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HIGHLIGHTS

o Studies on data-driven methods for building energy flexibility quantification have been reviewed.

o Existing data-driven energy flexibility KPIs have been systematically categorized.

e Various aspects of the KPIs, including application, stakeholder, complexity, data requirements, and popularity, have been analyzed.
e Public datasets for energy flexibility studies have been reviewed and summarized in a standardized data collection process.

e Research trends, open questions, and future opportunities are identified.

ARTICLE INFO ABSTRACT
Keywords: Energy flexibility, through short-term demand-side management (DSM) and energy storage technologies, is now
Building energy flexibility seen as a major key to balancing the fluctuating supply in different energy grids with the energy demand of

Demand response
Demand-side management
Building-to-grid service
Key performance indicator
Demand response datasets

buildings. This is especially important when considering the intermittent nature of ever-growing renewable
energy production, as well as the increasing dynamics of electricity demand in buildings. This paper provides a
holistic review of (1) data-driven energy flexibility key performance indicators (KPIs) for buildings in the
operational phase and (2) open datasets that can be used for testing energy flexibility KPIs. The review identifies
a total of 48 data-driven energy flexibility KPIs from 87 recent and relevant publications. These KPIs were
categorized and analyzed according to their type, complexity, scope, key stakeholders, data requirement,
baseline requirement, resolution, and popularity. Moreover, 330 building datasets were collected and evaluated.
Of those, 16 were deemed adequate to feature building performing demand response or building-to-grid (B2G)
services. The DSM strategy, building scope, grid type, control strategy, needed data features, and usability of
these selected 16 datasets were analyzed. This review reveals future opportunities to address limitations in the
existing literature: (1) developing new data-driven methodologies to specifically evaluate different energy
flexibility strategies and B2G services of existing buildings; (2) developing baseline-free KPIs that could be
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calculated from easily accessible building sensors and meter data; (3) devoting non-engineering efforts to pro-
mote building energy flexibility, standardizing data-driven energy flexibility quantification and verification
processes; and (4) curating and analyzing datasets with proper description for energy flexibility assessm.

Nomenclature

Acronyms Definitions

ADR Automated Demand Response
B2G Building-to-Grid

DR Demand Response

DSM Demand-Side Management
DSO Distribution System Operator

EF Energy Flexibility (usually used interchangeably with
Demand Flexibility)
EV Electric Vehicle

GEB Grid-interactive Efficient Building
GHG Greenhouse Gas

HIL Hardware-In-the-Loop
HVAC  Heating, Ventilation, and Air-Conditioning
IEA International Energy Agency

IEA EBC International Energy Agency - Energy in Buildings and
Communities Programme

IEQ Indoor Environmental Quality
IoT Internet of Things

KPI Key Performance Indicator

PV Photovoltaics

TSO Transmission System Operator

1. Introduction
1.1. General background

The building sector’s entire life cycle is directly or indirectly
responsible for about 36% of the global primary energy demand and
about 37% of energy-related carbon dioxide (CO,) emissions (opera-
tional, embedded, and construction) [1 2]. Decarbonizing the building
sector is thus essential to achieving a global carbon-neutral society by
2060 [3]. Meanwhile, another challenge to address is climate resilience,
as more frequent, intense, and longer-lasting extreme weather events
exacerbated by climate change, such as heat waves, occur. The energy
resilience of buildings and energy grids have, therefore, become essen-
tial in providing critical cooling and heating services to occupants to
avoid excessively high or low indoor temperatures or energy outages.
The latter threaten the lives of citizens and cause illness and detrimental
health consequences. Decarbonizing buildings and improving their
climate resilience should be tackled together with evaluating technol-
ogies or design and operational strategies to improve building perfor-
mance. Opportunities emerge with the penetration of digital
technologies such as smart meters, indoor environmental quality (IEQ)
sensors, and Internet of Things (IoT) devices, the use of which is ex-
pected to grow significantly in the building industry [4 5]. This growing
smart building trend opens up new data sources feeding advanced an-
alytic algorithms to inform the design and control of buildings.

With electrification of building energy demand (e.g., space heating/
cooling, domestic hot water, cooking) becoming a key strategy to
building decarbonization [6], there is growing dependence of building
energy provision and resilience on the capacity and reliability of the
energy grids. Energy flexibility, through demand-side management
(DSM), demand response (DR), and energy storage technologies is
increasingly seen as critical in balancing the electric power supply and

demand for buildings, especially considering the intermittent nature of
the growing renewable energy production from solar photovoltaics (PV)
and wind generation, as well as increasing dynamics of electricity de-
mand in buildings and electric vehicle (EV) charging. DSM also can be
very beneficial for other energy grids, such as district heating/cooling
(DHC) networks. DSM can help to decarbonize DHC by means of peak
shaving, thus eliminating the use of COy-intensive auxiliary boilers, but
also by lowering the temperature supply (towards energy-efficient
fourth generation district heating) and tackling local bottleneck/
power congestion problems. An international group of researchers under
the umbrella of the IEA EBC' Annex 82 Energy Flexible Buildings Towards
Resilient Low Carbon Energy Systems recently published an article iden-
tifying 10 key questions on the energy flexibility of buildings [7]. In
their second question (How can energy flexibility be quantified?), they
describe key performance indicators (KPIs) as essential to quantifying
energy flexibility performance considering available flexible resources,
building demand, grid signals, and occupant comfort needs or
constraints.

1.2. Building energy flexibility

According to Al Dakheel et al. [8], smart buildings can be defined by
four main features: (1) climate response, (2) grid response, (3) user
response, and (4) monitoring and supervision. These types of buildings
must react appropriately to external climate conditions, signals/infor-
mation coming from the grid, and real-time interaction between users
and implemented technologies, and must carry out real-time monitoring
of a building’s operation. With the upcoming challenges of increasing
energy demand and renewable power generation, electrification pene-
tration, and global warming, DR of the building stock becomes an
increasingly important strategy for a safe and cost-effective energy
system [9]. Buildings can provide grid services via flexible operations (e.
g., adjusting their energy demand and behind-the-meter power gener-
ation and storage) [10]. An example of a flexibility service is the
Automated Demand Response (ADR) event [11]. This allows electric
devices to be turned off during periods of high demand via an internal
control signal from the building control system, or direct external con-
trol by the grid operator, or indirect external control with an incentive
grid signal, such as energy spot price or CO> intensity, to which the local
controller reacts to trigger DR.

Energy flexibility in buildings has gained growing research mo-
mentum in recent years. A number of national and international col-
laborations and initiatives, including the IEA EBC Annex 67 [12], Annex
81 [13], Annex 82 [14], Annex 84 [15], as well as the GEB initiative by
the U.S. Department of Energy (U.S. DOE) [16], have been trying to
bring building energy flexibility to the next level of maturity. The IEA
EBC Annex 67 developed a common definition of building energy flex-
ibility as “the ability to adapt/manage its short-term (a few hours or a couple
of days) energy demand and generation according to local climate conditions,
user needs, and energy network requirements without jeopardizing the tech-
nical capabilities of the operating systems in the building and the comfort of its
occupants. Energy Flexibility of buildings will thus allow for DSM/load
control and thereby DR based on the requirements of the surrounding energy
grids” [12]. Research on building energy flexibility-related topics is
growing rapidly, including (1) equipment and system development, (2)
modelling and simulation, (3) controls and energy system management,
and (4) energy flexibility characterization and quantification.

! International Energy Agency - Energy in Buildings and Communities
Programme.
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1.3. Motivations for data-driven energy flexibility KPIs

While there are many existing studies on the energy flexibility of
buildings, they usually rely on detailed building energy models that can
simulate the baseline building operation and the flexible operation to
calculate the energy flexibility by comparison of the two. However, most
such studies lack real measured performance data to validate the
modelled results. Moreover, developing and calibrating building energy
models is time-consuming and requires expertise. Thus it is hard to scale
up the deployment to many buildings. As Li et al. [7] suggested, building
energy flexibility is not an invariant intrinsic parameter; it varies
depending on the available resources and specific objectives and is
constrained by occupants’ needs. Therefore, energy flexibility quantifi-
cation methods should allow real-time updates according to the per-
formance goals. In this context, data-driven approaches are being used
more and more to understand and quantify the energy flexibility of
buildings with KPIs. These KPIs vary in definitions, amount and type of
data required, and characteristics of the buildings and energy systems
considered, especially with distributed energy sources such as on-site
PV, energy storage, and EVs. A small portion of the existing KPIs can
be applied directly to energy performance measurement data, while the
majority requires comparison with a baseline or reference case, which
can be very cumbersome to obtain. With the increasingly popular
deployment of sensing and metering in buildings, an ever-growing
amount of data is generated, which enables the adoption of data-
driven approaches to compute energy flexibility KPIs. However, a ho-
listic review of data-driven KPIs is lacking for the operational phase of
commercial and residential buildings across scales (individual buildings,
cluster of buildings, district). This can be of great interest for several
stakeholders like building owners, households, building managers,
utility companies, distribution system operators (DSOs), transmission
system operators (TSOs), energy brokers, and market aggregators.

The above-mentioned gap motivated this article, which provides a
review and insights into a few important aspects of KPIs for building
energy flexibility assessment:

e What are the use cases for energy flexibility KPIs? KPIs play a key
role in quantifying the energy flexibility of buildings [7]. However,
due to the diversity of application scopes, technologies, data types,
and interested stakeholders, there is no clear picture of when and
how these KPIs can be used. This study systematically reviewed their
associated application scopes, technologies, assessment methods,
and targeted stakeholders.

e What are the existing data-driven energy flexibility KPIs? A
small group of data-driven energy flexibility KPIs can be computed
directly from building performance data without the need for base-
line demand profiles. However, the majority of energy flexibility
KPIs rely on the comparison between the building performance
profiles under the baseline and flexible operation scenarios. The
current study reviewed the existing publications that involve data-
driven energy flexibility assessments and systematically catego-
rized them into baseline-free and baseline-required groups.

e What are available datasets for energy flexibility KPI develop-
ment? Building performance data is the foundation of data-driven
energy flexibility assessments. Although there are many existing ef-
forts in data curation for building performance modelling and eval-
uations [17 18 19 20], the datasets are not dedicated to building
energy flexibility quantification. Moreover, there is no guidance on
how existing datasets could be used for energy flexibility KPI
development. In this paper, candidate datasets suitable for energy
flexibility KPI development were surveyed and identified. The
building characteristics, metadata, and detailed sensor and meter
data format and quality for the candidate datasets were reviewed.

To provide comprehensive answers to the aforementioned questions,
this review paper is organized as follows: Section 2 introduces the scope,
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objectives, and search methods of the literature review; Section 3 pre-
sents the review findings on use cases when data-driven energy flexi-
bility KPIs can be applied or preferred; Section 4 focuses on existing
data-driven energy flexibility KPIs; Section5 provides a review of
datasets for energy flexibility KPI development; Section 6 summarizes
the key findings and contributions of the article, as well as identifying
possible future work; and Section 7 closes with the main conclusions.

2. Methodology
2.1. Scope of the KPI review

As indicated above, the key limitations of data-driven energy flexi-
bility quantification include: (1) the lack of data-driven methods to
generate both baseline and flexible load profiles for KPI calculations
(baseline-required KPIs) and (2) the lack of KPIs that do not require
input from baseline or reference scenarios (baseline-free KPIs). There-
fore, the literature search sought to cover the publications most relevant
to the aforementioned challenges (see Fig. 1).

Specifically, the review focuses on data-driven solutions for build-
ings during their operational phase. Data-driven solutions are here
limited to methods that do not rely on pre-existing detailed models of
the building (white box models), prior knowledge of the building’s
characteristics, or extensive human inputs. Data-driven approaches such
as automated grey box/black box calibration/system identification for
the generation of baselines or DR profiles are thus included. Human-
input-intensive approaches requiring tailored white box models or
specific on-site tests of the building case have low scalability and
automation potential; they are thus deemed non-data-driven and are
excluded from the scope of this review. Moreover, this study targets KPIs
usable for energy flexibility assessment of the buildings in the opera-
tional phase. This adds certain constraints regarding data requirements
and availability compared to the planning and design phases. Indeed,
the latter usually rely on detailed models of the building from which far
more data can be extracted. KPIs for planning and design phases only
were thus excluded from this review. However, the energy flexibility
KPIs for the operational phase can probably also be used for the design
phase since all data of the operational phase can usually be generated or
estimated in the design phase.

The KPIs within the scope of this review are thus primarily intended
to be used with real monitoring data from existing buildings during the
operational phase. However, many publications on energy flexibility
used numerical models to generate DR energy profiles. If this numerical
model was used as if it were an existing building (emulating the
behaviour of an energy user performing DR but not directly generating
comparison baseline profiles), the study was included in the review, as
its methodology is data-driven and can be applied directly to a real-
world case without the need to create a dedicated white box model. If
not, the publication was excluded from the current review.

2.2. Literature search

The review process in the current study mainly used the Web of
Science engine to search for relevant publications. This was supple-
mented by queries with Google Scholar and Scopus, together with
additional documents provided directly by the different authors of this
article. Table 1 shows the query sets used during the search. Note that
the asterisk symbol (*) was used after some prefixes to allow searches for
variations of a keyword. For example, “flexib*” enables search for both
“flexible” and “flexibility” as keywords. The final query, which com-
bined the query sets with the “AND” logic operator, was then conducted.

The query was conducted in March 2022. It identified 156 publica-
tions in total, with 1 technical report, 5 review articles, and 150 original
journal papers. The initial 156 publications were then distributed among
the different authors for deeper analysis. A total of 69 publications were
discarded following the first-round review because they did not
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Fig. 1. Scope of the KPI review.

Table 1
Literature search query set.

Query Set

Meaning

Topic = (building OR district OR community OR
grid)

Topic = (“energy flexib*” OR “demand flexib*”
OR “demand-side management” OR “load
shifting” OR “load shaving” OR “peak load
reduction” OR “load modulat*”)

Topic = (KPI OR indicat* OR quantif* OR
characteriz* OR metric)

Topic = (monitor* OR measure* OR “data-
driven” OR “data driven”)

Building scope

Keywords related to energy
flexibility definition

Keywords related to energy
flexibility quantification
Keywords related to data-driven
approaches

specifically investigate demand response or building energy flexibility
topics. The remaining 87 papers were then gathered in a table which
includes a brief summary of the use cases, applicable building sectors,
flexibility resources, quantification methods, and potential stakeholders
in each paper. This table with the complete list of the 87 selected
reviewed articles can be found in Table A1 of Appendix A. It serves as the
foundation for the rest of the analysis carried out in this paper. The
code/script used to analyze the data of Table Al can be found in Ap-
pendix A. Fig. 2 shows the number of publications categorized by year
and corresponding scientific journals. The reviewed articles were pub-
lished in 27 different journals and proceedings across different disci-
plines, including Applied Energy, Energy and Buildings, Energies,
Energy and IEEE proceedings.

From this Table Al, 48 distinct data-driven energy flexibility KPIs
were identified and gathered and categorized in Table A2 (see

Appendix A) according to their equation and definition similarities. In
addition, 29 other generic building KPIs associated with energy flexi-
bility studies in the reviewed publications were collected and included
in Table A2. Table A2 includes the definition, formula, and relevance of
the KPIs, together with an indication of the performance aspects, type of
flexibility, needed input variables, computation complexity, and popu-
larity among existing studies. The KPI analysis in this review was based
on the information collected in Table Al and Table A2.

The study and categorization of the different publications and KPIs in
this article are based on the collegial analysis and discussions of the
authors. All authors of the present study have strong expertise in the
field of building energy flexibility and demand response. They also are
active members of the building energy flexibility community and
participate in related international research projects such as the IEA EBC
Annex 67, 81, 82 and 84.

3. Use cases for data-driven energy flexibility KPIs

A systematic review was carried out to determine key characteristics,
target stakeholders, and types of technologies present in the different
studies using data-driven energy flexibility KPIs. These publications can
be analyzed according to three main axes:

e Building sector: Commercial, residential, or industrial buildings

e Scope: Two main levels: single building or cluster of buildings

e Assessment method: Simulation, measurement, or hardware-in-
the-loop (HIL)

As observed in Fig. 3, the sector of residential buildings was the most

Publication by Years and Journals

APPLIED ENERGY SUSTAINABLE CITIES AND SOCIETY
IEEE TRANSACTIONS ON SMART GRID
25 4
204 Others
ENERGIES
15 1 ——
ENERGY JOURNAL OF BUILDING ENGINEERING | |
SUSTAINABLE ENERGY GRIDS & NETWORKS
ENERGY AND BUILDWNGS ENERGY CONVERSION AND MANAGEMENT

10

| .

ol mem N || - -_

2 ) © A Q ) N A 13
e 2> e e e 2> il 2o Nl

Fig. 2. Distribution of the reviewed publications categorized by year of publication and type of scientific journal.
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Building Scope

Applied Energy 343 (2023) 121217

Assessment Method

Commercial
Residential
Industrial
NA.
NA
Industrial o
Building
Commercial Clusters
Residential
Commercial )
Single
Building
Residential

Simulation
Hardware-in-the-loop

Hardware-in-the-loop

Simulation
Measurement

Measurement

Simulation

0 5 10 15 20 25 30 35 40 0 10 20
%

Fig. 3. Distribution of the reviewed studies using data-driven energy flexibility KPIs according to the building sector, building scope, and assessment method.

studied (48.9%), followed by the commercial sector (28.3%). One can
note that although modern building management systems (BMS) col-
lecting building performance data are more common in commercial
buildings than in residential ones, the former are less studied than the
latter. This can be because energy flexibility operation strategies are
easier to implement in residential buildings and have tremendous po-
tential for demand-side management [21].

In addition, single-building level application studies (53.3%) are
more common than cluster-level ones (41.3%). This can be explained by
the complexity of setting research projects with clusters of buildings
before having results on single buildings to motivate the realization of
the former. Small-scale demand response investigations on single
buildings are easier, and thus more common at the moment. However,
based on the promising results obtained on large-scale applications [22
23], an increased interest in cluster-level studies is expected in the near
future.

The building operational data for energy flexibility assessment come
from different sources. Only 25.8% involved real measurements, and
65.2% relied purely on simulations. The fact that simulation is still the
most used investigation method indicates the need for studies with real
case study applications.

According to the literature review, energy flexibility KPIs are typi-
cally used for the assessment of the following technical solutions: the
control of heat pumps [24 25 26 27], district heating [28], HVAC sys-
tems [29 30 31], charging and discharging of EVs and batteries [32 33
34], and lighting [35]. It was also possible to distinguish a focus on the
design phase and operational phase. It was found in previous reviews [7]
that for the design phase, the influence of the building envelope [36 37
38 39] on energy flexibility potential was the most popular topic. For the
operational phase, the coordination between different technologies [24
27] and the indoor zone temperature setpoint adjustments [36 38 40 41]
were the most common management strategies found to exploit building
energy flexibility.

Moreover, the stakeholders interested in the flexibility at the single-
building level are the occupants, building owners, and building man-
agers, while DSO/TSO and utility companies focus on the building
cluster level. In both levels of application, the results represented in the
flexibility indicators are crucial for policymakers and planners. In this
regard, metrics and methodologies on how to evaluate energy flexibility
are becoming key factors in improving energy management at both the
grid and user levels. Knowledge of the impact of each building on the
grid can provide insights into where to act to optimize the operation of
the whole energy system.

4. Data-driven energy flexibility KPIs

The current review focuses on 87 papers obtained from the initial
screening (see Table A1). A total of 81 data-driven KPIs were extracted
from those publications (reduced down to 48 distinct KPIs after the
merger of the ones with a similar definition, equation or underlying
logic but different form), which cover a wide spectrum of applications

with various building cases, performance goals, and data requirements.
While some KPIs are more popular and commonly used across different
studies, others were developed specifically for unique scenarios. To
structure and clearly understand the landscape of data-driven building
energy flexibility assessments elaborated by the scientific community,
these 48 KPIs were systematically categorized based on the following
criteria:

e Relevance: Some KPIs are designed specifically for assessing energy
flexibility, while others are more generic. The KPIs were qualita-
tively rated as “low,” “medium,” and “high” based on how relevant
they are to the best of the authors’ knowledge.

e Complexity: The computation of KPIs involves data collection,
processing, and calculations. The complexity of the KPIs was quali-
tatively assessed based on the required amount of data processing
and computation.

o Performance aspects: Depending on the use cases, KPIs may have
different primary performance aspects. The latter are categorized
into energy demand, power demand, cost, greenhouse gas (GHG)
emissions, impacts on IEQ, and comfort.

e U.S. DOE categorization: The U.S. DOE categorized DSM strategies

into five types: efficiency, shifting, shedding, modulation, and gen-

eration. Each KPI was tagged with the relevant U.S. DOE
categorization.

Baseline: Each KPI was marked as either baseline-required or

baseline-free, according to whether a baseline scenario is needed for

its computation or not (as introduced in Section 2).

e Data requirements: Depending on the application scopes and use
cases, energy flexibility KPIs have diverse input data requirements
for their computation. The temporal and spatial data requirements,
as well as the variable types needed for the KPIs’ calculation, were
also investigated.

The categorization resulted in 12 core energy flexibility categories
with 48 data-driven KPIs and four generic categories with 29 KPIs. One
should note that core KPIs are specifically designed for energy flexibility
assessments, while generic KPIs are not directly linked to energy flexi-
bility assessment but are often used in the reviewed studies to evaluate
other performance aspects of buildings involved in DR. All KPIs with
detailed categorization can be found in Table A2. The analyses in the
following sections focus on these 48 core energy flexibility KPIs. The
popularity of these KPIs has also been evaluated by counting the number
of publications using them. A summary of the classification of these KPIs
can be found in Table 2.

4.1. Baseline-required KPIs

4.1.1. Baseline-required data-driven KPIs

Out of the 48 collected and categorized data-driven energy flexibility
KPIs (see Table 2), 39 of them (81%) were found to be baseline-required.
Fig. 4 shows the distribution of those baseline-required KPIs according
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Table 2

Summary of the categorization for both the energy flexibility KPIs (EF KPI) and
the associated generic building performance KPIs (Generic KPI). These KPIs have
been extracted from the 87 selected papers, then categorized. The information of
this table is related to distinct KPIs: KPIs with similar definitions, equations, or
underlying logic but different forms were merged.

Category Number Number of Number of  Popularity:
of distinct  baseline- baseline- number of
KPIs required free KPIs publications
KPIs

EF KPI: Peak 4 4 0 8
power shedding

EF KPI: Energy / 10 8 2 11
average power
load shedding

EF KPI: Peak 3 3 0 5
power / energy
rebound

EF KPI: Valley 2 2 0 1
filling

EF KPI: Load 6 2 4 14
shifting

EF KPI: Demand 3 2 1 4
profile
reshaping

EF KPI: Energy 3 2 1 11
storage
capability

EF KPL: DR energy 4 4 0 7
efficiency

EF KPI: DR costs / 4 4 0 10
savings

EF KPI: DR 2 2 0 3
emission /
environmental
impact

EF KPIL: Grid 3 2 1 3
interaction

EK KPI: Impact on 4 4 0 5
IEQ

Generic KPI: 6 2 4 3
Energy
efficiency

Generic KPI: Costs 4 1 3 7
and savings

Generic KPI: COy 2 2 0 3
emissions /
environmental
impact

Generic KPI: Grid 17 6 11 13

interaction

to both the U.S. DOE categorization of DSM and the relevance assess-
ment by the authors of the present review. The y-axis indicates the
number of KPIs and their relevance in each category. It can be observed
that load shedding and load shifting are the most popular categories,

15
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covering 52% of the KPIs. Some of those KPIs were specifically devel-
oped for a certain type of assessment: 10 are designed for load shedding
only, 4 for load shifting only, and 2 for energy efficiency only. For
instance, the Flexibility Index [38] was specifically created to measure
the capacity of a system to shift energy use from high-price periods to
low-price periods. On the contrary, more than half (23 out of 39) of the
baseline-required KPIs are for a more general assessment of energy
flexibility and cover multiple categories. For example, the Flexible
Savings Index [42] quantifies the differences in cost savings between
penalty-aware operations (flexible) and penalty-ignorant operations
(baseline). Since it is not restricted to operational cost reduction, this
KPI can be used to assess energy efficiency, load shedding, and load
shifting performance during a DR event.

Fig. 5 shows the distribution of complexity, temporal evaluation
windows, and spatial resolution of the baseline-required KPIs. This
figure gives an overview of some of the key characteristics of baseline-
required KPIs and can thus inform on the common scope and applica-
bility of the latter. 82% of these baseline-required KPIs have low
complexity, meaning they are easy to calculate with baseline and flex-
ible performance data. As for the temporal evaluation window, 56% of
the KPIs can be applied to a single DR event only, while the rest are less
restricted in terms of the temporal aspects. 15% of them assess energy
flexibility for a whole day and 8% for a whole year. Furthermore, 5% of
the KPIs can be used for multiple DR events, and 15% have no duration
assessment restriction. In terms of applicable spatial resolution, about
half of the KPIs are for single buildings (31%) and building clusters
(21%), while the rest are not restricted to any spatial scale.

4.1.2. Data-driven methods to generate baselines

Out of the 48 KPIs identified previously, 39 of them (81%) required
the generation of a baseline for energy flexibility quantification [43].
The baseline is an estimation of the consumers’ “normal” energy usage,
i.e., the energy demand profile without any DR event [44]. A good
baseline estimation methodology should be robust and transparent and
with an acceptable level of accuracy [45]. It also should limit the op-
portunity for “cheating” and market manipulation in case of reward
based on the baseline estimation [45].

This section reviews data-driven baseline generation methodologies
applicable to single-building and district levels (aggregated energy de-
mand). This review is not meant to be exhaustive on the topic of baseline
estimation but provides insights and key references for methodologies
that can be used for flexibility characterizations that are based on a
comparison against a baseline. Baselining is closely related to the topic
of short-term load forecasting. The main difference is the possibility of
including post-DR event measurements in the estimation. According to
recent publications on the topic, the methodologies used for baseline
estimation can be classified as: control group, averaging, regression,
machine learning, and hybrid [45 46 47 48].

The control group methods require monitoring a similar group of
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Fig. 4. Baseline-required energy flexibility KPIs analyzed according to the U.S. DOE categorization of DSM and the relevance assessment from the authors of the

present review.



H. Li et al.

KPI Complexity
single event
82%
56%

Medium

High

Evaluation Window

unspecified

Applied Energy 343 (2023) 121217

Spatial Resolution
unspecified

multiple events

49%

whole year

whole day

single building building cluster

Fig. 5. Distribution of the baseline-required energy flexibility KPIs according to their complexity, temporal evaluation window, and spatial resolution.

buildings, for which no flexibility scenario is applied. The monitoring
data of this control group is then used as a baseline for the character-
ization of other buildings performing DR. The averaging method (also
called similar day look-up approach or XofY) is one of the oldest fore-
casting methods and is still widely used for baseline estimation [49]. The
most popular methods are the High3o0f5 and Mid50f10. HighXofY takes
the average load of the X highest consumption days from a set of Y
admissible days preceding the DR event. The exponential moving
average (or exponential smoothing) method is a weighted average of the
customer’s historical load, where the weight decreases exponentially
over time [49].

Regression models, either linear or higher order nonlinear, are often
used to estimate customer baseline load due to their robustness but
require a relatively large historical dataset to be fitted correctly. The
feature selection of regression models is crucial and varies significantly
in the literature [50 51]. The most common features encountered are the
following: historical load variables, external variables (weather- and
time-related), and building and occupancy characteristics. Autore-
gressive models (ARMA, ARIMA) are special forms of regression models
that are widely used for load forecasting. They evaluate the current
value of the series as a linear combination of previous/past loads. Such
models can handle seasonality and non-stationarity and only require a
limited amount of historical data [52]. Other types of regression models
exist, such as the GAM (Generalized Additive Model) and LASSO (Least
Absolute Shrinkage and Selection Operator) types. These have been used
for energy flexibility KPI computation [53].

More recently, a variety of shallow learning and deep learning-based
methods have been employed for energy profile forecasting. In partic-
ular, support vector machines for regression (SVR), extreme gradient
boost (XGBoost) and random forest are popular shallow learning
methods for building load predictions. Vanilla deep neural networks
(DNN), long short-term memory (LSTM) and time-delay neural networks
(TDNN) are common deep learning methods for load forecasting [54].
Regarding the aforementioned DNN methods, however, Antonopoulos
et al. [54] comment on the need for a large amount of training data to
outperform other more robust statistical methods.

Hybrid models also have been developed to combine different fore-
casting approaches. In Denmark, for instance, a flexibility response
model was trained with field data from a portfolio of 138 real residential
customers equipped with electric heaters. This model was based on a
linear combination of three methods: linear interpolation, forward-
backwards autoregression, and load decomposition [45].

A comparison between methods is not straightforward, as there is not
a single way to define/set each of them, and their respective input data
and parameters can be quite different. Many publications only use a
single baselining method, which makes the comparison difficult.
Moreover, the case study or the metrics used to evaluate the perfor-
mance of a model are not homogenous among articles. However, some
conclusions can be drawn from the literature. It is difficult to disregard
any of the methodologies described above [55]. As highlighted by
Makridakis and Hibon [56], “simple methods developed by practising
forecasters do as well, or in many cases better, than sophisticated ones.”

Some articles conclude that the simple baseline methodologies provide a
good and simple basis for developing customer baseline load [49]. Many
industrial solutions for demand response rely on simple baseline meth-
odologies to reward customers, such as High3of5 or Mid50f10. Indeed,
they state that the simplicity and transparency of these types of meth-
odologies make them reliable and understandable by customers [50 57].
However, more field studies are required to evaluate the most appro-
priate baselining methodologies.

In addition, the scale of aggregation plays an important role in model
selection. The prediction can be quite poor at the household level due to
the high variance and stochasticity of occupants (errors ranging from 5%
to 60% [58]). As stated by Humeau et al. [51], SVR might be the most
suitable method for load forecasting of a small district (782 houses), but
linear regression performs better at the household level. Peng et al. [59]
conclude that “the selection of load forecasting techniques highly de-
pends on the data itself, and there is no single technique that out-
performs other techniques in all scenarios, especially for load at low
aggregation levels.”.

4.2. Baseline-free data-driven KPIs

Unlike baseline-required KPIs, baseline-free KPIs can be calculated
with building data measured in a single scenario. Only nine data-driven
baseline-free energy flexibility KPIs were identified from the review.
Fig. 6 shows their distribution according to the U.S. DOE categorization
of DSM and the relevance assessment from the authors of the present
review. Specifically, six of them (67%) have at least medium relevance,
which is a lower percentage than the baseline-required KPIs (89%).
Among them, except for the Available Flexible Energy [24], which
covers both load shifting and load shedding, the rest of the KPIs are
dedicated to load shifting [36 60 61 62 63], load shedding [28 32 45 64
65 66 67 68], and modulating [22 67], respectively. There is no
baseline-free KPI for efficiency and generation.

Fig. 7 presents other statistics of the baseline-free KPIs. A smaller
portion of the baseline-free KPIs (56%) have low complexity compared
with baseline-required KPIs (82%). This is because those KPIs are more
likely to involve sophisticated data manipulations. However, one should
not ignore the amount of effort needed in developing data-driven models
for the baseline-required KPIs. In terms of the temporal evaluation
window, four KPIs are intended to a single DR event, two KPIs are only
applicable to yearly-level evaluations, and three KPIs can be used for an
arbitrary event window. As for the spatial resolution, except for one KPI
that was designed for a single building, the rest of the eight KPIs are not
restricted to a specific number of buildings.

Baseline-free KPIs are especially useful when it is difficult to monitor
the performance of a building during what is supposed to be a baseline
scenario or when no data-driven approach can be used to generate that
baseline. Indeed, buildings enabling energy flexibility strategies might
perform DR very frequently or continuously. In that case, it might be
impossible to record the performance of that building without any DR
event over a sufficient period of time and with adequate boundary
conditions to be used as a baseline for assessing DR events. A popular
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Fig. 6. Baseline-free energy flexibility KPIs analyzed according to the U.S. DOE categorization of DSM and the relevance assessment from the authors of the pre-

sent review.
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Fig. 7. Distribution of the baseline-free energy flexibility KPIs according to their complexity, temporal evaluation window, and spatial resolution.

baseline-free KPI is the Flexibility Factor (FF), which was first defined by
Le Dréau & Heiselberg in 2016 [36], with multiple subsequent varia-
tions [60 62 63]. The FF assesses how well an operational strategy could
shift a target quantity outside of a temporal window. The FF can be
applied in different cases because the target quantity can be energy
usage, operational costs, carbon emissions, and even HVAC system
runtime. However, as stated above, most existing studies rely on simu-
lations to get both baseline and DR scenarios. Future efforts are still
needed to develop KPIs that are baseline-free, easy to calculate, and

highly relevant.

4.3. How to choose data-driven KPIs?

Fig. 8 shows the identified data-driven energy flexibility KPIs and
their relation to the different stakeholders. One can observe that the
majority of the KPIs are intended for energy grid operators.

Furthermore, those KPIs have diverse applications across different
scopes and have various data requirements. The parallel categorical plot
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Fig. 8. Data-driven energy flexibility KPIs analyzed with regard to the different stakeholders. The popularity of the different KPIs was assessed by the number of
publications/citations in which they appeared.
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in Fig. 9 presents the multidimensional categorization of the 48 main
data-driven energy flexibility KPIs. One can understand a KPI's cate-
gorization by following the line connecting the columns. For example,
the Flexibility Savings Index (FSI) evaluates the cost savings of a DR
event and was used in six publications. The FSI is highly relevant and
with a low calculation complexity. However, a baseline scenario is
required to compute it. In contrast to some KPIs that are designed for a
single DR event, the FSI can be evaluated for an arbitrary timespan and
can be calculated from building data time series with various levels of
granularity. The FSI can be used for both single buildings and building
clusters.

The analyses in the sections above clearly indicate the large diversity
of the data-driven energy flexibility KPIs. It can thus be quite chal-
lenging to choose an appropriate one for a given situation. The authors
of the present review, therefore, suggest following the few steps below to
select appropriate KPIs (summarized in Fig. 10):

1) Identify the targeted stakeholders: e.g., TSO, DSO, building operators
or building occupants.

2) Determine the application scope: single building or building cluster.

3) Determine the main goal of the energy flexibility measures: e.g.,
reducing peak power demand or load shifting to reduce operational
cost.

4) Check if baseline-free KPIs are sufficient: those KPIs are usually much
easier to calculate because they do not require extra effort for the
generation of a baseline scenario.

5) If baseline-free KPIs are insufficient, a data-driven modelling
approach needs to be employed to generate the baseline scenario of
the target building before the KPI can be computed.

6) If the existing data-driven KPIs are deemed inappropriate for the
current needs, a new tailored KPI should be developed.

One can find in Table 3 the top three most popular baseline-required
and baseline-free data-driven energy flexibility KPIs. One should note
that the popularity of KPIs in the scientific literature is not a guarantee of
their adequacy and usefulness. However, until systematic analyses of
these KPIs are performed with various datasets of building performing
DR, this table can serve as a guideline to get an overview of which data-
driven energy flexibility KPIs are commonly used by the scientific
community.

The 29 KPIs categorized as “generic” were not initially designed for
assessing building energy flexibility but are often used in studies
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Valley Filing (2 KkP1s) [

\ Relevance
Peak Power Shedding (4 KPI

Medium (10.4%)
Hourly Re
Peak Power / Eneroy Rebound (3 KM [T

\Medium (31:2%)

R a,\, |
=

W Lov (77.1%)

Energy / Average Power Load Shedding

Demand Response Energy EfficiRAY]

/

2

emand Response Emission / Environmental Impact (:

Demand Response Costs / $&

Complexity

Applied Energy 343 (2023) 121217

Subset with filter T)
2&3

Filter 4-1:
Baseline-free

When baseline-free
KPIs are not sufficient

Filter 1: stakeholder
(e.g., building operators)

Subset with filter 1

Filter 2: application scope
(e.g., single building)

Sufficient? No Data-driven model
development
'
Y
Filter 4-2:

Baseline-required
v

Bubset with filte

Subset with filter 1 & 2

No
Filter 3: EF Goal \ A 4
(e.g., load shifting) End M----- New KPI

development

Fig. 10. Selection process of data-driven energy flexibility KPIs.

investigating energy flexibility and Grid-interactive Efficient Building
(GEB). Two commonly found examples of these “generic” KPIs are self-
consumption and self-sufficiency. Although originally developed to
evaluate on-site renewable energy generation and utilization, many
studies [82 83 84] used them to indicate the flexibility of a building’s
energy use in response to available on-site production.

5. Available datasets for testing and analyzing energy flexibility
KPIs

This section curates a list of surveyed datasets performing demand
response or building-to-grid (B2G) services for energy flexibility as-
sessments. The proposed process includes preparing the collected
datasets with proper descriptions and characterizing them in terms of
their DSM strategy, building scope, grid type, and control actions and
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Fig. 9. Categorization of the data-driven energy flexibility KPIs. The popularity of the different KPIs is assessed by the number of publications/citations in which

they appear.
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Table 3
Top 3 baseline-required and baseline-free data-driven energy flexibility KPIs.
KPI Formula Terms Stakeholders Performance goals U.S. DOE Reference
categorization [16]
Baseline- Energy Napr = Qapr: thermal power Building Reduce energy Energy efficiency [34 41 68
required Efficiency of 1o (Qapr — Quep)dt supplied to the operators; TSO consumption during
Demand - flength,wn (Qapr — Qup)dt building during the the DR event 697071]
. 0 DR of
Response Action DR event
Qrer: thermal power
supplied to the
building during
reference operation
Flexibility FSI = - Building owners; Reduce operational Energy efficiency, [20 42 72
Savings Index Costofflexibleoperation building costs during the DR load shedding, load
Costofbaselineoperation operators event shifting 737475]
Peak Power AP = Phaseline, peak: the peak DSO; TSO; grid Reduce power demand Load shedding [68 76 77
Shedding Phaseline peak —Pftexible peak power demand during  operators during peak hour due
the peak hour of the to flexible operation 78]
baseline scenario
Pfiexible, peak: the peak
power demand during
the peak hour of the
flexible scenario
Baseline- Flexibility FF = Qnon peak: the quantity DSO; TSO; Shift a quantity Load shifting 136 62 63
free Factor J Gronpeak-dt — [ Gpeai-dt of interest during non-  building owners between periods . )
[ Gnompeak-dt — [ Gpea-dt peak periods. 727579]
Qpeak: the quantity of
interest during peak
periods.
Energy Shift ' d Qheating (low price): the DSO; TSO; Shift energy Load shifting -
Flexibility / neasing(lowprice) 4t heating demand building owners consumption between [35 36 60
Factor / Qheating(highprice) At during low-price periods 61 80]
FS=—(— periods
/ Qheatinglowprice)"dt-+ Qheating (high price) the
- heating demand
/ Gheating highprice) dt during high-price
periods
Load Factor LF — AVG, AVG;: the average Building owners; Reduce the peak Load shedding (73 81]
max;, demand during a power suppliers power demand

period

max;: the maximum
demand during a
period

objectives. This section also assesses their capability to calculate the
energy flexibility KPIs by referring to their available features compared
to the ones each KPI requires. This is a significant step towards testing
and benchmarking the energy flexibility KPIs reviewed above. To the
best of the authors’ knowledge, this survey and analysis is the first
standardized effort to curate open datasets for quantifying building
energy flexibility. Although limited in size, this gives a good overview of
the features commonly found in DR-related projects publishing data.
The authors also hope that this first collection effort can seed and
improve the generation, description and publication of future open-
access datasets of buildings performing DR.

5.1. Dataset collection process

This section analyzes datasets collected from research studies and
pilot projects on B2G application services. The scope for this dataset
collection included data (in the form of time series, along with the
appropriate metadata and case description) from existing, simulated, or
semi-simulated (hardware-in-the-loop) individual buildings, multiple
buildings or building clusters that participate in demand response,
demand-side management, or energy flexibility studies or programmes.
The collection process was based on: (1) a search of publicly available
datasets and data platforms (e.g., Kaggle, Data-in-Brief); (2) open calls
published on online platforms and social networks and shared with the
IEA EBC Annex 81, 82, 83, and 84; and (3) personal contacts to lead
investigators of research studies being considered within IEA EBC Annex
81 and 82 activities. The registration of the datasets was obtained
through a semi-structured online questionnaire, which proposed
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standardization of nomenclature and terms to characterize the descrip-
tion of the datasets (i.e., metadata and case information/
characteristics).

A breakdown of the dataset collection process and quality assessment
is presented via a Sankey diagram in Fig. 11. A total of 330 datasets were
identified. Half of the considered datasets were deemed out of scope,
mostly because they did not comprise buildings actually performing DR,
despite some initial promising descriptions of the studies. Of those
remaining, only 20% (33) of the project teams that were contacted (to
ascertain if they could provide information and data from their studies)
responded. Approximately 30% (10) of the respondents were unable to
share datasets due to confidentiality agreements, and 21% (7) of the
others had inadequate datasets. Of the remaining, 63% (10) were able to
provide a partial or full description of their datasets but did not share or
publish the datasets at the time of writing. Only 37% (6) were able to
provide access to the dataset along with a partial or full description of
the dataset.

The analysis presented in the following sections only concerns the 16
(4.8% of the in-scope total) datasets, where the associated research
teams provided or will provide the necessary access to the appropriate
data. The list and detailed information about these 16 datasets can be
found in Appendix B, Table B1. The code/script used to analyze the data
of Table B1 can be found in Appendix B. A summary of the information
on the 16 datasets of buildings performing DR can be found in Table 4.

5.2. Datasets description and analysis

The 16 collected datasets represent a wide variety of B2G studies.
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Fig. 11. Breakdown of the datasets and information collection process and quality assessment.

The data are characterized by low availability, heterogeneous formats
and diverse end-use domains. They include data from real monitored
buildings (6), hardware-in-the-loop setups (5), and numerical simula-
tions (5). The buildings are located in the USA (7), Europe (6), Canada
(1), Australia (1), and South Africa (1). All building typologies are
represented, including non-residential buildings (7), residential build-
ings (6), and clusters combining both types (3). Five datasets comprise a
single building, five datasets comprise 1-10 buildings, two datasets
comprise 10-100 buildings, and four datasets comprise 100-500
buildings. While most datasets are associated with electrical grids (15),
only a few (2) are connected to district heating networks. Regarding the
tariff programs/structures, most cases are based on time-of-use (7), real-
time pricing (6), and flat-rating pricing (2), with four lacking this in-
formation. Some of the datasets are based on a time duration of one to
four years (6) and others of one to four months (6); two datasets were
accepted exceptionally, with only a few days of data. The remaining
datasets did not specify this information. The temporal resolution
(sampling rate) of the datasets ranged from one minute (7), to sub-
hourly (4), and hourly (3); two datasets did not specify. The majority
of the datasets had less than 1% of the data points missing. Some did not
have the necessary information to make this assessment.

The most common features available across datasets are indoor and
outdoor temperatures, followed by end-use energy demand, thermostat
setpoints, occupancy, and solar radiation. Approximately 40% of the
datasets included data related to heating loads and cooling loads (i.e.,
chilled water temperature). Another standard available data feature is
the price signal used for activating most of the flexibility control stra-
tegies (load shifting, load shedding, generation, and modulation) and
assessing rebound effects and the impact on flexibility during and after
the DR events. Regarding additional grid signals, some datasets include
the duration of the event. However, none provide the requested capacity
or financial incentives typically included in bilateral transactions or
agreements between energy market stakeholders.

Fig. 12 illustrates the usability of the reviewed KPIs (the share of
collected datasets that can be used to compute the different KPIs) and
the usefulness of the datasets (the share of KPIs in each category that can
be computed from the data in each dataset). The five most easily
calculated KPIs in terms of required and available variables are energy/
average power load shedding, load shifting, demand profile reshaping,
demand response energy efficiency, and demand response costs/savings.
The most commonly used variables when calculating the KPIs include
end-use energy demand, power demand, price signal, event request time
period (interval), action type/direction (downward and upward
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flexibility), and size (flexibility capacity). While the last three are critical
parameters, most datasets do not include more than one of these three.
As a result, the majority of KPIs cannot be calculated directly with most
datasets (i.e., not without performing additional modelling and/or cal-
culations to derive the required variables). It is interesting to note that
the value of a dataset for KPI calculation does not increase with the
number of features it contains. While datasets #1, #11, and #12 have
more available features, Fig. 12 shows that datasets #2, #3 and #6 are
the top three for calculating the most KPIs. This is illustrated in the
upper and bottom subplots of Fig. 12. For example, in the upper subplot,
dataset #6 can be used to calculate 90% of the KPIs for energy/average
power load shedding, 33% for load shifting, and so on. In the bottom
subplot, dataset #6 can be used to compute 56% of all KPIs.

Six datasets are described in scientific publications or white papers.
Most of the datasets are or are about to be open access, with two
restricted access and two unspecified. However, to date, only four of the
datasets are already published and available to download. The
remaining datasets are either part of ongoing projects (the data publi-
cation is foreseen in 2023) or part of completed projects for which access
to the data can be granted by contacting the research team.

5.3. Use case analysis

Despite the limited output size of the data collection process, it is still
feasible to infer a number of trends regarding B2G application services
for these case studies. As presented in Fig. 13, load shifting and load
shedding are the most common DSM control strategies. HVAC systems
are the most commonly activated resource to deliver flexibility. The
flexibility action is often triggered by temperature adjustments,
uniquely applied in 19% of the datasets or within a mix of actions in the
other 69%. The control strategy is often multi-objective; the most typical
ones are to reduce peak demand, minimize energy costs, and maintain
thermal comfort.

More in-depth assessment can be made by segmenting the dataset
information into instances based on five of their major features: DSM
strategy, building sector, grid sector, flexible resources, and control
actions (see Fig. 14). The first feature confirms the clear preference for
solutions related to load shifting and load shedding strategies. The grid
sector criteria show that the vast majority of implemented solutions
focus on the electricity grid, with only a small number dedicated to
district heating. This is to be expected due to the low utilization of
district heating networks worldwide [93]. Most strategy instances have
been applied to commercial buildings, underlining HVAC systems as
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dataset not shared
yet

Texas A&M
University, NIST

Table 4
Information summary of the 16 datasets of buildings performing DR.

Status Project name Institution Country Case description Case type Link to dataset Reference

Full description, A medium-sized LBNL USA 1 low-rise office building Real https://datadryad.org/ [18]
dataset available office building in monitored stash/dataset/h

Berkeley building ttps://doi.org/10.79
41/D1IN33Q

Full description, Domestic hot water Stellenbosch South 77 residential houses Real https://bit.ly/synthetich [85]

dataset available usage data University Africa monitored otwater
building

Full description, La Rochelle La Rochelle France 337 dwellings in 98 large Simulation https://gitlab.univ-Ir.fr [86]

dataset available Residential District University apartment blocks /jledreau/AtlanFle
X-Sma I’T-ThCl'lﬂ()St{!r

Full description, INCITE IREC Spain 1 large multi-family Hardware-in- https://doi.org/10. [87]
dataset available apartment block the-loop 5281/zenodo.7006826

Full description, SEIH Aalborg University Denmark 191 detached single-family Real - [88]
dataset available houses monitored
with restricted building
conditions

Full description, Aliunid EMPA Switzerland 1 residential building Real - [89]
dataset available monitored
with restricted building
conditions

Full description, Newcastle Energy CSIRO Australia 1 low-rise office building Real - -
dataset not shared Center monitored
yet building

Full description, Simulated Building Syracuse University USA 400 + residential and Simulation - [90]
dataset not shared to Distributed commercial buildings
yet Network

Full description, Energy flexibility Aalborg University Denmark 20 + residential buildings Simulation - -
dataset not shared Danish building
yet stock

Full description, Hermandades Universidad Spain 102 low-rise apartment Simulation - [78]
dataset not shared neighborhood nacional de La Plata blocks, 24 high-rise
yet retrofit apartment blocks, 2

schools, 1 sport field

Full description, CityLearn-RBC/ University of Texas USA 4 commercial buildings, 5 Simulation - [91 92]
dataset not shared MARLISA at Austin apartment blocks
yet Simulation

Partial description, Institutional nZEBin  Varennes Library Canada 1 net-zero public library Real - -
dataset not shared Montreal doing MPC building monitored
yet building

Partial description, Atlanta, HIL Drexel University, USA 1 low-rise office, 1 mid-rise =~ Hardware-in- - -
dataset not shared Texas A&M office the-loop
yet University, NIST

Partial description, Bufalo, HIL Drexel University, USA 1 low-rise office, 1 mid-rise =~ Hardware-in- - -
dataset not shared Texas A&M office the-loop
yet University, NIST

Partial description, New York, HIL Drexel University, USA 1 low-rise office, 1 mid-rise Hardware-in- - -
dataset not shared Texas A&M office the-loop
yet University, NIST

Partial description, Tucson, HIL Drexel University, USA 1 low-rise office, 1 mid-rise Hardware-in- - -

office the-loop

their most preferred target flexibility resource. This is strongly sup-
ported by the high share of HVAC systems in terms of energy demand,
accounting for 38% in the building sector [94]. Lastly, for control action
features, temperature control and on/off regulation are the most com-
mon, which is a direct consequence of the prevalence of HVAC-oriented
solutions.

A more comprehensive analysis was made by considering the inter-
action between the features presented in Fig. 14 (e.g., the relation be-
tween the flexible resources and proposed control actions). For HVAC
systems, the control actions were based on on/off regulation and
modulation-type controls such as output setpoint or internal system-
level setpoint and active/reactive power control (e.g., fan modula-
tion). In most cases, the HVAC-based strategies leverage the passive
thermal inertia of the building (i.e., the thermal mass of the indoor
environment) and active thermal storage systems via HVAC setpoints
and charge/discharge adjustments. Active/reactive power and charge/
discharge control actions are also used for solar PV and electrical energy
storage, which are typically implemented together in these use cases.
For a combination between HVAC, solar PV, and electrical storage, a
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coordinating action of cluster resources was applied for one of the study
cases, aiming to increase the overall efficiency. Finally, for the single-use
case taking into consideration smart appliances, discrete on/off regu-
lation was implemented.

An important limitation of this analysis is that the DSM strategy
classification was collected as a survey input for the majority of the
datasets, and it is likely that different research teams have slightly
different definitions for them, which could result in misclassifications.

5.4. Limitations and future work related to dataset collection

The limited number of datasets analyzed in this section may have
hindered the potential for more robust conclusions of current B2G ser-
vice applications. Although many relevant studies have produced
simulation or monitoring data to test their hypothesis, getting access to
these datasets is highly problematic or, in many instances, not possible
at all. As indicated by the low reply rate of the contacted research teams
(19%), the main obstacle is getting a response from the research teams
performing these investigations. However, due to turnover in research
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Fig. 12. Heatmap contrasting the datasets’ variables that are available with the ones needed to calculate each group of KPIs. The x-axis represents the 16 datasets
that were collected, and the y-axis shows the 12 different categories of energy flexibility KPIs that were identified in this paper. The top and bottom subplots show the
percentage of KPIs that each dataset can calculate. The top one considers each category, while the bottom one considers a weighted average of all categories based on
their respective number of KPIs.
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Fig. 14. Interaction between DSM strategies, building sectors, grid sectors, flexible resources, and control actions within the analyzed datasets. The colour scale
differentiates between the different DSM strategies. The thickness of the line connectors between each column represents the proportion of datasets from the previous

category to the next one.

institutions, the contact information indicated in studies can be
outdated. Concerns over confidentiality created a second obstacle:
despite the existence of datasets, many could not be released publicly,
not even through confidentiality of restricted use agreements nor after
data anonymization processes. The open-access data publication of case
study projects must be significantly increased and planned early on
during the design of these projects. The third significant barrier is the
lack of available human resources within case study projects to format,
curate, and correctly document datasets so other research teams can use
them.

The analyzed datasets were originally collected with the intention of
using them for testing and benchmarking the energy flexibility KPIs
reviewed in this paper. Due to the heterogeneous formats and different
use of these datasets, an investigation of data quality procedures (such as
cleaning and filtering) will be needed [95 96 97 98 99]. The core focus of
future work will be to establish a framework for testing KPIs based on
the high and uniform quality of the datasets, which will serve as a first
step towards standardizing the benchmarking in energy flexibility
research.

6. Discussion

The review of 87 articles and technical reports reveals that 48 core
energy flexibility KPIs and 29 more generic building performance KPIs
have been used with data-driven approaches to asses B2G services.
These KPIs focus on demand-side energy management performance in
the operational phase of buildings and can be categorized using the
hierarchical structure shown in Fig. 1. Broadly defined, one group of
KPIs can be calculated directly from a building’s historical monitored
sensor and meter data, while the other group of KPIs needs a data-driven
method to estimate the baseline energy demand profile.

The three most commonly used data-driven energy flexibility KPIs,
grouped based on whether a baseline is required or not, were identified
and listed in Table 3. These KPIs focus on (1) the performance of load
shifting, (2) energy cost reduction, and (3) peak demand reduction,
which directly benefit building owners and grid operators.

This review makes contributions to the existing body of knowledge
on building energy flexibility KPIs in: (1) a comprehensive analysis and
categorization of existing data-driven energy flexibility KPIs, (2) an in-
depth understanding of use cases and stakeholders of the KPIs, (3)
guidelines to choose adequate KPIs, and (4) a wide survey and inventory
of building performance datasets that can be used to quantify energy
flexibility KPIs using data-driven approaches.

Major research gaps in data-driven energy flexibility KPIs were also
identified, and these point to future research opportunities, including
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the following:

1) Data-driven methodology development: It was found in the re-
view that more than 80% of the energy flexibility KPIs are baseline-
required. However, acquiring both baseline and flexible mode data is
still a challenge for real buildings in operation. Most existing data-
driven methodologies were not specifically designed for demand
response. Future efforts are needed to develop data-driven method-
ologies that can evaluate different energy flexibility strategies (e.g.,
energy storage, multi-energy systems) under different scenarios (e.g.,
weather conditions, occupancy).

Baseline-free energy flexibility KPI development: Although
baseline-free KPIs are relatively easy to calculate, they only make up
less than 20% of the energy flexibility KPIs. Therefore, future op-
portunities exist for developing such KPIs that capture different en-
ergy flexibility scenarios and performance goals.

Energy flexibility KPIs to support real applications: It was found
from reviewing the current scientific literature on the topic that most
studies focused on technical perspectives of building energy flexi-
bility in experimental settings. However, there are still many barriers
in real applications, like standardized procedures to measure and
verify building energy flexibility. Future energy flexibility KPI
development should consider factors beyond the engineering per-
spectives, such as flexibility markets, building occupants’ behavior,
acceptability and feedback, utility programs, building codes and
standards, and integration of building energy flexibility KPIs into
other operational metrics such as energy use, energy cost, and carbon
emissions for holistic building performance assessment.

Dataset collection for energy flexibility assessment: Open data-
sets with proper descriptions for energy flexibility assessments are
still very limited. Most datasets were not designed or collected with
the energy flexibility quantification as the objective from the
beginning, leading to missing data points or unmatched spa-
tial-temporal resolutions. The presented collection of datasets of
buildings performing B2G services in this study is preliminary and
will be continued within the IEA EBC Annex 81 activities. These
datasets will be reviewed and analyzed in depth and used to test and
investigate further the different energy flexibility KPIs. These
collected datasets also can serve as showcase examples of what
buildings can achieve in terms of B2G services in various conditions.

2

—

3)

4

—

7. Conclusions

This paper presents a holistic review of data-driven energy flexibility
KPIs for operational buildings. An initial set of 156 articles and technical
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reports were identified, of which 87 were selected for in-depth review. A
suite of 48 core energy flexibility KPIs and 29 generic building perfor-
mance KPIs were reviewed in terms of their use cases, stakeholders,
performance goals, applicable temporal and spatial scales, data re-
quirements, and calculation complexity. Depending on the data-driven
methodology, the KPIs were divided into two groups: baseline-
required KPIs (39), which require building performance data in both
flexible and reference scenarios, and baseline-free KPIs (9), which could
be calculated without a reference scenario. A brief summary of data-
driven baseline generation methodologies is included for baseline-
required KPIs. A multi-step process is proposed to facilitate KPI
selections.

Data is the fundamental ingredient of data-driven energy flexibility
KPIs. To examine which and how existing datasets can support data-
driven energy flexibility assessments, a survey of datasets related to
B2G applications was conducted. Initially, 330 datasets or dataset de-
scriptions were identified as potentially being linked to research studies
and pilot projects that could include demand response, demand-side
management, or energy flexibility strategies. However, only 16 (4.8%)
of the datasets were found to be within the scope and have a proper
description and data availability. That subset was then analyzed with
regard to the energy flexibility KPIs and use cases that each dataset can
support. The review makes contributions to the existing body of
knowledge on building energy flexibility KPIs and provides several in-
sights into research areas that require further attention.

Finally, this current work recognises the importance of user char-
acteristics in the context of data-driven energy flexibility KPIs. In this
article, it has been acknowledged that while data-driven solutions may
not rely on preexisting detailed models or prior knowledge of building
characteristics, including occupants’ behavior and interaction is of
critical importance. Therefore, incorporating occupant comfort and
acceptance of reduced comfort into KPI development can provide
valuable insights and improve the performance of B2G services, and it
will be the object of future work.
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Appendix

The different appendices and supplementary material created for this
study can be found on the GitHub dedicated to the IEA EBC Annex 81
(Data-Driven Smart Buildings) — SubTask C3 (Building to Grid Appli-
cations): https://annex-81-c3.github.io/data-driven-KPIs-review/.

Appendix A

Table Al is a complete list of the 87 selected reviewed articles with a
brief summary of the use cases, applicable building sectors, flexibility
resources, quantification methods, and potential stakeholders for each
paper [22 23 24 25 26 27 28 29 30 31 32 33 34 35 38 39 40 41 42 45 60
616263646566676970717273747677788081100101102103
104 105106 107 108 109 110111 112113 114115116 117 118 119
120 121 122123 124 125126 127 128 129130 131 132133 134 135
136 137 138 139 140 141 142 143 144 145 146 147]. Table Al can be
found in the following Google spreadsheet document: https://docs.
google.com/spreadsh
eets/d/1BYVYF _kVScc9upolPzEZHnIsrvBP2N2_1fS-nBxO2nl/edit#gid
= 1335917425.

Table A2 is a complete list of the 48 collected data-driven energy
flexibility KPIs and the 29 generic building KPIs associated with energy
flexibility studies in the reviewed publications. Table A2 can be found in
the following Google spreadsheet document: https://docs.google.
com/spreadsh
eets/d/1BYVYF_kVScc9upolPzEZHnIsrvBP2N2_1fS-nBxO2nl/edit#gid
= 978094966.

The code/script used to analyze the data of Table A1l and Table A2
can be found in the following Google Colaboratory notebook: https://
colab.research.google.com/drive/1gbz13aGcwLCQLryAQufPZywPOp
-QQmWO.

Appendix B

Table B1 is a complete list of the 16 identified available datasets of
buildings performing DR with detailed information about their respec-
tive study and a link to download the datasets when the latter are
available. Table Bl can be found in the following Google spreadsheet
document: https://docs.google.com/spreadsheets/d/10euAFI0595voh
N7Fvo8apNX_4faoa-SyQUJTIcVQOBo/edit?usp = sharing.

The code/script used to analyze the data of Table B1 can be found in
the following Google Colaboratory notebook: https://colab.research.
google.com/drive/1xg7Z6nkgdF704sU7VZSM4zHMIhxiCZEb?usp =
sharing.
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