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SUMMARY

Despite recent advancements in non-volatile memory (NVM) for matrix multiplication, other critical data-
intensive operations like parallel search remain largely overlooked. Current parallel search architectures,
namely content-addressable memory (CAM), often use binary, which restricts density and functionality.
We present an analog CAM (ACAM) cell, built on two complementary ferroelectric field-effect transistors
(FeFETs), that performs parallel search in the analog domain with over 40 distinct match windows. ACAM
not only offers a projected 33 denser memory architecture than ternary CAM (TCAM) but also yields a 5%
increase in inference accuracy on similarity search for few-shot learning simulated with the Omniglot dataset,
with an estimated speedup per similarity search of more than 1003 when compared to a central processing
unit (CPU) and graphics processing unit (GPU) on scaled silicon-based complementary metal-oxide semi-
conductor (CMOS) nodes. Furthermore, we demonstrate one-step inference on a kernel regression model
in ACAM, with simulation results indicating 1,0003 faster inference than a CPU and GPU.

INTRODUCTION

In the rapidly evolving field of artificial intelligence (AI), process-

ing vast amounts of data efficiently is critical. Computing archi-

tectures that incorporate in-memory processing are gaining trac-

tion, as they offer to potentially reduce power consumption

and cost.1 In particular, compute-in-memory (CIM) aims to

reduce the energy-intensive data movement limiting traditional

computing architectures by integrating memory and processing

within the same physical location.2,3 Recent studies have shown

progress in employing non-volatile memory (NVM) devices to

accelerate matrix multiplication within memory arrays, in turn

aiding execution of complex AI tasks.4–7 However, expanding

these CIM architectures to accommodate other operations

intrinsic to AI, notably parallel search, presents a considerable

challenge.6–8 We define parallel search to be a single-step oper-

ation of comparing a query vector to an array ofm stored vectors

and returning a degree of match between the query and each

stored vector.

Content-addressable memory (CAM) is well-suited to execute

operations that match an input datum to a collection of data pat-

terns stored in the CAMarray.9 If this operation occurs in parallel,

THE BIGGER PICTURE Compute-in-memory (CIM) integrates memory and processing units into the same
physical location, reducing the time and energy overhead of computing systems to address the increasing
demands of artificial intelligence (AI). In particular, AI applications of CIMbeyondmatrixmultiplication, such
as parallel search, remain relatively unexplored. Analog content-addressable memory (ACAM) rapidly exe-
cutes high-accuracy similarity comparisons between inputs and a large number of stored data entries, an
operation that lies at the core of large language models, like the Generative Pre-trained Transformer 4
(GPT-4) and Contrastive Language-Image Pre-training (CLIP). With the number of parameters within these
models reaching the order of trillions, building efficient in-memory parallel search is more important than
ever, offering to open avenues for more comprehensive data processing and richer AI applications ranging
from self-attention in transformers to classifier layers for few-shot learning.
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then we can obtain high-throughput comparisons with minimal

latency, a distinct advantage in applications such as network

routing, associative computing, and databasemanagement sys-

tems.10–12 In standard silicon-based complementary metal-ox-

ide semiconductor (CMOS) architectures, the construction of a

single CAM cell requires approximately 16 transistors, typically

configured with static random-access memory (SRAM), leading

to significant power consumption and relatively low memory

density.13 NVM has emerged as a promising substitute within

CAM, given its reconfigurable functionality, as well as its superior

area and energy efficiency. There have already been successful

demonstrations of ternary CAM (TCAM) implemented using

various NVM technologies.14–18 However, most CAM designs

based on NVM employ designs akin to traditional SRAM, where

the memory device is restricted to encoding binary states exclu-

sively and is used for identifying exact matches or mismatches.

Given that CAM designs are primarily in the binary domain, cur-

rent architectures frequently require extensive analog-to-digital

conversion (ADC) and digital-to-analog conversion (DAC). ADC

and DAC serve as pivotal links between digital memory and

analog components (e.g., sensors and actuators), translating

various inputs into a form that CAM can handle. The consistent

need for conversion significantly diminishes both power and

speed, a particularly non-ideal energy overhead in the context

of edge computing.19More recently, analog CAM (ACAM), which

leverages programmable analog conductances within NVM, has

been proposed.20–22 As of now, the hardware development for

ACAM poses substantial difficulties and has hence rarely been

reported. A recently proposed ACAM cell based on resistive

RAM (ReRAM) demands 6 silicon CMOS transistors, resulting

in low area efficiency, high parasitic components, and elevated

static power consumption.21 Another proposed ACAM with

ferroelectric field-effect transistors (FeFETs) is a theoretical

design that requires two search lines (SLs) and a complex analog

converter circuit to perform the search signal linear reversion

function.22

In this work, we report an experimental demonstration of a

non-volatile and compact ACAM cell based on two complemen-

tary FeFETs. Our ACAM cell utilizes the adjustable threshold

voltages of FeFET devices to store over 40 distinct windows

within each cell and examines an analog input against this stored

range to identify amatch or amismatch. This cell neither requires

additional transistors nor an external analog converter circuit—it

only requires a single SL. Two key advantages arise from this

design: (1) parallel search is conducted where the data resides,

eliminating the power and latency costs of data transportation

between separate computing and memory units; (2) computa-

tion and ADC are merged, offering higher memory bit densities

and reduced power usage for a broader set of applications.

We go on to evaluate the performance of our ACAM design for

similarity search in a few-shot learning application, using match-

ing networks for inference on the Omniglot dataset and bench-

marking both the accuracy and runtime of ACAM against a cen-

tral processing unit (CPU), graphics processing unit (GPU), and

TCAM. Additionally, we can interpret the match operation in

ACAMas a kernel and hence deploy ACAM for kernel regression,

a model for fitting non-linear functions. Kernels in machine

learning are used to model the similarity between two inputs

and form the basis for awide variety of models, including support

vector machines (SVMs), kernel regression and classification

models, and, most recently, neural tangent kernels for deep

learning. Such models typically require intensive computation

of pairwise similarity between a test data point and each training

data point during inference that could benefit greatly from paral-

lel search.

RESULTS AND DISCUSSION

ACAM cell design and measurement
Different from conventional CAM architectures in which the dig-

ital query and keys are compared for identifying exact matches

or mismatches (shown in Figure 1A), Figures 1B and 1C illustrate

the concept and design of the proposed ACAM, where analog

voltage values are supplied as the query to the ACAM and

compared against the analog ranges encoded by adjustable

threshold voltages of FeFET devices. In this work, the cell struc-

ture of ACAM can be significantly simplified by using just two

complementary FeFETs (as shown in Figure 1C), in which the

n-channel metal-oxide semiconductor (NMOS) FeFET is colored

in red, and the p-channel metal-oxide semiconductor (PMOS)

FeFET is colored in blue. The analog input search data get con-

verted into voltage amplitudes that are applied along the SL,

while the stored analog range is set by the programmed

threshold voltages of the cell’s two complementary FeFETs.

The search operation begins by pre-charging each match line

(ML) to a high voltage level. The ML remains high (indicating a

match) only when the discharge currents at all ACAM channels

are minimal. That is, all attached CAM cells of a row match to

the input data. Otherwise, the significant discharge currents of

any ACAM channels result in a voltage drop (signifying a

mismatch) on the ML. FeFETs work by utilizing positive or nega-

tive gate pulses to direct the ferroelectric polarization toward the

channel or gate metal, setting the FeFET to a low or high

threshold voltage state, respectively. As opposed to other

NVM devices that demand substantial DC conduction current

for memory write, FeFETs excel in write energy efficiency, as

they solely rely on the electric field to switch the polarization.

The devices used in this work are FeFETswith hafnium zirconium

oxide (HZO) as the ferroelectric gate dielectric integrated on

traditional silicon (Si) CMOS transistor technology (see experi-

mental procedures for more details).23 As a result, these devices

can be generalized to any complementary FeFET technology.

We will now discuss how the complementary FeFETs in the

ACAM cell store analog match windows to compare against

the input search value. To begin, the ML is connected to

NMOS FeFET and PMOS FeFET in parallel. Further, theML stays

high for a match outcome when the SL voltage is lower than the

threshold voltage of the NMOS FeFET and higher than the

threshold voltage of the PMOS FeFET, thus maintaining both

FeFET channels in a cutoff state. As shown in Figure 1D, the up-

per and lower bounds of each match window can be pro-

grammed by the threshold voltages of the NMOS FeFET and

PMOS FeFET, respectively. When the SL voltage (VSL) exceeds

the threshold voltage of the NMOS FeFET, it gets turned on.

This leads to a substantial discharge current between the ML

and ground (GND), primarily through the NMOS FeFET, which
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in turn causes a voltage drop in theML that produces amismatch

outcome. On the other hand, when VSL is below the threshold

voltage of the PMOS FeFET, it is turned on, leading to a substan-

tial discharge current between the ML and GND, predominantly

across the PMOS FeFET. This results in a voltage drop in theML,

also producing a mismatch outcome. When the SL voltage re-

sides within the threshold voltages of both NMOS FeFETs and

PMOS FeFETs, both types of FeFETs are in a cutoff state.

Consequently, no discharging current will traverse through either

of the FeFETs between the ML and GND, and the ML remains at

a high level, denoting a match result. In addition, the threshold

voltage of both NMOS FeFETs and PMOS FeFETs can be pro-

grammed using electrical pulses, as shown in Figure 1D. This al-

lows for precise and efficient tuning of the FeFETs’ characteris-

tics, adding an extra layer of flexibility to the ACAM cell and

enabling it to store continuous intervals as a match window.

In order to substantiate our circuit design and delve deeper

into the concept of complementary FeFET-based ACAM, we

perform experimental measurements of ACAM circuit operation

on HZO Si CMOS FeFET chips (see Notes S1 and S2, Figure S1).

We first present the programmable threshold voltages in both

NMOS FeFETs and PMOS FeFETs. These threshold voltages

serve to define the upper and lower bounds of the ACAM match

window, respectively. We note that we achieve these program-

mable threshold voltages through partial polarization switching,

a process that can be implemented by biasing short electrical

pulses at the gate electrode of the FeFETs.24 Figure 2A illustrates

the gradual programming of the ID-VG transfer curve in the

NMOS FeFET using a series of stepwise gate voltage pulsemod-

ulations, ranging from 3 to 4 V. This gradual programming en-

ables the NMOS FeFET to present 10 unique transfer curves,

each exhibiting a high level of linearity. Figure 2B demonstrates

Figure 1. Addressable content-addressable memory (CAM) concept and design

(A) Schematic diagram of digital CAM architectures in which digital query and keys are compared for identifying exact matches or mismatches. Considering that

current CAM designs primarily operate in the digital domain, their bit-density and functionality are limited. These architectures often rely heavily on ADC op-

erations to serve as critical interfaces between digital memory and analog components, which significantly reduces both power and speed, a considerable energy

overhead, especially in the context of edge computing.

(B) Schematic diagram of analog CAM architecture where analog query is compared with analog intervals, aiming to identify whether it falls within (match) or

outside of these intervals (mismatch).

(C) We substantially simplify ACAM cell structure by using just two complementary FeFETs, where the NMOS FeFET is represented in red and PMOS FeFET in

blue. Analog input search data are converted into voltage amplitudes and applied along the search line (SL), while stored analog range is determined by the

programmed threshold voltages of the two complementary FeFETs within the cell. Similarity between query and keys output on the match line (ML) is shown.

(D) Upper and lower limit of each match window can be programmed by the threshold voltages of NMOS FeFET and PMOS FeFET, respectively. Furthermore,

threshold voltage of both NMOSFeFETs and PMOSFeFETs can be adjusted using electrical pulses. This offers an additional level of adaptability to the ACAMcell

by providing precise control over FeFETs’ properties, thereby enabling the storage of continuous intervals as a match window (for more details, refer to the

supplemental information).
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that, akin to the NMOS FeFET, the PMOS FeFET is also capable

of undergoing analog threshold voltage programming induced

by electrical pulses. Positive pulses will make the threshold

voltage more positive for both NMOS FeFETs and PMOS

FeFETs, as the threshold voltage depends on the absolute value

of the amount of polarization in the ferroelectric dielectric. It is

noteworthy that the application of a positive pulse in both

NMOS FeFETs and PMOS FeFETs elevates their threshold volt-

ages. This phenomenon occurs because these threshold volt-

ages hinge upon the absolute quantity of polarization in the ferro-

electric dielectric in both device types.

Subsequently, we perform a proof-of-concept measurement

of the performance of the designed ACAM cell. We first define

a match window by programming the threshold voltages of the

NMOS FeFETs and PMOS FeFETs via electrical pulses over

the gate terminal. Then, we measured the ML discharge current

with a sweeping SL voltage. As shown in Figure 2C, for each

fixed match window, the ML current remains low near the center

(signifying a match) and drastically surges as the SL voltage de-

viates from the window center (signifying a mismatch). More-

over, we observe that by applying voltage pulses, we are able

to vary the central position of the match window, thereby

creating multiple match windows at different positions. As de-

picted in Figure 2D, not only is the input in the analog domain,

but the location of the ACAM match window can also be analo-

gously programmed, offering more than 40 distinct match win-

dows. This demonstrates the successful operation of the

FeFETs in an ACAM cell. As illustrated in Figure 2E, stable reten-

tion without noticeable degradation is exhibited for 9 distinct

stored ranges, which suggests that ACAM is not only non-vola-

tile but does not require static power for range retention or

require frequent refreshing once programmed. For the fast

data operations discussed in this paper, a retention period of

hundreds of seconds ismore than sufficient.4,11,25 It is also worth

noting that much high retention has been observed in our prior

works on similar HZOSi CMOS FeFETs.26 In order to evaluate la-

tency of the search operation in ACAM, we carry out extensive

circuit-level analysis of a 64-row, 64-column ACAM array, built

upon 45-nm Si CMOS technology and inclusive of peripheral cir-

cuits (see Note S3, Figure S2). Figure 2F presents the simulated

Figure 2. Experimental demonstration of analog content-addressable memory (ACAM) performance

(A) Analog programming of the ID-VG transfer curve in NMOS FeFET via stepwise gate voltage pulses of  1 ms, ranging between 3 and 4 V. NMOS FeFET

successively yields 10 distinct transfer curves due to this graduated programming.

(B) PMOS FeFET, like its NMOS FeFET counterpart, is also shown to be capable of analog threshold voltage programming through electrical pulses. It is important

to note that threshold voltages of both NMOS FeFETs and PMOS FeFETs are influenced in the same manner by applied pulses, as these voltages are contingent

on the absolute value of polarization within the ferroelectric dielectric of each device.

(C) Current passing through ML is measured when sweeping voltage is applied on SL. By applying different voltage pulses, the central position of the match

window can be adjusted, hence generating multiple match windows at various positions.

(D) Position of ACAM match window can be analogously adjusted, thus providing over 40 distinct match windows.

(E) Demonstration of 9 stored ranges exhibiting stable retention without significant degradation indicates that ACAM is non-volatile.

(F) SimulatedML discharge behavior during search operation, specifically for all-match and 1-bit-mismatch states, in a 64-row, 64-column ACAMarray on 45-nm

Si CMOS technology. Simulations indicate notable distinction, with an estimated ML delay of 0.136 ns.
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ML discharge patterns during a worst-case search operation

(considering all-match and 1-bit-mismatch states), clearly

demonstrating a significant difference, with the delay in the ML

quantified as 0.136 ns. Similar to previous CAM literature, a com-

parison analysis is provided in Note S8 and Table S1 showing

area/bit, search delay, and search energy of our proposed

ACAM alongside other designs.27,28

ACAM for similarity search
An ACAM cell can store real-valued intervals, as opposed to bits

in a binary or ternary memory cell, giving us a new way to search

and retrieve directly in the analog domain without converting sig-

nals into their digital counterparts. Similarity search is a key

problem in machine learning, forming the building block for

many applications, such as content retrieval, where a user seeks

to recover sentences, audio files, or images that are similar to a

given query. Machine learning models, including k-nearest

neighbor classifiers, SVMs, and kernel machines, have similarity

search as a key component of their inference mechanism. A

growing body of existing work has therefore been devoted to

accelerating these computations.11,29–31 We show that ACAM

cells can be used to store data in their native, real-valued format.

Furthermore, compact arrays of such cells can perform similarity

searches for a user query at a very low latency, which we will

demonstrate for inference in few-shot learning.

As image classification systems begin to tackle more and

more classes, the cost of annotating a massive number of im-

ages, as well as the difficulty of procuring images of rare

categories, increases. This challenge has fueled interest in

few-shot learning, a type of learning where only a few labeled

samples per class are available for training. The key idea behind

current few-shot learning methods is to train a model to distin-

guish inputs, say images of different categories, from each other.

This strategy is different from classical supervised learning,

which seeks to predict the category of an input image. Features

learned in such models using large datasets, such as the

ImageNet-21K dataset (14.2million images from 21,814 different

categories), can be fruitfully used to distinguish between images

of entirely new categories using very few new images (i.e., ‘‘few-

shot’’).32 One of the key steps in doing so involves calculating the

similarities between the features of few-shot labeled data and

the test data, as suggested by an algorithm called ‘‘matching

networks.’’33 For k-shot learning across n different classes (typi-

cally, k ranges from 1 to 10, and n can range anywhere from 5 to

100), the centroid of the features of the k images of each class is

computed. Given a test image (also called the ‘‘query’’), the sim-

ilarity (e.g., Hamming distance, inner product) of the features of

the test image, which could be from any of the n classes, is

computed to find the centroid closest to it. See the schematic

in Figure 3A for an example where the unknown query sample

(i.e., a Dachshund breed) should be matched to the Yellow Lab-

rador breed, as they are both dogs, in the 4-way, 1-shot support

set containing a dog, cat, pig, and fish.

Similarity search in few-shot learning can bemapped to ACAM

as follows. In software, the support embeddings are stored in an

array of size n$k3 64, while the query sample is represented as a

64-dimensional array. Similarly, an (n$k3 64Þ-dimensional

ACAM array is used to store the features of few-shot labeled im-

ages embeddings, where the ði;jÞ th element corresponds to the j

th element of i th support embedding. Programming of the sup-

port embeddings into ACAM involves selecting a window size,

typically held constant across all ACAM cells, and then posi-

tioning the window such that the ði;jÞ th element lies at the center

of its window for all i = 1; :::;n$k and j = 1; :::;64. Recall that the

central position of the match window can be adjusted by gradu-

ally applying voltage pulses to the NMOS FeFET or PMOS

FeFET, pictured in each ACAM cell of the Figure 3A circuit dia-

gram. On the other hand, the query embedding is programmed

onto the SLs, shown at the top of each column in the Figure 3A

circuit diagram, such that the j th element of the query embed-

ding lies on the j th SL of the n$k364 ACAM array for all j = 1;

:::;64. Binary and ternary CAM compute conventional Hamming

distance, which checks for exact match between bits and can be

written asSdigitalðsi;qÞ =
P64

j = 11ðsi½j = q½jÞ, where 1ð$Þ is the in-
dicator function. In contrast, ACAM computes a ‘‘generalized’’

Hamming distance within the analog domain, which can be ex-

pressed as Sanalogðsi; qÞ =
P64

j = 11ðq½j ˛½ai;j; bi;jÞ, where ai;j
and bi;j are the endpoints of the match window in the ACAM

cell corresponding to the j th element of i th support embedding.

To reiterate, the main advantage of ACAM over binary and

ternary CAM is that it computes similarity directly in the analog

domain via generalized Hamming distance.

Selection of the matching window size and impact of added

noise within ACAM will now be discussed in the context of sim-

ilarity search. Figures 3B and 3C are benchmarked with a 5-way,

5-shot inference task on the Omniglot dataset, which contains

1,623 characters from 50 different alphabets and is down-

sampled such that each image is 28 3 28. Further, all support

embeddings stored in ACAM are quantized to lie within the range

[–0.3, 2.0] V to align with the range of operation shown in

Figures 2A–2C, falling within the memory window of the current

FeFET device. When programming the support embeddings into

ACAM, the first step is to select a window size. A match window

range of within [0.0, 1.0] V is sufficiently expressive to achieve the

highest inference accuracy, which occurs at a match window

size of 0.4 V as seen in Figure 3B. While it is not possible to avoid

noise within CAM, it is nonetheless possible to show that ACAM

is robust to any perturbations in its match window when used for

similarity search in few-shot learning. The impact of variation in

the FeFET device/ACAM on the accuracy of similarity search

task should be carefully examined. The predominant variation

in FeFET devices originates from phase and grain changes in

ferroelectric HfO2.
34–38 It is possible to attain a maximum stan-

dard deviation of less than 100 mV for the discrepancy between

the actual and target Vth in the reported FeFET devices.39 Fig-

ure 3C shows the result of noise sampled from a normal distribu-

tion withmean m= 0 and standard deviation s being added to the

match window, illustrating that a window variation of up to ± 0.1

V, which is ± 4.35% of the entire range of ACAM operation, is

tolerable without incurring a decrease in inference accuracy of

more than 10%. Additionally, Note S7 and Figure S5 show that

ACAM is robust to cycle-to-cycle variation of up to 10% of the

match window size for inference on a 20-way, 1-shot task.

It is important to compare the density of ACAM versus TCAM.

Analog representations in ACAM are far more expressive than

the digital representations in TCAM, which in turn yields denser
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memory storage while maintaining high-accuracy results. Spe-

cifically, binary/ternary representations require the use of local-

ity-sensitive binary codes. It is shown that binary classification

on 14,871 images of dimension 320 taken from the LabelMe

database result in a diverse set of precision-recall curves when

locality-sensitive binary codes are used to embed the test data

with various code sizes.40 Precision represents the fraction of

positive predictions that actually belong to the positive class,

while recall is the fraction of positive predictions out of all positive

instances in the dataset. The goal is to maximize both. For a

given recall value of 0.8, the precision varies between 0.4,

0.65, and 0.8 for 256-, 512-, and 1,024-bit codes, respectively.

It is observed that larger bit codes (e.g., 512 or 1,024) are more

suitable for real-world applications. Within matching networks,

the backbone embeds 784-dimension Omniglot data into 64 di-

mensions. If 512- or 1,024-bit codes are strongly suggested for

320-dimensional data, it is reasonable to expect at least 128-

or 256-bit codes for the Omniglot dataset, which relates to an

n3128 or n3256 TCAM array. In sharp contrast, ACAM requires

only an n364 array, meaning ACAM is a 33 denser memory ar-

chitecture than TCAM. A detailed explanation for the density

enhancement has been presented in Note S4 and Figure S3.

Lastly, the performance of matching networks with ACAM will

be benchmarked with respect to accuracy and runtime. After

executing inference on 423 characters, Figure 3D shows the ac-

curacy results of ACAM (45-nm node) are on average 5% higher

than those of TCAM (28-nm node) and comparable to those of

the GPU (NVIDIA Tesla T4, 12-nm node), where TCAM+LSH

data were sourced from Ni et al.11 Additionally, the time incurred

for a single inference operation in ACAM is significantly less than

both CPU (Intel Xeon Platinum, 14-nm node) and GPU by more

than 2 orders of magnitude, as shown in Figure 3E. To summa-

rize, ACAM represents an efficient alternative to CPU, GPU,

and TCAM for similarity search in few-shot learning that not

only outperforms TCAM in its inference results (while remaining

comparable to the GPU) but does so with a denser memory ar-

chitecture that enables faster, parallel computation. It is further

worth noting that the above is a conservative estimate since

the ACAM is computed on a 45-nm Si CMOS mode, with Si

FeFETs currently available in the more advanced 28-nm

Figure 3. Matching networks inference for few-shot learning on analog content-addressable-memory (ACAM)

(A) 4-way, 1-shot few-shot learning episode with dog, cat, fish, and pig encoded as 64-dimension support embedding by pre-trained backbone. Each element of

support embedding is stored in the ACAM cell, while query embedding is placed on the search line. Match line outputs 4-dimensional vector scoring similarity

between query embedding and 4 support embeddings, with query label given as label of support sample with largest similarity score.

(B–E) Omniglot dataset partitioned into n-way, k-shot episodes. A 4-layer convolutional neural network, called the backbone, outputs 64-dimensional embedding

for each sample. Each layer in the backbone has a 3 3 3 kernel with 64 filters, batch normalization, ReLU non-linearity, and a 2 3 2 max-pooling. Backbone is

trained on 1,200 characters, while inference occurs on the remaining 423 characters.

(B) Optimal match window size is shown to be 0.4 V in order to maximize inference accuracy.

(C) Inference accuracy remains approximately constant at 90%–95% for match window size ranging between 0.2 and 0.7 V for window variation up to 0.1 V.

(D) Benchmark of inference accuracy shows ACAM outperforms TCAM for 5-way and 20-way tasks and remains comparable to GPU. TCAM+LSH data were

sourced from Ni et al.11 which use a 28-nm CMOS node. But ACAM is a notably denser memory architecture, requiring only 64 cells per 64-dimensional

embedding, while TCAM needs on the order of 128 or 256 cells.

(E) Amount of time in seconds to perform inference on ACAM (45-nm node) for one query sample shown to bemore than 2 orders ofmagnitude less than both CPU

(14-nm node) and GPU (12-nm node).
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technology node, while the CPU and GPU results follows from

14-nm to 12-nm nodes, respectfully.11,23 Further details on the

software simulation can be found in Note S5.

ACAM for kernel regression
We next demonstrate how to use ACAM for inference in a kernel

regression machine.41 Given two inputs x and x0, which are

d-dimensional vectors, a kernel is a function Kðx;x0Þ that can

be understood as an estimate of the similarity between the two

inputs. Such a function can be used to make predictions as fol-

lows. Given a training datasetDTr = fðxi;yiÞgmi = 1, where xi are the

inputs and yi˛R are the outputs, we compute the ‘‘Grammatrix’’

K½i;j = Kðxi; xjÞ whose entries are the pairwise similarities be-

tween inputs in the training set. Predictions on a new test

datum x are computed as byðxÞ =
Pm

i = 1ba iKðxi; xÞ, where ba =

ðK+lmImÞ 1y is the vector of coefficients that are used to weigh

the true targets of them samples, denoted by y, to make the pre-

dictions on the test datum x. Targets of input samples that are

more similar to the test datum are up-weighted in the above

summation. Note that the parameter l is known as the ridge

regression constant, allowing us to regularize the fitting proced-

ure in situations when there are few samples in the training data-

set. Observe that it biases the diagonal of the GrammatrixK and

effectivelymakes each input sample play a role inmaking predic-

tions on the test datum. Mathematical details of this procedure

are provided in Note S6.

There are many kernels Kðx;x0Þ that can be used in this pro-

cedure. One popular choice involves a radial basis function

kernel Kðx; x0Þ = expð kx  x0k22 = 2g2Þ, which computes

the probability of the test datum being drawn from a Gaussian

distribution centered at one of the training data points, as seen

in Figure 4AI. Another version consists of the Laplace kernel

Kðx;x0Þ = expð ckx  x0kÞ. Constants like g and c in these ex-

pressions are considered hyperparameters and are chosen us-

ing cross-validation. Computing the prediction in a kernel

regression machine involves computing the summation above,

and even if coefficients ba are computed beforehand, it is neces-

sary to compute them terms Kðxi; xÞ for each new test datum x.

Further, all the m training samples must be stored in memory.

ACAM offers a different way to implement kernel regression.

Observe that the current-voltage characteristic curve in an

ACAM computes a kernel. The transfer curves shown in Fig-

ure 2C can be approximately described by the expression

expðjVG  mj2= 2g2Þ, where VG is the applied gate voltage,

and m is the mean of the match window. This expression

can be equivalently written using the previous kernel notation

as expð jx  x0j2= 2g2Þ. Since this expression looks like

a parabola, a ‘‘surrogate’’ Gaussian kernel is achieved

by the following constant-time negation, summation, and

maximization operations, yielding KACAMðx; x0Þ = maxf0;
2 -- expðjx  x0j2=2g2Þg. See Figure S4A for an overlaid plot of

the Gaussian kernel and surrogate Gaussian kernel. This surro-

gate kernel is what ACAM outputs on the ML for some stored

vector x and query vector x0.
It will be shown that ACAM enables rapid, 1-step inference. All

that is required is for a test data point to be placed on the SLs of

the ACAM. The surrogate Gaussian kernel can be computed in

O(1) time. Figure 4Aii shows how the multiplication with ba can

also be designed to occur within the same step by placing ba i

on the drain of both the NMOS FeFET and PMOS FeFET in the

i th ACAMcell for all i = 1;:::;m, which linearly scales each output

Kðxi; x0Þ by ba i. Since the ML sums input currents, the ML output

becomes
Pm

i = 1ba iKðxi;x0Þ, the predicted label bf ðx0Þ under kernel
regression. Hence, ACAM is able to achieve 1-step inference for

kernel regression.

To evaluate the ability of ACAM to perform such inference,

1-dimensional synthetic data were generated by randomly sam-

pling fðxÞ = sinð5xÞ, known as the ground-truth function, and

adding noise randomly sampled from a normal distribution with

mean m= 0 and standard deviation s = 0:2. This process is

then used to generate both the training and test data. Like in

the case of few-shot learning, the ACAM-based kernel regres-

sion model exhibits robustness to noise. As seen in Figure 4B,

even with a window variation of up to 0.3 V, the mean squared

error (MSE) of the fitted function only changes on the order of

10 3 to 10 2. Furthermore, Figure 4B shows that the reduction

in MSE saturates at 4 bits, after which additional bits do not

lead to diminished inference error. Since ACAM operates at

about 4 bits per cell, Figure 4B suggests that neither quantization

nor noise significantly degrade the performance of ACAM-based

inference.

Benchmarking of the time required to complete inference on a

single test data point shows that ACAM (45-nm node), performs

3 orders of magnitude faster than CPU and GPU (12-nm nodes)

similar to the above demonstration of few-shot learning. See the

supplemental information for a justification on why CPU and

GPU have been placed in the same column. Furthermore, Fig-

ure 4C shows that both CPU and GPU perform on the order of

64$64 = 4; 096 floating-point operations (FLOPs) during infer-

ence, while ACAM requires only 1.

Figures 4Di–4Diii illustrate the predictions (red) made by

ACAM on the scattered test data points (blue). The quality of

the fit can be observed by the closeness between the ground-

truth function (black) and the ACAM predictions. Note that the

surrogate Gaussian kernel has a parameter g that determines

the width of the function and, by extension, the slope of the cur-

rent-voltage plot. From Figure 2C, this value can be approxi-

mated as g= 0:1 V. Figures 4Di and 4Diii show the test predic-

tions for g> 0:1 V, g= 0:1 V, and g< 0:1 V, corresponding to

underfitting, optimal, and overfitting conditions, respectively,

and Figures S4B and S4C show how training and test data can

be scaled in order to ensure that g= 0:1 V remains the optimal

condition. To further evaluate the impact of noise, we determine

the predictions outputted by ACAM under noisy conditions

ynoise. After that, we compute the residuals ynoise -- yground truth,

which quantify how close the predicted labels are to the

ground-truth labels and plot them as a histogram in

Figures 4Div–4Dvi. As expected, the histogram traces out a

Gaussian distribution with mean m= 0 for a window variation of

0.01 V, meaning the vast majority of predicted labels were the

same as the ground-truth labels (shown in Figure 4Div). For a

window variation of 0.08 V, it can be seen that the fitted Gaussian

is no longer quite centered at mean m = 0, while the variance has

increased (shown in Figure 4Dv). The trend in themeans and var-

iances of Gaussian functions fitted to the residuals as noise in-

creases can be seen in Figure 4Cvi. Though the variances
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Figure 4. Inference for kernel regression model on analog content-addressable-memory (ACAM)
(A) (i) Fitting kernel regression model can be thought of as summing a set of Gaussian functions, with mean centered at each data point, to get a function that

reflects all the given data. (ii) Circuit that computes the predicted label byðxÞ = Pm
i = 1ba iK

ACAMðxi ; xÞ during the inference phase in 1 step.

(B) Mean squared error (MSE) remains less than 0.03 for 4-bit quantization, approximately what ACAM operates at, with window variation up to 0.3 V.

(C) Benchmark of CPU andGPU (12-nm node) versus ACAM (45-nm node) in terms of time in seconds and number of floating-point operations (FLOPs) needed to

perform inference on a single test datum, with ACAM again outperforming its counterparts by about 3 orders of magnitude.

(D) (i) Underfitting exhibited by ACAM predictions (red) on test data (blue) with too large of a kernel parameter g= 0:4 V. (ii) Optimal fitting exhibited by ACAM

predictions (red) on test data (blue) with just right of a kernel parameter g= 0:1 V, the typical width of ACAM surrogate Gaussian kernel. (iii) Overfitting exhibited by

ACAM predictions (red) on test data (blue) with too small of a kernel parameter g= 0:02 V. (iv) Histogram of residual ynoise -- yground truth for small amount of

Gaussian noise (m = 0;s = 0:01) added to ACAM cells. (v) Histogram of residual ynoise -- yground truth for moderate amount of Gaussian noise (m = 0;s = 0:08)

added to ACAM cells. (vi) Trend of means and variances of Gaussian fit to residual histogram as noise increases, showing that ACAM boasts robustness to noise,

as residual means remains close to m = 0.
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increase quadratically, the means remain close to m = 0, which

further confirms that ACAM remains tolerant to noise in infer-

ence. Note S7 and Figure S5 once again confirm that ACAM

can tolerate cycle-to-cycle variation of up to 10% of the match

window size for inference on a kernel regression task, with

data sampled from the sine function. To recapitulate, this section

has presented a 1-step inference procedure for kernel regres-

sion that leverages the strengths of ACAM in computing a (surro-

gate) Gaussian kernel. This result extends previous work of CIM

hardware for linear regression to non-linear regression and

opens the door to future applications of ACAM in other attention-

or kernel-based learning.42

Conclusion
In summary, we demonstrate an ACAM CIM architecture based

on complementary FeFETs. We experimentally validate the

operation and function of individual ACAM cells on HZO Si com-

plementary FeFET devices and then use simulation tools to

compare ACAM performance in similarity search and kernel

regression. We demonstrate that our ACAM architecture at

45-nm CMOS node can outperform CPU and GPU at 12-nm

CMOS node in similarity search by 2 orders of magnitude and

by 3 in kernel regression. Given these advantages of our

ACAM CIM over CPU and GPU, the question becomes what

kind of CIM-based pattern matching architecture to use. Among

CAMs, the choice is between digital TCAM or our presented

ACAM. TCAM requires extensive ADC and DAC operations

that significantly reduce both power and speed, providing a

limited advantage in pattern matching performance over algo-

rithms on CPU and GPU. As a result, the proposed ACAM in

this work represents a strong candidate for accelerating pattern

matching in machine learning. In the future, CAM-based pattern

matching architectures could be mapped to other machine

learning or robotics tasks, including visual scene understanding,

kernel SVMs, or even attention in large language models, like

transformers.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to the lead

contact, Deep Jariwala (dmj@seas.upenn.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The data and code that support the conclusions of this study are also available

from the lead contacts upon reasonable request.

Device fabrication

NMOSFeFETs and PMOSFeFETswere fabricated in the Rochester Institute of

Technology (RIT) student-run fabrication facility on 1–10U$ cm base resistivity

silicon wafers using the RIT CMOS process consisting of LOCOS isolated

field-effect transistors with ion-implanted source and drain regions. Custom

masks were designed using Mentor Graphics Pyxis and fabricated using the

Heidelberg DWL 66+ laser writer. Photolithography was performed using an

i-line ASML PAS 5500/200 stepper. Ferroelectric gate dielectric and gate

metal stack deposition was performed at Namlab, Germany, with 11-nm-thick

Hf0.5Zr0.5O2 (HZO) films deposited via atomic layer deposition by alternating

cycles of HfO2 and ZrO2 using HfCp(NMe2)3 and ZrCp(NMe2)3 as metal-

organic precursors and ozone as an oxidant on a native SiO2 layer on Si. A

TiN top electrode was deposited via sputtering under ultra-high vacuum.

Both films were annealed at 500C for 20 s in N2. Measurements on a metal-

ferroelectric-metal capacitor structure fabricated in the same deposition run

as the FeFET devices showed remanent polarization (Pr) values of about

20 mC/cm2.

Device characterization and simulation

Current-voltage measurements were performed in air at ambient temperature

using a Keithley 4200A semiconductor characterization system. The ACAM

array inference is simulated using SPICE simulation. This simulation fully incor-

porates the ACAM array, under the assumption that the peripheral circuits, in-

clusive of theML sense amplifier (see Figure S2), are grounded in 45-nm silicon

CMOS technology. In terms of inference applications, the focus is solely on

benchmarking the search operation. Given that inference does not include a

write operation, the characteristics of the ACAM cell are simulated using pa-

rameters from 45-nm silicon CMOS technology transistors.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

device.2023.100218.
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