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ABSTRACT

Buildings consume more than 70% of electricity in the U.S. In order to reduce building energy consumption,
advanced building controls have been developed. However, most building controls are using physics-based
models and lack of scalability. Recent development of data-driven control models could overcome this chal-
lenge and be automatically developed and implemented on large scale. The purpose of this study was to evaluate
the effectiveness, robustness, and scalability of automatic and systematic data-driven predictive control (DDPC)
for a large-scale real-world deployment. We first used collected data from 78 buildings in RTEM database to train
deep neural network models. Then we applied the models to optimize the HVAC control for energy savings. We
focused on over 1000 HVAC units in five different commonly used types, including air handling units, rooftop
units, variable air volume systems, fan coil units, and unit ventilators. Next, we evaluated the energy-saving
potential and the reduction of greenhouse gas emissions of the proposed method. We found that DDPC was
robust and scalable in buildings, with an average energy saving of 65% and peak load reduction of 15%
compared to current control systems. The average reduction of GHG emissions for CO3, CH4, and N2O was 15.18
kg, 5.76e-4 kg, and 5.48e-5 kg per m? per year, respectively. New York State can benefit 11% reduction in carbon
emission from DDPC in buildings. For scalability, we also identified and categorized the challenging conditions

when DDPC may not work properly and summarized the lessons learned from large-scale DDPC deployment.

1. Introduction

In accordance with the greenhouse gas (GHG) emission reduction
requirements of New York State, the goals to combat climate change
required to limit statewide GHG emissions to 60% of 1990 levels by
2030 and 15% by 2050 [1]. According to the 2021 Statewide GHG
Emissions Report of the Department of Environmental Conservation in
New York [2], the largest source of GHG was buildings which accounted
for 32%. Moreover, space heating and cooling in residential and com-
mercial sectors accounted for 38% and 10% of building energy usage,
respectively [3]. Hence, it is necessary to develop a scalable smart
control for building energy efficiency and GHG emission reduction.

New York State Energy Research and Development Authority
(NYSERDA) supported a Real Time Energy Management (RTEM)
Incentive Program [4] throughout the New York State. Among these
buildings in the database, most were equipped with various HVAC

systems for space heating and cooling. Therefore, we could develop and
validate the smart building controls by using the database.

1.1. Data-driven model predictive control

Complex heat transfer and the lagging effects were existing in
buildings due to the thermal mass of building envelopes and changeable
complex indoor and outdoor environments. Model predictive control
(MPC) derived from advanced process control could capture the dy-
namics of the building systems. Nowadays, it got more attention in the
HVAC field [5] and played an important role in sustainable building
energy systems [6]. Drgona et al. [7] and Mariano et al. [8] presented
reviews of MPC in building operation and management. It was also
found that MPC could save building energy use by 15-40% [5,9].
Meanwhile, MPC has been tested and deployed in field implementations
in different buildings in various studies [10-12]. However, traditional
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physics-based MPC relied on the building thermodynamic model, so it
required significant time and expert knowledge for model development
and calibration. It was reported that developing and calibrating satis-
factory models was one of the main obstacles and accounted for 70% of
the total effort [13]. Additionally, they must be developed on a specific
basis, as every building and HVAC application was different. The
customized approach made it difficult for automatic development and
implementation in multiple buildings in practice. As a result, the
physics-based controls limited the large-scale deployment of decarbon-
ization of buildings and the power grid.

In recent years, researchers have also developed data-driven model
predictive control to overcome these challenges of traditional physics-
based MPC [14,15]. Data-driven models such as deep neural networks
(DNNs) could be developed with limited knowledge of building physics
but utilizing sufficient historical time-series data [13]. And a single
model architecture could be applied in multiple application cases to
improve building energy efficiency [16] and energy flexibility [14].
Data-driven models could learn the complex and non-linear building
properties, which was very difficult for physics-based models [17].
Many studies have used DNNs for building energy modeling [18],
temperature control [19], and thermal behavior modeling [20,21].
DNN-based building control has become popular in the literature in both
commercial buildings [22,23] and residential buildings [24]. Specif-
ically, for example, to improve the development and solution of DDPC,
Kusiak et al. [25] presented a data-driven approach for the
multi-objective optimization of an HVAC system in an office building by
the particle swarm algorithm. Ferreira et al. [26] implemented neural
network predictive control for thermal comfort and energy savings in
public buildings. The energy saving could be 50% in university as
experimental results showed. Macarulla et al. [22] implemented neural
network predictive control in a commercial building energy manage-
ment system. The energy saving was nearly 20% and while ensuring
building thermal comfort. Smarra et al. [27] used a random forest model
for building energy optimization and climate control, achieving energy
saving up to 49.2%. Jain et al. [28] used data-driven regression trees to
represent building dynamics, and solved them in a real-time closed loop
to reduce peak power in buildings. The peak load was reduced by 8.6%.
Lee and Heo [29] proposed data-driven models for residential buildings
and the case study achieved heating energy of 12% compared to tradi-
tional on/off control. Mugnini et al. [30] assessed the performance of
data-driven and physical-based models and found that the energy cost
savings was about 16% compared to a set-point control. We also found
one study used the DNN-based model to study the energy flexibility
potential of the building [31]. Winkler et al. [32] presented a
data-driven MPC framework for smart building HVAC control. The
optimization framework could minimize energy costs while maintaining
comfort bounds for the building users based on real-time feedback.
Drgona et al. [33] developed DNN models for the reduction of error and
low computational demands. Chen et al. [34] also used transfer learning
for the target building without enough operational data available.
Additionally, researchers have conducted experiments and field imple-
mentations to evaluate the performance of data-driven controls in
various buildings. For instance, Yang et al. [35] conducted an experi-
mental study of machine-learning-based MPC and achieved up to 52%
reduction in cooling energy. The proposed control was faster than the
common MPC. Furthermore, experiments on the DDPC of a hospital
HVAC system by Maddalena et al. [36] provided recommendations for
managing the online optimization solver.

At the community or urban scale, developing detailed physics-based
building models become too time-consuming and impractical. To
address this, researchers have developed data-driven models, which
were more effective. For the state-of-the-art methodology for large-scale
deployment, some research utilized the data-driven method to study the
electricity demand under different scenarios based on measured his-
torical data at the community [37] and district level [38]. Moreover, Ke
et. al. [39] presented an innovative study on a data-driven predictive
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control for building energy management under the Internet of Things
architecture. The cloud-based building energy management system
framework was demonstrated in both residential and office buildings.
Zhang [40] also developed a framework for building energy modeling
for data predictive control. It provided an automatic workflow that
started with raw data from building automation systems to the estab-
lishment of data-driven energy models for controllers. Darivianakis et al.
[41] exploited the load shifting capabilities of the cooperative buildings
and districts by data-driven robust predictive control. The methods
could be utilized for more equipment such as heat pumps and batteries.
However, these data-driven models were typically “black-box”. It was
very difficult to interpret the underlying physical meaning behind the
model parameters, thus it led to some errors in the prediction results.
Therefore, we need to conduct large-scale testing and verification for the
scalability and robustness of the data-driven models. However, there
were no examples of implementation of DDPC in a large number of
building HVAC systems at the urban scale.

1.2. Scalability of building control

For large-scale applications, scalability of the model indicated both
the crucial performance and scaling characteristics [42]. The model
needed to be parametric and validated against a variety of different
systems and cases showing high accuracy. There were several previous
studies developing and evaluating scalable models for building control
and simulation. For instance, Wang et al. [43] proposed a generic pro-
cess framework for integrating all the solutions in building information
modeling and simulation-based design cycle. Darivianakis et al. [44]
proposed a highly scalable decentralized control scheme to address
privacy concerns of the building occupants. It only required the indi-
vidual buildings to communicate bounds on their energy demands and
did not reveal the exact characteristics of the energy usage within each
building. The demonstration through numerical studies of up to 12
buildings showed the efficacy of the proposed approach. Sahlin et al.
[45] compared the equation-based building simulation models with
Modelica. They observed radical differences in the scalability of main-
stream Modelica models. Wang et al. [46] compared four machine
learning algorithms and implemented three buildings to verify the
feasibility and scalability of the DDPC. They found that DDPC achieved
comparable performance to the grey-box model-based MPC. Reinbold
et al. [47] assessed scalability of a low-voltage distribution grid
co-simulation and found that it could run much faster than the inte-
grated simulation for 24 buildings. Deng and Chen [48] used transfer
learning to transfer the occupant behavior model to 5 other office
buildings with good scalability and without the need for data collection.
Therefore, most previous studies have explored the model scalability for
numerous buildings. For building control, the key performance metrics
included energy efficiency, carbon emission, environmental quality, and
comfort. To evaluate the scalability of building control, only a few cases
may not give a full understanding of scaling characteristics. To truly
evaluate the scalability of the model, we need to validate the model
performance including prediction accuracy and reduction of energy and
GHG emission in large-scale applications.

The purpose of the present study was to evaluate the performance,
robustness, and scalability of DDPC for real-world large-scale deploy-
ment. For this purpose, we first used the collected data from the RTEM
database to build deep neural network models to predict space air
temperature. Then we used these developed models to optimize the
control system for energy savings. Next, we evaluated the energy-saving
potential and reduction of GHG emissions of the proposed algorithm.
Finally, we analyzed the robustness and scalability of the models.

The current study made several important contributions, including.

e We have evaluated the scalability of DDPC for a large number of
HVAC systems across different types of buildings.



Z. Deng et al.

e We have validated the fully automatic and systematic implementa-
tions of DDPC for a large number of HVAC systems and buildings.

e We have verified the effectiveness of DDPC on energy saving and
reduction of GHG emissions for various HVAC systems and buildings.

e We have learned valuable lessons on deploying data-driven predic-
tive controls from a large-scale study.

2. Methods
2.1. Data preprocessing and descriptive statistics of data

Fig. 1 shows the overall approach for this paper. At first, we extracted
the metadata from the RTEM database and conducted the data cleaning
in the preprocessing step. The database contained data from over 200
buildings. The data in individual buildings were collected in different
time periods from October 2016 to October 2021. However, for each
specific building, the amount of data collection period and the start and
end time were varied. Not all the buildings included complete HVAC
energy-related data. We avoided using the time periods when the data
recording was incomplete. As for the frequency of data recording, most
building management systems (BMS) used 15 min. Some buildings were
using 5 min, 30 min, or 1 h. To align with the frequency of control op-
erations and the difficulty of solving the optimization problem, we used
the frequency of time-series data in 15 min, which was suitable for
DDPC. High-frequency data were resampled into 15 min. Since the
database only contained the data collected from the BMS, but the out-
door air temperature was also an important factor for building energy
prediction and control. So we also used the easily accessible outdoor
weather data from the nearest airport in each city in New York State. The
climate region in New York State was cold according to International
Energy Conservation Code.

The metadata of the RTEM database provided descriptive informa-
tion about the database, such as building ID, building area, building
customer type, geographic city and address, number of equipment,
number of data points, type and description of data points, logging time,
and tags. According to the metadata, the most tags on HVAC system
types were air handling units (AHUs), fan coil units (FCUs), rooftop units
(RTUs), unit ventilators (UVs), and variable air volume (VAV) systems.
Therefore, in this study, we applied the DDPC to these five most used
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HVAC systems. Through the data preprocessing, we found a total of
1017 HVAC units in 78 buildings in the database with complete air
temperature and energy-related data, such as supply air temperature
and airflow rate. Thus we used these data from the 78 buildings, and
Table 1 lists the number of units and buildings for training and testing
the DDPC in this study for various HVAC systems (in some buildings,
there was more than one type of HVAC system).

We also obtained the information on the buildings which we used for
analyzing DDPC in this study. Fig. 2 shows the statistical description of
the data. We found that the areas of most buildings were less than 1000
000 ft? (92 903 m?). The average building area was 360 000 ft? (33 445
m?). There were totally eight types of buildings in the present study. The
majority of the buildings for which we developed DDPC were com-
mercial retail and commercial offices. They made up half of all the
buildings. Fig. 3 shows the main distribution of 78 buildings in the
RTEM database in New York State for evaluating DDPC in the present
study. About one-third of the buildings were located in New York City.

2.2. Data-driven models of HVAC systems for predicting air temperature

After obtaining the data, we used them to develop data-driven
models. In buildings, if the temperature in two adjacent zones are
different, there is heat transfer through the walls. Heat also transfers
through external walls between the building and the ambient environ-
ment. The temperature difference also causes infiltration. Additionally,
the HVAC system also regulates the airflow within the building. For
physics-based MPC, a state-space model was primarily used to describe
the building thermodynamics. The state of the building typically
included air temperature and wall temperature. However, physics-based
state-space models required a significant amount of time and expertise

Table 1
Number of units and buildings for testing the DDPC in this study.

HVAC systems Number of units Number of buildings
AHU 256 42

FCU 178 8

RTU 163 44

uv 145 3

VAV 275 6
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Fig. 2. Statistical description of the data: (a) distribution of building area; (b)
distribution of building customer type.

for development and calibration. In this study, we used a data-driven
model, which was built using historical time-series data, instead of the
state-space model. Therefore, after data preprocessing, we built data-
driven DNN models for zone air temperature prediction. DNN model
was a powerful machine learning method that used multiple layers in
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the neural network model to learn the relationship between the input
parameters and the output [49]. We used the collected data in the RTEM
database to train the DNN model. The input parameters were space air
temperature, outdoor air temperature, room occupancy, and heating or
cooling load of the HVAC system. These parameters were usually
recorded by the BMS. However, for a large number of existing buildings,
the structure information on building envelope, window-wall ratio,
external and internal wall layers, property on insulation and glass ma-
terial, and floor plan was un available and hard to collect. Different from
white-box and grey-box physics-based models, data-driven models could
be built without this detailed information about the building. Mean-
while, wall temperature, solar radiation, number of occupants, internal
heat gain, and heat transfer among different zones were also important
for building thermodynamics. Most physics-based models required these
data for model development. But collecting these parameters required
specific sensors, making it very hard to collect automatically in most
existing buildings. The RTEM database did not contain the relevant in-
formation, either. To be scalable, these parameters were not conducive
to large-scale automatic deployment, thus we did not consider them as
input parameters in the data-driven control. The relationship of these
parameters could be learned from the historical data by the DNN
models. The output of the DNN model was zone air temperature for the
next time step. The DNN model could be written as

Tir(t+ 1) =f[Tuir (1), Tams (1), Occ(t), Pravac(t)] (@)

Where f is the trained DNN model, including multi-layer network
structure and activation functions. We assumed the load of the HVAC
system for the space heating/cooling was proportional to the supply
airflow rate and the temperature difference between supply and return
air as

PHVAC(t) 53 Q(t) [T:upply(t) - Tre!urn (t)] (2)
!
s Y
/ {
\\v
®
:‘.
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Fig. 3. The distribution of buildings in the RTEM project in New York State for evaluating DDPC in the present study.
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However, we did not consider the energy consumption by dehumidifi-
cation, fan, and reheating. Since the building envelope and heat transfer
in each thermal zone varied in different buildings, we built and trained
different models for all the HVAC systems using the collected data. We
only used the data from the HVAC system to train the DNN model so that
the trained model could automatically learn the relationship from the
data. We assumed that the each HVAC system worked for a single
thermal zone. For each HVAC system of the buildings in New York State,
we trained two models for both heating season (winter from October to
March) and cooling season (summer from June to August), respectively.
We randomly selected the historical data in 3 consecutive days for
training, and used the data in 7 consecutive days to evaluate the model
performance, energy efficiency, and reduction of GHG emission. And
random selection could ensure that the results were unbiased in the
evaluation of energy consumption, and the results could represent the
typical conditions in New York State in winter and summer. As for the
shoulder seasons, we found that the energy consumption of most
buildings and zones was minimal or even zero. As the HVAC load was
not significant during this time period, we focused on the winter and
summer seasons when the DDPC had greatest energy-saving potential.

2.3. Model training and control development

For model training, we first used min-max normalization on all the
input data. Then, we used the grid search method to obtain the values of
hyperparameters of the DNN models. We found that for optimal model
performance, the appropriate number of neurons was 50; the number of
hidden layers was 4; the learning rate was 0.001; the training method
was ADAM (Adaptive Moment Estimation) optimization algorithm; the
number of training episodes was 10 000. We used rectified linear unit
(ReLU) as the activation function and 64 as the batch size. We also split
the training data randomly and used 20% of the data as the validation
set during the training process. We used mean absolute percentage error
(MAPE) to evaluate the model performance of accuracy as

A, —F,

| o
MAPE:;Z T

=1

3

Where A; and F; were the actual values and predicted values, respec-
tively.

After developing the DNN models, we used them for smart data-
driven predictive control (DDPC). The purpose of DDPC was to mini-
mize the total energy use during the prediction horizon while main-
taining the room air temperature at a comfortable level. The control
variables were the heating or cooling load of the HVAC systems. The air
temperature was controlled to track the collected actual air temperature
or set point in each space at a difference less than 0.5 °C. We set the
prediction horizon as 3 h for all the buildings in this study. The control
time step was 15 min. The DDPC could be written as

N-1
min ZPHVAC([)

Phyac(1) —0

s.t. @
Toir(t+ 1) = f[Tair(t), Tums (2), Oce(t), Prvac(t)]

Taclunl(t) - 05 S Tuir(t) S Tauum[(’) + 05

Where T, (t) was the predicted space air temperature in each time step,
and Tyenq(t) was the collected air temperature.

We utilized Python to process the data, train the DNN model, and
develop the data-driven control. Since the number of HVAC units to be
studied was large, we used high-performance computer with 80 cores
and 176 GB memory to perform the model training and validate the
DDPC. In actual deployment, the related calculation would be distrib-
uted to local computers of BMS in each building.
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2.4. Evaluate the performance of energy saving, GHG emissions, and
model scalability

To evaluate the reduction of energy use of the developed DDPC for
each HVAC system, we simulated the energy usage with DDPC for each
space in all the buildings for 7 days in both heating and cooling seasons.
Then we compared the results with the baseline control, which was the
current control strategies and collected energy use for all the buildings.
We found that almost all the buildings used simple set point or schedule
control for air temperature. The energy efficiency was defined as energy
reduction over the actual energy usage by baseline control, as

_PHVAC,DDPC — PHVAC,[(L’IMH/ (5)

PHVAC_urtual

Then we used GHG Emissions Calculator from the United States Envi-
ronmental Protection Agency [50] to evaluate the reduction of GHG
emissions. EPA GHG calculator is a Microsoft Excel tool that can be used
to calculate the GHG emissions from various sources, such as combus-
tion, fuel, vehicles, electricity, steam, heat, waste generated and re-
frigerants. Some of the factors used in the calculation are specific to
certain locations. It can calculate emissions for CO,, CH4 and N5O,
which are the most common greenhouse gases. Thus, this calculator was
a useful tool for estimating the energy and GHG of various energy
conservation measures for commercial buildings. In different locations,
the emission factors varied. In this study, the data were collected in New
York State, thus we used the information of emission factors from Up-
state New York, New York City, and Long Island. We assessed the
emission reduction of CO2, CHy4, and N2O, which were top contributors
to GHG. Table 2 shows the emission factors for these gases in New York
State.

As for the performance metrics of model scalability, we focused on
the results of prediction accuracy and energy saving for different HVAC
systems, which were important metrics for DDPC. Good scalability
indicated that DDPC could achieve similar results when applying to
various systems in large-scale deployment. Thus we compared the per-
formance of DDPC across various buildings and systems to evaluate the
scalability. At last, we also analyzed and categorized the conditions
when the DDPC could not perform properly at scale, including model
training, model validation, and control deployment. The feasible solu-
tions were provided to enhance the scalability.

3. Results
3.1. Training and testing of DNN models

Fig. 4 shows the training and testing results of DNN models for air
temperature prediction of one AHU in a school gymnasium in Guilder-
land, NY. We found that the difference between time-series air tem-
perature prediction and measurement was mostly within 0.5 °C. The
average difference was 0.05 °C for testing. The MAPE of training result
by the DNN model for this AHU was 0.2% and 0.3% for the heating and
cooling seasons, respectively. And the MAPE of testing result was 1.0%
and 1.6% for the heating and cooling seasons, respectively. The training
results were very good. Similar results could be found for other HVAC
systems. But we still found for some HVAC units, there were cumulative
errors that the prediction in the first few days was very good. Once the
model prediction error was large, the following forecast would be worse
and worse. Therefore, to address this issue, dynamic correction every

Table 2
Total emission factors in New York State [50].
Location CO, (Ib/MWh) CH4 (Ib/MWh) N0 (Ib/MWh)
Upstate New York 232.3 0.017 0.002
New York City 553.8 0.021 0.002
Long Island 1209.0 0.157 0.020
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Fig. 4. Results of DNN models for air temperature prediction of one AHU in a school gymnasium located in Guilderland, NY: (a) training results in three heating days;
(b) training results in three cooling days; (c) testing results in seven heating days; (d) testing results in seven cooling days.

day or every few days was necessary for data-driven models. The process
of dynamic correction was to retrain the model on new data in order to
improve the accuracy. Additionally, dynamic correction was also to
eliminate the accumulated errors and use new data as the initial value
for optimization when the error was large.

Fig. 5 shows the training and testing results of DNN models for in-
door air temperature prediction for various HVAC systems. The MAPE of
the prediction by the DNN model for 163 RTUs was 1.1% and 2.8% for
training and testing, respectively. The training results were very good, as
the training error was less than 5% for almost all the RTUs. The testing
results were slightly worse than the training. Similar results could be
found for other systems. The MAPE for training and testing of 275 VAVs
was 1.0% and 3.0%, respectively. The MAPE for training and testing of
178 FCUs was 2.3% and 3.9%, respectively. The MAPE for training and
testing of 145 UVs was 1.1% and 2.1%, respectively. The MAPE for
training and testing of 256 AHUs was 1.0% and 2.3%, respectively. The
prediction accuracy was similar for four HVAC systems except for FCU.
We also calculated the root mean square error (RMSE) of the air

temperature prediction for each HVAC system. The RMSE results were
0.68 °C, 0.73 °C, 0.91 °C, 0.54 °C, and 0.59 °C for RTU, VAV, FCU, UV,
and AHU, respectively. For predicting indoor temperature as one of the
key performance metrics, the DNN models performed well for different
HVAC systems and buildings. So the DNN models showed good scal-
ability preliminarily. Thus we could use the trained DNN model to
predict the air temperature. Then we used the trained model for DDPC to
reduce energy use in each zone.

3.2. Results of load reduction

After building and training the DNN models, we could use them for
the data-driven predictive control. Fig. 6 shows the results of the tracked
temperature and energy saving by DDPC for a UV in one building located
in Hudson, NY on seven heating and cooling days. DDPC could control
the predicted temperature to track the actual collected data within
0.5 °C most of the time, which ensured the thermal comfort in this zone
was almost the same as actual condition. In the winter seasons, the
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Fig. 5. Training and testing results of DNN models for indoor air temperature prediction for various HVAC systems: (a) RTU, (b) VAV, (c¢) AHU, (d) FCU, (e) UV, and

(f) all the HVAC systems.

indoor air temperature during the daytime could be controlled around
21-22 °C. At night when unoccupied, the HVAC system did not provide
load to save energy. During the weekend of the 7 consecutive days, there
was no load and the air temperature was free to fluctuate and it may
drop to 18-19 °C. Similarly, in summer, the indoor temperature was
controlled at around 22 °C during the daytime. It could rise to 24 °C
when the system was not working at night and on weekends. Fig. 6(a)
and (c) also show that the heating and cooling load could be reduced by
DDPC comparing with the current baseline control. Energy saving for
heating and cooling load was 51% and 55% on seven days. Meanwhile,
the peak load reduction was 6% and 28% for this UV in winter and
summer. We also found that the actual measured load fluctuated
violently, and especially cooling and heating load existed in the mea-
surement at the same time. This rule-based baseline control led to very
large energy consumption. As for DDPC, the fluctuation was much
smaller, so it could save energy. On the other hand, part of the reason of

strong fluctuation was from the accuracy of the prediction model. We
found that the accuracy MAPE of the model was 4.3% in this case, which
was above average as Fig. 5(e) shows.

Then we evaluated the energy saving of the DDPC across all HVAC
systems in the 78 buildings. Fig. 7 shows the reduction of heating and
cooling load by the DDPC for all AHUs, RTUs, VAVs, FCUs, and UVs in
buildings. We found that it could save 64% on the heating load and 60%
on the cooling load of the AHUs on average. For RTUs, 69% on the
heating load and 68% on the cooling load could be saved. For VAVs,
FCUs, and UVs, the energy saving was 64%, 67%, and 69%, respectively.
The overall energy saving was 65% on heating and cooling load. For
different HVAC systems and buildings, DDPC has achieved similar
energy-saving goals. It showed that the scalability of DDPC was very
good. Fig. 8 shows the distribution of reduction of peak load by DDPC for
all buildings. The average peak load reduction was 15.4% for all 78
buildings. Therefore, data-driven predictive control demonstrated huge
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Fig. 6. Energy and air temperature results of the DDPC for a UV in one building located in Hudson, NY: (a) heating load in seven days; (b) air temperature in seven
heating days; (c) cooling load in seven days; (d) air temperature in seven cooling days.

potential for energy saving and reduction of peak load in New York
State.

3.3. Reduction of GHG emission for DDPC

At last, we did the GHG emission analysis for the DDPC with the
results of energy reduction of 78 buildings. Fig. 9 shows the distribution
of reduction of CO2 emission among all the buildings. We found that
DDPC could reduce the emission of CO5 by an average of 15.18 (1.88e-
3-72.30) kg per m? per year. The distribution of other GHG was similar
since the GHG emission was calculated based on energy reduction and
emission factors. The results on the reduction of CH4 and N0 emission

were 5.76e-4 (7.11e-8-2.74e-3) and 5.48e-5 (6.77e-9-2.61e-4) kg per
m? per year, respectively. For different buildings, the results varied a lot,
as Fig. 9 shows. The possible reasons could be that the HVAC systems
which we analyzed in different buildings may not represent all the
systems inside the building, since the data of some systems were missing
or not accessed. Besides, the building area shown in the database may be
different from the conditioned area. Considering these possible reasons,
the resulting reduction of GHG emissions could be more in some
buildings.

There are more than 2 million buildings in New York State. As
buildings accounted for 32% of total GHG emissions, and space heating
and cooling accounted for about 50% of total energy usage. If assuming
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all buildings in New York State used the DDPC, it is estimated that the
GHG emission could be reduced by 11%. Therefore, the cities and the
state will get significant dividend of GHG reduction for sustainability
from data-driven smart control.

3.4. Analysis of the scalability of DDPC

In the present study, we developed the data-driven models based on
actual collected data from 78 buildings in the RTEM database and used
them for energy-efficient control. We found that the percentage of
feasible DDPC working properly in over one thousand HVAC units was
84%. At most of the time, the robustness of DDPC was great. It provided
reasonable operation to the HVAC systems. Therefore, the scalability of
DDPC on control robustness was satisfactory. In addition, there were still
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some instances that the DDPC could not work properly. We analyzed and
categorized these cases mainly in three stages.

A) Failure in model training.

Data outliers. We found zero value may occur at one time step for
the data recording on air temperature as Fig. 10(a) and HVAC load as
Fig. 10(b). These zero values may occur due to sensor drift, failure,
malfunction, damage, or network connection issue. The actual value of
air temperature should not be zero if in summer. As for HVAC load or air
flow rate, it may be zero when the damper was fully closed. It was very
difficult to distinguish whether it was the ground truth or the outlier. We
also found that the air temperature and other measured data may be
extremely high or low at one time step, as shown in Fig. 10(c). That may
be due to the interference during the measurements. These outliers
could negatively impact the training results. It may also cause the model
to misjudge the performance during validation. To address these issues,
we should process the data by filters in real time to identify and remove
the outliers [51].

Constant load recording. We found the load of the HVAC system
could remain unchanged for a long time, such as zero value as shown in
Fig. 10(d). In these cases, the model was trained in only one load, thus it
could not learn the building thermodynamics in varied complex condi-
tions. So we should train the data-driven models in more conditions with
varied loads. Another condition was that load was all zero on shoulder
seasons when the HVAC system was not in use to condition the space. So
we should especially avoid use the training data in shoulder seasons,
because DDPC was not suitable to apply in shoulder seasons.

Discrete variables. We found that for some HVAC system, the
recording of load or other parameters was constantly one value or
discrete with several values, as an example of RTU heating output shown
in Fig. 10(e). The constant or discrete parameter may be due to the
system setting and design property itself. If the native system was con-
stant load with on-off control or stage control, the control variable may
not be able to change continuously. In this condition, data-driven DNN
model cannot be used, because the training and optimization was based
on gradient descent, which was not feasible for discrete parameters. As a
result, it is recommended to use DDPC for continuous system.

Data abnormal variation and disturbance. We found that during a
certain period of time, there were abnormal variation and disturbance in
the training data with unknown reasons. The value may be still within
the normal range. We did not know the exact cause. It may be due to
occupant behavior, building envelope damage, or change of HVAC
system parameters. At this time, the model training was not as effective
because the relationship between inputs and output parameters was not
clear.

B) Failure in model validation.
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Fig. 10. Typical challenges of scalable DDPC deployment: (a) Measured temperature outlier: zero value; (b) Measured temperature outlier: extreme value; (c)
Measured HVAC load outlier: zero value; (d) Measured HVAC load constant value; (e) Measured discrete RTU heating output; (f) Outdoor air temperature conditions

beyond training.

Underfitting. The inaccurate validation results may be because of
the data-driven model with insufficient training. The possible reason
could be the use of inappropriate training parameters. To improve the
results, it is important to set the hyperparameters of the DNN model
carefully and obtain accurate model results. We could also train the
model multiple times with different parameters to find the best model.

Overfitting. Overfitting may also lead to inaccurate validation re-
sults. To prevent this, we could use regularization or set up early stop-
ping and dropout.

C) Failure in control.

Cannot find optimal solution. Sometimes the data-driven predic-
tive control could not find the optimal solution for the optimization
problem. This could be due to a variety of factors such as inappropriate
environmental parameters, or inaccurate model predictions. If the
constraints are too restrictive and prevent finding the optimal solution,
either. A feasible solution could be relaxing the constraints
appropriately.
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Conditions beyond training set. In the database when we tested
the DDPC, there were conditions that not be trained before but occurred
in the control process. For example, the ambient air temperature in
winter exceeded 20 °C as Fig. 10(f) shows. This was very rare occurrence
and happened once every a few years. The data-driven model could not
work effectively, as it was not trained to make predictions for these
conditions.

Too large cumulative error. The prediction model was used at each
time step iteratively. So the inaccurate prediction result at one step will
lead to larger subsequent errors. In this condition, we should calibrate
the model with actual data corrected every day or every few days as
possible solution.

4. Discussions and lessons learned

In this study, we used the data from 78 buildings in the RTEM
database to analyze the scalability of data-predictive control. The model
only required the time-series data on zone air temperature, outdoor air
temperature, room occupancy, and load of HVAC system. And the results
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of this study showed great scalability of DDPC among various HVAC
systems and buildings. The proposed method can be easily implemented
in more buildings in New York State to reduce the energy and GHG
emissions. The proposed method could also be easily implemented for
many types of buildings, such as both commercial buildings and resi-
dential buildings. The proposed approaches would not need a complex
retrofit, but only implement the smart control algorithm for the BMS.
Thus, it would be easy for the building owners to adopt. Hence, the cities
and the state will reap the dividend of energy and GHG reduction for
sustainability.

The well-organized data structure of the RTEM database was already
very easy to work with, and it was convenient for the researchers to
develop and validate different models. However, we still encountered
some obstacles during the development of data-driven models and the
control algorithm.

A) Unified naming, labeling, and unit of data

The way data was labeled and named greatly affected the automation
of the model training and development. For some parameters, we
needed to recognize different names to process the corresponding data
by programming. For example, space air temperature could be named as
temperature, temperature with room number, space temperature, zone
temperature, zone air temperature, and relief temperature for various
buildings in the database. It was also typically assumed the same as
return air temperature/RA/RAT. Another example was that for various
HVAC systems, supply air temperature, SA/SAT, discharge air temper-
ature, DA/DAT, and auxiliary temperature/AUX typically represented
the same variable. To ensure successful future automatic and large-scale
implementation of data-driven predictive control, agreement and stan-
dardization of proposed names was critical. Sometimes, the units of data
were not consistent. For example, air temperature and energy con-
sumption could be in SI units or imperial units for various HVAC systems
and buildings. Direct deployment without examination would result in a
tenfold or hundredfold deviation.

B) Synchronization of time and control step

As for time, in addition to synchronization, the frequency of data
recording and control step was also important. In the RTEM database,
most buildings used 15 min for data recording. In large-scale deploy-
ment, same recording frequency for various sensors would make the
data-driven predictive control easy to deploy in various buildings.

C) Automatic input feature selection

Finally, we manually selected space air temperature, ambient tem-
perature, occupancy status, and load of the HVAC system as inputs,
which was recorded in most BMS. But there were no information
available for the number of occupants, internal heat gain, and wall
temperature. So we did not analyze input feature selections in this study.
In the near future, with the increasing use of more sensors and IoT
(Internet of Things) devices in buildings [52], there will be greater
amount of data and information available for developing data-driven
models. To further leverage information and sensors in various build-
ings, we need to develop the automatic input feature selection to build
better models and controls.

5. Conclusion
In this study, we explored the scalability of deploying data-driven
predictive control on a large scale for over one thousand HVAC units

in 78 buildings. This investigation led to the following conclusions.

1. We trained DNN models by using the data recording in over one
thousand HVAC systems in 78 buildings in New York State. Then we
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automatically deployed DDPC on large scale to evaluate the perfor-
mance. The results showed that it could save more than 60% of
heating and cooling load on average. Meanwhile, DDPC could also
reduce the peak load by 15%.

2. For the reduction of GHG emission, we found that DDPC could
reduce the emission of CO, by 15.18 kg per m? per year in buildings.
If assuming all buildings in New York State used the DDPC, the GHG
emission could be reduced by 11%.

3. Deploying DDPC on large scale showed satisfactory scalability. The
energy saving performance was similar for various kinds of HVAC
systems. The percentage of feasible DDPC working properly in over
one thousand HVAC units was 84%. Conditions that the DDPC could
not work properly mainly due to data outlier, abnormal variation
and disturbance, and beyond training. Obstacles for development of
DDPC were unified naming and labeling of data, synchronization of
time and control step, automatic input feature selection, and auto-
matic diagnosis of failure and restoration of normal operation.

As for the limitation of this study and the future works, it is currently
impractical to conduct field tests and validate the DDPC for different
HVAC systems in a large number of buildings in different cities. It would
take the cooperation of different universities and organizations to make
it possible, which was one of the future work. In this study, we only
focused on the air system and building heating/cooling load. It is
necessary to develop and validate DDPC for more complex building
energy systems, especially water systems (boiler, chiller, pump) and
renewable energy system (PV panel and wind turbine). It could be a
future direction to explore the data-driven predictive control for sus-
tainable building and city. In this study, we focused on minimizing
heating/cooling load with the DDPC strategy. In an actual HVAC system,
the directly controlled parameters are the position of air duct dampers
and heating coil valves. We will further develop the control strategy to
adjust the position of the dampers and valves for practical imple-
mentation in buildings. What is more, for the energy consumption for
dehumidification, it was related to indoor and outdoor humidity level.
However, we found that most BMSs did not record data on relative
humidity. Additionally, some HVAC systems, such as RTU and FCU, did
not have dehumidification functions. Therefore, in this study, we
focused on DDPC which optimized energy consumption for air temper-
ature control. In future research, we can collect more data and consider
the energy consumption of all HVAC components, including humidifi-
cation/dehumidification, fan power, and reheating in addition to heat-
ing/cooling load.

Furthermore, though black-box data-driven models were more suit-
able for energy-efficient control of large-scale buildings, it was still
challenging for complex buildings with multi-zone [13]. Data-driven
coordinated control for complicated building energy system is also a
future research topic. Additionally, DDPC could be easier than
physics-based MPC to implemented in large number of buildings auto-
matically. But the maintenance of data-driven model and control
required attentions. In this study, we found many conditions when the
DDPC could not work properly. The possible reason could because of the
building envelope damage, equipment failure, and some unknown but
extreme weather conditions. How to automatically detect these possible
conditions, how to make the DDPC work better under these emergency
conditions, and how to diagnose the failures and restore to normal
operation of DDPC need to continue to be studied.
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