 1A), Figures 1B and 1C illustrate
the concept and design of the proposed ACAM, where analog
voltage values are supplied as the query to the ACAM and
compared against the analog ranges encoded by adjustable
threshold voltages of FEFET devices. In this work, the cell struc-
ture of ACAM can be significantly simplified by using just two
complementary FeFETs (as shown in Figure 1C), in which the
n-channel metal-oxide semiconductor (NMOS) FeFET is colored
in red, and the p-channel metal-oxide semiconductor (PMOS)
FeFET is colored in blue. The analog input search data get con-
verted into voltage amplitudes that are applied along the SL,
while the stored analog range is set by the programmed
threshold voltages of the cell’s two complementary FeFETs.
The search operation begins by pre-charging each match line
(ML) to a high voltage level. The ML remains high (indicating a
match) only when the discharge currents at all ACAM channels
are minimal. That is, all attached CAM cells of a row match to
the input data. Otherwise, the significant discharge currents of
any ACAM channels result in a voltage drop (signifying a
mismatch) on the ML. FeFETs work by utilizing positive or nega-
tive gate pulses to direct the ferroelectric polarization toward the
channel or gate metal, setting the FeFET to a low or high
threshold voltage state, respectively. As opposed to other
NVM devices that demand substantial DC conduction current
for memory write, FEFETs excel in write energy efficiency, as
they solely rely on the electric field to switch the polarization.
The devices used in this work are FeFETs with hafnium zirconium
oxide (HZO) as the ferroelectric gate dielectric integrated on
traditional silicon (Si) CMOS transistor technology (see experi-
mental procedures for more details).”® As a result, these devices
can be generalized to any complementary FeFET technology.
We will now discuss how the complementary FeFETs in the
ACAM cell store analog match windows to compare against
the input search value. To begin, the ML is connected to
NMOS FeFET and PMOS FeFET in parallel. Further, the ML stays
high for a match outcome when the SL voltage is lower than the
threshold voltage of the NMOS FeFET and higher than the
threshold voltage of the PMOS FeFET, thus maintaining both
FeFET channels in a cutoff state. As shown in Figure 1D, the up-
per and lower bounds of each match window can be pro-
grammed by the threshold voltages of the NMOS FeFET and
PMOS FeFET, respectively. When the SL voltage (Vs) exceeds
the threshold voltage of the NMOS FeFET, it gets turned on.
This leads to a substantial discharge current between the ML
and ground (GND), primarily through the NMOS FeFET, which
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Figure 1. Addressable content-addressable memory (CAM) concept and design

(A) Schematic diagram of digital CAM architectures in which digital query and keys are compared for identifying exact matches or mismatches. Considering that
current CAM designs primarily operate in the digital domain, their bit-density and functionality are limited. These architectures often rely heavily on ADC op-
erations to serve as critical interfaces between digital memory and analog components, which significantly reduces both power and speed, a considerable energy
overhead, especially in the context of edge computing.

(B) Schematic diagram of analog CAM architecture where analog query is compared with analog intervals, aiming to identify whether it falls within (match) or
outside of these intervals (mismatch).

(C) We substantially simplify ACAM cell structure by using just two complementary FeFETs, where the NMOS FeFET is represented in red and PMOS FeFET in
blue. Analog input search data are converted into voltage amplitudes and applied along the search line (SL), while stored analog range is determined by the
programmed threshold voltages of the two complementary FeFETs within the cell. Similarity between query and keys output on the match line (ML) is shown.
(D) Upper and lower limit of each match window can be programmed by the threshold voltages of NMOS FeFET and PMOS FeFET, respectively. Furthermore,
threshold voltage of both NMOS FeFETs and PMOS FeFETs can be adjusted using electrical pulses. This offers an additional level of adaptability to the ACAM cell
by providing precise control over FEFETSs’ properties, thereby enabling the storage of continuous intervals as a match window (for more details, refer to the

supplemental information).

inturn causes a voltage drop in the ML that produces a mismatch
outcome. On the other hand, when Vg, is below the threshold
voltage of the PMOS FeFET, it is turned on, leading to a substan-
tial discharge current between the ML and GND, predominantly
across the PMOS FeFET. This results in a voltage drop in the ML,
also producing a mismatch outcome. When the SL voltage re-
sides within the threshold voltages of both NMOS FeFETs and
PMOS FeFETs, both types of FeFETs are in a cutoff state.
Consequently, no discharging current will traverse through either
of the FeFETs between the ML and GND, and the ML remains at
a high level, denoting a match result. In addition, the threshold
voltage of both NMOS FeFETs and PMOS FeFETs can be pro-
grammed using electrical pulses, as shown in Figure 1D. This al-
lows for precise and efficient tuning of the FEFETs’ characteris-
tics, adding an extra layer of flexibility to the ACAM cell and
enabling it to store continuous intervals as a match window.

In order to substantiate our circuit design and delve deeper
into the concept of complementary FeFET-based ACAM, we
perform experimental measurements of ACAM circuit operation
on HZO Si CMOS FeFET chips (see Notes S1 and S2, Figure S1).
We first present the programmable threshold voltages in both
NMOS FeFETs and PMOS FeFETs. These threshold voltages
serve to define the upper and lower bounds of the ACAM match
window, respectively. We note that we achieve these program-
mable threshold voltages through partial polarization switching,
a process that can be implemented by biasing short electrical
pulses at the gate electrode of the FeFETs.?” Figure 2A illustrates
the gradual programming of the Ip-Vg transfer curve in the
NMOS FeFET using a series of stepwise gate voltage pulse mod-
ulations, ranging from 3 to 4 V. This gradual programming en-
ables the NMOS FeFET to present 10 unique transfer curves,
each exhibiting a high level of linearity. Figure 2B demonstrates

Device 2, 100218, February 16, 2024 3
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Figure 2. Experimental demonstration of analog content-addressable memory (ACAM) performance

(A) Analog programming of the Ip-Vg transfer curve in NMOS FeFET via stepwise gate voltage pulses of ~ 1 us, ranging between 3 and 4 V. NMOS FeFET
successively yields 10 distinct transfer curves due to this graduated programming.

(B) PMOS FeFET, like its NMOS FeFET counterpart, is also shown to be capable of analog threshold voltage programming through electrical pulses. It is important
to note that threshold voltages of both NMOS FeFETs and PMOS FeFETs are influenced in the same manner by applied pulses, as these voltages are contingent
on the absolute value of polarization within the ferroelectric dielectric of each device.

(C) Current passing through ML is measured when sweeping voltage is applied on SL. By applying different voltage pulses, the central position of the match

window can be adjusted, hence generating multiple match windows at various positions.

(D) Position of ACAM match window can be analogously adjusted, thus providing over 40 distinct match windows.

(E) Demonstration of 9 stored ranges exhibiting stable retention without significant degradation indicates that ACAM is non-volatile.

(F) Simulated ML discharge behavior during search operation, specifically for all-match and 1-bit-mismatch states, in a 64-row, 64-column ACAM array on 45-nm
Si CMOS technology. Simulations indicate notable distinction, with an estimated ML delay of 0.136 ns.

that, akin to the NMOS FeFET, the PMOS FeFET is also capable
of undergoing analog threshold voltage programming induced
by electrical pulses. Positive pulses will make the threshold
voltage more positive for both NMOS FeFETs and PMOS
FeFETs, as the threshold voltage depends on the absolute value
of the amount of polarization in the ferroelectric dielectric. It is
noteworthy that the application of a positive pulse in both
NMOS FeFETs and PMOS FeFETs elevates their threshold volt-
ages. This phenomenon occurs because these threshold volt-
ages hinge upon the absolute quantity of polarization in the ferro-
electric dielectric in both device types.

Subsequently, we perform a proof-of-concept measurement
of the performance of the designed ACAM cell. We first define
a match window by programming the threshold voltages of the
NMOS FeFETs and PMOS FeFETs via electrical pulses over
the gate terminal. Then, we measured the ML discharge current
with a sweeping SL voltage. As shown in Figure 2C, for each
fixed match window, the ML current remains low near the center
(signifying a match) and drastically surges as the SL voltage de-
viates from the window center (signifying a mismatch). More-

4 Device 2, 100218, February 16, 2024

over, we observe that by applying voltage pulses, we are able
to vary the central position of the match window, thereby
creating multiple match windows at different positions. As de-
picted in Figure 2D, not only is the input in the analog domain,
but the location of the ACAM match window can also be analo-
gously programmed, offering more than 40 distinct match win-
dows. This demonstrates the successful operation of the
FeFETs in an ACAM cell. As illustrated in Figure 2E, stable reten-
tion without noticeable degradation is exhibited for 9 distinct
stored ranges, which suggests that ACAM is not only non-vola-
tile but does not require static power for range retention or
require frequent refreshing once programmed. For the fast
data operations discussed in this paper, a retention period of
hundreds of seconds is more than sufficient.*'""?° It is also worth
noting that much high retention has been observed in our prior
works on similar HZO Si CMOS FeFETs.?® In order to evaluate la-
tency of the search operation in ACAM, we carry out extensive
circuit-level analysis of a 64-row, 64-column ACAM array, built
upon 45-nm Si CMOS technology and inclusive of peripheral cir-
cuits (see Note S3, Figure S2). Figure 2F presents the simulated
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ML discharge patterns during a worst-case search operation
(considering all-match and 1-bit-mismatch states), clearly
demonstrating a significant difference, with the delay in the ML
quantified as 0.136 ns. Similar to previous CAM literature, a com-
parison analysis is provided in Note S8 and Table S1 showing
area/bit, search delay, and search energy of our proposed
ACAM alongside other designs.””®

ACAM for similarity search

An ACAM cell can store real-valued intervals, as opposed to bits
in a binary or ternary memory cell, giving us a new way to search
and retrieve directly in the analog domain without converting sig-
nals into their digital counterparts. Similarity search is a key
problem in machine learning, forming the building block for
many applications, such as content retrieval, where a user seeks
to recover sentences, audio files, or images that are similar to a
given query. Machine learning models, including k-nearest
neighbor classifiers, SVMs, and kernel machines, have similarity
search as a key component of their inference mechanism. A
growing body of existing work has therefore been devoted to
accelerating these computations.’'°" We show that ACAM
cells can be used to store data in their native, real-valued format.
Furthermore, compact arrays of such cells can perform similarity
searches for a user query at a very low latency, which we will
demonstrate for inference in few-shot learning.

As image classification systems begin to tackle more and
more classes, the cost of annotating a massive number of im-
ages, as well as the difficulty of procuring images of rare
categories, increases. This challenge has fueled interest in
few-shot learning, a type of learning where only a few labeled
samples per class are available for training. The key idea behind
current few-shot learning methods is to train a model to distin-
guish inputs, say images of different categories, from each other.
This strategy is different from classical supervised learning,
which seeks to predict the category of an input image. Features
learned in such models using large datasets, such as the
ImageNet-21K dataset (14.2 million images from 21,814 different
categories), can be fruitfully used to distinguish between images
of entirely new categories using very few new images (i.e., “few-
shot”).®? One of the key steps in doing so involves calculating the
similarities between the features of few-shot labeled data and
the test data, as suggested by an algorithm called “matching
networks.”> For k-shot learning across n different classes (typi-
cally, k ranges from 1 to 10, and n can range anywhere from 5 to
100), the centroid of the features of the k images of each class is
computed. Given a test image (also called the “query”), the sim-
ilarity (e.g., Hamming distance, inner product) of the features of
the test image, which could be from any of the n classes, is
computed to find the centroid closest to it. See the schematic
in Figure 3A for an example where the unknown query sample
(i.e., a Dachshund breed) should be matched to the Yellow Lab-
rador breed, as they are both dogs, in the 4-way, 1-shot support
set containing a dog, cat, pig, and fish.

Similarity search in few-shot learning can be mapped to ACAM
as follows. In software, the support embeddings are stored in an
array of size n-k x 64, while the query sample is represented as a
64-dimensional array. Similarly, an (n-k X 64)-dimensional
ACAM array is used to store the features of few-shot labeled im-
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ages embeddings, where the (i) th element corresponds to the j
th element of j th support embedding. Programming of the sup-
port embeddings into ACAM involves selecting a window size,
typically held constant across all ACAM cells, and then posi-
tioning the window such that the (i) th element lies at the center
of its window for alli=1,....n-k andj = 1,...,64. Recall that the
central position of the match window can be adjusted by gradu-
ally applying voltage pulses to the NMOS FeFET or PMOS
FeFET, pictured in each ACAM cell of the Figure 3A circuit dia-
gram. On the other hand, the query embedding is programmed
onto the SLs, shown at the top of each column in the Figure 3A
circuit diagram, such that the j th element of the query embed-
ding lies on the j th SL of the n-kx64 ACAM array for allj = 1,
...,64. Binary and ternary CAM compute conventional Hamming
distance, which checks for exact match between bits and can be
written as Sqigital (S/,4) = fo 41(sif] = alj]), where1(-)isthein-
dicator function. In contrast, ACAM computes a “generalized”
Hamming distance within the analog domain, which can be ex-
pressed as Sanalog(Si, d) = foﬂ(q[i} €lajj, bij]), where aj;
and b;; are the endpoints of the match window in the ACAM
cell corresponding to the j th element of / th support embedding.
To reiterate, the main advantage of ACAM over binary and
ternary CAM is that it computes similarity directly in the analog
domain via generalized Hamming distance.

Selection of the matching window size and impact of added
noise within ACAM will now be discussed in the context of sim-
ilarity search. Figures 3B and 3C are benchmarked with a 5-way,
5-shot inference task on the Omniglot dataset, which contains
1,623 characters from 50 different alphabets and is down-
sampled such that each image is 28 x 28. Further, all support
embeddings stored in ACAM are quantized to lie within the range
[-0.3, 2.0] V to align with the range of operation shown in
Figures 2A-2C, falling within the memory window of the current
FeFET device. When programming the support embeddings into
ACAM, the first step is to select a window size. A match window
range of within [0.0, 1.0] V is sufficiently expressive to achieve the
highest inference accuracy, which occurs at a match window
size of 0.4 V as seen in Figure 3B. While it is not possible to avoid
noise within CAM, it is nonetheless possible to show that ACAM
is robust to any perturbations in its match window when used for
similarity search in few-shot learning. The impact of variation in
the FeFET device/ACAM on the accuracy of similarity search
task should be carefully examined. The predominant variation
in FeFET devices originates from phase and grain changes in
ferroelectric HfO,.%*°? It is possible to attain a maximum stan-
dard deviation of less than 100 mV for the discrepancy between
the actual and target Vi, in the reported FeFET devices.*° Fig-
ure 3C shows the result of noise sampled from a normal distribu-
tion with mean p = 0 and standard deviation ¢ being added to the
match window, illustrating that a window variation of up to + 0.1
V, which is + 4.35% of the entire range of ACAM operation, is
tolerable without incurring a decrease in inference accuracy of
more than 10%. Additionally, Note S7 and Figure S5 show that
ACAM is robust to cycle-to-cycle variation of up to 10% of the
match window size for inference on a 20-way, 1-shot task.

It is important to compare the density of ACAM versus TCAM.
Analog representations in ACAM are far more expressive than
the digital representations in TCAM, which in turn yields denser
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Figure 3. Matching networks inference for few-shot learning on analog content-addressable-memory (ACAM)

(A) 4-way, 1-shot few-shot learning episode with dog, cat, fish, and pig encoded as 64-dimension support embedding by pre-trained backbone. Each element of
support embedding is stored in the ACAM cell, while query embedding is placed on the search line. Match line outputs 4-dimensional vector scoring similarity
between query embedding and 4 support embeddings, with query label given as label of support sample with largest similarity score.

(B-E) Omniglot dataset partitioned into n-way, k-shot episodes. A 4-layer convolutional neural network, called the backbone, outputs 64-dimensional embedding
for each sample. Each layer in the backbone has a 3 x 3 kernel with 64 filters, batch normalization, ReLU non-linearity, and a 2 x 2 max-pooling. Backbone is
trained on 1,200 characters, while inference occurs on the remaining 423 characters.

(B) Optimal match window size is shown to be 0.4 V in order to maximize inference accuracy.

(C) Inference accuracy remains approximately constant at 90%-95% for match window size ranging between 0.2 and 0.7 V for window variation up to 0.1 V.
(D) Benchmark of inference accuracy shows ACAM outperforms TCAM for 5-way and 20-way tasks and remains comparable to GPU. TCAM+LSH data were
sourced from Ni et al."" which use a 28-nm CMOS node. But ACAM is a notably denser memory architecture, requiring only 64 cells per 64-dimensional
embedding, while TCAM needs on the order of 128 or 256 cells.

(E) Amount of time in seconds to perform inference on ACAM (45-nm node) for one query sample shown to be more than 2 orders of magnitude less than both CPU

(14-nm node) and GPU (12-nm node).

memory storage while maintaining high-accuracy results. Spe-
cifically, binary/ternary representations require the use of local-
ity-sensitive binary codes. It is shown that binary classification
on 14,871 images of dimension 320 taken from the LabelMe
database result in a diverse set of precision-recall curves when
locality-sensitive binary codes are used to embed the test data
with various code sizes.*® Precision represents the fraction of
positive predictions that actually belong to the positive class,
while recall is the fraction of positive predictions out of all positive
instances in the dataset. The goal is to maximize both. For a
given recall value of 0.8, the precision varies between 0.4,
0.65, and 0.8 for 256-, 512-, and 1,024-bit codes, respectively.
It is observed that larger bit codes (e.g., 512 or 1,024) are more
suitable for real-world applications. Within matching networks,
the backbone embeds 784-dimension Omniglot data into 64 di-
mensions. If 512- or 1,024-bit codes are strongly suggested for
320-dimensional data, it is reasonable to expect at least 128-
or 256-bit codes for the Omniglot dataset, which relates to an
nx128 or nx256 TCAM array. In sharp contrast, ACAM requires
only an nx64 array, meaning ACAM is a 3x denser memory ar-
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chitecture than TCAM. A detailed explanation for the density
enhancement has been presented in Note S4 and Figure S3.
Lastly, the performance of matching networks with ACAM wiill
be benchmarked with respect to accuracy and runtime. After
executing inference on 423 characters, Figure 3D shows the ac-
curacy results of ACAM (45-nm node) are on average 5% higher
than those of TCAM (28-nm node) and comparable to those of
the GPU (NVIDIA Tesla T4, 12-nm node), where TCAM+LSH
data were sourced from Niet al.”’ Additionally, the time incurred
for a single inference operation in ACAM is significantly less than
both CPU (Intel Xeon Platinum, 14-nm node) and GPU by more
than 2 orders of magnitude, as shown in Figure 3E. To summa-
rize, ACAM represents an efficient alternative to CPU, GPU,
and TCAM for similarity search in few-shot learning that not
only outperforms TCAM in its inference results (while remaining
comparable to the GPU) but does so with a denser memory ar-
chitecture that enables faster, parallel computation. It is further
worth noting that the above is a conservative estimate since
the ACAM is computed on a 45-nm Si CMOS mode, with Si
FeFETs currently available in the more advanced 28-nm
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technology node, while the CPU and GPU results follows from
14-nm to 12-nm nodes, respectfully.’"?® Further details on the
software simulation can be found in Note S5.

ACAM for kernel regression

We next demonstrate how to use ACAM for inference in a kernel
regression machine.*’ Given two inputs x and x/, which are
d-dimensional vectors, a kernel is a function K(x,x’) that can
be understood as an estimate of the similarity between the two
inputs. Such a function can be used to make predictions as fol-
lows. Given a training dataset Dy, = {(Xf,yi)},'-i 1, Where x; are the
inputs and y;e R are the outputs, we compute the “Gram matrix”
Klij] = K(x;,x;) whose entries are the pairwise similarities be-
tween inputs in the training set. Predictions on a new test
datum x are computed as y(x) = S, a;K(x;,X), where @ =
(K+ml,,,)~ "y is the vector of coefficients that are used to weigh
the true targets of the m samples, denoted by y, to make the pre-
dictions on the test datum x. Targets of input samples that are
more similar to the test datum are up-weighted in the above
summation. Note that the parameter 1 is known as the ridge
regression constant, allowing us to regularize the fitting proced-
ure in situations when there are few samples in the training data-
set. Observe that it biases the diagonal of the Gram matrix K and
effectively makes each input sample play a role in making predic-
tions on the test datum. Mathematical details of this procedure
are provided in Note S6.

There are many kernels K(x,x) that can be used in this pro-
cedure. One popular choice involves a radial basis function
kernel K(x, X') = exp(— |x — x’||§ / 2v?), which computes
the probability of the test datum being drawn from a Gaussian
distribution centered at one of the training data points, as seen
in Figure 4Al. Another version consists of the Laplace kernel
K(x,x') = exp(— c||x — x'||). Constants like y and c in these ex-
pressions are considered hyperparameters and are chosen us-
ing cross-validation. Computing the prediction in a kernel
regression machine involves computing the summation above,
and even if coefficients @ are computed beforehand, it is neces-
sary to compute the m terms K (x;, x) for each new test datum x.
Further, all the m training samples must be stored in memory.

ACAM offers a different way to implement kernel regression.
Observe that the current-voltage characteristic curve in an
ACAM computes a kernel. The transfer curves shown in Fig-
ure 2C can be approximately described by the expression
exp(|Ve — ,u|2/ 2+?), where Vs is the applied gate voltage,
and u is the mean of the match window. This expression
can be equivalently written using the previous kernel notation
as exp(— |x — x’\z/ 24?). Since this expression looks like
a parabola, a “surrogate” Gaussian kernel is achieved
by the following constant-time negation, summation, and
maximization operations, yielding KA®M(x, x') = max{0,
2 —exp(jx — x'|?/2y2)}. See Figure S4A for an overlaid plot of
the Gaussian kernel and surrogate Gaussian kernel. This surro-
gate kernel is what ACAM outputs on the ML for some stored
vector x and query vector x'.

It will be shown that ACAM enables rapid, 1-step inference. All
that is required is for a test data point to be placed on the SLs of
the ACAM. The surrogate Gaussian kernel can be computed in
O(1) time. Figure 4Aii shows how the multiplication with @ can
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also be designed to occur within the same step by placing q;
on the drain of both the NMOS FeFET and PMOS FeFET in the
ith ACAM cell foralli = 1,....m, which linearly scales each output
K(x;,x') by a;. Since the ML sums input currents, the ML output
becomes Y7, a;iK(x;,X'), the predicted label f(x’) under kernel
regression. Hence, ACAM is able to achieve 1-step inference for
kernel regression.

To evaluate the ability of ACAM to perform such inference,
1-dimensional synthetic data were generated by randomly sam-
pling f(x) = sin(5x), known as the ground-truth function, and
adding noise randomly sampled from a normal distribution with
mean p= 0 and standard deviation ¢ = 0.2. This process is
then used to generate both the training and test data. Like in
the case of few-shot learning, the ACAM-based kernel regres-
sion model exhibits robustness to noise. As seen in Figure 4B,
even with a window variation of up to 0.3 V, the mean squared
error (MSE) of the fitted function only changes on the order of
10-3 to 10~2. Furthermore, Figure 4B shows that the reduction
in MSE saturates at 4 bits, after which additional bits do not
lead to diminished inference error. Since ACAM operates at
about 4 bits per cell, Figure 4B suggests that neither quantization
nor noise significantly degrade the performance of ACAM-based
inference.

Benchmarking of the time required to complete inference on a
single test data point shows that ACAM (45-nm node), performs
3 orders of magnitude faster than CPU and GPU (12-nm nodes)
similar to the above demonstration of few-shot learning. See the
supplemental information for a justification on why CPU and
GPU have been placed in the same column. Furthermore, Fig-
ure 4C shows that both CPU and GPU perform on the order of
64-64 = 4,096 floating-point operations (FLOPSs) during infer-
ence, while ACAM requires only 1.

Figures 4Di-4Diii illustrate the predictions (red) made by
ACAM on the scattered test data points (blue). The quality of
the fit can be observed by the closeness between the ground-
truth function (black) and the ACAM predictions. Note that the
surrogate Gaussian kernel has a parameter y that determines
the width of the function and, by extension, the slope of the cur-
rent-voltage plot. From Figure 2C, this value can be approxi-
mated as y = 0.1 V. Figures 4Di and 4Diii show the test predic-
tions for y>0.1 V, y=0.1 V, and y<0.1 V, corresponding to
underfitting, optimal, and overfitting conditions, respectively,
and Figures S4B and S4C show how training and test data can
be scaled in order to ensure that y= 0.1 V remains the optimal
condition. To further evaluate the impact of noise, we determine
the predictions outputted by ACAM under noisy conditions
Ynoise- After that, we compute the residuals Yneise = Yground - truths
which quantify how close the predicted labels are to the
ground-truth labels and plot them as a histogram in
Figures 4Div—4Dvi. As expected, the histogram traces out a
Gaussian distribution with mean = 0 for a window variation of
0.01 V, meaning the vast majority of predicted labels were the
same as the ground-truth labels (shown in Figure 4Div). For a
window variation of 0.08 V, it can be seen that the fitted Gaussian
is no longer quite centered at mean u = 0, while the variance has
increased (shown in Figure 4Dv). The trend in the means and var-
iances of Gaussian functions fitted to the residuals as noise in-
creases can be seen in Figure 4Cvi. Though the variances
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Figure 4. Inference for kernel regression model on analog content-addressable-memory (ACAM)

(A) () Fitting kernel regression model can be thought of as summing a set of Gaussian functions, with mean centered at each data point, to get a function that
reflects all the given data. (i) Circuit that computes the predicted label y(x) = > 4 @KACAM (x;, x) during the inference phase in 1 step.

(B) Mean squared error (MSE) remains less than 0.03 for 4-bit quantization, approximately what ACAM operates at, with window variation up to 0.3 V.

(C) Benchmark of CPU and GPU (12-nm node) versus ACAM (45-nm node) in terms of time in seconds and number of floating-point operations (FLOPSs) needed to
perform inference on a single test datum, with ACAM again outperforming its counterparts by about 3 orders of magnitude.

(D) (i) Underfitting exhibited by ACAM predictions (red) on test data (blue) with too large of a kernel parameter y = 0.4 V. (ii) Optimal fitting exhibited by ACAM
predictions (red) on test data (blue) with just right of a kernel parameter y = 0.1V, the typical width of ACAM surrogate Gaussian kernel. (jii) Overfitting exhibited by
ACAM predictions (red) on test data (blue) with too small of a kernel parameter y = 0.02 V. (iv) Histogram of residual Yngise — Yground - truth fOr small amount of
Gaussian noise (u = 0,0 = 0.01) added to ACAM cells. (v) Histogram of residual Ynoise = Yground - truth fOr moderate amount of Gaussian noise (u = 0,0 = 0.08)
added to ACAM cells. (vi) Trend of means and variances of Gaussian fit to residual histogram as noise increases, showing that ACAM boasts robustness to noise,
as residual means remains close to u = 0.
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increase quadratically, the means remain close to u = 0, which
further confirms that ACAM remains tolerant to noise in infer-
ence. Note S7 and Figure S5 once again confirm that ACAM
can tolerate cycle-to-cycle variation of up to 10% of the match
window size for inference on a kernel regression task, with
data sampled from the sine function. To recapitulate, this section
has presented a 1-step inference procedure for kernel regres-
sion that leverages the strengths of ACAM in computing a (surro-
gate) Gaussian kernel. This result extends previous work of CIM
hardware for linear regression to non-linear regression and
opens the door to future applications of ACAM in other attention-
or kernel-based learning.*?

Conclusion

In summary, we demonstrate an ACAM CIM architecture based
on complementary FeFETs. We experimentally validate the
operation and function of individual ACAM cells on HZO Si com-
plementary FeFET devices and then use simulation tools to
compare ACAM performance in similarity search and kernel
regression. We demonstrate that our ACAM architecture at
45-nm CMOS node can outperform CPU and GPU at 12-nm
CMOS node in similarity search by 2 orders of magnitude and
by 3 in kernel regression. Given these advantages of our
ACAM CIM over CPU and GPU, the question becomes what
kind of CIM-based pattern matching architecture to use. Among
CAMs, the choice is between digital TCAM or our presented
ACAM. TCAM requires extensive ADC and DAC operations
that significantly reduce both power and speed, providing a
limited advantage in pattern matching performance over algo-
rithms on CPU and GPU. As a result, the proposed ACAM in
this work represents a strong candidate for accelerating pattern
matching in machine learning. In the future, CAM-based pattern
matching architectures could be mapped to other machine
learning or robotics tasks, including visual scene understanding,
kernel SVMs, or even attention in large language models, like
transformers.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to the lead
contact, Deep Jariwala (dmj@seas.upenn.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The data and code that support the conclusions of this study are also available
from the lead contacts upon reasonable request.

Device fabrication

NMOS FeFETs and PMOS FeFETs were fabricated in the Rochester Institute of
Technology (RIT) student-run fabrication facility on 1-10 Q- cm base resistivity
silicon wafers using the RIT CMOS process consisting of LOCOS isolated
field-effect transistors with ion-implanted source and drain regions. Custom
masks were designed using Mentor Graphics Pyxis and fabricated using the
Heidelberg DWL 66+ laser writer. Photolithography was performed using an
i-line ASML PAS 5500/200 stepper. Ferroelectric gate dielectric and gate
metal stack deposition was performed at Namlab, Germany, with 11-nm-thick
Hfo.52r0.502 (HZO) films deposited via atomic layer deposition by alternating
cycles of HfO, and ZrO, using HfCp(NMey,); and ZrCp(NMe,); as metal-
organic precursors and ozone as an oxidant on a native SiO, layer on Si. A
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TiN top electrode was deposited via sputtering under ultra-high vacuum.
Both films were annealed at 500°C for 20 s in N,. Measurements on a metal-
ferroelectric-metal capacitor structure fabricated in the same deposition run
as the FeFET devices showed remanent polarization (P,) values of about
20 uC/cm?.

Device characterization and simulation

Current-voltage measurements were performed in air at ambient temperature
using a Keithley 4200A semiconductor characterization system. The ACAM
array inference is simulated using SPICE simulation. This simulation fully incor-
porates the ACAM array, under the assumption that the peripheral circuits, in-
clusive of the ML sense amplifier (see Figure S2), are grounded in 45-nm silicon
CMOS technology. In terms of inference applications, the focus is solely on
benchmarking the search operation. Given that inference does not include a
write operation, the characteristics of the ACAM cell are simulated using pa-
rameters from 45-nm silicon CMOS technology transistors.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/}.
device.2023.100218.
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