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In developed countries, people spend nearly 90% of their time in buildings or during transportation. Recent research studies
demonstrated that occupant behaviors have a significant impact on building performance in relation to the indoor environment and
energy use. This paper presents the ASHRAE Global Occupant Behavior Database which aims to advance the knowledge and
understanding of realistic occupancy patterns and human-building interactions with building systems. This database includes 34 field-
measured occupant behavior datasets for both commercial and residential buildings, contributed by researchers from 15 countries and
39 institutions covering 10 different climate zones. It includes occupancy patterns, occupant behaviors, indoor and outdoor
environment measurements. The database is open source, a public website was developed for the users to interactively explore, query,
and download datasets. This paper focuses on a detailed data analysis to investigate patterns of nine occupant behavior types,
examining impacted factors such as building type, country, and climate zone. EnergyPlus simulations have been implemented based
on the occupancy profiles derived from this database, and results showed overall building electricity consumption can be reduced up
to around 27% in Summer and around 10% in Winter.

Introduction

In developed countries, people spend nearly 90% of their
time in buildings or during transportation (Fontanini et al.
2016; US EPA. 2014; World Health Organization. Regional
Office for Europe 2014). Recent research studies demon-
strated that occupant behaviors have a significant impact on
the building performance in relation to indoor environment
and energy use. Building energy use is a systematic proced-
ure comprehensively influenced by not only engineering
technologies, but also cultural concept, occupant behavior
and social equity. People spend nearly 90% of their lifetime

in buildings (Klepeis et al. 2001), which makes occupant
behavior one of the leading influences of energy consump-
tion in buildings. Indeed, occupant actions such as adjusting
a thermostat and opening/closing windows for thermal com-
fort, switching lights on/off and pulling window shadings
up/down for visual comfort, using appliances, and moving
between spaces can have a significant impact on both energy
use and occupant comfort in buildings. Depending on the
building type, climate, and degree of automation in operation
and controls, such behaviors can increase or decrease energy
use, for example, by a factor of up to three for residential
buildings (Andersen 2012), and increase energy use by up to
80% or reduce energy use by up to 50% for single-
occupancy offices (Hong and Lin 2013), while having a
41% Heating, Ventilation, and Air Conditioning (HVAC)
energy savings potential for office buildings (Sun and Hong
2017).

Many research studies over the last decade have focused
on the topic of occupant behavior. To better understand
occupant behavior in buildings, prior studies conducted
experiments to derive various mathematical models.
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Occupancy models

Zhou et al. (2023) has collected time-use survey data to
investigate the temporal changes in occupancy patterns and
explore the impact factors for behavioral change. Another
study (Fu et al. 2022) conducted national survey to study the
occupancy patterns in residential buildings. Jin et al. (2021)
developed machine learning model for building occupancy
forecasting by integrating temporal-sequential analysis with
artificial neural networks. Dobbs and Hencey (2014a, 2014b)
developed a stochastic occupancy model based on Markov
Chain analysis, using data collected over a three-month
period from a conference room. The model was then com-
bined with the building’s thermal properties and local wea-
ther predictions to simulate the impact of occupancy on
energy consumption and thermal comfort. Results showed
that significant reductions in energy consumption were pos-
sible while maintaining occupant comfort. Li and Dong
(2017) collected occupancy data from four residential houses
and used it to create an inhomogeneous Markov model for
occupancy prediction. This model outperformed other meth-
ods, achieving an average of 5% more accurate predictions.
In another study, Mahdavi and Tahmasebi (2015) obtained
high-resolution and long-term occupancy data from univer-
sity workplaces. This data was used to evaluate the perform-
ance of existing probabilistic occupancy models against an
original non-probabilistic model.

Occupant number count

A recent study (Alishahi, Ouf, and Nik-Bakht 2022) pro-
posed a method to analyze long-term building occupant
numbers based on Wi-Fi connections, and the method was
applied in a university library building to collect occupant
number data for three months. Another study (Choi et al.
2021) developed a vision-based occupancy counting method
combined with deep learning models. Wang et al. (Wang
et al. 2021) proposed a smart low-cost ventilation control
strategy utilizing occupant-density-detection algorithm, it
also balanced both infection prevention and energy effi-
ciency. Accurately detecting the number of occupants in a
room is essential for optimizing energy use and maintaining
indoor comfort. Dong et al. (2010) and Dong and Lam
(2011, 2014) deployed a complicated sensing network in a
university office building and used the collected data to
develop Gaussian Mixture Model-based Hidden Markov
Models for room-level occupant number detection. Their
models achieved an average accuracy of 83%, and
EnergyPlus simulations showed that they could lead to
energy savings of up to 18.5% while maintaining thermal
comfort. Erickson et al. (2009), Erickson, Carreira-Perpi~n�an,
and Cerpa (2011), Erickson, Carreira-Perpi~n�an, and Cerpa
(2014), and Erickson and Cerpa (2010) estimated building
occupancy using a wireless camera sensor network with an
accuracy of 80%. They constructed multivariate Gaussian
and agent-based models based on the collected data for
room usage prediction. Simulation results showed that, on
average, a 42% annual energy savings could be achieved
while meeting ASHRAE thermal comfort standards. Manna

et al. (2013) collected occupancy data from three different
office buildings and proposed an algorithm for occupancy
prediction by considering occupant behavior as an ensemble
of multiple Markov models at different time lags. Recently,
the increasing use of urban sensing, IoT, and big data in cit-
ies presents unique opportunities to gain a more profound
comprehension of occupant behavior and energy consump-
tion patterns on an urban level (Salim et al. 2020).
Researchers (Dong et al. 2019; Kang et al. 2021; Wu et al.
2020) have developed mobility-based approaches to derive
building occupancy profiles at urban scale.

Window operations

To detect building occupancy and human building interac-
tions including manual window operations, a recent study
(Tien et al. 2022) presented a vision-based deep learning
framework and tested it in a university building. Another
study (Niu et al. 2022) investigated occupant window open-
ing behavior in a hospital during summer season. The study
collected 10-minute level window operation, indoor and out-
door environmental data for three months. Verbruggen et al.
conducted a study in residential buildings with a focus on
habitual window opening behavior. Haldi and Robinson
(2009) collected seven years of continuous measurement
data and analyzed the correlation of window opening and
closing behavior with occupancy patterns, indoor tempera-
ture, and outdoor climate parameters. They proposed a
hybrid stochastic model to predict window operation behav-
iors. Schweiker, Kleber, and Wagner (2019) implemented
field sensing measurements to monitor naturally ventilated
office building window operations over a four-year period.
Shi and Zhao (2016) conducted a field study in eight natur-
ally ventilated residential apartments for 14months and built
stochastic models to represent occupants’ window operation
behaviors. Results indicated that outdoor air temperature is
the most important explanatory variable affecting occupants’
interactions with windows, among other measured parame-
ters. Yun and Steemers (2008) investigated window-opening
control by occupants in an office setting. They derived a
statistical relationship between window operation behavior
and indoor stimulus, such as indoor air temperature, in the
summer. The authors proposed a stochastic model to predict
window-opening behavior patterns, considering parameters
such as indoor temperature, time of day, and the previous
window state.

Shading and lighting operations

Ding et al. (2020) proposed a prediction model which
coupled the lighting and shading control behavior accurately.
This study collected hourly lighting and shading operation
behaviors from 12 private offices in a 2-storey office build-
ing. Tabadkani et al. (2021) investigated the impact of auto-
mated shading controls on occupant’s comfort and energy
load. Some researchers investigated both shading and light-
ing operations together. Correia da Silva, Leal, and
Andersen (2015) conducted a field campaign to monitor
occupants’ manual control of electric lighting and shading
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devices in single office spaces continuously. The study col-
lected detailed measurements and observations. Reinhart
et al. (Reinhart 2004; Reinhart and Voss 2003) proposed
statistical models to simulate and predict the lighting energy
performance of manually and automatically controlled elec-
tric lighting and shadings systems in an office setting.
Similar studies (Haldi and Robinson 2009; Mahdavi et al.
2008) aimed to understand occupants’ operation of shading
and lighting systems in office buildings. Inkarojrit (2005)
developed predictive manual control models for shading
operations while considering occupants’ satisfaction and
preferences. Furthermore, researchers (Newsham and
Arsenault 2009) developed a camera-based system to study
lighting and shading control. Chang and Hong (2013)
derived occupancy patterns from measured high granularity
lighting-switch data in an open-plan offices. Such studies
can provide valuable insights for developing efficient and
effective building automation and control systems.

Thermostat adjustments

Recent study (Tamas, O’Brien, and Quintero 2021) investi-
gated the correlation between residential thermostat usability
and interface characteristics in Canada. The authors collected
data from 51 participants through interviews. Vellei,
Martinez, and Le Dr�eau (2021) proposed a framework which
models occupants’ thermostat usage behaviors in residential
buildings. It utilized user interaction data from around 9,000
connected Canadian thermostats. Huchuk, O’brien, and
Sanner (2021) examined smart thermostat users’ schedule
override behaviors and its energy consequences by analyzing
a dataset which contains 20,000 smart thermostats. Previous
study (Peffer et al. 2011) provided a comprehensive review
of how occupants use thermostats and the evolution in tech-
nologies of residential thermostats. Fabi, Andersen, and
Corgnati (2013) implemented filed experiments in 13 resi-
dential dwellings to study occupants’ heating setpoint behav-
ior. The developed models were later incorporated into
simulations to study its influence on indoor climate quality
and energy consumption. In a recent study (He et al. 2022),
researchers collected 873 questionaries about the occupant
behaviors in air-conditioned office buildings. The study
developed a probability prediction model to represent the
cooling temperature set-point adjustment behavior.

Air-conditioner operations

Rahman and Han (Rahman and Han 2021) evaluated the
occupancy-based demand controlled ventilation strategies
(time-based and CO2) based in terms of applicability and
performance. It collected occupancy and HVAC system data
from a small office setting. Brackley, O’Brien, and Trudel
(2020) implemented a study in 25 academic offices for over
three months to study occupants’ perceived control of
HVAC system. The study utilized sensing data from build-
ing automation system during heating season. Fabi et al.
(Fabi, Andersen, and Corgnati 2013) conducted a study to
transit occupant behavior models from a deterministic
method of building energy simulation to a probabilistic

model to investigate the influence of occupants on building
controls. To achieve this, a probabilistic approach was pro-
posed and employed to accurately simulate occupant behav-
ior. The methodology involved the probabilistic evaluation
of input and output variables in building energy simulations,
with the aim of comparing the results obtained to those from
a conventional deterministic use of the simulation program.
Models of occupant behavior patterns were utilized to
explore how different behavior patterns impact indoor cli-
mate quality and energy consumption. The simulation results
were presented as probability distributions of energy con-
sumption and indoor environmental quality, based on the
occupant’s behavior. Ren et al. (Ren, Yan, and Wang 2014)
introduced a model for air conditioning usage in residential
buildings that takes into account the behavior of occupants.
To develop the model, surveys and continuous monitoring of
more than thirty households in 8 cities located in various cli-
mate zones were conducted, revealing a range of distinct
patterns of air conditioning usage. The developed model is a
quantitative stochastic model that considers the different fac-
tors affecting AC usage, including environmental and event
triggers. These patterns are described mathematically
through a series of conditional probabilities.

Models from these studies were built to describe occupant
behavior in buildings in order to evaluate the performance of
building design and operation. There are mainly four appli-
cation areas in which occupant behavior modeling plays key
roles, including 1) building energy performance analysis, 2)
building architecture and engineering design, 3) intelligent
building operation, and 4) building safety design.

Building energy performance analysis

Historically, occupant behavior is often modeled as a fixed
input for building simulation tools to study total building
energy consumption, and to size HVAC systems.
Specifically, occupancy has been modeled as an hourly or
sub-hourly schedule with values varying between 0 and 1 as
the ratio of a predefined maximum number of occupants in a
space. Recently, however, the stochastic nature of occupancy
has captured a great deal of attention from researchers and
engineers who are conducting building performance simula-
tions studies (Dong and Lam 2011; Gram-Hanssen 2010;
Hong et al. 2017; Jin et al. 2021; Kang et al. 2021;
Saldanha and Beausoleil-Morrison 2012), and often stochas-
tic results are given (Feng, Yan, and Wang 2017).

Building architecture and engineering design

Occupant behavior modeling is used for both architecture
and engineering design, specifically building circulation
design (Tomastik, Lin, and Banaszuk 2008; Yuhaski and
Smith 1989) and HVAC sizing (Cook et al. 2003; Jacobs
and Henderson 2002; Sun et al. 2014). As occupants move
among spaces in a building for various activities, the success
of a building circulation design lies in the level of conveni-
ence for people to transfer to another activity. To help the
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design, the preferences for different functions of rooms and
the patterns of occupants’ movements need to be captured.
In the case of HVAC sizing, occupant schedules and behav-
iors such as adjusting thermostats and operating windows
and shadings are two major impact factors.

Intelligent building operation

Advanced control design for building systems, such as light-
ing and HVAC, rely on the detection and modeling of occu-
pant behavior. Many prior studies demonstrate, both in
simulations and field experiments, that occupancy-based
indoor climate control can save up to 30% energy consump-
tion (Mirakhorli and Dong 2016). In addition, the scheduling
of elevators strongly depends on the occupancy patterns in a
building. The developed occupancy model often predicts the
aggregation of occupants in order to reduce the time people
spend waiting for the elevator to arrive.

Building safety design

Occurrences of intensive occupancy, or crowds (Helbing
et al. 2005), have a significant impact on the building safety
design. This is especially important to architects who design
public buildings, such as theaters and shopping malls. It is
important to have knowledge about how the crowd evolves
when a specific condition has been reached to secure peo-
ple’s safety (Chow and Ng 2008). For example, in the sub-
way system, crowd models can be used to evaluate the
performance of the path design.

However, each research study has its own datasets and
represents an individual case, although studies are across
various countries globally. There are over 400þ papers pub-
lished on the topic of occupant behavior over the last dec-
ade. Hence, it is time to consolidate those very valuable
datasets into a large data repository. With such a large body
of data to work on, occupant behavior researchers will be
able to dive deeper to compare occupant behaviors across
various building types and nations and derive valuable infor-
mation for energy-efficient building design and operations.

Over the last decade, many research studies focused on
the modeling and simulation of occupant behavior in build-
ings (e.g., IEA EBC Annex 53 (Yoshino, Hong, and Nord
2017), Annex 66 (Yan et al. 2017, 66) and Annex 79
(O’Brien et al. 2020, 79)), and their applications to building
design and operation. Depending on the building types, cli-
mates, systems and controls, occupant behaviors could have
favorable or adverse impacts on building performance. Thus,
there is a need for a world-wide open-source database on
occupant behavior in the built environment.

The ASHRAE Global Occupant Database we have devel-
oped includes 34 field-measured building occupant behavior
datasets collected from 15 countries and 39 institutions
across 10 climatic zones covering various building types in
both commercial and residential sectors. This is a compre-
hensive global database of building occupant behavior. The
database covers occupancy patterns (i.e., presence and

people count), indoor and outdoor environment measure-
ments, and occupant behaviors (i.e., interactions with devi-
ces, equipment, and technical systems in buildings). The
database is open-access and provides data visualization,
Application Programming Interface (API), and query tools.
The database intends to support occupant behavior research
that informs the design and operation of low or net-zero
energy buildings with significant human-building interac-
tions (HBI). And improve the understanding of human-build-
ing interactions, which is a key for design and operation of
low-energy and high-performance buildings.

This paper is organized as follows: The method section
provides an overview of our approach, covering data collec-
tion, processing, and database development. It includes the
introduction of the database, query implementation, and
organization of occupant behavior data. The data analysis
section, which is the focus of this paper, presents an analysis
of nine distinct occupant behaviors identified in this project.
Afterwards, the case study section demonstrates the efficacy
and utility of this database by integrating the collected data
into EnergyPlus simulations. Then, the paper discussed its
findings, limitations, and future work. Finally, we concluded
the paper and outlined the potential applications of this
database.

Methods

This section presents the overall approach we have adopted
to develop the database, including data collection and proc-
essing, database development, along with the implementation
of querying and organizing the occupant behavior data. As
this paper concentrates on analyzing and showcasing the col-
lected datasets, specifics regarding data collection and proc-
essing can be found in our earlier study (Dong et al. 2022)
of this project. The development of building metadata mod-
eling and the Brick schema extension are described in a sep-
arate study (Luo et al. 2022) and will not be discussed in
this paper.

Data collection and processing

To obtain the most relevant data, a worldwide survey was
conducted for researchers who have indicated their willing-
ness to contribute to the database. The survey collects basic
information of the building metadata and zones, building
equipment, methods used to collect the data, dataset details,
and additional information. With the information collected in
this process, the project team later reached out to potential
contributors with more detailed requirements Eventually,
final collected datasets were contributed by 51 contributors
from 39 institutes in 15 different countries. The database
covers 10 different climate zones globally according to the
K€oppen-Geiger climate classification (https://en.climate-
data.org).

After the data collection process, all datasets were eval-
uated based on the pre-defined requirements. Datasets con-
tributors took steps to ensure the privacy of the occupant
data, and further anonymization was applied during pre-
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processing. The datasets were then divided into three catego-
ries: survey type, in-situ type, and mixed type. The in-situ
data includes continuously collected dynamic measurements
within the building, such as the status of doors and windows
(OPEN/CLOSED) and building equipment (ON/OFF), as
well as indoor and outdoor environmental information (tem-
perature, humidity, carbon dioxide concentration, illumin-
ation, etc.). Survey data consists of unique information
specific to the study, including occupant questionnaires,
static information about the building’s envelope, and floor
plan, project specific measurements, etc. Datasets without
timestamps were also classified as survey type data. The
mixed type of data includes both in-situ and survey type
data; there was only one dataset identified as mixed type.
Our recent study (Dong et al. 2022) provides a summary of
all 34 datasets, including the country of origin, collection
method, measurement categories, as well as publications
related to each dataset. These datasets include 24 in-situ
datasets, one mixed dataset, and nine Survey datasets.

Figure 1 shows a complete report of missing data rates, it
can be observed that most datasets have less than 5% of

missing data. To ensure that the datasets are both high qual-
ity and maintain their originality, we conducted a pre-proc-
essing procedure which includes removing empty columns
from the raw data, filling missing values with � 999 in the
raw data, anonymizing building and room information by
assigning unique ID numbers, and applying a standardized
data naming schema and format. A full description proced-
ure of data pre-processing and quality control can be found
in our data descriptor report (Dong et al. 2022). The project
team has designed 11 templates to organize all the datasets
as Table 1 shows, each template covers the specific type of
behavior. During pre-processing, all the in-situ datasets were
formatted to align with the templates and missing values in
raw datasets were replaced with � 999, but survey datasets
remain as their original form. Future contributors are sug-
gested to follow the templates on the database’s website
when contributing to this database. The building metadata
information has not been included in this database as not all
researchers have provided this data. Nevertheless, there are
alternative ways to access this information:1) From our raw
dataset repository on figshare (Dong et al. 2021); 2) The
database’s website provides a list of publications related to
the collected datasets.

Database development

A website (https://ashraeobdatabase.com) was created as a
data warehouse for public access. Query builder tools were
developed based on different behavior types, cities, and
countries, building types, study ID, and publication list.
Users can select and download data from the database inter-
actively through the query builder. Data analytic functions
were developed to provide an interactive overview of the
database and assist users to select the dataset. A Python
package named “OBPlatform” was developed to access the
database programmatically. The codes of this package are
publicly accessible on the GitHub page (https://github.com/
umonaca/obplatform) with beginner’s tutorials. The website
provides an API page that detailed out information to query
and download datasets through Representational State
Transfer (REST) APIs.

Figure 2 is the Entity Relationship Diagram (ERD) for
the MySQL database. The database was developed using the
hybrid of file-based database and traditional relational data-
base (MySQL). The relational database is suitable for meta-
data queries, while the file-based database provides
flexibility on the data schema and saves most of the time for
the data wrangling process. Also, tests during the develop-
ment have shown that the file-based approach is much faster
than complex SQL joins with MySQL, even with all the
optimization methods implemented, such as database index-
ing and manual semi-joins.

Database description

After data processing and quality control, the final ASHRAE
Global Occupant Behavior Database consists of 34 field-
measured building occupant behavior datasets collected from
2003 to 2020 covering various building types in bothFig. 1. Report of missing data rate by dataset.
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commercial and residential sectors. In total, 34 datasets
(Dong et al. 2021) around 3.81GB data records were
included in this database, with 24 in-situ types of datasets,
one mixed type dataset, and nine survey type datasets.
Figure 1 shows the missing data report for each dataset. The
K€oppen-Geiger climate classification has been broadly used
by researchers around the world in the smart building com-
munity (Amasyali and El-Gohary 2016; Carlucci et al. 2020;
Kim et al. 2017). Since the datasets in this database were
contributed by researchers around the globe, K€oppen-Geiger
climate classification was adopted to represent the different
climate zones in the datasets. The database covers 10 different
climate zones globally according to the K€oppen-Geiger cli-
mate classification. Those climate zones include Af (Tropical

rainforest climate), Aw (Tropical savanna, wet), Bwh (Hot
deserts climate), Cfa (Humid subtropical climate), Cfb
(Temperate oceanic climate), Csa (Hot-summer Mediterranean
climate), Csc (Cool-summer Mediterranean climate), Dfa
(Hot-summer humid continental climate), Dfb (Warm-summer
humid continental climate), Dwa (Monsoon-influenced hot-
summer humid continental climate). A website (https://ash-
raeobdatabase.com) was created to query and download the
desired data from the database based on different selection
criteria or through public accessible REST APIs.

The database covers field measurements from six differ-
ent continents: Asia, Australia, Europe, Middle East, North
America, and South America. Among those continents,
about 36% of the data (by behavior type) comes from

Table 1. Dataset templates and their measurements.

Dataset Template Variable

Plug Load Plug_Load_ID Plug_ID Room_ID
Date_Time Desk_ID Building_ID
Electric_Power[w]

Door Status Door_Status_ID Door_ID Building_ID
Date_Time Room_ID
Door_Status[0-Closed;1-Open]

Fan Status Fan_Status_ID Date_Time Room_ID
Fan_Status[0-OFF;1-ON] Fan_ID Building_ID

HVAC
Measurement

HVAC_Measurement_ID VAV_Opening[%] Return_Air_Temp[C]
Date_Time Supply_Air_Temp[C] Duct_Air_Flowrate[cfm]
Heating_Status[0-OFF;1-ON] HVAC_Zone_ID
Cooling_Status[0-OFF;1-ON] Room_ID
Temp_Setpoint[C] Building_ID

Indoor
Measurement

Indoor_Measurement_ID Indoor_VOC[ppm] Connected_Device_Number
Date_Time Indoor_Air_Speed[m/s] Connected_Device_Type
Indoor_Temp[C] Indoor_Air_Pressure[Pa] Desk_ID
Indoor_RH[%] Indoor_Illuminance[LUX] Room_ID
Indoor_CO2[ppm] Building_ID

Lighting Status Lighting_Status_ID Lighting_Zone_ID
Date_Time Room_ID
Ligthing_Status[0-OFF;1-ON] Building_ID

Occupancy Measurement Occupancy_Measurement_ID Desk_ID
Date_Time Room_ID
Occupancy_Measurement [0-Unoccupied;1-Occupied] Building_ID

Occupant Number
Measurement

Occupant_Number_Measurement_ID Room_ID
Date_Time Building_ID
Occupant_Number_Measurement

Outdoor Measurement Outdoor_Measurement_ID Solar_Radiation[w/m2]
Date_Time IAQ
Outdoor_Temp[C] Particle_Level[ug/m3]
Outdoor_RH[%] Particle_Type
Wind_Speed[m/s] Precipitation
Wind_Direction[deg] Building_ID
Outdoor_Air_Pressure[Pa]

Shade Status Shade_Status_ID Shade_ID
Date_Time Room_ID
Shade_Status[0-OFF;1-ON] Building_ID

Window Status Window_Status_ID Window_ID
Date_Time Room_ID
Window_Status[0-Closed;1-Open] Building_ID

754 Science and Technology for the Built Environment

https://ashraeobdatabase.com
https://ashraeobdatabase.com


Fig. 2. Entity relationship diagram.

Fig. 3. Distribution of the locations and climate zones of the collected field studies.
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Europe, and close to 35% data (by behavior type) contrib-
uted by researchers from Asia. Figure 3 shows the locations
and climate zones of those field studies, each pin represents
a city with its climate zone. In total, 35 cities across 10 cli-
mate zones were found from the datasets. A query builder
which will be introduced in the following section, can assist
users to select the desired dataset based on different
parameters.

Three types of buildings were identified in the database:
educational, commercial, and residential. The educational
and commercial building types were separated because the
data contributors are mostly university researchers who pri-
marily collected data in university educational buildings.
These two building types cover a wide range of behavior
types in the database. Commercial buildings include
office spaces, while educational buildings include class-
rooms, educational offices, and study zones. Residential
buildings include single-family houses, apartments, and
dormitories.

Occupant behavior data in this database include door
status (on/off), fan status (on/off), window status (on/off),
shade status (on/off), occupant number, lighting status
(on/off), occupant presence (occupied or not), plug load

(in watts), indoor measurements, outdoor measurements,
and other types of study. Each type of measurement has a
CSV template file associated with it as shown in Table 1.
Based on the templates, all the raw data were pre-proc-
essed to be consistent in standard naming, data types and
formats. The data types follow the entities and tags
defined in the Brick schema, which is covered in the fol-
lowing section.

Database query builder

One of the main features of the ASHRAE Global Occupant
Behavior Database is the query builder. It allows users to
select and download data from different studies, filtered by
behavior types and multiple other criteria. Figure 4 shows
the web interface of this query builder with 5 different steps
in the same figure. Step 1 shows a list of all behaviors in
this database, one or more types of behaviors can be
selected. Step 2 returns a list of countries and locations asso-
ciated with available studies based on previous selections.
Step 3 presents the available building types from selections
made in step 2. Step 4 returns a list of publications of avail-
able studies. Once the user clicks “FINISH” button in step

Fig. 4. The web interface of the ASHRAE Global Occupant Behavior Database.
1-Select behavior type; 2-Select location of interest; 3-Select building type; 4-Select study of interest; 5-Export data
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5, the query builder will pass all selected parameters to the
server, and a compressed file will be returned from the ser-
ver for download. For the survey and mixed types of dataset
as Figure 5 step 1 shows, the output file includes processed
data and a dictionary either in a separate file or within the
data file, the dictionary provides detailed information of the
different types of data collected in this study. For the in-situ
type of dataset as Figure 5 step 2 shows, the output file
includes static information of this study, measurement data

of different behavior types, processed data, and the Brick
model. Among those files, the static information provides
detailed information of the location, building types, room
numbers; the Brick model includes a Turtle file and a PDF
document that visually summarized the metadata information
of the study.

The available options in each step are decided by selected
parameters in all previous steps. Parameters are organized
into the following steps:

Fig. 5. Output data file from the query builder.
1-Ouput data for survey and mixed types of study; 2-Output data for in-situ type of study.

Fig. 6. Daily occupant number profiles by building type and country.
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� Behavior: the behavior types that the user chooses to
download.

� Location: countries and cities, combined with climate
zone information.

� Building: building types and room types.
� Study: available studies based on selected parameters in

previous steps.
� Export: button to download the data depending on

selected study IDs and behavior types.

Data analysis

In this section, we explore the current datasets and perform
various analysis on nine different occupant behavior pat-
terns: 1) occupant number measurements; 2) plug load; 3)
occupant presence; 4) window status; 5) door status; 5)
lighting status; 6) shading status; 7) HVAC status including
both cooling and heating scenarios; 9) fan status. Since the
database covers occupant behavior patterns globally, the ana-
lysis was implemented at different aspects, including by
country, by climate zone, and by building type. Since the
occupant number measurements and plug load both include
continuous measurements in the raw data with constantly
changes over time, the individual daily profiles are included
in the figures. However, for other behavior types that focus
on the status (either 0 or 1) of the behavior, the results are
presented in aggregate by different aspects.

Occupant number measurements

Occupant number measurements were collected by six dif-
ferent studies including both in-situ and survey datasets,
from five individual buildings located in four countries
(China, Denmark, Italy, and USA) between May 13, 2016,
and March 18, 2020. The data includes commercial offices,
education classrooms, and educational offices and was ana-
lyzed at the room level by building type. For each room,
occupant numbers were divided by the historical maximum
occupant number in the dataset and get the percentage of
occupancy by hour of the day. Figure 6 illustrates the daily
occupant number profiles for each building type by different
countries at different hours of the day, with grey lines repre-
senting individual measurements and colored lines represent-
ing the averaged data by country. Arrival time and departure
time of occupants to the space can be estimated from the
data. Weekdays and weekends’ difference can be clearly
observed from commercial offices and educational class-
rooms, around zero percentage of average occupancy on
weekends. But educational offices in China have shown a
relatively higher occupancy percentage compared with the
other two building types. Furthermore, the occupancy pat-
terns for buildings in the USA, Denmark, and Italy showed
a clear distinction between weekdays and weekends, while
buildings in China have a high occupancy rate during both
weekdays and weekends. And the dataset from Italy showed
relatively low occupancy percentage both on weekdays and
weekends. Figures A1 and A2 in Appendix A further break
down the results by building type and by climate zone.

Additionally, the data covers four different climate zones as
shown in Figure A2, as well as one unknown climate zone
due to a lack of information from the contributors. The
results by climate zone showed similar trends as those by
country.

Plug load

Plug load data was collected from six buildings located in
Austria, Italy, the United Arab Emirates, and the USA
between 2013 and 2020. The data analysis included com-
mercial and educational offices at the building level. For
each building, plug load measurements were divided by the
historical maximum value in the dataset to get the percent-
age of load by hour of the day. Figure 7 illustrates the daily
plug load profiles for each building type by country at dif-
ferent hours of the day, with grey lines representing individ-
ual measurements and colored lines representing the
averaged data. Based on the load changes, one can estimate
the arrival and departure time of occupant at the space.
Weekdays and weekends’ difference can be clearly observed
for both building types, with a relatively low percentage of
average plug load on weekends. The plug load patterns for
buildings in Austria, Italy, and USA showed a clear distinc-
tion between weekdays and weekends, while buildings in
UAE have similar patterns on both weekdays and weekends.
Figures A3 and A4 in Appendix A further break down the
results by building type and by climate zone. Six climate
zones were identified from this data as shown in Figure A4.
The load patterns by climate zone showed slightly different
patterns as those by country because of multiple climate
zones were covered by data from Italy.

Occupant presence

Occupant presence data was collected by nine in-situ data-
sets from 11 buildings located in seven different countries
(Australia, Canada, China, Germany, Italy, UAE, and USA)
between January 3, 2005, and July 23, 2020. The data cov-
ers commercial offices, educational classrooms, educational
offices, and residential single-family houses. The behavior
patterns were analyzed at the building level. For each build-
ing, the mean values were calculated for different hours of
the day as the probability of a space was occupied. Figure 8
illustrates the daily occupant presence profiles for each
building type by country at different hours of the day. From
the changes of the occupancy pattern, one can estimate the
arrival and departure time of occupant to the space. This can
assist to model more realistic occupant behaviors in building
energy simulation process. The data indicates a clear distinc-
tion between weekdays and weekends for commercial offi-
ces, educational classrooms, and educational offices, with a
low probability of occupancy on weekends. However, resi-
dential single-family houses showed no significant difference
between weekdays and weekends during the data collection
period. The occupant presence patterns vary a lot based on
the building type and country. Overall, commercial offices
and educational classrooms showed distinct differences for
weekdays and weekends. For educational offices, buildings
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Fig. 7. Daily plug load profiles by building type and country.

Fig. 8. Daily occupant presence profiles status by building type and country.
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in Canada, Italy, and USA showed clear difference between
weekdays and weekends. Figures A5 and A6 in Appendix A
further break down the results by building type and by cli-
mate zone. Six climate zones were identified from this data.

Window status

Data on window opening patterns was collected by 18 data-
sets which cover in-situ, survey, and mixed types. The data
was from 25 buildings located in six different countries
(Brazil, Canada, China, Germany, Italy, and USA) between
January 1, 2005, and December 3, 2020. The data covers
commercial offices, educational classrooms, educational offi-
ces, and residential apartments. The behavior patterns were
analyzed at the building level. Using historical data, the
probability of window opening behavior was calculated for
each window in every building. The daily profiles of win-
dow opening behavior were obtained by averaging the
results at the building level. Figure 9 illustrates the window
opening profiles for each building type grouped by country
at different hours of the day. Weekdays and weekends’ dif-
ference can be clearly observed for all types of buildings,
with quite a low percentage of window opening probability
on weekends. On weekdays, most window opening behavior
happened during the daytime, early morning and late night
peaks were observed for commercial offices. Figures A7 and
A8 in Appendix A further break down the results by build-
ing type and by climate zone. Six climate zones were

identified from this data. As expected, results showed many
variations of window operation patterns among different
countries and climate zones. On weekdays, data in China
and Brazil showed higher probability of window opening
compared to data from other countries, while Canada had
relatively low window operation activity at all times.

Door status

Data on door opening patterns was collected by seven data-
sets which cover in-situ, survey, and mixed types. The data
was from 15 buildings located in four different countries
(Canada, China, Italy, and USA) between June 6, 2008,
and March 15, 2019. The data covers commercial offices,
educational offices, and residential apartments. The behav-
ior patterns were analyzed at the building level. For each
building, the mean values were calculated for different
hours of the day as the probability of a door that was
opened. Figure 10 illustrates the door opening profiles for
each building type grouped by country at different hours
of the day. Weekdays and weekends’ difference can be
observed for commercial offices and educational offices,
with quite a low percentage of door opening probability
on weekends. And most door opening behavior occurred
during daytime on weekdays. However, residential apart-
ments showed flat patterns regardless the day of week
with higher probability that doors are constantly open on
weekdays. Figures A9 and A10 in Appendix A further

Fig. 9. Daily window opening profiles by building type and country.
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break down the results by building type and by climate
zone. Four climate zones were identified from this data
including Cfa, Cfb, Csa, and Dfb. Patterns of residential
apartment from Canada and China both showed relatively
flat curve compared to other countries. This suggests a
low probability of door operations being recorded in the
data, and that doors were likely (80%-90%) to remain
open on weekdays. Educational offices in climate zones
Cfa, Cfb, and Csa showed similar patterns, indicating that
an estimation of weekday office schedules could be
extracted.

Lighting status

Data of lighting on patterns was collected by four datasets
which cover in-situ and survey types. The data was from
six buildings located in four different countries (Brazil,
Canada, Italy, and USA) between June 28, 2008, and
December 3, 2020. It covers commercial offices and edu-
cational offices. The behavior patterns were analyzed at
the building level. For each building, the mean values
were calculated for different hours of a day as the prob-
ability of a light that was turned on. Figure 11 illustrates
the lighting on profiles for each building type grouped by
country at different hours of the day. Weekdays and
weekends’ difference can be observed for both building
types, with relatively low percentages of lighting on prob-
ability on weekends. And most lighting on operations

occurred during daytime on weekdays. The results of
aggregated data showed low probability of lighting on
behaviors as the dataset from Canada has a significant
influence on the overall results, while this dataset has
lower profile pattern as shown in the results by country.
Figures A11 and A12 in Appendix A further break down
the results by building type and by climate zone. Three
climate zones were identified from this data which are
Cfa, Cfb, and Dfb. Compare with data from Canada, data
from USA showed higher lighting on operations during
the daytime on weekdays, followed by data from Italy.
All results showed clear differences between weekdays
and weekends regardless of country or climate zone.

Shading status

Data on shading operation patterns was collected by two
datasets which cover in-situ and survey types. The data cov-
ers four buildings located in two different countries (Italy
and USA) between June 28, 2008, and April 24, 2013. It
covers commercial offices and educational offices. The
behavior patterns were analyzed at the building level. For
each building, the mean values were calculated for different
hours of a day as the probability of a shading device that
was on. Figure 12 illustrates the shading on status profiles
for each building type grouped by country at different hours
of the day. Weekdays and weekends’ difference can be
observed for both building types, with quite low percentages

Fig. 10. Daily door opening profiles by building type and country.
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Fig. 12. Daily shading on profiles by building type and country.

Fig. 11. Daily lighting on profiles by building type and country.
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of shading on probability on weekends. And most shading
on operations occurred during daytime on weekdays.
Morning peaks can be observed in educational office build-
ings, while evening peaks were observed in commercial
office buildings. Figures A13 and A14 in Appendix A fur-
ther break down the results by building type and by climate
zone. Two climate zones were identified from this data
which are Cfa and Cfb. Compare with data from USA, data
from Italy showed more variations in shading operation
behavior and covered more climate zones. All results
showed clear differences between weekdays and weekends
regardless of country or climate zone. With only two data-
sets in the database measuring shading status, acquiring add-
itional datasets is expected to enhance our understanding of
shading operation behavior.

HVAC status

HVAC cooling
Data on HVAC cooling status was collected by 13 datasets
which cover in-situ, mixed, and survey types. The data was
from 14 buildings located in four different countries
(Australia, Brazil, China, and Italy) between June 26, 2008,
and December 3, 2020. It covers commercial offices, educa-
tional classrooms, educational offices, and residential apart-
ments. The behavior patterns were analyzed at the building
level. For each building, the mean values were calculated for
different hours of a day as the probability of the HVAC

cooling that was on. Figure 13 illustrates the profiles of
HVAC cooling status for each building type grouped by
country at different hours of the day. Weekdays and week-
ends’ difference can be observed for nonresidential building
types, with quite low percentages of cooling on probability
on weekends. And most cooling operations occurred during
daytime on weekdays. However, data from residential apart-
ments showed similar patterns for both weekdays and week-
ends. Both commercial offices and residential apartments
have a relatively high probability of cooling on during night-
time. Figures A15 and A16 in Appendix A further break
down the results by building type and by climate zone.
Three climate zones were identified from this data which are
Cfa, Cfb, and Csa. Variations among countries and climate
zones were observed, with commercial offices in Brazil and
China more likely to have HVAC cooling on during daytime
compared to Italy. Educational offices covered more climate
zones than other building types.

HVAC heating
Data on HVAC heating status was collected by 13 datasets
which cover in-situ, mixed, and survey types. The data was
from 7 buildings located in five different countries
(Australia, Brazil, China, Italy, and USA) between June 28,
2008, and March 23, 2020. It covers commercial offices,
educational classrooms, and educational offices. The behav-
ior patterns were analyzed at the building level. For each
building, the mean values were calculated for different hours

Fig. 13. Daily HVAC status (cooling) profiles by building type and country.
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of a day as the probability of the HVAC heating that was
on. Figure 14 illustrates the profiles of HVAC heating status
for each building type grouped by country at different hours
of the day. Weekdays and weekends’ difference can be
observed for all building types, with quite low percentages
of heating on probability on weekends. And most heating
operations occurred during daytime on weekdays. But educa-
tional offices are more likely to have heating on for longer
time compared with other building types. Figures A17 and
A18 in Appendix A further break down the results by build-
ing type and by climate zone. Three climate zones were
identified from this data which are Aw, Cfa, and Cfb.
Variations among countries and climate zones were
observed, with commercial offices in Brazil and educational
offices in China are more likely to have HVAC heating on
with longer times during daytime compared to Italy. Climate
zones Aw and Cfa showed higher probability and longer
duration of heating status on.

Fan status

Data on fan operation patterns were collected by three data-
sets which cover in-situ, survey, and mixed types. The data
was from six buildings located in three different countries
(Brazil, Italy, and USA) between June 28, 2008, and
February 18, 2016. The data only covers commercial offices
and educational offices. The behavior patterns were analyzed
at the building level. For each building, the mean values

were calculated for different hours of a day as the probabil-
ity of a fan was on. Figure 15 illustrates the profiles of fan
on status for each building type grouped by country at dif-
ferent hours of the day. Weekdays and weekends’ difference
can be observed for commercial offices and educational offi-
ces, with quite a low percentage of fan on status probability
on weekends. And most fan operation behavior occurred
during daytime on weekdays. Results showed that commer-
cial offices have a high probability of fan on status com-
pared with educational offices. Figures A19 and A20 in
Appendix A further break down the results by building type
and by climate zone. Two climate zones were identified
from this data including Cfa and Cfb. Commercial offices
have data from all three countries and showed three unique
patterns of fan operation behavior patterns. Educational offi-
ces covered both climate zones with similar patterns and
relatively low probability shown by each climate zone.

Case study

To demonstrate the efficacy and usefulness of the collected
data, a case study was conducted using the datasets of occu-
pant presence from commercial office, educational office,
and educational classroom. We have derived occupancy pro-
files from one month in summer (July) and one month in
winter (December). The profiles were incorporated into
EnergyPlus simulation software (EnergyPlusTM 2017) and

Fig. 14. Daily HVAC status (heating) profiles by building type and country.
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compared with the default occupancy schedule, to investi-
gate the difference on building overall electricity consump-
tion. Since this case study focuses on the demonstration of
collected dataset, we only replaced the default building-level
building equipment schedule, lighting schedule, and occu-
pancy schedule in the simulations. When the space is
unoccupied, those schedules were set as its minimum in the
simulation. DOE prototype building models (DOE 2023)
under ASHRAE standard 90.1 (ASHRAE 90.1 2019) were
used to run the simulations, including educational classroom
represented by primary school model, educational office rep-
resented by small office model, and commercial office repre-
sented by medium office model. Both the building models
and weather files cover the site of New York City.

Commercial office

Dataset 24 provides event-based occupant presence measure-
ments which covers 17 different rooms in one commercial
office building at Frankfurt, Germany. The data collection
ranges from January 2005 to December 2008, resulted in
48,458 rows of measurements. We have picked the typical
data from one of the rooms in July and December 2006 as
input to the EnergyPlus simulations. The building prototype
model is ASHRAE901 Medium Office at New York. It can
be observed that the occupancy schedule from this data set
(Occ Real) follows similar trends as the default schedule
(Occ Default) in the beginning of July. However, there are
significant variations since the space was empty most of the
time after July 12th. As shown in Figure 16, building overall

electricity consumption was reduced by 27.68% based on
the Occ Real schedule. Winter simulation resulted in about
8.21% reduction in overall building electricity use as shown
in Figure 17. Clear difference between default and real occu-
pancy schedule can also be observed in the figure.

Educational office

Dataset 10 covers the minute level measurements of occu-
pancy presence in one educational office building from
Rende, Italy. The data collection period started from May
13, 2006 to May 12, 2017, with 525,600 rows of measure-
ments. ASHRAE901 Small Office at New York prototype
model is used to represent this educational building. Figure
18 shows that the real occupancy profile varies a lot from
the default schedule in Summer and resulted in around
21.13% less overall building electricity consumption in the
simulation. Winter simulation results in Figure 19 shows
that the default schedule and real schedule have many over-
laps, but the latter one has more variations. It resulted in
around 13.23% less overall building electricity consumption.

Educational classroom

For educational classrooms, we picked dataset 7 from the
database which is from Bangholme, Australia. It has 16 dif-
ferent classrooms measured every five minutes in an educa-
tional building. The date spans from October 2019 to March
2020. Since this dataset does not cover July, only the winter
simulation was implemented. This building was represented

Fig. 15. Daily fan status profiles by building type and country.
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by the ASHRAE901 Primary School at New York prototype
model. Following the procedure defined in the beginning of
this section, simulation was implemented in EnergyPlus soft-
ware. As shown in the Figure 20, this building was unoccu-
pied most of the time in December. Compared with the
default occupancy schedule, the overall building electricity
consumption was reduced by about 22.46% using the real
occupancy data.

As an effort to investigate the efficacy and usefulness of the
collected datasets in this global occupancy behavior database,
we implemented the above simulations in EnergyPlus software.
Results showed that the occupancy schedules derived from the
database differ significantly from the default schedule, which
leads to electricity consumption differences. The realistic occu-
pant behavior data provides researchers with a better understand-
ing of HBI, and also provides energy savings. We believe this

Fig. 16. Comparison of building occupancy schedule and overall electricity consumption (Commercial office in Summer).

Fig. 17. Comparison of building occupancy schedule and overall electricity consumption (Commercial office in Winter).
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highlights the importance of collecting field measurement data
for building energy simulations, since the default values are out
of touch with practicality. With the database we have developed,
researchers will have the opportunity to dive deeper into their
work with the vast amount of data available, allowing them to
compare occupant behaviors across different building types and
countries. This will enable them to derive valuable insights that
can inform the design and operation of energy-efficient
buildings.

Discussions and limitations

This study has conducted high level analysis of nine occupant
behavior types based on available data from the database. The
occupant behavior patterns were examined in relation to different
building types, countries, and climate zones. The results showed
that different building types have distinct behavior patterns,
which is expected. And these patterns can vary between different
countries or climate zones. This indicates that the developed

Fig. 18. Comparison of building occupancy schedule and overall electricity consumption (Educational office in Summer).

Fig. 19. Comparison of building occupancy schedule and overall electricity consumption (Educational office in Winter).
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database contains abundant characteristics of the occupant behav-
iors. We found that in some case, the occupant behavior patterns
by country were closely related to those by climate zones, as
shown in Figures A17 and A18. This is due to the limited study
of both country level and climate zone level data. Fluctuations
have been also observed in the resulted profiles at country level
and climate zone level for some types of behaviors, which can
be attributed to the discrete time stamp in the survey and mixed
types of datasets. Under this case, with more continuous meas-
urement data in the future, these profiles can be smoothed and
be more representative. Overall, we believe this study will con-
tribute to understanding of occupant behavior simulation
worldwide.

The limitations of this study include: 1) Seasonal effect is not
analyzed since this study focused on investigating the occupant
behavior patterns at a large spatial scale; 2) Even though this
database has collected many datasets around the world, it is still
limited in terms of the amount of data, so the results may not be
very well representative for some behavior types or specific cli-
mate zone; 3) More detailed analysis like dataset by dataset
comparison were not performed in this study, which can be the
focus of future work; 4) The current case study only focuses on
occupant number measurements; however, future work can
include detailed case studies encompassing all behavior types.

Conclusions

This paper details out the development of the ASHRAE Global
Occupant Behavior Database, including data collection and proc-
essing methods, data warehouse development for public access,
query builders for users to select and download datasets The
database also provides templates that were used to process the
raw data, future data contributors are encouraged to follow the
templates when contributing. Currently, the database has 34

field-measured building occupant behavior datasets contributed
by researchers from 15 countries and 39 institutions, the datasets
cover 10 different climatic zones and various building types in
both commercial and residential sectors. This paper focused on
conducting a comprehensive data analysis to examine patterns
related to nine different occupant behavior types. We investigate
various factors that influence these patterns, including building
type, country, and climate zone. By implementing EnergyPlus
simulations based on the occupancy profiles derived from this
database, we demonstrate that significant reductions in overall
building electricity consumption can be achieved. Specifically,
our results indicate a potential reduction of approximately 27%
during summer and around 10% during winter. Based on the
analysis and simulations results, we can conclude that the avail-
ability of realistic occupant behavior data enhances researchers’
comprehension of human-building interactions, leading to energy
savings. This underscores the significance of gathering field
measurement data for building energy simulations, as default
values often lack practicality. Our developed database offers
researchers an extensive collection of data, enabling them to
delve deeper into their investigations. By comparing occupant
behaviors across diverse building types and countries, valuable
insights can be derived. These insights, in turn, can inform the
design and operation of energy-efficient buildings.

Align with the scope of the ASHRAE Multidisciplinary Task
Group of Occupant Behavior in Buildings (MTG.OBB), the
intent of this database aims to incorporate the human aspect in
the building life cycle and possibly help ASHRAE achieve its
energy saving goals, by showing how behavior can influence
passive and active building designs and revealing energy saving
opportunities from behavior interventions. The database can sup-
port various use cases of occupant behavior research, including
1) Understand occupant behaviors in real buildings; 2) Compare
and understanding the diversity and dynamics of occupant

Fig. 20. Comparison of building occupancy schedule and overall electricity consumption (Educational classroom in Winter).
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behaviors; 3) Develop mathematical models of occupant behav-
iors at various spatial and temporal resolutions by building types;
4) Benchmark various occupant behavior modeling approaches;
5) Generate typical occupant schedules and behavior models for
use in building performance simulations, as well as building
energy codes and standards.

Nomenclature

Door Status ¼ A Boolean value of the state of a
door

Window Status ¼ A Boolean value of the state of a
window

Fan Status ¼ A Boolean value of the state of
a fan

Shade Status ¼ A Boolean value of the state of a
shading device

Lighting Status ¼ A Boolean value of the state of a
lighting device

Occupant Number ¼ An integer value of total number
of occupants in a space or building

Occupant Presence ¼ A Boolean value of the state of an
occupant being in a space

Plug Load ¼ Measurement of power usages
from plug-in devices in a
commercial building space

HVAC Measurement ¼ Measurement of Heating,
Ventilation, and Air Conditioning
system typically includes heating
or cooling status, temperature
setpoint, percentage of variable air
volume openings, etc.

Outdoor Measurement ¼ A broad measure of an outdoor
environment typically includes
temperature, relative humidity,
solar radiation, wind direction and
speed, etc.

Indoor Measurement ¼ A broad measure of an indoor
environment typically including
temperature, relative humidity

API ¼ Application Programming Interface
HBI ¼ Human-building interactions
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Appendix A: Results of data analysis by building
type and climate zone

This appendix comprises figures generated through data
analysis, presenting the outcomes related to nine occupant
behavior patterns across various building types and climate
zones.
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Fig. A1. Daily occupant number profiles by building type.

Fig. A2. Daily occupant number profiles by building type and climate zone.
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Fig. A3. Daily plug load profiles by building type.

Fig. A4. Daily plug load profiles by building type and climate zone.
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Fig. A5. Daily occupant presence profiles by building type.

Fig. A6. Daily occupant presence profiles by building type and climate zone.
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Fig. A7. Daily window opening profiles by building type.

Fig. A8. Daily window opening profiles by building type and climate zone.
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Fig. A9. Daily door opening profiles by building type.

Fig. A10. Daily door opening profiles by building type and climate zone.
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Fig. A11. Daily lighting on profiles by building type.

Fig. A12. Daily lighting on profiles by building type and climate zone.
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Fig. A13. Daily shading on profiles by building type.

Fig. A14. Daily shading on profiles by building type and climate zone.
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Fig. A15. Daily HVAC status (cooling) profiles by building type.

Fig. A16. Daily HVAC status (cooling) profiles by building type and climate zone.
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Fig. A17. Daily HVAC status (heating) profiles by building type.

Fig. A18. Daily HVAC status (heating) profiles by building type and climate zone.
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Fig. A19. Daily fan status profiles by building type.

Fig. A20. Daily fan status profiles by building type and climate zone.
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