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A B S T R A C T   

Buildings consume more than 70% of electricity in the U.S. In order to reduce building energy consumption, 
advanced building controls have been developed. However, most building controls are using physics-based 
models and lack of scalability. Recent development of data-driven control models could overcome this chal
lenge and be automatically developed and implemented on large scale. The purpose of this study was to evaluate 
the effectiveness, robustness, and scalability of automatic and systematic data-driven predictive control (DDPC) 
for a large-scale real-world deployment. We first used collected data from 78 buildings in RTEM database to train 
deep neural network models. Then we applied the models to optimize the HVAC control for energy savings. We 
focused on over 1000 HVAC units in five different commonly used types, including air handling units, rooftop 
units, variable air volume systems, fan coil units, and unit ventilators. Next, we evaluated the energy-saving 
potential and the reduction of greenhouse gas emissions of the proposed method. We found that DDPC was 
robust and scalable in buildings, with an average energy saving of 65% and peak load reduction of 15% 
compared to current control systems. The average reduction of GHG emissions for CO2, CH4, and N2O was 15.18 
kg, 5.76e-4 kg, and 5.48e-5 kg per m2 per year, respectively. New York State can benefit 11% reduction in carbon 
emission from DDPC in buildings. For scalability, we also identified and categorized the challenging conditions 
when DDPC may not work properly and summarized the lessons learned from large-scale DDPC deployment.   

1. Introduction 

In accordance with the greenhouse gas (GHG) emission reduction 
requirements of New York State, the goals to combat climate change 
required to limit statewide GHG emissions to 60% of 1990 levels by 
2030 and 15% by 2050 [1]. According to the 2021 Statewide GHG 
Emissions Report of the Department of Environmental Conservation in 
New York [2], the largest source of GHG was buildings which accounted 
for 32%. Moreover, space heating and cooling in residential and com
mercial sectors accounted for 38% and 10% of building energy usage, 
respectively [3]. Hence, it is necessary to develop a scalable smart 
control for building energy efficiency and GHG emission reduction. 

New York State Energy Research and Development Authority 
(NYSERDA) supported a Real Time Energy Management (RTEM) 
Incentive Program [4] throughout the New York State. Among these 
buildings in the database, most were equipped with various HVAC 

systems for space heating and cooling. Therefore, we could develop and 
validate the smart building controls by using the database. 

1.1. Data-driven model predictive control 

Complex heat transfer and the lagging effects were existing in 
buildings due to the thermal mass of building envelopes and changeable 
complex indoor and outdoor environments. Model predictive control 
(MPC) derived from advanced process control could capture the dy
namics of the building systems. Nowadays, it got more attention in the 
HVAC field [5] and played an important role in sustainable building 
energy systems [6]. Drgoňa et al. [7] and Mariano et al. [8] presented 
reviews of MPC in building operation and management. It was also 
found that MPC could save building energy use by 15–40% [5,9]. 
Meanwhile, MPC has been tested and deployed in field implementations 
in different buildings in various studies [10–12]. However, traditional 
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physics-based MPC relied on the building thermodynamic model, so it 
required significant time and expert knowledge for model development 
and calibration. It was reported that developing and calibrating satis
factory models was one of the main obstacles and accounted for 70% of 
the total effort [13]. Additionally, they must be developed on a specific 
basis, as every building and HVAC application was different. The 
customized approach made it difficult for automatic development and 
implementation in multiple buildings in practice. As a result, the 
physics-based controls limited the large-scale deployment of decarbon
ization of buildings and the power grid. 

In recent years, researchers have also developed data-driven model 
predictive control to overcome these challenges of traditional physics- 
based MPC [14,15]. Data-driven models such as deep neural networks 
(DNNs) could be developed with limited knowledge of building physics 
but utilizing sufficient historical time-series data [13]. And a single 
model architecture could be applied in multiple application cases to 
improve building energy efficiency [16] and energy flexibility [14]. 
Data-driven models could learn the complex and non-linear building 
properties, which was very difficult for physics-based models [17]. 
Many studies have used DNNs for building energy modeling [18], 
temperature control [19], and thermal behavior modeling [20,21]. 
DNN-based building control has become popular in the literature in both 
commercial buildings [22,23] and residential buildings [24]. Specif
ically, for example, to improve the development and solution of DDPC, 
Kusiak et al. [25] presented a data-driven approach for the 
multi-objective optimization of an HVAC system in an office building by 
the particle swarm algorithm. Ferreira et al. [26] implemented neural 
network predictive control for thermal comfort and energy savings in 
public buildings. The energy saving could be 50% in university as 
experimental results showed. Macarulla et al. [22] implemented neural 
network predictive control in a commercial building energy manage
ment system. The energy saving was nearly 20% and while ensuring 
building thermal comfort. Smarra et al. [27] used a random forest model 
for building energy optimization and climate control, achieving energy 
saving up to 49.2%. Jain et al. [28] used data-driven regression trees to 
represent building dynamics, and solved them in a real-time closed loop 
to reduce peak power in buildings. The peak load was reduced by 8.6%. 
Lee and Heo [29] proposed data-driven models for residential buildings 
and the case study achieved heating energy of 12% compared to tradi
tional on/off control. Mugnini et al. [30] assessed the performance of 
data-driven and physical-based models and found that the energy cost 
savings was about 16% compared to a set-point control. We also found 
one study used the DNN-based model to study the energy flexibility 
potential of the building [31]. Winkler et al. [32] presented a 
data-driven MPC framework for smart building HVAC control. The 
optimization framework could minimize energy costs while maintaining 
comfort bounds for the building users based on real-time feedback. 
Drgoňa et al. [33] developed DNN models for the reduction of error and 
low computational demands. Chen et al. [34] also used transfer learning 
for the target building without enough operational data available. 
Additionally, researchers have conducted experiments and field imple
mentations to evaluate the performance of data-driven controls in 
various buildings. For instance, Yang et al. [35] conducted an experi
mental study of machine-learning-based MPC and achieved up to 52% 
reduction in cooling energy. The proposed control was faster than the 
common MPC. Furthermore, experiments on the DDPC of a hospital 
HVAC system by Maddalena et al. [36] provided recommendations for 
managing the online optimization solver. 

At the community or urban scale, developing detailed physics-based 
building models become too time-consuming and impractical. To 
address this, researchers have developed data-driven models, which 
were more effective. For the state-of-the-art methodology for large-scale 
deployment, some research utilized the data-driven method to study the 
electricity demand under different scenarios based on measured his
torical data at the community [37] and district level [38]. Moreover, Ke 
et. al. [39] presented an innovative study on a data-driven predictive 

control for building energy management under the Internet of Things 
architecture. The cloud-based building energy management system 
framework was demonstrated in both residential and office buildings. 
Zhang [40] also developed a framework for building energy modeling 
for data predictive control. It provided an automatic workflow that 
started with raw data from building automation systems to the estab
lishment of data-driven energy models for controllers. Darivianakis et al. 
[41] exploited the load shifting capabilities of the cooperative buildings 
and districts by data-driven robust predictive control. The methods 
could be utilized for more equipment such as heat pumps and batteries. 
However, these data-driven models were typically “black-box”. It was 
very difficult to interpret the underlying physical meaning behind the 
model parameters, thus it led to some errors in the prediction results. 
Therefore, we need to conduct large-scale testing and verification for the 
scalability and robustness of the data-driven models. However, there 
were no examples of implementation of DDPC in a large number of 
building HVAC systems at the urban scale. 

1.2. Scalability of building control 

For large-scale applications, scalability of the model indicated both 
the crucial performance and scaling characteristics [42]. The model 
needed to be parametric and validated against a variety of different 
systems and cases showing high accuracy. There were several previous 
studies developing and evaluating scalable models for building control 
and simulation. For instance, Wang et al. [43] proposed a generic pro
cess framework for integrating all the solutions in building information 
modeling and simulation-based design cycle. Darivianakis et al. [44] 
proposed a highly scalable decentralized control scheme to address 
privacy concerns of the building occupants. It only required the indi
vidual buildings to communicate bounds on their energy demands and 
did not reveal the exact characteristics of the energy usage within each 
building. The demonstration through numerical studies of up to 12 
buildings showed the efficacy of the proposed approach. Sahlin et al. 
[45] compared the equation-based building simulation models with 
Modelica. They observed radical differences in the scalability of main
stream Modelica models. Wang et al. [46] compared four machine 
learning algorithms and implemented three buildings to verify the 
feasibility and scalability of the DDPC. They found that DDPC achieved 
comparable performance to the grey-box model-based MPC. Reinbold 
et al. [47] assessed scalability of a low-voltage distribution grid 
co-simulation and found that it could run much faster than the inte
grated simulation for 24 buildings. Deng and Chen [48] used transfer 
learning to transfer the occupant behavior model to 5 other office 
buildings with good scalability and without the need for data collection. 
Therefore, most previous studies have explored the model scalability for 
numerous buildings. For building control, the key performance metrics 
included energy efficiency, carbon emission, environmental quality, and 
comfort. To evaluate the scalability of building control, only a few cases 
may not give a full understanding of scaling characteristics. To truly 
evaluate the scalability of the model, we need to validate the model 
performance including prediction accuracy and reduction of energy and 
GHG emission in large-scale applications. 

The purpose of the present study was to evaluate the performance, 
robustness, and scalability of DDPC for real-world large-scale deploy
ment. For this purpose, we first used the collected data from the RTEM 
database to build deep neural network models to predict space air 
temperature. Then we used these developed models to optimize the 
control system for energy savings. Next, we evaluated the energy-saving 
potential and reduction of GHG emissions of the proposed algorithm. 
Finally, we analyzed the robustness and scalability of the models. 

The current study made several important contributions, including.  

• We have evaluated the scalability of DDPC for a large number of 
HVAC systems across different types of buildings. 

Z. Deng et al.                                                                                                                                                                                                                                    



Energy 270 (2023) 126934

3

• We have validated the fully automatic and systematic implementa
tions of DDPC for a large number of HVAC systems and buildings.  

• We have verified the effectiveness of DDPC on energy saving and 
reduction of GHG emissions for various HVAC systems and buildings. 

• We have learned valuable lessons on deploying data-driven predic
tive controls from a large-scale study. 

2. Methods 

2.1. Data preprocessing and descriptive statistics of data 

Fig. 1 shows the overall approach for this paper. At first, we extracted 
the metadata from the RTEM database and conducted the data cleaning 
in the preprocessing step. The database contained data from over 200 
buildings. The data in individual buildings were collected in different 
time periods from October 2016 to October 2021. However, for each 
specific building, the amount of data collection period and the start and 
end time were varied. Not all the buildings included complete HVAC 
energy-related data. We avoided using the time periods when the data 
recording was incomplete. As for the frequency of data recording, most 
building management systems (BMS) used 15 min. Some buildings were 
using 5 min, 30 min, or 1 h. To align with the frequency of control op
erations and the difficulty of solving the optimization problem, we used 
the frequency of time-series data in 15 min, which was suitable for 
DDPC. High-frequency data were resampled into 15 min. Since the 
database only contained the data collected from the BMS, but the out
door air temperature was also an important factor for building energy 
prediction and control. So we also used the easily accessible outdoor 
weather data from the nearest airport in each city in New York State. The 
climate region in New York State was cold according to International 
Energy Conservation Code. 

The metadata of the RTEM database provided descriptive informa
tion about the database, such as building ID, building area, building 
customer type, geographic city and address, number of equipment, 
number of data points, type and description of data points, logging time, 
and tags. According to the metadata, the most tags on HVAC system 
types were air handling units (AHUs), fan coil units (FCUs), rooftop units 
(RTUs), unit ventilators (UVs), and variable air volume (VAV) systems. 
Therefore, in this study, we applied the DDPC to these five most used 

HVAC systems. Through the data preprocessing, we found a total of 
1017 HVAC units in 78 buildings in the database with complete air 
temperature and energy-related data, such as supply air temperature 
and airflow rate. Thus we used these data from the 78 buildings, and 
Table 1 lists the number of units and buildings for training and testing 
the DDPC in this study for various HVAC systems (in some buildings, 
there was more than one type of HVAC system). 

We also obtained the information on the buildings which we used for 
analyzing DDPC in this study. Fig. 2 shows the statistical description of 
the data. We found that the areas of most buildings were less than 1000 
000 ft2 (92 903 m2). The average building area was 360 000 ft2 (33 445 
m2). There were totally eight types of buildings in the present study. The 
majority of the buildings for which we developed DDPC were com
mercial retail and commercial offices. They made up half of all the 
buildings. Fig. 3 shows the main distribution of 78 buildings in the 
RTEM database in New York State for evaluating DDPC in the present 
study. About one-third of the buildings were located in New York City. 

2.2. Data-driven models of HVAC systems for predicting air temperature 

After obtaining the data, we used them to develop data-driven 
models. In buildings, if the temperature in two adjacent zones are 
different, there is heat transfer through the walls. Heat also transfers 
through external walls between the building and the ambient environ
ment. The temperature difference also causes infiltration. Additionally, 
the HVAC system also regulates the airflow within the building. For 
physics-based MPC, a state-space model was primarily used to describe 
the building thermodynamics. The state of the building typically 
included air temperature and wall temperature. However, physics-based 
state-space models required a significant amount of time and expertise 

Fig. 1. The overall approach for this paper.  

Table 1 
Number of units and buildings for testing the DDPC in this study.  

HVAC systems Number of units Number of buildings 

AHU 256 42 
FCU 178 8 
RTU 163 44 
UV 145 3 
VAV 275 6  
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for development and calibration. In this study, we used a data-driven 
model, which was built using historical time-series data, instead of the 
state-space model. Therefore, after data preprocessing, we built data- 
driven DNN models for zone air temperature prediction. DNN model 
was a powerful machine learning method that used multiple layers in 

the neural network model to learn the relationship between the input 
parameters and the output [49]. We used the collected data in the RTEM 
database to train the DNN model. The input parameters were space air 
temperature, outdoor air temperature, room occupancy, and heating or 
cooling load of the HVAC system. These parameters were usually 
recorded by the BMS. However, for a large number of existing buildings, 
the structure information on building envelope, window-wall ratio, 
external and internal wall layers, property on insulation and glass ma
terial, and floor plan was un available and hard to collect. Different from 
white-box and grey-box physics-based models, data-driven models could 
be built without this detailed information about the building. Mean
while, wall temperature, solar radiation, number of occupants, internal 
heat gain, and heat transfer among different zones were also important 
for building thermodynamics. Most physics-based models required these 
data for model development. But collecting these parameters required 
specific sensors, making it very hard to collect automatically in most 
existing buildings. The RTEM database did not contain the relevant in
formation, either. To be scalable, these parameters were not conducive 
to large-scale automatic deployment, thus we did not consider them as 
input parameters in the data-driven control. The relationship of these 
parameters could be learned from the historical data by the DNN 
models. The output of the DNN model was zone air temperature for the 
next time step. The DNN model could be written as 

Tair(t + 1) = f [Tair(t), Tamb(t), Occ(t), PHVAC(t)] (1)  

Where f is the trained DNN model, including multi-layer network 
structure and activation functions. We assumed the load of the HVAC 
system for the space heating/cooling was proportional to the supply 
airflow rate and the temperature difference between supply and return 
air as 

PHVAC(t) ∝ Q(t)⋅
[
Tsupply(t) − Treturn(t)

]
(2) 

Fig. 2. Statistical description of the data: (a) distribution of building area; (b) 
distribution of building customer type. 

Fig. 3. The distribution of buildings in the RTEM project in New York State for evaluating DDPC in the present study.  

Z. Deng et al.                                                                                                                                                                                                                                    



Energy 270 (2023) 126934

5

However, we did not consider the energy consumption by dehumidifi
cation, fan, and reheating. Since the building envelope and heat transfer 
in each thermal zone varied in different buildings, we built and trained 
different models for all the HVAC systems using the collected data. We 
only used the data from the HVAC system to train the DNN model so that 
the trained model could automatically learn the relationship from the 
data. We assumed that the each HVAC system worked for a single 
thermal zone. For each HVAC system of the buildings in New York State, 
we trained two models for both heating season (winter from October to 
March) and cooling season (summer from June to August), respectively. 
We randomly selected the historical data in 3 consecutive days for 
training, and used the data in 7 consecutive days to evaluate the model 
performance, energy efficiency, and reduction of GHG emission. And 
random selection could ensure that the results were unbiased in the 
evaluation of energy consumption, and the results could represent the 
typical conditions in New York State in winter and summer. As for the 
shoulder seasons, we found that the energy consumption of most 
buildings and zones was minimal or even zero. As the HVAC load was 
not significant during this time period, we focused on the winter and 
summer seasons when the DDPC had greatest energy-saving potential. 

2.3. Model training and control development 

For model training, we first used min-max normalization on all the 
input data. Then, we used the grid search method to obtain the values of 
hyperparameters of the DNN models. We found that for optimal model 
performance, the appropriate number of neurons was 50; the number of 
hidden layers was 4; the learning rate was 0.001; the training method 
was ADAM (Adaptive Moment Estimation) optimization algorithm; the 
number of training episodes was 10 000. We used rectified linear unit 
(ReLU) as the activation function and 64 as the batch size. We also split 
the training data randomly and used 20% of the data as the validation 
set during the training process. We used mean absolute percentage error 
(MAPE) to evaluate the model performance of accuracy as 

MAPE =
1
n

∑n

t=1

⃒
⃒
⃒
⃒
At − Ft

At

⃒
⃒
⃒
⃒ (3)  

Where At and Ft were the actual values and predicted values, respec
tively. 

After developing the DNN models, we used them for smart data- 
driven predictive control (DDPC). The purpose of DDPC was to mini
mize the total energy use during the prediction horizon while main
taining the room air temperature at a comfortable level. The control 
variables were the heating or cooling load of the HVAC systems. The air 
temperature was controlled to track the collected actual air temperature 
or set point in each space at a difference less than 0.5 ◦C. We set the 
prediction horizon as 3 h for all the buildings in this study. The control 
time step was 15 min. The DDPC could be written as 

min
PHVAC(t)

∑N−1

t=0
PHVAC(t)

s.t.
Tair(t + 1) = f [Tair(t), Tamb(t), Occ(t), PHVAC(t)]

Tactual(t) − 0.5 ≤ Tair(t) ≤ Tactual(t) + 0.5

(4)  

Where Tair(t) was the predicted space air temperature in each time step, 
and Tactual(t) was the collected air temperature. 

We utilized Python to process the data, train the DNN model, and 
develop the data-driven control. Since the number of HVAC units to be 
studied was large, we used high-performance computer with 80 cores 
and 176 GB memory to perform the model training and validate the 
DDPC. In actual deployment, the related calculation would be distrib
uted to local computers of BMS in each building. 

2.4. Evaluate the performance of energy saving, GHG emissions, and 
model scalability 

To evaluate the reduction of energy use of the developed DDPC for 
each HVAC system, we simulated the energy usage with DDPC for each 
space in all the buildings for 7 days in both heating and cooling seasons. 
Then we compared the results with the baseline control, which was the 
current control strategies and collected energy use for all the buildings. 
We found that almost all the buildings used simple set point or schedule 
control for air temperature. The energy efficiency was defined as energy 
reduction over the actual energy usage by baseline control, as 

η =
PHVAC DDPC − PHVAC actual

PHVAC actual
(5)  

Then we used GHG Emissions Calculator from the United States Envi
ronmental Protection Agency [50] to evaluate the reduction of GHG 
emissions. EPA GHG calculator is a Microsoft Excel tool that can be used 
to calculate the GHG emissions from various sources, such as combus
tion, fuel, vehicles, electricity, steam, heat, waste generated and re
frigerants. Some of the factors used in the calculation are specific to 
certain locations. It can calculate emissions for CO2, CH4 and N2O, 
which are the most common greenhouse gases. Thus, this calculator was 
a useful tool for estimating the energy and GHG of various energy 
conservation measures for commercial buildings. In different locations, 
the emission factors varied. In this study, the data were collected in New 
York State, thus we used the information of emission factors from Up
state New York, New York City, and Long Island. We assessed the 
emission reduction of CO2, CH4, and N2O, which were top contributors 
to GHG. Table 2 shows the emission factors for these gases in New York 
State. 

As for the performance metrics of model scalability, we focused on 
the results of prediction accuracy and energy saving for different HVAC 
systems, which were important metrics for DDPC. Good scalability 
indicated that DDPC could achieve similar results when applying to 
various systems in large-scale deployment. Thus we compared the per
formance of DDPC across various buildings and systems to evaluate the 
scalability. At last, we also analyzed and categorized the conditions 
when the DDPC could not perform properly at scale, including model 
training, model validation, and control deployment. The feasible solu
tions were provided to enhance the scalability. 

3. Results 

3.1. Training and testing of DNN models 

Fig. 4 shows the training and testing results of DNN models for air 
temperature prediction of one AHU in a school gymnasium in Guilder
land, NY. We found that the difference between time-series air tem
perature prediction and measurement was mostly within 0.5 ◦C. The 
average difference was 0.05 ◦C for testing. The MAPE of training result 
by the DNN model for this AHU was 0.2% and 0.3% for the heating and 
cooling seasons, respectively. And the MAPE of testing result was 1.0% 
and 1.6% for the heating and cooling seasons, respectively. The training 
results were very good. Similar results could be found for other HVAC 
systems. But we still found for some HVAC units, there were cumulative 
errors that the prediction in the first few days was very good. Once the 
model prediction error was large, the following forecast would be worse 
and worse. Therefore, to address this issue, dynamic correction every 

Table 2 
Total emission factors in New York State [50].  

Location CO2 (lb/MWh) CH4 (lb/MWh) N2O (lb/MWh) 

Upstate New York 232.3 0.017 0.002 
New York City 553.8 0.021 0.002 
Long Island 1209.0 0.157 0.020  
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day or every few days was necessary for data-driven models. The process 
of dynamic correction was to retrain the model on new data in order to 
improve the accuracy. Additionally, dynamic correction was also to 
eliminate the accumulated errors and use new data as the initial value 
for optimization when the error was large. 

Fig. 5 shows the training and testing results of DNN models for in
door air temperature prediction for various HVAC systems. The MAPE of 
the prediction by the DNN model for 163 RTUs was 1.1% and 2.8% for 
training and testing, respectively. The training results were very good, as 
the training error was less than 5% for almost all the RTUs. The testing 
results were slightly worse than the training. Similar results could be 
found for other systems. The MAPE for training and testing of 275 VAVs 
was 1.0% and 3.0%, respectively. The MAPE for training and testing of 
178 FCUs was 2.3% and 3.9%, respectively. The MAPE for training and 
testing of 145 UVs was 1.1% and 2.1%, respectively. The MAPE for 
training and testing of 256 AHUs was 1.0% and 2.3%, respectively. The 
prediction accuracy was similar for four HVAC systems except for FCU. 
We also calculated the root mean square error (RMSE) of the air 

temperature prediction for each HVAC system. The RMSE results were 
0.68 ◦C, 0.73 ◦C, 0.91 ◦C, 0.54 ◦C, and 0.59 ◦C for RTU, VAV, FCU, UV, 
and AHU, respectively. For predicting indoor temperature as one of the 
key performance metrics, the DNN models performed well for different 
HVAC systems and buildings. So the DNN models showed good scal
ability preliminarily. Thus we could use the trained DNN model to 
predict the air temperature. Then we used the trained model for DDPC to 
reduce energy use in each zone. 

3.2. Results of load reduction 

After building and training the DNN models, we could use them for 
the data-driven predictive control. Fig. 6 shows the results of the tracked 
temperature and energy saving by DDPC for a UV in one building located 
in Hudson, NY on seven heating and cooling days. DDPC could control 
the predicted temperature to track the actual collected data within 
0.5 ◦C most of the time, which ensured the thermal comfort in this zone 
was almost the same as actual condition. In the winter seasons, the 

Fig. 4. Results of DNN models for air temperature prediction of one AHU in a school gymnasium located in Guilderland, NY: (a) training results in three heating days; 
(b) training results in three cooling days; (c) testing results in seven heating days; (d) testing results in seven cooling days. 
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indoor air temperature during the daytime could be controlled around 
21–22 ◦C. At night when unoccupied, the HVAC system did not provide 
load to save energy. During the weekend of the 7 consecutive days, there 
was no load and the air temperature was free to fluctuate and it may 
drop to 18–19 ◦C. Similarly, in summer, the indoor temperature was 
controlled at around 22 ◦C during the daytime. It could rise to 24 ◦C 
when the system was not working at night and on weekends. Fig. 6(a) 
and (c) also show that the heating and cooling load could be reduced by 
DDPC comparing with the current baseline control. Energy saving for 
heating and cooling load was 51% and 55% on seven days. Meanwhile, 
the peak load reduction was 6% and 28% for this UV in winter and 
summer. We also found that the actual measured load fluctuated 
violently, and especially cooling and heating load existed in the mea
surement at the same time. This rule-based baseline control led to very 
large energy consumption. As for DDPC, the fluctuation was much 
smaller, so it could save energy. On the other hand, part of the reason of 

strong fluctuation was from the accuracy of the prediction model. We 
found that the accuracy MAPE of the model was 4.3% in this case, which 
was above average as Fig. 5(e) shows. 

Then we evaluated the energy saving of the DDPC across all HVAC 
systems in the 78 buildings. Fig. 7 shows the reduction of heating and 
cooling load by the DDPC for all AHUs, RTUs, VAVs, FCUs, and UVs in 
buildings. We found that it could save 64% on the heating load and 60% 
on the cooling load of the AHUs on average. For RTUs, 69% on the 
heating load and 68% on the cooling load could be saved. For VAVs, 
FCUs, and UVs, the energy saving was 64%, 67%, and 69%, respectively. 
The overall energy saving was 65% on heating and cooling load. For 
different HVAC systems and buildings, DDPC has achieved similar 
energy-saving goals. It showed that the scalability of DDPC was very 
good. Fig. 8 shows the distribution of reduction of peak load by DDPC for 
all buildings. The average peak load reduction was 15.4% for all 78 
buildings. Therefore, data-driven predictive control demonstrated huge 

Fig. 5. Training and testing results of DNN models for indoor air temperature prediction for various HVAC systems: (a) RTU, (b) VAV, (c) AHU, (d) FCU, (e) UV, and 
(f) all the HVAC systems. 
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potential for energy saving and reduction of peak load in New York 
State. 

3.3. Reduction of GHG emission for DDPC 

At last, we did the GHG emission analysis for the DDPC with the 
results of energy reduction of 78 buildings. Fig. 9 shows the distribution 
of reduction of CO2 emission among all the buildings. We found that 
DDPC could reduce the emission of CO2 by an average of 15.18 (1.88e- 
3–72.30) kg per m2 per year. The distribution of other GHG was similar 
since the GHG emission was calculated based on energy reduction and 
emission factors. The results on the reduction of CH4 and N2O emission 

were 5.76e-4 (7.11e-8–2.74e-3) and 5.48e-5 (6.77e-9–2.61e-4) kg per 
m2 per year, respectively. For different buildings, the results varied a lot, 
as Fig. 9 shows. The possible reasons could be that the HVAC systems 
which we analyzed in different buildings may not represent all the 
systems inside the building, since the data of some systems were missing 
or not accessed. Besides, the building area shown in the database may be 
different from the conditioned area. Considering these possible reasons, 
the resulting reduction of GHG emissions could be more in some 
buildings. 

There are more than 2 million buildings in New York State. As 
buildings accounted for 32% of total GHG emissions, and space heating 
and cooling accounted for about 50% of total energy usage. If assuming 

Fig. 6. Energy and air temperature results of the DDPC for a UV in one building located in Hudson, NY: (a) heating load in seven days; (b) air temperature in seven 
heating days; (c) cooling load in seven days; (d) air temperature in seven cooling days. 
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Fig. 7. Results of the DDPC on energy saving (heating on the left and cooling on the right) for (a) AHUs, (b) RTUs, (c) VAVs, (d) FCUs, (e) UVs, (f) all kinds of HVAC 
systems, and (g) all the buildings. 
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all buildings in New York State used the DDPC, it is estimated that the 
GHG emission could be reduced by 11%. Therefore, the cities and the 
state will get significant dividend of GHG reduction for sustainability 
from data-driven smart control. 

3.4. Analysis of the scalability of DDPC 

In the present study, we developed the data-driven models based on 
actual collected data from 78 buildings in the RTEM database and used 
them for energy-efficient control. We found that the percentage of 
feasible DDPC working properly in over one thousand HVAC units was 
84%. At most of the time, the robustness of DDPC was great. It provided 
reasonable operation to the HVAC systems. Therefore, the scalability of 
DDPC on control robustness was satisfactory. In addition, there were still 

some instances that the DDPC could not work properly. We analyzed and 
categorized these cases mainly in three stages.  

A) Failure in model training. 

Data outliers. We found zero value may occur at one time step for 
the data recording on air temperature as Fig. 10(a) and HVAC load as 
Fig. 10(b). These zero values may occur due to sensor drift, failure, 
malfunction, damage, or network connection issue. The actual value of 
air temperature should not be zero if in summer. As for HVAC load or air 
flow rate, it may be zero when the damper was fully closed. It was very 
difficult to distinguish whether it was the ground truth or the outlier. We 
also found that the air temperature and other measured data may be 
extremely high or low at one time step, as shown in Fig. 10(c). That may 
be due to the interference during the measurements. These outliers 
could negatively impact the training results. It may also cause the model 
to misjudge the performance during validation. To address these issues, 
we should process the data by filters in real time to identify and remove 
the outliers [51]. 

Constant load recording. We found the load of the HVAC system 
could remain unchanged for a long time, such as zero value as shown in 
Fig. 10(d). In these cases, the model was trained in only one load, thus it 
could not learn the building thermodynamics in varied complex condi
tions. So we should train the data-driven models in more conditions with 
varied loads. Another condition was that load was all zero on shoulder 
seasons when the HVAC system was not in use to condition the space. So 
we should especially avoid use the training data in shoulder seasons, 
because DDPC was not suitable to apply in shoulder seasons. 

Discrete variables. We found that for some HVAC system, the 
recording of load or other parameters was constantly one value or 
discrete with several values, as an example of RTU heating output shown 
in Fig. 10(e). The constant or discrete parameter may be due to the 
system setting and design property itself. If the native system was con
stant load with on-off control or stage control, the control variable may 
not be able to change continuously. In this condition, data-driven DNN 
model cannot be used, because the training and optimization was based 
on gradient descent, which was not feasible for discrete parameters. As a 
result, it is recommended to use DDPC for continuous system. 

Data abnormal variation and disturbance. We found that during a 
certain period of time, there were abnormal variation and disturbance in 
the training data with unknown reasons. The value may be still within 
the normal range. We did not know the exact cause. It may be due to 
occupant behavior, building envelope damage, or change of HVAC 
system parameters. At this time, the model training was not as effective 
because the relationship between inputs and output parameters was not 
clear.  

B) Failure in model validation. 

Fig. 7. (continued). 

Fig. 8. Distribution of reduction of peak load for all buildings by DDPC.  

Fig. 9. Distribution of reduction of CO2 emission for all the buildings by DDPC.  
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Underfitting. The inaccurate validation results may be because of 
the data-driven model with insufficient training. The possible reason 
could be the use of inappropriate training parameters. To improve the 
results, it is important to set the hyperparameters of the DNN model 
carefully and obtain accurate model results. We could also train the 
model multiple times with different parameters to find the best model. 

Overfitting. Overfitting may also lead to inaccurate validation re
sults. To prevent this, we could use regularization or set up early stop
ping and dropout.  

C) Failure in control. 

Cannot find optimal solution. Sometimes the data-driven predic
tive control could not find the optimal solution for the optimization 
problem. This could be due to a variety of factors such as inappropriate 
environmental parameters, or inaccurate model predictions. If the 
constraints are too restrictive and prevent finding the optimal solution, 
either. A feasible solution could be relaxing the constraints 
appropriately. 

Conditions beyond training set. In the database when we tested 
the DDPC, there were conditions that not be trained before but occurred 
in the control process. For example, the ambient air temperature in 
winter exceeded 20 ◦C as Fig. 10(f) shows. This was very rare occurrence 
and happened once every a few years. The data-driven model could not 
work effectively, as it was not trained to make predictions for these 
conditions. 

Too large cumulative error. The prediction model was used at each 
time step iteratively. So the inaccurate prediction result at one step will 
lead to larger subsequent errors. In this condition, we should calibrate 
the model with actual data corrected every day or every few days as 
possible solution. 

4. Discussions and lessons learned 

In this study, we used the data from 78 buildings in the RTEM 
database to analyze the scalability of data-predictive control. The model 
only required the time-series data on zone air temperature, outdoor air 
temperature, room occupancy, and load of HVAC system. And the results 

Fig. 10. Typical challenges of scalable DDPC deployment: (a) Measured temperature outlier: zero value; (b) Measured temperature outlier: extreme value; (c) 
Measured HVAC load outlier: zero value; (d) Measured HVAC load constant value; (e) Measured discrete RTU heating output; (f) Outdoor air temperature conditions 
beyond training. 
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of this study showed great scalability of DDPC among various HVAC 
systems and buildings. The proposed method can be easily implemented 
in more buildings in New York State to reduce the energy and GHG 
emissions. The proposed method could also be easily implemented for 
many types of buildings, such as both commercial buildings and resi
dential buildings. The proposed approaches would not need a complex 
retrofit, but only implement the smart control algorithm for the BMS. 
Thus, it would be easy for the building owners to adopt. Hence, the cities 
and the state will reap the dividend of energy and GHG reduction for 
sustainability. 

The well-organized data structure of the RTEM database was already 
very easy to work with, and it was convenient for the researchers to 
develop and validate different models. However, we still encountered 
some obstacles during the development of data-driven models and the 
control algorithm.  

A) Unified naming, labeling, and unit of data 

The way data was labeled and named greatly affected the automation 
of the model training and development. For some parameters, we 
needed to recognize different names to process the corresponding data 
by programming. For example, space air temperature could be named as 
temperature, temperature with room number, space temperature, zone 
temperature, zone air temperature, and relief temperature for various 
buildings in the database. It was also typically assumed the same as 
return air temperature/RA/RAT. Another example was that for various 
HVAC systems, supply air temperature, SA/SAT, discharge air temper
ature, DA/DAT, and auxiliary temperature/AUX typically represented 
the same variable. To ensure successful future automatic and large-scale 
implementation of data-driven predictive control, agreement and stan
dardization of proposed names was critical. Sometimes, the units of data 
were not consistent. For example, air temperature and energy con
sumption could be in SI units or imperial units for various HVAC systems 
and buildings. Direct deployment without examination would result in a 
tenfold or hundredfold deviation.  

B) Synchronization of time and control step 

As for time, in addition to synchronization, the frequency of data 
recording and control step was also important. In the RTEM database, 
most buildings used 15 min for data recording. In large-scale deploy
ment, same recording frequency for various sensors would make the 
data-driven predictive control easy to deploy in various buildings.  

C) Automatic input feature selection 

Finally, we manually selected space air temperature, ambient tem
perature, occupancy status, and load of the HVAC system as inputs, 
which was recorded in most BMS. But there were no information 
available for the number of occupants, internal heat gain, and wall 
temperature. So we did not analyze input feature selections in this study. 
In the near future, with the increasing use of more sensors and IoT 
(Internet of Things) devices in buildings [52], there will be greater 
amount of data and information available for developing data-driven 
models. To further leverage information and sensors in various build
ings, we need to develop the automatic input feature selection to build 
better models and controls. 

5. Conclusion 

In this study, we explored the scalability of deploying data-driven 
predictive control on a large scale for over one thousand HVAC units 
in 78 buildings. This investigation led to the following conclusions.  

1. We trained DNN models by using the data recording in over one 
thousand HVAC systems in 78 buildings in New York State. Then we 

automatically deployed DDPC on large scale to evaluate the perfor
mance. The results showed that it could save more than 60% of 
heating and cooling load on average. Meanwhile, DDPC could also 
reduce the peak load by 15%.  

2. For the reduction of GHG emission, we found that DDPC could 
reduce the emission of CO2 by 15.18 kg per m2 per year in buildings. 
If assuming all buildings in New York State used the DDPC, the GHG 
emission could be reduced by 11%.  

3. Deploying DDPC on large scale showed satisfactory scalability. The 
energy saving performance was similar for various kinds of HVAC 
systems. The percentage of feasible DDPC working properly in over 
one thousand HVAC units was 84%. Conditions that the DDPC could 
not work properly mainly due to data outlier, abnormal variation 
and disturbance, and beyond training. Obstacles for development of 
DDPC were unified naming and labeling of data, synchronization of 
time and control step, automatic input feature selection, and auto
matic diagnosis of failure and restoration of normal operation. 

As for the limitation of this study and the future works, it is currently 
impractical to conduct field tests and validate the DDPC for different 
HVAC systems in a large number of buildings in different cities. It would 
take the cooperation of different universities and organizations to make 
it possible, which was one of the future work. In this study, we only 
focused on the air system and building heating/cooling load. It is 
necessary to develop and validate DDPC for more complex building 
energy systems, especially water systems (boiler, chiller, pump) and 
renewable energy system (PV panel and wind turbine). It could be a 
future direction to explore the data-driven predictive control for sus
tainable building and city. In this study, we focused on minimizing 
heating/cooling load with the DDPC strategy. In an actual HVAC system, 
the directly controlled parameters are the position of air duct dampers 
and heating coil valves. We will further develop the control strategy to 
adjust the position of the dampers and valves for practical imple
mentation in buildings. What is more, for the energy consumption for 
dehumidification, it was related to indoor and outdoor humidity level. 
However, we found that most BMSs did not record data on relative 
humidity. Additionally, some HVAC systems, such as RTU and FCU, did 
not have dehumidification functions. Therefore, in this study, we 
focused on DDPC which optimized energy consumption for air temper
ature control. In future research, we can collect more data and consider 
the energy consumption of all HVAC components, including humidifi
cation/dehumidification, fan power, and reheating in addition to heat
ing/cooling load. 

Furthermore, though black-box data-driven models were more suit
able for energy-efficient control of large-scale buildings, it was still 
challenging for complex buildings with multi-zone [13]. Data-driven 
coordinated control for complicated building energy system is also a 
future research topic. Additionally, DDPC could be easier than 
physics-based MPC to implemented in large number of buildings auto
matically. But the maintenance of data-driven model and control 
required attentions. In this study, we found many conditions when the 
DDPC could not work properly. The possible reason could because of the 
building envelope damage, equipment failure, and some unknown but 
extreme weather conditions. How to automatically detect these possible 
conditions, how to make the DDPC work better under these emergency 
conditions, and how to diagnose the failures and restore to normal 
operation of DDPC need to continue to be studied. 
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