
Soundly Handling Linearity

WENHAO TANG, The University of Edinburgh, United Kingdom

DANIEL HILLERSTRÖM, Huawei Zurich Research Center, Switzerland

SAM LINDLEY, The University of Edinburgh, United Kingdom

J. GARRETT MORRIS, University of Iowa, USA

We propose a novel approach to soundly combining linear types with multi-shot effect handlers. Linear type

systems statically ensure that resources such as file handles and communication channels are used exactly

once. Effect handlers provide a rich modular programming abstraction for implementing features ranging from

exceptions to concurrency to backtracking. Whereas conventional linear type systems bake in the assumption

that continuations are invoked exactly once, effect handlers allow continuations to be discarded (e.g. for

exceptions) or invoked more than once (e.g. for backtracking). This mismatch leads to soundness bugs in

existing systems such as the programming language Links, which combines linearity (for session types)

with effect handlers. We introduce control-flow linearity as a means to ensure that continuations are used in

accordance with the linearity of any resources they capture, ruling out such soundness bugs.

We formalise the notion of control-flow linearity in a System F-style core calculus F◦
eff

equipped with

linear types, an effect type system, and effect handlers. We define a linearity-aware semantics in order to

formally prove that F◦
eff

preserves the integrity of linear values in the sense that no linear value is discarded or

duplicated. In order to show that control-flow linearity can be made practical, we adapt Links based on the

design of F◦
eff
, in doing so fixing a long-standing soundness bug.

Finally, to better expose the potential of control-flow linearity, we define an ML-style core calculus Q◦
eff
,

based on qualified types, which requires no programmer provided annotations, and instead relies entirely

on type inference to infer control-flow linearity. Both linearity and effects are captured by qualified types.

Q◦
eff

overcomes a number of practical limitations of F◦
eff
, supporting abstraction over linearity, linearity

dependencies between type variables, and a much more fine-grained notion of control-flow linearity.

CCS Concepts: • Theory of computation→ Control primitives; Type structures.

Additional Key Words and Phrases: control-flow linearity, multi-shot continuations, linear resources

ACM Reference Format:

Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garrett Morris. 2024. Soundly Handling Linearity. Proc.

ACM Program. Lang. 8, POPL, Article 54 (January 2024), 29 pages. https://doi.org/10.1145/3632896

1 INTRODUCTION

Many programming languages support linear resources such as file handles, communication
channels, network connections, and so forth. Special care must be taken to preserve the integrity
of linear resources in the presence of first-class continuations that may be invoked multiple
times [Friedman and Haynes 1985], as a linear resource may be inadvertently be accessed more
than once. Java [Pressler 2018] and OCaml [Sivaramakrishnan et al. 2021] have each recently
been retrofitted with facilities for programming with first-class continuations that must be invoked

Authors’ addresses: Wenhao Tang, The University of Edinburgh, United Kingdom, wenhao.tang@ed.ac.uk; Daniel Hiller-

ström, Huawei Zurich Research Center, Switzerland, daniel.hillerstrom@ed.ac.uk; Sam Lindley, The University of Edinburgh,

United Kingdom, sam.lindley@ed.ac.uk; J. Garrett Morris, University of Iowa, USA, garrett-morris@uiowa.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART54

https://doi.org/10.1145/3632896

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

54:2 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

exactly once, partly in order to avoid such pitfalls. Nonetheless, multi-shot continuations are a
compelling feature, supporting applications such as backtracking search [Friedman et al. 1984]
and probabilistic programming [Kiselyov and Shan 2009]. In this paper we explore how to soundly
handle linearity in the presence of multi-shot effect handlers [Plotkin and Pretnar 2013].

We first illustrate the issues with combining linearity withmulti-shot effect handlers by exhibiting
a soundness bug in the programming language Links [Cooper et al. 2006], which is equipped with
linear session-typed channels [Lindley and Morris 2017] and effect handlers with multi-shot
continuations [Hillerström et al. 2020a]. We begin by defining a function outch that forks a child
process and returns an output channel for communicating with it. The idea is that we will use
a combination of exceptions and multi-shot continuations to send two integers, rather than an
integer followed by a string, along the endpoint (with session type !Int.!String.End) returned by
the function outch.

sig outch : () ~> !Int.!String.End

fun outch() {

fork(fun(ic) {

var (i, ic) = receive(ic); # receive the integer

var (s, ic) = receive(ic); # receive the string

println(intToString(i) ^^ s); # convert, concat, and print

close(ic) # close the input channel

})

}

The primitive fork creates a child process and two endpoints of a session-typed channel. One
endpoint is passed to the child process and the other endpoint is returned to the caller. Here the
function returns an output endpoint of type !Int.!String.End and the child process is supplied
with an input endpoint of type ?Int.?String.End. The child receives an integer and a string on the
input endpoint, then prints them out before closing the endpoint.

Now we invoke outch in a context in which we exploit the power of multi-shot continuations to
return twice and the power of exceptions to abort the current computation.

handle({

var oc = outch();

var msg = if (do Choose) 42 else 84; # choose an integer message to send

var oc = send(msg, oc);

do Fail; # this is our exception

var oc = send("well-typed", oc);

close(oc)

}) {

case <Fail> -> ()

case <Choose => resume> -> resume(true); resume(false)

}

We handle a computation that performs two operations: 1) Choose : () => Bool; and 2) Fail :

forall a. () => a. The handled computation invokes outch, forking a child process and binding
the output endpoint of the resulting channel to oc. Next, it invokes the operation Choose to select
between two possible integer messages, which is sent on the channel. Then, it performs the Fail
operation, before sending a string along the channel and closing it. This is all very well and satisfies
the type-checker; however, the described control flow is not actually what happens, because in fact
the continuation of Choose is invoked twice and the continuation of Fail is never invoked. The

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

Soundly Handling Linearity 54:3

behaviours of Fail and Choose are defined by the corresponding operation clauses of the handler.
For Fail the captured continuation is discarded (it must be: it is never bound); for Choose the
continuation is bound to resume and invoked twice: first with true and then with false.
Running the program causes a segmentation fault when printing the received values, as it

erroneously attempts to concatenate a string with an integer. To see why, follow the control flow
of the parent process. It performs Choose, which initially selects 42 and sends it over the channel.
The child process receives this integer and subsequently expects to receive a string. Back on the
parent process execution is aborted via Fail, which causes the initial invocation of resume to return,
leading to the second invocation of resume, which restores the aborted context at the point of
selecting an integer. Now Choose selects 84 and sends it over the channel. The child process receives
this second integer, mistakenly treating it as a string.
In this paper we rule out such soundness bugs by tracking control-flow linearity: a means to

statically assure how often a continuation may be invoked, mediating between linear resources and
effectful operations to ensure that effect handlers cannot violate linearity constraints on resources.
The main contributions of this paper are:

• We give high-level overview of the main ideas of the paper through a series of worked
examples that illustrate the difficulties of combining effect handlers with linearity, how they
can be resolved by tracking control-flow linearity, and how the approach can be refined using
qualified types [Jones 1994] (Section 2).
• We introduce F◦

eff
(pronounced “F-eff-pop”), a System F-style core calculus equipped with

linear types, an effect type system, and effect handlers (Section 3). We prove syntactic type
soundness and a semantic linear safety property.
• Inspired by F◦

eff
we implement control-flow linearity in Links, fixing a long-standing type-

soundness bug (Section 4).
• Motivated by expressiveness limitations of F◦

eff
we introduceQ◦

eff
(pronounced “Q-eff-pop”), an

ML-style core calculus inspired by�ill [Morris 2016] and Rose [Morris and McKinna 2019],
based on qualified types (Section 5). We prove soundness and completeness of type inference
for Q◦

eff
. Along the way, we identify a semantic soundness bug in �ill and conjecture a fix.

Section 6 outlines how control-flow linearity applies to shallow handlers [Hillerström and Lindley
2018]. Section 7 discusses related work and Section 8 conclude and discusses future work.

2 OVERVIEW

In this section, we give a high-level overview of the main ideas of the paper by way of a series
of examples. We first compare standard value linearity with non-standard control-flow linearity,
illustrating how the latter may be tracked in an explicit calculus F◦

eff
(Section 3). For readability

we omit uninteresting syntactic artifacts from our examples. We show how control-flow linearity
allows linear resources and multi-shot continuations to coexist peacefully. We then highlight
two limitations of F◦

eff
: linear types require syntactic overhead which harms modularity, and row-

polymorphism based effect types lead to coarse tracking of control-flow linearity. We exploit
qualified types to relax both limitations in an ML-style calculus Q◦

eff
(Section 5).

2.1 Value Linearity

Value linearity classifies the use of values: linear values must be used exactly once whereas unlimited
values can be used zero, one, or multiple times (linear types differ from uniqueness types, which
instead track the number of references to a value). Equivalently, value linearity characterises whether
values contain linear resources: linear values can contain linear resources whereas unlimited values
cannot. Conventional linear type systems track value linearity. F◦

eff
adapts the subkinding-based

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

54:4 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

linear type system of F◦ [Mazurak et al. 2010]. The linearity . of a value type is part of its kind
Type. and can be either linear ◦ or unlimited •. For example, file handles are linear resources
(File : Type◦) and integers are unlimited resources (Int : Type•).

A linearity annotation on a _-abstraction defines the linearity of the function itself. Consider
the following function faithfulWrite which takes a file handle 5 and returns another function that
takes a string B , faithfully writes B to 5 , and then closes the file handle.

faithfulWrite : File→• (String→◦ ())
faithfulWrite = _• 5 .(_◦B .let 5 ′ ← write (B, 5) in close 5 ′)

The outer unlimited function (→•) yields a linear function (→◦) expecting a string. The linear type
system dictates that the inner function is linear as it captures the linear file handle 5 .

One important property of value linearity is that unlimited value types can be treated as linear
value types, as it is always safe to use unlimited values (which contain no linear resources) just
once. This property is embodied by the subkinding relation ⊢ Type• ≤ Type◦ in F◦

eff
. For instance,

consider the polymorphic identity function.

id : ∀`Row UType
◦
. U →• U ! {`}

id = Λ`Row UType
◦
. _•G . G

The return type of the function is a computation type U ! {`} where U is the linear type of values
returned (G is used exactly once) and ` is the row of effects performed by the function. (We chose
to omit the corresponding effect annotations in the signature of faithfulWrite because they are
empty, but henceforth we will write them explicitly.) Subkinding allows the identity function to be
applied to both linear and unlimited values. It is always sound to use an unlimited value exactly
once. Thus, we have both ⊢ Int : Type◦ and ⊢ File : Type◦, and if ' is an effect row type:

id ' File : File→• File ! {'}
id ' Int : Int→• Int ! {'}

2.2 Control-Flow Linearity

Control-flow linearity tracks how many times control may enter a local context: a control-flow-
linear context must be entered exactly once; a control-flow-unlimited context may be entered
zero, one, or multiple times. Equivalently, control-flow linearity characterises whether a local
context captures linear resources: a control-flow-linear context can capture linear resources; a
control-flow-unlimited context cannot.
To better explain control-flow linearity, we first reprise the soundness problem due to the

interaction of linear resources andmulti-shot continuations of Section 1 via a simpler example in F◦
eff
.

Consider the following function dubiousWrite✗, which takes a file handle and non-deterministically
writes "A" or "B" to it depending on the result of Choose. We ignore control-flow linearity for now.

dubiousWrite✗ : File→• () ! {Choose : () ↠ Bool}
dubiousWrite✗ = _• 5 .

let 1 ← (do Choose ()) {Choose:()↠Bool} in

let B ← if 1 then "A" else "B" in
let 5 ′ ← write (B, 5) in close 5 ′

}

continuation of Choose

The do Choose () expression invokes operation Choose with a unit argument. F◦
eff

adapts an effect
system based on Rémy-style row polymorphism [Hillerström and Lindley 2016; Lindley and Cheney
2012]. Effect types in F◦

eff
are rows containing operation labels with their signatures and ended with

potential row variables. The effect type {Choose : () ↠ Bool} denotes that dubiousWrite✗ may

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

Soundly Handling Linearity 54:5

invoke the operation Choose, which takes a unit and returns a boolean value as indicated by its
signature () ↠ Bool. The problem arises when we handle Choose using multi-shot continuations.

let 5 ← open "C.txt" in handle (dubiousWrite✗ 5) with {Choose _ A ↦→ A true ; A false}

The file "C.txt" is opened and the file handle is bound to 5 before dubiousWrite✗ 5 is handled by an
effect handler that handles the Choose operation. In the handler clause, A binds the continuation of
Choose, which expects a parameter of type Bool. As A is invoked twice (first with true and then
with false), the file handle 5 is written and closed twice, which leads to a runtime error because it
is closed before the second write. The essential problem is that the continuation of Choose should
be used linearly as it captures the linear file handle 5 , but it is invoked twice by the effect handler.
Conventional linear type systems cannot detect this kind of error as they only track value linearity.

Motivated by the observation that only a local context, reified as the continuation of an operation,
may be captured by a multi-shot handler, we track control-flow linearity at the granularity of opera-
tions. We use the control-flow linearity of an operation to represent the control-flow linearity of the
continuation of the operation. Control-flow-linear operations can be used in contexts which may
contain linear resources, whereas control-flow-unlimited operations cannot. An operation signature
� ↠. � is annotated with a linearity . to denote its control-flow linearity. The dubiousWrite✗

function can now be rewritten to correctly track control-flow linearity as follows.

dubiousWrite✓ : File→• () ! {Choose : () ↠◦ Bool}
dubiousWrite✓ = _• 5 .

let◦1 ← (do Choose ()) {Choose:()↠
◦Bool} in

let◦B ← if 1 then "A" else "B" in
let◦ 5 ′ ← write (B, 5) in close 5 ′

}

continuation of Choose

Now, the type of dubiousWrite✓ specifies that the operation Choose : () ↠◦ Bool is control-flow
linear (i.e. the continuation of Choose is linear). We also annotate let-bindings with linearity

information. In let.G ← " in # , the term # has control-flow linearity . , and in particular
the ◦ annotations on the let-bindings in dubiousWrite✓ permit the use of the linear file handle
throughout.

The linear type system of F◦
eff

uses the control-flow linearity of operations to restrict the use of
continuations in handlers, which ensures that control-flow-linear contexts are entered only once.
For instance, consider the handling of dubiousWrite✓ with the same multi-shot handler.

let 5 ← open "C.txt" in handle (dubiousWrite✓ 5) with {Choose _ A ↦→ A true ; A false}

This is ill-typed due to the fact that Choose is control-flow linear, which means the resumption A
has a linear function type, meaning it must be applied exactly once.
We lift the control-flow linearity of operations to effect row types and reflect it in their kinds

Row. . Similar to value linearity, we also have a subkinding relation for control-flow linearity. Recall
that the control-flow linearity of (the operations in) effect row types is actually the control-flow
linearity of their contexts, not themselves. This induces a duality between value linearity and
control-flow linearity paralleling the duality between positive values and negative continuations.
As a consequence, the subkinding relation for control-flow linearity is ⊢ Row◦ ≤ Row•, the reverse
of that for value linearity. Intuitively, this says that control-flow-linear operations can be treated
as control-flow-unlimited operations, because it is safe to use control-flow-linear operations in
unlimited contexts. For example, consider the following function tossCoin which takes a function
that returns a boolean and tosses a coin using this function.

tossCoin : ∀`Row
•
.(() →• Bool ! {`}) →• String ! {`}

tossCoin = Λ`Row
•
._•6. let• 1 ← 6 () in if 1 then "heads" else "tails"

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

54:6 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

As no linear resource is used, the effect type of tossCoin and its parameter is given by a control-
flow-unlimited row variable ` : Row•. Via subkinding, we can instantiate ` with operations with
either control-flow linearity. For instance, suppose we have ⊢ '1 : Row• and ⊢ '2 : Row◦ for
'1 = Choose : () ↠• Bool and '2 = Choose : () ↠◦ Bool, then:

tossCoin '1 (_
• ().(do Choose ()) {'1 }) : String ! {'1}

tossCoin '2 (_
• ().(do Choose ()) {'2 }) : String ! {'2}

The subkinding relation of control-flow linearity only influences how operations are used,
not how they are handled. We can use control-flow-linear operations as control-flow-unlimited
operations (i.e., use them in unlimited contexts), but this does not imply that we can handle control-
flow-linear operations as control-flow-unlimited operations (i.e., handle them by resuming any
number of times). Our linear type system does not allow control-flow-linear operations to be
handled by multi-shot handlers despite the subkinding relation Row◦ ≤ Row•. This is because
when handling, we directly look at the control-flow linearity on operation signatures instead of
their kinds, where no↠◦ can be upcast to↠•. This can be seen more clearly from the typing rules
in Section 3.2. We formally state the soundness of F◦

eff
in Sections 3.4 and 3.5.

2.3 �alified Linear Types

As we have seen from the examples so far, F◦
eff

requires linearity annotations on _-abstractions
and let-bindings. Though this can suffice for an explicit calculus, it can prove cumbersome for
practical programming languages and curtail the modularity of programs. Unfortunately, we cannot
entirely overcome these limitations by introducing subsumption relations between types, or using
Hindley-Milner type inference to infer them. The reason is that there are inner dependencies on
the linearity. For instance, consider the following function verboseId which is almost the same
as the function id in Section 2.1 but outputs the log message "id is called" using the operation
Print : String↠ () before returning.

verboseId : ∀`Row
.1
UType

.2
. U →.0 U ! {Print : String↠.3 () ; `}

verboseId = Λ`Row
.1
UType

.2
. _.0G . let.4 () ← do Print "id is called" in G

Depending on different choices of .0, .1, .2, .3, and .4, we can give ten well typed variations of
verboseId. Their types are shown as follows, omitting primary kinds and signatures for readability.

∀`• U• .U →• U ! {Print : • ; `}

∀`• U• .U →• U ! {Print : ◦ ; `}

∀`◦ U• .U →• U ! {Print : • ; `}

∀`◦ U• .U →• U ! {Print : ◦ ; `}

∀`◦ U◦ .U →• U ! {Print : ◦ ; `}

∀`• U• .U →◦ U ! {Print : • ; `}

∀`• U• .U →◦ U ! {Print : ◦ ; `}

∀`◦ U• .U →◦ U ! {Print : • ; `}

∀`◦ U• .U →◦ U ! {Print : ◦ ; `}

∀`◦ U◦ .U →◦ U ! {Print : ◦ ; `}

The key observation is that the control-flow linearity of the operation Print (as well as the row
variable `) depends on the value linearity of the parameter type U , because the parameter G is used
in the continuation of Print. To express this kind of dependency, we use a linear type system based
on qualified types inspired by �ill [Morris 2016]. In the ML-style calculus Q◦

eff
with qualified

linear types, verboseId can be written and ascribed a principal type as follows.

verboseId : ∀U ` q q ′ . (U ⪯ q) ⇒ U →q ′ U ! {Print : q ; `}
verboseId = _G . do Print "42" ; G

The linearity variables q and q ′ quantify over ◦ and •. We do not use kinds to represent linearity of
type variables; instead, all linearity information is represented using predicates of the form g ⪯ g ′,
where g is a value type, row type or linearity type (◦, • or a linearity variable). The type scheme of

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

Soundly Handling Linearity 54:7

verboseId is extended with the predicate U ⪯ q , meaning that the value linearity of U is less than
that of q , which is the control-flow linearity of Print. This type scheme succinctly expresses all ten
possibilities listed above. The type inference algorithm of Q◦

eff
(Section 5.4) infers all such linearity

dependency constraints without the need for any type, effect, or linearity annotations.

2.4 �alified Effect Types

In addition to the syntactic overhead of linear types, the row-based effect system of F◦
eff

is also not
entirely satisfying when tracking control-flow linearity. Row-based effect systems have demon-
strated their practicality in research languages such as Links [Hillerström and Lindley 2016],
Koka [Leijen 2017], and Frank [Lindley et al. 2017]. In such effect systems, sequenced computa-
tions must have the same effect type, which can be smoothly realised by unification in systems
based on Hindley-Milner type inference. However, though fixing effect types between sequenced
computations is often acceptable, it does introduce some imprecision, and this can become more
pronounced when control-flow linearity is brought into the mix.

To see the problem concretely in F◦
eff
, consider the following function verboseClosewhich takes a

file handle, reads a string using the operation Get : () ↠ String, closes the file handle, and outputs
the string using the operation Print : String↠ ().

verboseClose : File→• () ! {'}

verboseClose = _• 5 . let◦B ← (do Get ()) {'1 } in let• () ← close 5 in (do Print B) {'2 }

Note that the second let-binding does not need to be annotated as linear, because the linear
resource 5 does not appear after it. The linear resource 5 also does not appear in the continuation
of Print. Since '1, '2, and ' should be equal in the row-based effect system of F◦

eff
, omitting the full

operation signatures for simplicity, we could write ' = '1 = '2 = {Get : ◦, Print : •} in the ideal
case. However, this is actually ill-typed because all operations in '1 should be control-flow linear,
as the linear resource 5 is used in their continuations.
An intuitive way to relax this limitation of F◦

eff
is to introduce a trivial subtyping relation on

concrete effect row types. We say '1 is a subtype of '2, if all operation labels in '1 are also in '2
with the same signatures, and when '1 ends with a row variable, '2 must end with the same row
variable. Then, in the verboseClose example, we can write '1 = {Get : ◦}, '2 = {Print : •}, and
' = {Get : ◦, Print : •}, which are safe given that '1 and '2 are both subtypes of '.

We call the subtyping relation trivial because it does not allow subtyping between row variables;
an open row '1 is a subtype of '2 only if '2 contains the same row variable as '1. For the above
verboseClose example this works, but for other functions which make greater use of polymorphism,
it can still seem overly-restrictive. For instance, consider the following function sandwichClose
which takes two functions and a file handle, and makes a sandwich using them.

sandwichClose : (() →• () ! {'1}, File, () →
• () ! {'2}) →

• () ! {'}

sandwichClose = _• (6, 5 , ℎ). let◦ () ← 6 () in let• () ← close 5 in ℎ ()

Using our trivial-subtyping workaround, we require both '1 and '2 to be subtypes of '. The problem
appears when we try to be polymorphic over '1 and '2. Because they are subtypes of the same row
type ', their row variables must be the same, i.e., we can only write '1 = '2 = ` in F◦

eff
.

To support non-trivial subtyping relations between row variables, we may again use qualified
types, this time to express row subtyping constraints. In addition to qualified linear types, Q◦

eff
also

supports qualified effect types inspired by Rose [Morris and McKinna 2019]. In Q◦
eff
, the function

sandwichClose can be given the following type. Note that here we still choose to fix functions to
be unlimited for readability.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

54:8 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

sandwichClose : ∀`1 `2 `.(`1 ⩽ `, `2 ⩽ `, File ⪯ `1)
⇒ (() →• () ! {`1}, File, () →

• () ! {`2}) →
• () ! {`}

sandwichClose = _• (6, 5 , ℎ). let () ← 6 () in let () ← close 5 in ℎ ()

The constraints `1 ⩽ ` and `2 ⩽ ` express that rows `1 and `2 are contained in `, and the constraint
File ⪯ `1 expresses that the value linearity of File is less than the control-flow linearity of `1, which
essentially means that `1 is control-flow linear. As in Section 2.3, the type inference algorithm of
Q◦
eff

infers these row subtyping constraints without the need for any annotation. The qualified
linear types and qualified effect types of Q◦

eff
are decidable. We give a constraint solving algorithm

which checks the satisfiability of both linearity constraints and row constraints in Section 5.6.

3 AN EXPLICIT HANDLER CALCULUS WITH LINEAR TYPES

In this section, we present the syntax, type-and-effect system, operational semantics andmetatheory
of F◦

eff
, a System F-style fine-grain call-by-value calculus with linear types and effect handlers. F◦

eff
is based on the core language of Links which adapts the subkinding-based linear type system of
F◦ [Mazurak et al. 2010] and a row-based effect system [Hillerström and Lindley 2016; Lindley and
Cheney 2012]. The linear type system and effect system of F◦

eff
are extended to track control-flow

linearity, which addresses the soundness problem arising from the interference of linear resources
and multi-shot continuations. We show that F◦

eff
is truly linearity safe by defining a linearity-aware

semantics and proving that no linear resource is discarded or duplicated during evaluation in the
presence of multi-shot effect handlers.

3.1 Syntax and Kinding Rules

Figure 1 shows the syntax of types, kinds, contexts, values, and computations of F◦
eff
. We introduce

a syntactic category . for linearity consisting of • and ◦, which intuitively means unlimited and
linear, respectively. The meaning of linearity varies for values and effects; value types track value
linearity, and effect types track control-flow linearity. Everything relevant to linearity is highlighted
in the figure. The remaining part is a relatively standard fine-grain call-by-value calculus with
effect handlers and row-based effect system [Hillerström et al. 2020a].
F◦
eff

explicitly distinguishes between value types and computation types as well as their terms.

Value types include type variables U , function types�→. � , and polymorphic types ∀.U .� . Value
terms include value variables G , _-abstractions _.G� ." , and type abstractions Λ.U ." . Function
types, polymorphic types, and abstractions are annotated with their value linearity . . In examples
we will freely make use of base types and algebraic data types whose treatment is quite standard.
We elect to allow polymorphic computation types rather than applying the value restriction.

A computation type � !� comprises a result value type � and an effect type � specifying the
operations that the computation might perform. Effect types {'} are represented by row types '.
Each operation label in rows is annotated with a presence type % , which indicates that the label is
either absent Abs, present with signature � ↠. �, or polymorphic \ in its presence. An operation
signature � ↠. � describes an operation with parameter of type � that returns a result of type �
and whose control-flow linearity is . . Row types are either open (ending with a row variable `)
or closed (ending with ·, which we often omit). We identify rows up to reordering of labels and
ignore absent labels in closed row types [Rémy 1994]. Handler types � ⇒ � represent handlers
transforming computations of type � to computations of type � . By convention, we let U range
over value type variables, ` over row type variables, and \ over presence type variables, but we
also let U range over all over them (e.g. when binding quantifiers of unspecified kind).
Function application + , and type application +) are standard. A computation (return +)�

returns the value + . An operation invocation (do ℓ +)� invokes the operation ℓ with parameter

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

Soundly Handling Linearity 54:9

Value types �, � ::= U | �→. � | ∀. U .�

Computation types �, � ::= � !�

Effect types � ::= {'}

Row types ' ::= ℓ : % ;' | ` | ·

Presence types % ::= Abs | � ↠. � | \

Handler types � ::= � ⇒ �

Types) ::= � | ' | % | � | � | �

Kinds ::= Type. | RowL
. | Presence. | Effect | Comp | Handler

Linearity . ::= • | ◦

Label sets L ::= ∅ | {ℓ} ⊎ L

Type contexts Γ ::= · | Γ, G : �

Kind contexts Δ ::= · | Δ, U :

Values + ,, ::= G | _. G� ." | Λ. U ."

Computations ", # ::= + , | +) | (return +)� | (do ℓ +)�

| let. G ← " in # | handle " with �

Handlers � ::= {return G ↦→ "} | {ℓ ? A ↦→ "} ⊎ �

Fig. 1. Syntax of Types, Kinds, Contexts, Values and Computations of F◦
eff

+ . They are both annotated with their effect types for deterministic typing. Sequencing let. G ←
" in # evaluates" and binds its result to G in # . The linearity . basically indicates the control-
flow linearity of # . Handling handle " with � handles computation" with handler � . Handlers
are given by a return clause return G ↦→ " , which binds the returned value as G in" , and a list of
operation clauses ℓ ? A ↦→ " , which bind the operation parameter to ? and continuation to A in" .
We have six kinds , one for each syntactic category of types. Kinds are parameterised by

linearity . . The kinds of value types Type. denote value linearity, and the kinds of presence types
Presence. and row types RowL

. denote control-flow linearity. The label set L tracks the labels
that should not appear in a row, which is used to avoid duplicated labels in rows. The kinds of effect,
computation, and handler types are not annotated with any linearity information. Type contexts Γ
associate value variables with types, and kind contexts Δ associate type variables with kinds.
Figure 2 gives the kinding rules. Linearity-relevant parts are highlighted. The kinding relation

Δ ⊢) : states that type) has kind in context Δ. The subkinding relation ⊢ ≤ ′ states
that is a subkind of ′. We sometimes write simply Δ ⊢) : . for value, row and presence types
when the underlying kind is clear. The kinding rules for effect, computation, and handler types are
standard [Hillerström et al. 2020a] and irrelevant to linearity (K-Effect, K-Comp, and K-Handler).
The kind context maintains kinds for variables (K-TyVar). The value linearity of function and

polymorphic types comes from their annotations (K-Forall and K-Fun). Base types have their own
value linearity, e.g., ⊢ File : ◦ and ⊢ Int : •. The value linearity of (omitted) algebraic datatypes like
pair types (�, �) is lifted from their components; ⊢ (�, �) : ◦ if either ⊢ � : ◦ or ⊢ � : ◦.

As shown in Section 2.1, for value linearity, we have a subkinding relation ⊢ Type• ≤ Type◦ given
by subkinding rules S-Lin and S-Type. This allows us to use unlimited value types as linear value
types since it is always safe to use unlimited values linearly (e.g., the function id in Section 2.1).
We track control-flow linearity at the granularity of operations, and lift it to the kinds of

presence types and row types. Absent labels and empty rows can be given any control-flow
linearity (K-Absent and K-EmptyRow). The control-flow linearity of present labels comes directly

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

54:10 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

⊢ . ≤ . ′ ⊢ ≤ ′

S-Lin

⊢ • ≤ ◦

S-Type

⊢ . ≤ . ′

⊢ Type. ≤ Type.
′

S-Pres

⊢ . ′ ≤ .

⊢ Presence. ≤ Presence.
′

S-Row

⊢ . ′ ≤ .

⊢ RowL
. ≤ RowL

. ′

Δ ⊢) :

K-TyVar

Δ, U : ⊢ U :

K-Forall
Δ, U : ⊢ � : Comp

Δ ⊢ ∀. U .� : Type.

K-Fun

Δ ⊢ � : Type.
′

Δ ⊢ � : Comp

Δ ⊢ �→. � : Type.

K-Comp

Δ ⊢ � : Type.

Δ ⊢ � : Effect

Δ ⊢ � !� : Comp

K-Effect
Δ ⊢ ' : Row∅

Δ ⊢ {'} : Effect

K-Present

Δ ⊢ � ↠. � : Presence.

K-Absent

Δ ⊢ Abs : Presence.

K-EmptyRow

Δ ⊢ · : RowL
.

K-ExtendRow

Δ ⊢ % : Presence.

Δ ⊢ ' : RowL⊎{ℓ }
.

Δ ⊢ ℓ : % ;' : RowL
.

K-Handler

Δ ⊢ � : Comp
Δ ⊢ � : Comp

Δ ⊢ � ⇒ � : Handler

K-Upcast

Δ ⊢) :

⊢ ≤ ′

Δ ⊢) : ′

Fig. 2. Kinding and Subkinding Rules for F◦
eff

from operation signatures (K-Present). The control-flow linearity of row extensions are given by
the labels and remaining rows (K-ExtendRow).

As shown in Section 2.2, control-flow linearity is dual to value linearity in some sense: we have
⊢ RowL

◦ ≤ RowL
• and ⊢ Presence◦ ≤ Presence• given by subkinding rules S-Lin, S-Pres, and

S-Row. This allows linear effect rows to be used as unlimited effect rows as it is always safe to use
control-flow-linear operations in unlimited contexts (e.g., the function tossCoin in Section 2.2).

3.2 Typing Rules

We define two auxiliary relations in Figure 3 for typing rules. The judgement Δ ⊢ Γ : . states that
under kind context Δ all types in Γ have linearity . . As the subkinding relation for value linearity
holds that Type• ≤ Type◦, the relation Δ ⊢ Γ : • guarantees that all variables in Γ are unlimited and
the relation Δ ⊢ Γ : ◦ is a tautology. Dually, as the subkinding relation for control-flow linearity
holds that Row◦ ≤ Row•, the relation Δ ⊢ ' : ◦ guarantees that all operations in ' are control-flow
linear and the relation Δ ⊢ ' : • is a tautology. The context splitting judgement Δ ⊢ Γ = Γ1 + Γ2
states that under kind context Δ the type context Γ is well formed and can be split into two contexts
Γ1 and Γ2 such that each linear variable only appears in one of them. We write Δ ⊢ Γ1 + Γ2 when we
only care about splitting results, and write Γ1 + Γ2 in typing rules when the kind context Δ is clear.

The typing rules for values, computations, and handlers are given in Figure 4. Linearity-relevant
parts are highlighted. The relations Δ; Γ ⊢ + : �, Δ; Γ ⊢ " : � , and Δ; Γ ⊢ � : � ⇒ � , state
respectively that: value+ has type �, computation" has type� and handler � has type� ⇒ � in
contexts Δ and Γ. As usual, the type contexts and types are well formed under the kind contexts.
The T-Var rule requires the remaining context to be unlimited. The T-Abs and T-TAbs rules

check the value linearity of functions and polymorphic computations against that of the context via

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

Soundly Handling Linearity 54:11

Δ ⊢ Γ : .
L-Empty

Δ ⊢ · : .

L-Extend

Δ ⊢ Γ : . Δ ⊢ � : Type.

Δ ⊢ (Γ, G : �) : .

Δ ⊢ Γ = Γ1 + Γ2

C-Empty

Δ ⊢ · = · + ·

C-Unl

Δ ⊢ � : Type• Δ ⊢ Γ = Γ1 + Γ2

Δ ⊢ Γ, G : � = (Γ1, G : �) + (Γ2, G : �)

C-LinLeft

Δ ⊢ � : Type◦ Δ ⊢ Γ = Γ1 + Γ2

Δ ⊢ Γ, G : � = (Γ1, G : �) + Γ2

C-LinRight

Δ ⊢ � : Type◦ Δ ⊢ Γ = Γ1 + Γ2

Δ ⊢ Γ, G : � = Γ1 + (Γ2, G : �)

Fig. 3. Linearity of Contexts and Context Spli�ing

Δ; Γ ⊢ + : � Δ; Γ ⊢ " : � Δ; Γ ⊢ � : � ⇒ �

T-Var

Δ ⊢ Γ : •

Δ; Γ, G : � ⊢ G : �

T-Abs

Δ ⊢ Γ : . Δ ⊢ � : Type.
′

Δ; Γ, G : � ⊢ " : �

Δ; Γ ⊢ _. G� . " : �→. �

T-TAbs

Δ ⊢ Γ : . U ∉ �v(Γ)
Δ, U : ; Γ ⊢ " : �

Δ; Γ ⊢ Λ. U . " : ∀. U .�

T-App

Δ; Γ1 ⊢ + : �→. �

Δ; Γ2 ⊢, : �

Δ; Γ1 + Γ2 ⊢ + , : �

T-TApp

Δ; Γ ⊢ + : ∀. U .�

Δ ⊢) :

Δ; Γ ⊢ +) : � [) /U]

T-Return

Δ; Γ ⊢ + : � Δ ⊢ � : Effect

Δ; Γ ⊢ (return +)� : � !�

T-Do

� = {ℓ : � ↠. �;'}

Δ; Γ ⊢ + : � Δ ⊢ � : Effect

Δ; Γ ⊢ (do ℓ +)� : � !�

T-Seq

Δ; Γ1 ⊢ " : � ! {'} Δ; Γ2, G : � ⊢ # : � ! {'}

Δ ⊢ Γ2 : . Δ ⊢ ' : .

Δ; Γ1 + Γ2 ⊢ let
. G ← " in # : � ! {'}

T-Handle

Δ; Γ1 ⊢ � : � ⇒ � Δ; Γ2 ⊢ " : �

Δ; Γ1 + Γ2 ⊢ handle " with � : �

T-Handler

� = {return G ↦→ "} ⊎ {ℓ8 ?8 A8 ↦→ #8 }8

� = � ! {(ℓ8 : �8 ↠
.8 �8)8 ;'} � = � ! {(ℓ8 : %)8 ;'}

Δ ⊢ Γ : • Δ; Γ, G : � ⊢ " : �

[Δ; Γ, ?8 : �8 , A8 : �8 →
.8 � ⊢ #8 : �]8

Δ; Γ ⊢ � : � ⇒ �

Fig. 4. Typing Rules for F◦
eff

the premise Δ ⊢ Γ : . . The typing rules for function application and type application are standard
(T-App and T-TApp). Note that we need to split the context in the T-App rule to avoid duplicating
linear variables. The T-Return rule does not constrain the effects. The T-Do rule ensures that

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

54:12 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

Δ ⊢ ' ⩽ '′ :

Δ ⊢ ' :

Δ ⊢ ' ⩽ ' :

Δ ⊢ '1 ⩽ '2 : Δ ⊢ '2 ⩽ '3 :

Δ ⊢ '1 ⩽ '3 :

Δ ⊢ ` :

Δ ⊢ · ⩽ ` :

Δ ⊢ % : Presence.

Δ ⊢ '1 ⩽ '2 : RowL⊎{ℓ }
.

Δ ⊢ ℓ : Abs;'1 ⩽ ℓ : % ;'2 : RowL
.

Δ ⊢ % : Presence.

Δ ⊢ '1 ⩽ '2 : RowL⊎{ℓ }
.

Δ ⊢ ℓ : % ;'1 ⩽ ℓ : % ;'2 : RowL
.

Fig. 5. Trivial Subtyping for Effect Row Types

the operation ℓ and its parameter + agree with the effect signature �. The T-Handle rule uses a
handler of type � ⇒ � to handle a computation of type � .

The T-Handler rule checks that (deep) handlers must not use any linear variables via the premise
Δ ⊢ Γ : • because they are recursively applied during evaluation. More importantly, it connects the
control-flow linearity of operations with the value linearity of resumption functions. In the typing
judgement of each operation clause ℓ8 : �8 ↠

.8 �8 , the continuation A8 is given the value linearity .8 ,
which is exactly the control-flow linearity of ℓ8 that restricts the use of ℓ8 ’s continuation. Concretely,
when .8 = ◦, the continuation of ℓ8 may use some linear resources. Making A8 linear guarantees that
they are used exactly once. When .8 = •, the continuation of ℓ8 must not use any linear resources
and A8 is unlimited. Note that the subkinding relation Row◦ ≤ Row• does not influence the handling
behaviour, because the T-Handler rule uses the linearity annotations on operation signatures.
The T-Seq rule for sequencing is the most important rule for tracking control-flow linearity,

because this is the primary source of sequential control flow in a fine-grain call-by-value calculus.
Though handling is another source of sequential control flow, deep handlers are unlimited and
cannot influence control-flow linearity. We will discuss the extension of shallow handlers which
may capture linear resources and influence control-flow linearity in Section 6.

Remember that for let.G ← " in # , the linearity annotation . indicates the control-flow
linearity of # which determines how many times the control can enter # . Concretely, when
. = ◦, # may use some linear variables bound outside (Δ ⊢ Γ2 : ◦), and all operations in "
should be control-flow linear (Γ ⊢ ' : ◦); when . = •, # cannot use any linear variables from
the context (Δ ⊢ Γ2 : •), and operations in " have no restriction on their control-flow linearity
(Δ ⊢ ' : •). The dubiousWrite✓ in Section 2.2 is an example. Note that technically, the third
sequencing let◦ 5 ′ ← write (B, 5) in close 5 ′ can be changed to let• because no linear variable
bound outside is used by the context let 5 ′ ← _ in close 5 ′.

As we observed by the function verboseClose in Section 2.4, the fact that the T-Seq rule requires
the" and # to have the same effect type is too restrictive for tracking control-flow linearity. We
can improve it by using a trivial subtyping relation between effect types as follows.

T-SeqSub

Δ; Γ1 ⊢ " : � ! {'1} Δ; Γ2, G : � ⊢ # : � ! {'2}

Δ ⊢ Γ2 : . Δ ⊢ '1 : . Δ ⊢ '1 ⩽ ' : Δ ⊢ '2 ⩽ ' :

Δ; Γ1 + Γ2 ⊢ let
.G ← " in # : � ! {'}

The trivial subtyping relation on effect row types are shown in Figure 5. The judgement Δ ⊢ ' ⩽
'′ : makes it explicit that ' and '′ are well kinded and can be given kind under kind context
Δ. It simply requires that all operation labels with their signatures and row variable in ' must also

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

Soundly Handling Linearity 54:13

appear in '′. This subtyping relation does not allow non-trivial subtyping between row variables.
We consider a more expressive alternative using qualified types in Section 5.

3.3 Operational Semantics

E-App (_.G� .")+ { " [+ /G]

E-TApp (Λ.U .")) { " [) /U]

E-Seq let.G ← (return +)� in # { # [+ /G]

E-Ret handle (return +)� with � { # [+ /G], where (return G ↦→ #) ∈ �

E-Op handle E[(do ℓ +)�] with � { # [+ /?, (_.~� .handle E[(return ~)�] with �)/A],

where ℓ ∉ bl(E), (ℓ ? A ↦→ #) ∈ �, and (ℓ : �→. �) ∈ �

E-Lift E["] { E[#], if" { #

Evaluation contexts E ::= [] | let.G ← E in # | handle E with �

bl([]) = ∅ bl(let.G ← E in #) = bl(E) bl(handle E with �) = bl(E) ∪ dom(�)

Fig. 6. Small-step Operational Semantics of F◦
eff

Figure 6 gives a standard small-step operational semantics for F◦
eff

[Hillerström et al. 2020a]. It
is clear from the definition of evaluation contexts that let-binding and handling are indeed the
only two constructs that influence the control flow. The function bl(−) computes the set of bound
operation labels in an evaluation context E, i.e. the operation labels for which a suitable handler
has been installed. The purpose of this function is to ensure that any operation invocation (do ℓ +)
is always handled by the innermost suitable handler.

3.4 Metatheory

We now prove a type soundness result for F◦
eff
. First we define normal forms of computations.

Definition 3.1 (Computation Normal Forms). We say a computation" is in a normal form with
respect to �, if it is either of the form " = (return +)�

′
or " = E[(do ℓ +)�

′
] for ℓ ∈ � and

ℓ ∉ bl(E).

Syntactic type soundness of F◦
eff

relies on progress and subject reduction. The proofs can be
found in Appendices A.2 and A.3.

Theorem 3.2 (Progress). If ⊢ " : � !�, then either there exists # such that" { # or" is in a

normal form with respect to �.

Theorem 3.3 (Subject reduction). If Δ; Γ ⊢ " : � and" { # , then Δ; Γ ⊢ # : � .

We now show that our tracking of value linearity and control-flow linearity in the type system
is sound, by proving that linear variables never appear in terms that are claimed to be unlimited. In
F◦
eff
, a term is claimed to be unlimited if it appears in an unlimited value, a control-flow-unlimited

context, or a deep handler. The following theorem covers all three of these cases.

Theorem 3.4 (Unlimited is unlimited).

1. Unlimited values are unlimited: if Δ; Γ ⊢ + : � and Δ ⊢ � : •, then Δ ⊢ Γ : •.

2. Unlimited continuations are unlimited: if Δ; Γ ⊢ E[(do ℓ +)�] : � for � = {ℓ : � ↠• � ;'}

and ℓ ∉ bl(E), then there exists Δ ⊢ Γ = Γ1 + Γ2 such that Δ ⊢ Γ1 : • and Δ; Γ1, ~ : � ⊢

E[(return ~)�] : � .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

54:14 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

L-App (_.G� .")+ S
∅
{ " [+ ′/G], where (+ ′,S) = tag(+)

L-TApp (Λ.U .")) ∅
∅
{ " [) /U]

L-Seq let.G ← return + in # S
∅
{ # [+ ′/G], where (+ ′,S) = tag(+)

L-Ret handle (return +)� with � S
∅
{ # [+ ′/G],

where (return G ↦→ #) ∈ �, (+ ′,S) = tag(+)

L-Op handle E[(do ℓ +)�] with � S
∅
{ # [+ ′/?,, ′/A],

where ℓ ∉ bl(E), (ℓ ? A ↦→ #) ∈ �, (ℓ : � ↠. �) ∈ �,

, = _.~� .handle E[(return ~)�] with �,

(+ ′,S1) = tag(+), (, ′,S2) = tag(,),S = S1 ∪ S2

L-Remove F [+ ◦] ∅
{+ ◦ }
{ F [+]

L-Lift E["] S
T
{ E[#], if" S

T
{ #

Evaluation contexts E ::= [] | let.G ← E in # | handle E with �

Tag-removing contexts F ::= [] + | [])

Fig. 7. Linearity-aware Small-step Operational Semantics of F◦
eff

3. Deep handlers are unlimited: if Δ; Γ ⊢ � : � ⇒ � , then Δ ⊢ Γ : •.

The proof can be found in Appendix A.1.
However, Theorem 3.4 only cares about the static tracking of linear variables. It says nothing

about the use of linear values during evaluation directly. In the next section, we prove that in F◦
eff

no linear value is ever discarded or duplicated during evaluation, by defining a linearity-aware
semantics inspired by Walker [2005], Mazurak et al. [2010], and Morris [2016].

3.5 Linearity Safety of Evaluation

In this section, we design a linearity-aware semantics of F◦
eff
, extending the small-step operational

semantics to track the introduction and elimination of linear values, and prove that all linear values
are used exactly once during evaluation.
We first extend the syntax of values with values marked with linear tags + ◦ to indicate linear

values during evaluation. The typing rules simply ignore the linear tags.

Values + ::= · · · | + ◦

We restrict attention to closed computations and define two auxiliary functions lin(+) and tag(+)
for closed values as follows.

lin(+) =

{

true if ·; · ⊢ + : � and · ⊬ � : •

false otherwise

tag(+) =

{

(+ ◦, {+ ◦}) if lin(+) and + ≠, ◦ for any,
(+ , ∅) otherwise

The predicate lin(+) holds when + is a genuine linear value as opposed to an unlimited value that
has been upcast to be linear by subkinding. The operation tag(+) tags a value as linear if it is and
has not been tagged, and yields a pair of the possibly tagged + and a multiset containing the value
if it is newly tagged and nothing otherwise.

The linearity-aware semantics is given in Figure 7. We augment the previous reduction relation

" { # with two multi-sets " S
T
{ # , where S contains the linear values introduced by this

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

Soundly Handling Linearity 54:15

reduction step, and T contains the linear values eliminated by this reduction step. Note that in F◦
eff
,

we cannot duplicate or discard a value before we bind it. We introduce linear values at the first
time they are bound to variables (L-App, L-Seq, L-Ret and L-Op). Take L-App for example. When
+ is a non-tagged real linear value (the first case of tag(+)), we tag it and add it to the multiset
of introduced linear values. Otherwise, + is either not really linear or has been tagged already
(which implies that we have already introduced it). We do not need to update the multisets. We
eliminate linear values when they are destructed (L-Remove). As we only have term abstraction
and type abstraction as value constructors, the tag-removing contexts F capture the elimination of
these two cases. It is easy to extend the linearity-aware semantics with other value constructors.
The relationship between the two semantics is straightforward: erasing the linear tags from the
linearity-aware semantics yields the original semantics.

We write ℒ("), ℒ(+), ℒ(E) and ℒ(F) for the multisets of tagged linear values within" , + ,
E, and F , respectively. They are given by the homomorphic extension of the following equation.

ℒ(+ ◦) = {+ ◦} ∪ℒ(+)

We define the notion of linear safety similarly to Theorem 3.4. A term is linear safe if there are
no tagged linear values in terms that are claimed to be unlimited.

Definition 3.5 (Linear Safety). A well-typed computation" or value+ is linear safe if and only if:

(1) For every value subterm, of the form _•G� .# or Λ•U .# , ℒ(,) = ∅.
(2) For every computation subterm # of the form E[(do ℓ +) {ℓ :�↠

•� ;'}] where ℓ ∉ bl(E),
ℒ(E) = ∅.

(3) For every handler subterm � ,ℒ(�) = ∅.

(An alternative way to read Item 1 is as “for every value subterm, with an unlimited type”.)

Finally, the following theorem states that linear safety is preserved by evaluation, and tagged
linear values are not duplicated or discarded during evaluation.

Theorem 3.6 (Reduction Safety). For any closed, well-typed and linear safe computation" in

F◦
eff
, if" S

T
{ # , then # is linear safe and ℒ(") ∪ S = ℒ(#) ∪ T .

The proof can be found in Appendix A.4. Note that tracking linear values explicitly during
evaluation is important for showing that they are indeed used safely. Otherwise, it is even unclear
how to state what reduction safety means in the original semantics.

4 CONTROL-FLOW LINEARITY IN LINKS

In this section, we describe our implementation of control-flow linearity tracking in Links. The
implementation fixes a long-standing type soundness bug in Links arising from the interaction
between session types and effect handlers, as we described in the introduction.
Links is an ML-style language with type inference, linearly typed session types (based on

F◦ [Lindley and Morris 2017]), and a row-based effect type system [Hillerström and Lindley 2016].
In Links we write Unl for • and Any for ◦. The latter is Any as any value can be soundly used
once. The subkinding relation ⊢ Type• ≤ Type◦ (Unl ≤ Any) allows type variables of kind Any to be
unified with types of either kind. This allows us to write functions that may accept both linear and
nonlinear values, e.g. the identity function fun id(x){x} : (a::Any) -> (a::Any). Here, we can
instantiate the type variable a to a linear type, such as !Int.End, or an unlimited type, such as Int.
To make type inference deterministic, Links makes use of two different keywords for defining

unlimited functions and linear functions, which are fun and linfun respectively. For instance, we
can define a channel version of the function faithfulWrite in Section 2.1 as follows.

fun faithfulSend(c) { linfun (s) { var c = send(s, c); close(c) } }

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

54:16 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

The inferred type is (!(a::Any).End) -> (a::Any) ~@ (). The faithfulSend function takes a poly-
morphic channel c and returns a linear function (indicated by ~@ instead of the usual arrow ~>)
that sends a polymorphic value B over the channel c. If we wanted to we could restrict the inferred
type of the channel c and the input B by supplying a type annotation to either.

To track control-flow linearity we repurpose the existing effect system and add two new control
flow kinds Any (for •) and Lin (for ◦) to signify whether a given context allows control flow to
be unlimited or linear. We further add a new effectful operation space for control-flow-linear
operations, which is syntactically denoted by the arrow =@, in addition to the existing operation
space denoted by =>. The subkinding relation ⊢ Row◦ ≤ Row• (Lin ≤ Any) is implemented by
allowing row variables of kind Any to be unified with both control-flow-linear and unlimited
operations and other row variables of arbitrary kinds. In contrast, row variables of kind Lin can
only be unified with control-flow-linear operations and row variables of kind Lin. The change from
Unl to Lin is consistent with the duality between value linearity and control-flow linearity.

Since Links is a practical programming language, sequencing is often implicit. Instead of writing
linearity annotations on all sequencing, we assume that control-flow linearity is unlimited by
default, and introduce the keyword xlin to switch the control-flow linearity to linear. We also
add the construct lindo to invoke control-flow-linear operations in addition to the existing do

for control-flow-unlimited operations. To illustrate the use of these extensions, let us consider a
channel version of the function dubiousWrite✓ from Section 2.2.

sig dubiousSend : (!String.End) {Choose:() =@ Bool|_::Lin}~> ()

fun dubiousSend(c) {xlin; var c = send(if (lindo Choose) "A" else "B", c); close(c)}

The dubiousSend takes a channel c, non-deterministically sends "A" or "B" through it depending
on the result of the operation Choose, and closes the remaining channel. We use xlin to switch the
control-flow linearity to linear so that we can use the linear channel c and must use the control-
flow-linear operation Choose:() =@ Bool with the keyword lindo. If we replace lindo with do then
Links correctly rejects the code as the continuation captures the linear endpoint c. The example
from the introduction will be rejected for the same reason. For linear effect handlers, we use the
linear arrow syntax =@ to bind linear continuations of control-flow-linear operations.

fun(c) {handle ({xlin; dubiousSend(c)}) {case <Choose =@ r> -> xlin; r(true)} }

Here, we interpret the operation Choose as true. The use of xlin in the Choose-clause is necessary
because the reified continuation A is linear. As the continuation is used linearly, Links correctly
accepts this program.
Our implementation works well with previous programs using the effect handler feature in

Links and fixes the type soundness bug. However, being based on F◦, Links suffers from the
limitations outlined in Section 2. In the next section, we present a considerably more expressive
calculus, Q◦

eff
, which uses qualified types for both linearity and effects, enabling a much more

fine-grained analysis of control-flow linearity, and avoiding the need to distinguish between linear
and non-linear variants of term syntax. We leave the implementation of Q◦

eff
to future work.

5 AN IMPLICIT CALCULUS WITH QUALIFIED TYPES

In this section, we propose Q◦
eff
, an ML-style calculus which enhances F◦

eff
(and its implementation

in Links) in two directions: minimising syntactic overheads and improving accuracy of control-flow
linearity tracking. The core idea is to use qualified types for both linear types and effect types.
The qualified linear type system is inspired by �ill [Morris 2016], which eliminates the linearity
annotations on terms and supports principal types. The qualified effect system is inspired by the
row containment predicate of Rose [Morris and McKinna 2019] and the subtyping-based effect

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

Soundly Handling Linearity 54:17

system of Eff [Karachalias et al. 2020; Pretnar 2014], which allows non-trivial subtyping constraints
between row variables.

5.1 Syntax

Figure 8 shows the syntax of qualified types of Q◦
eff
. We name some syntactic categories for defining

meta functions. The remaining syntax is given in full in Appendix B.1, which is mostly identical
to that of F◦

eff
, except that we introduce generalising let-bindings let G = + in " to replace

explicit type abstraction and implicit instantiation in place of type application and remove all type
annotations and linearity annotations.

Linearity . ::= q | • | ◦

Types g ::= � | ' | .

Predicates Pred ∋ c ::= g1 ⪯ g2 | '1 ⩽ '2
| '⊥L

Qualified types d ::= � | c ⇒ d

Type schemes TySch ∋ f ::= d | ∀U.f

Type contexts Env ∋ Γ ::= · | Γ, G : f

Predicate sets PSet ∋ % ::= · | %, c

Fig. 8. Syntax of �alified Types of Q◦
eff

Linearity. In addition to concrete linearities ◦ and •, Q◦
eff

has linearity variables q . This is
essential to have principal types and more expressive constraints. For example, the identity function
_G.return G can be given the principal type ∀U ` q. U →q U ! {`}, which can be instantiated to
either a linear function (by instantiating q to ◦) or an unlimited function (by instantiating q to •).

Qualified types. The syntactic category g includes value types, row types, and linearity types.
Qualified types d restrict value types by predicates. The linearity predicate g1 ⪯ g2 means the
linearity of g1 is less than g2 (e.g., • ⪯ ◦). Note that we allow directly using value types and row
types in the linearity predicates, since every value type has its value linearity, and every effect row
type has its control-flow linearity. The row predicates '1 ⩽ '2 means '1 is a sub-row of '2, and
'⊥L means ' does not contain labels in L.

Kinding. For conciseness we omit kinds and infer the kind of a type variable from its name. As
usual, we let U range over value types, ` range over row types, and q range over linearity types.
We also let U range over all of them in the definition of type schemes ∀U.f . All rows are assumed
to be well-formed (no duplicated labels). To simplify type inference, the predicate ` ⊥L will be
used in place of kinds RowL to track labels that may not occur in rows. This is just a convenience,
though, as the corresponding kinds of row type variables can be computed from the inferred types.

5.2 Typing

Figure 9 gives representative syntax-directed typing rules for Q◦
eff
; the remaining rules are given

in full in Appendix B.2. The judgement % | Γ ⊢ " : � states that, under predicate assumptions %
and typing assumptions Γ, the term" has type � , and similarly for the judgements for values and
handlers. As usual for qualified type systems, the typing rules depend on an entailment relation
% ⊢ c (and an auxiliary relation % ⊢ Γ ⪯ g), discussed in the following section.

Rule Q-Let demonstrates the treatment of linearity in Q◦
eff
. We divide the context in three: Γ1 is

used exclusive in the bound term + , Γ2 is used exclusively in the body " , and Γ is used in both
(and so its types must be unlimited).

Rule Q-Do demonstrates the use of constraints in Q◦
eff

to generalise subtyping between effect
rows. It states that if + is a value of type �ℓ , then do ℓ + has result type �ℓ and effect row '. We
assume that the parameter and result types of operations are given by an implicit global context

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

54:18 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

% | Γ ⊢ + : � % | Γ ⊢ " : � % | Γ ⊢ � : � ⇒ �

Q-Let

& | Γ1, Γ ⊢ + : � f = gen((Γ1, Γ), & ⇒ �)

% | Γ2, Γ, G : f ⊢ " : � % ⊢ Γ ⪯ •

% | Γ1, Γ2, Γ ⊢ let G = + in " : �

Q-Do

% | Γ ⊢ + : �ℓ
% ⊢ {ℓ : �ℓ ↠

. �ℓ } ⩽ '

% | Γ ⊢ do ℓ + : �ℓ ! {'}

Q-Seq

% | Γ1, Γ ⊢ " : � ! {'1}

% | Γ2, Γ, G : � ⊢ # : � ! {'2}

% ⊢ '1 ⩽ ' % ⊢ '2 ⩽ '

% ⊢ Γ2 ⪯ '1 % ⊢ Γ ⪯ •

% | Γ1, Γ2, Γ ⊢ let G ← " in # : � ! {'}

Q-Handler

� = {return G ↦→ "} ⊎ {ℓ8 ?8 A8 ↦→ #8 }8
� = � ! {(ℓ8 : �8 ↠

.8 �8)8 ;'1} � = � ! {'2}

% | Γ, G : � ⊢ " : �

[% | Γ, ?8 : �8 , A8 : �8 →
.8 � ⊢ #8 : �]8

% ⊢ Γ ⪯ • % ⊢ '1 ⩽ '2 % ⊢ '1 ⊥ {ℓ8 }8

% | Γ ⊢ � : � ⇒ �

where gen(Γ, d) = ∀(�v(d)\�v(Γ)).d .

Fig. 9. Selected Syntax-directed Typing Rules for Q◦
eff

Π = {ℓ1 : �ℓ1 ↠ �ℓ1 , · · · }. ' must license effect ℓ . We again rely on entailment: the constraints %
must be sufficient to show that the singleton row {ℓ : �ℓ ↠

. �ℓ } is contained within '.
Rule Q-Seq demonstrates the remaining novelty of qualified types in Q◦

eff
. Several of its uses

of entailment follow the previous patterns. The bindings in Γ are available in both " and # , so
% ⊢ Γ ⪯ • requires that their types be unlimited. We want flexibility in combining the effects in
" and # , so the conditions % ⊢ '8 ⩽ ' assure that the effects of each are included in the effects
of the entire computation. This allows us to avoid having to unify row types in examples like
sandwichClose (Section 2.4) which causes inaccuracy for tracking control-flow linearity. Finally,
is in the continuation of all operations in " , so the value linearity of types in Γ2 must be less
than the control-flow linearity of operations in '1. Note that the two kinding judgements in T-Seq

in Figure 4 are now combined into one entailment judgement % ⊢ Γ2 ⪯ '1. The duality we have
identified between value linearity and control-flow linearity is reflected by the fact that value types
appear on the left of ⪯ and effect row types appear on the right.

Rule Q-Handler uses the lacking predicate % ⊢ '1 ⊥ {ℓ8 }8 to ensure that the handled operations
are not in the remaining part of the input effect row '1, and requires '1 to be a sub-row of the
output effect row '2. This is used to allow the handled operations ℓ8 to appear in '2.

5.3 Entailment

Figure 10 defines the entailment relations between predicates % ⊢ & . It also defines an auxiliary
entailment relation % ⊢ Γ ⪯ g which compares the linearity of all variables in Γ and g . The
algorithmic version of these relations will be given in Section 5.5.

These two entailment relations are both defined as the conjunction of sub-relations as indicated
by P-PredSet and P-Context. For % ⊢ & , we only need to use entailment relations of the form
% ⊢ c . The P-Subsume is standard. The linearity predicate ⪯ is reflexive (P-Refl), with ◦ as top
(P-Lin) and • as bottom (P-Unl) elements. The two-way rules P-Fun and P-Row define the linearity
of functions and rows. We make use of the fact that in the linearity predicates generated by typing
rules, functions only appear on the left, and rows only appear on the right. Here we do not include

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

Soundly Handling Linearity 54:19

% ⊢ c % ⊢ & % ⊢ f ⪯ g % ⊢ Γ ⪯ g

P-Subsume

c ∈ %

% ⊢ c

P-Refl

% ⊢ g ⪯ g

P-Lin

% ⊢ g ⪯ ◦

P-Unl

% ⊢ • ⪯ g

P-Fun

% ⊢ . ⪯ g

% ⊢ (�→. �) ⪯ g
============================

P-Row

[% ⊢ g ⪯ .] (; :�↠.�) ∈'

% ⊢ g ⪯ ` when ` ∈ '

% ⊢ g ⪯ '
==================================

P-Sub
set('1) ⊆ set('2)

% ⊢ '1 ⩽ '2

P-Lack
dom(') ∩ L = ∅

% ⊢ '⊥L

P-PredSet
[% ⊢ c]c∈&

% ⊢ &

P-�antifier

% ⊢ [g ′/U]f ⪯ g for some g ′

% ⊢ (∀U.f) ⪯ g

P-�alifier

% ⊢ c % ⊢ d ⪯ g

% ⊢ (c ⇒ d) ⪯ g

P-Context

[% ⊢ f ⪯ g] (G :f) ∈Γ

% ⊢ Γ ⪯ g

Fig. 10. Entailment Relations for Predicates and other Judgement Relations

entailment rules for base types, but in practice we would have axioms like % ⊢ Int ⪯ • and
% ⊢ ◦ ⪯ File. For row predicates, we write set(') for the set of all elements (comprising operation
labels with their signatures and row variables) of ', and dom(') for the set of all labels of '. We
define the row predicates directly by set operations (P-Sub and P-Lack).
The entailment relation % ⊢ Γ ⪯ g is defined using % ⊢ f ⪯ g which compares the linearity

of a type scheme f and a type g . Our treatment of the linearity of type schemes is novel, and
addresses a soundness bug in�ill. The rule P-�antifier which characterises the linearity of
polymorphic types may be surprising. It states that the linearity of a polymorphic type ∀U.f is
less than g if there exists an instantiation of it whose linearity is less than g . This is because the
linearity of a polymorphic type should capture the linearity of values that inhabit that type. A value
of a polymorphic type can be understood as the intersection of values of all possible instantiations
of the type. If one of these instantiation gives a type that is less linear than g , then the value
itself must be less linear than g no matter what other instantiations are. For example, consider the
identity function id = _G .return G which is obviously unlimited. We give id a polymorphic type
∀q U `. U →q U ! {`} to make it possible to use it as both a linear function (by instantiating q to ◦)
and an unlimited function (by instantiating q to •). Thus, we have expressive principal types for id
without adding subtyping between linearity types to the type system.

The rule P-�alifiermay also be surprising. To compare the linearity of a qualified type c ⇒ d

with g , we require the predicate c to hold and then compare the linearity of the remaining part d
with g . At first glance, the condition % ⊢ c may seem unnecessary: if c must hold in instantiations
of this type, surely we can assume it in checking the type’s linearity. However, particularly in local
definitions, predicates may mention type variables not quantified in those schemes. We do not want
to assume anything about the instantiation of those variables. Consider the following function.

_G.let 5 = _() .G in return (5 , 5)

The polymorphic function 5 can be given the principal type f = ∀q `.(U ⪯ q) ⇒ () →q U ! {`}

where U is the type of G . Note that the constraint mentions U , which is bound outside this type
scheme. Then, since 5 is duplicated in return (5 , 5), the typing of it collects the constraint f ⪯ •.
Obviously, we want to know from f ⪯ • that U should be unlimited since G is also duplicated. One

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

54:20 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

possible derivation of % ⊢ f ⪯ • is shown as follows.

% ⊢ U ⪯ q ′

% ⊢ q ′ ⪯ •

% ⊢ () →q ′ U ! {`′} ⪯ •
P-Function

% ⊢ (U ⪯ q ′) ⇒ () →q ′ U ! {`′} ⪯ •
P-�alifier

% ⊢ (∀q `.(U ⪯ q) ⇒ () →q U ! {`}) ⪯ •
P-�antifier

In P-�antifier we instantiate q and ` with variables q ′ and `′. In order to prove f ⪯ • from
% , we must then prove U ⪯ q ′ and q ′ ⪯ •. Note that q ′ and `′ are not fresh, but should instead
appear in % , e.g., we might have % = {U ⪯ q ′, q ′ ⪯ •}. If we instead assumed U ⪯ q , or removed
the condition entirely from P-�alifier, then % would not need to restrict U at all. We could later
instantiate U with a linear type, say File, and use this term to unsoundly copy file handles.
Readers may worry that the P-�alifier rule is as general as it could be, because it always

requires % ⊢ c . For example, consider let 5 = + in " where 5 : f does not appear freely in" . We
collect the constraint f ⪯ •. Constraints of + that are captured in f do not necessarily need to be
satisfied, because 5 is not used. However, we believe that binding unsatisfiable values has little
benefits and can hide potential bugs in practice.
Note that these entailment rules are intentionally made as simple as possible. For example, we

do not include any transitivity rules. The entailment rules also do not check potentially conflicted
predicates in predicate sets since the rule P-Subsume allows collecting any predicates. We say that
predicate set % is satisfiable if there exists a substitution \ such that · ⊢ \% , and define the solutions
of it as J%KB0C = {\ | · ⊢ \%}. Transitivity of ⪯ is admissible when considering the solutions of
predicates, e.g., Jq1 ⪯ q2, q2 ⪯ •KB0C = Jq1 ⪯ q2, q2 ⪯ •, q1 ⪯ •KB0C = {[•/q1, •/q2]}. In Section 5.6,
we will give an algorithm to check the satisfiability of constraint sets.

5.4 Type Inference

Figure 11 shows representative type inference rules for Q◦
eff
; the remainder are given in full in

Appendix B.3. Our type inference algorithm is based on Algorithm W [Damas and Milner 1982]
extended for qualified types [Jones 1994]. In Γ ⊢ + : � ⊣ \, %, Σ, the input includes the current
context Γ and value + , and the output includes the inferred type �, substitution \ , predicate set % ,
and variable set Σ of used term variables. Note that the predicates % are an output of inference,
not an input; rather than checking entailment, as the syntax-directed type rules do, we will emit
a constraint set sufficient to guarantee typing. In the next section, we discuss our algorithm to
guarantee that inferred constraint sets are not unsatisfiable. As usual, the substitution \ has been
already applied to � and % .

RuleQ-LetW demonstrates the treatment of linearity. We write Γ |Σ for the type context generated
by restricting Γ to variables in Σ. We begin by inferring types for + and" . Variable sets Σ1 and Σ2

capture those variables used in each; any variable in Σ1 ∪ Σ2 must be unlimited. We also account
for the possibility that the variable G may not be used in"—that is to say, that it may appear in Σ

c

2 ,
the complement of the used variables Σ2. We generate the corresponding unlimitedness constraints
using the auxiliary function factorise, discussed next. Rule Q-DoW emits the constraint that the
singleton effect row be included in the output row. Rule Q-SeqW combines these techniques.
We prove soundness and completeness of type inference with respect to the syntax-directed

type system. We write \ |Γ for the substitution generated by restricting the domain of \ to the free
variables in Γ and (\ = \ ′) |Γ for \ |Γ = \ ′ |Γ .

Theorem 5.1 (Soundness). If Γ ⊢ + : � ⊣ \, %, Σ, then % | \Γ |Σ ⊢ + : �. The same applies to

computation and handler typing.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

Soundly Handling Linearity 54:21

Γ ⊢ + : � ⊣ \, %, Σ Γ ⊢ " : � ⊣ \, %, Σ Γ ⊢ � : � ⇒ � ⊣ \, %, Σ

Q-LetW

Γ ⊢ + : � ⊣ \1, %1, Σ1 f = gen(\1Γ, %1 ⇒ �)

\1Γ, G : f ⊢ " : � ⊣ \2, %2, Σ2

& = un(\2\1Γ |Σ1∩Σ2) ∪ un(\2 (G : f) |Σc2)

Γ ⊢ let G = + in " : � ⊣ \2\1, %2 ∪&, Σ1 ∪ (Σ2\G)

Q-DoW

Γ ⊢ + : � ⊣ \1, %, Σ � ∼ �ℓ : \2
`, q fresh & = sub((ℓ : �ℓ ↠

q �ℓ), `)

Γ ⊢ do ℓ + : �ℓ ! {`} ⊣ \2\1, \2% ∪&, Σ

Q-SeqW

Γ ⊢ " : � ! {'1} ⊣ \1, %1, Σ1 \1Γ, G : � ⊢ # : � ! {'2} ⊣ \2, %2, Σ2 ` fresh

& = un(\2\1Γ |Σ1∩Σ2) ∪ un(\2 (G : �) |Σc2) ∪ leq(\2\1Γ |Σ2 , \2'1) ∪ sub(\2'1, `) ∪ sub('2, `)

Γ ⊢ let G ← " in # : � ! ` ⊣ \2\1, \2%1 ∪ %2 ∪&, Σ1 ∪ (Σ2\G)

leq(Γ, g) = factorise(Γ ⪯ g) un(Γ) = leq(Γ, •) sub('1, '2) = factorise('1 ⩽ '2)

Fig. 11. Selected Type Inference Rules for Q◦
eff

Theorem 5.2 (Completeness). If % | \Γ ⊢ + : �, then Γ ⊢ + : �′ ⊣ \ ′, &, Σ and there exists \ ′′

such that � = \ ′′�′, % ⊢ \ ′′& , and (\ = \ ′′\ ′) |Γ . The same applies to computation and handler typing.

The proofs can be found in Appendix C.3 and depend on the correctness of factorise, discussed
next. Note that we do not need to incorporate the subtyping relation into the statement of the
completeness theorem because we only have subtyping between row types and do not allow implicit
subsumption (unlike traditional subtyping systems).

5.5 Factorising Predicates

factorise : Pred→ PSet
factorise(g ⪯ g) = ∅
factorise(g ⪯ ◦) = ∅
factorise(• ⪯ g) = ∅
factorise(�→. � ⪯ g) = factorise(. ⪯ g)
factorise(g ⪯ ; `) =

factorise(g ⪯) ∪ factorise(g ⪯ `)
factorise(g ⪯) =
⋃

(ℓ :�↠.�) ∈ factorise(g ⪯ .)
factorise('1 ⩽ '2) = ∅, when set('1) ⊆ set('2)
factorise('⊥L) = ∅, when dom(') ∩ L = ∅

factorise(c) = c

factorise : (TySch ⪯ Type) → PSet
factorise((∀U.f) ⪯ g) =

factorise([V/U]f ⪯ g) for some fresh V
factorise((c ⇒ f) ⪯ g) =

factorise(c) ∪ factorise(f ⪯ g)

factorise : (Env ⪯ Type) → PSet
factorise(Γ ⪯ g) =

⋃

(G :f) ∈Γ factorise(f ⪯ g)

factorise : PSet→ PSet
factorise(%) =

⋃

c∈% factorise(c)

Fig. 12. Factorisation of Constraints

The factorise function is defined in Figure 12; it factors constraints into simpler predicates following
the entailment rules in Figure 10. We use to represent rows consisting of only operation labels.
The only surprising case is for (∀U.f) ⪯ g . Rule P-�antifier requires that we find some

instance such that f [g ′/U] ⪯ g . Rather than search for such an instance, we simply pick a fresh type

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

54:22 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

variable V . As a result, our type inference algorithm is likely to produce ambiguous type schemes, in
which quantified type variables appear only in predicates. Such type schemes are typically rejected
[Jones 1994], as the meaning of ambiguously typed terms is undefined. However, as our linearity
predicates do not have any intrinsic semantics, but only constrain the use of terms, we do not
believe these constraints lead to semantic ambiguity. One interesting property of factorise is that
the linearity predicates in its results are only between value type variables U , row type variables `,
and linearity types . .
We prove the correctness of factorise with respect to the entailment rules in Figure 10.

Theorem 5.3 (Correctness of factorisation). If factorise(%) = & , then & ⊢ % and % ⊢ & . If

factorise(Γ ⪯ g) = & , then & ⊢ Γ ⪯ g and for any % ⊢ Γ ⪯ g , there exists \ such that % ⊢ \& .

The proof can be found in Appendix C.1.

5.6 Constraint Solving

Finally, we must check that inferred constraint sets are satisfiable; we do not want to conclude that
a program is well-typed, but only under the assumption that a linear type is unlimited.

We define a constraint solving algorithm solve(%) for checking the satisfiability of the predicate
set % , inspired by solving algorithms for general subtyping constraints [Pottier 1998, 2001; Pretnar
2014]. The tricky part compared to solving usual subtyping constraints is that we need to carefully
deal with the interaction between row subtyping constraints and linearity constraints. For instance,
'1 ⩽ '2 and g ⪯ '2 actually implies g ⪯ '1. To resolve the interaction, the algorithm proceeds by
first transforming row subtyping constraints to those of the forms ` ⩽ ', so that we can always
simply instantiate ` on the left to the empty row · for which g ⪯ · always holds. Then, the algorithm
computes the transitive closure of linearity constraints and rejects ◦ ⪯ •. The full algorithm is
given in Appendix B.4. We have the following theorem on the correctness of the constraint solving
algorithm, in which we write J%KB0C\ for the substitution set {\ ′\ | \ ′ ∈ J%KB0C }.

Theorem 5.4 (Correctness of constraint solving). For any constraint set % generated by the

type inference of Q◦
eff
, solve(%) always terminates.

• If it fails, then % is not satisfiable.

• If it returns (\,&), then % is satisfiable and J%KB0C = J&KB0C\ .

The proof can be found in Appendix C.4, whose main idea is to show that every step of the
algorithm preserves solutions, and the output predicate set has one solution.

We leave the design of constraint simplification algorithms as practical concerns. Some existing
algorithms on simplifying general subtyping constraints are promising [Pottier 1998, 2001].

6 SHALLOW HANDLERS

Up to now we have concentrated on deep effect handlers, which wrap the original handler around
the body of captured continuations. Given this automatic reuse of the handler, the handler itself
cannot capture any linear resources. In contrast, shallow handlers [Hillerström and Lindley 2018;
Kammar et al. 2013] do not wrap the original handler around the body of captured continuations,
which means shallow handlers can capture linear resources and thus influence control-flow linearity.
In this section, we discuss the extensions of F◦

eff
and Q◦

eff
with shallow handlers and their challenges.

Let us first consider shallow handlers in F◦
eff
. We write � † for a shallow handler. The only

difference in the operational semantics is the new E-Op† rule for handling with shallow handlers.

E-Op† handle E[(do ℓ +)�] with � † { # [+ /?, (_.~� .E[(return ~)�])/A],

where ℓ ∉ bl(E), (ℓ ? A ↦→ #) ∈ � † and (ℓ : �→. �) ∈ �

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

Soundly Handling Linearity 54:23

Unlike in E-Op, the body of the continuation is not handled by � †. Whereas deep handlers perform
a fold over a computation trees shallow handlers perform a case-split. As such, we know that exactly
one operation clause or the return clause will be invoked, and providing all allowed operations are
linear each clause may capture the same linear resources. The typing rule is as follows.

T-ShallowHandler

� = {return G ↦→ "} ⊎ {ℓ8 ?8 A8 ↦→ #8 }8
� = � ! {(ℓ8 : �8 ↠

.8 �8)8 ;'} � = � ! {(ℓ8 : %)8 ;'}

Δ ⊢ Γ : . Δ ⊢ ' : . Δ; Γ, G : � ⊢ " : �

[Δ; Γ, ?8 : �8 , A8 : �8 →
.8 � ⊢ #8 : �]8

Δ; Γ ⊢ � † : � ⇒ �

Instead of requiring value linearity of Γ to be unlimited as in the deep handler rule T-Handler,
we require the value linearity of Γ to coincide with the control-flow linearity of ', the effect row
of the unhandled operations. This is because the shallow handler may be captured as part of the
continuations of these unhandled operations in outer handlers. Concretely, when. = ◦, the shallow
handler may use linear variables from the context, and unhandled operations are control-flow
linear; when . = •, the shallow handler cannot use any linear variables from the context, and we
have no restriction on the control-flow linearity of unhandled operations.
We can also easily extend Q◦

eff
with shallow handlers.

Q-ShallowHandler

� = {return G ↦→ "} ⊎ {ℓ8 ?8 A8 ↦→ #8 }8
� = � ! {(ℓ8 : �8 ↠

.8 �8)8 ;'1} � = � ! {'2}

% | Γ, G : � ⊢ " : � [% | Γ, ?8 : �8 , A8 : �8 →
.8 � ⊢ #8 : �]8

% ⊢ Γ ⪯ '1 % ⊢ '1 ⩽ '2 % ⊢ '1 ⊥ {ℓ8 }8

% | Γ ⊢ � : � ⇒ �

In place of % ⊢ Γ ⪯ • in Q-Handler, we have % ⊢ Γ ⪯ '1, which restricts the value linearity of the
type context to be less than the control-flow linearity of unhandled operations in '1.

Shallow handlers are typically used together with recursive functions to implement more general
recursive behaviours than the structural recursion of deep handlers. It is straightforward to extend
F◦
eff

and Q◦
eff

with recursive functions [Hillerström et al. 2020a; Mazurak et al. 2010]. Obviously
recursive functions are themselves unlimited so cannot capture linear resources, but that does
not preclude explicitly threading a linear resource through a recursive function that installs a
shallow handler. We use the syntax rec 5 G ." to define a recursive function 5 with parameter G
and function body" . The typing rules and semantics rule for it in F◦

eff
and Q◦

eff
are as follows.

T-Rec
Δ; Γ, 5 : �→• �, G : � ⊢ " : � Δ ⊢ Γ : •

Δ; Γ ⊢ rec 5 �→
•� G ." : �→• �

Q-Rec

Δ; Γ, 5 : �→• �, G : � ⊢ " : � % ⊢ Γ ⪯ •

% | Γ ⊢ rec 5 G ." : �→• �

E-Rec (rec 5 G .")+ { " [(rec 5 G .")/5 ,+ /G]

As an example, we can write the following recursive functionwithFile 5 which takes a file handle
5 and interprets all Print operations in" as writing to file 5 .

withFile 5 = rec withFile 5 .handle " with

{return G ↦→ Close 5 ;G
Print B A ↦→ let 5 ′ ← write (B, 5) in withFile 5 ′ A }

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

54:24 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

Note that this example can also be implemented with a deep handler by requiring the handler to
return a function which takes the file handle as a parameter. Shallow handlers provide us with a
more direct programming style.

Although our two new typing rules are straightforward and entirely backward compatible with
the current systems, shallow handlers can actually introduce more challenges to track control-flow
linearity. This is essentially because shallow handlers are more flexible than deep handlers and do
not handle all invocations of the same operation uniformly. With only deep handlers, it is natural
for all invocations of an operation to have the same control-flow linearity as they are handled by
the same handler. However, with shallow handlers, different invocations of the same operation can
be handled by different handlers, resulting in different control-flow linearity. For example, consider
the following program hesitantClose which makes choices before and after closing the file 5 .

hesitantClose = _5 .do Choose (); close 5 ;do Choose ()

The continuation of the first Choose contains the linear file handle 5 , whereas the second one does
not. Technically, the handler for the second Choose can resume any number of times. However,
neither the effect system of F◦

eff
nor that of Q◦

eff
is able to ascribe a different control-flow linearity

to the two invocations of Choose, which means we must handle both invocations linearly. One
potential solution is to track the order and duplication of effects in the effect system. However,
this kind of information is known to be too cumbersome for effect systems. A more lightweight
solution is to exploit named handlers [Biernacki et al. 2020; Xie et al. 2022] to assign Choose
operations in different positions to different shallow handlers. We leave the design of an ergonomic
and expressive effect system for tracking control-flow linearity of shallow handlers to future work.

7 RELATED WORK

Linear Resources and Control Effects. Exception handlers with finally clauses are a common way of
managing linear resources. Exception handlers provide a form of unwind protection, which enables
the programmer to supply the logic to release acquired resources in the finally clause, which gets
executed irrespective of whether a fault occurs. Similarly, the defer statement in Go [Donovan
and Kernighan 2015] defers the execution of its operand until the defining function returns either
successfully or via a fault. Thus the programmer can conveniently acquire a particular resource and
include the deferred logic for releasing it on the next line of code. Another variation is automatic
resource block management as in the C++ RAII idiom [Combette and Munch-Maccagnoni 2018]
and Java’s try-with-resource [Gosling et al. 2023], both of which offer a means for automatically
acquiring and releasing resources in the static scope. In Scheme the fundamental resource protection
mechanism is the procedure dynamic-wind [Friedman and Haynes 1985]. It is a generalisation of
unwind protection intended to be used in the presence of first-class control, where control may
enter and leave the same computation multiple times. It takes three functional arguments: the
first is the resource acquisition procedure, which gets applied when control enters dynamic-wind;
the second is the main computation, which may use the acquired resources; and the third is the
resource release procedure, which is applied when control is about to leave dynamic-wind.

Brachthäuser and Leijen [2023] present a constraint system based on qualified types for program-
ming with multi-shot effect handlers and linear resources in Koka. They use these constraints to
mark some effects as linear. However, they do not include a linear type system and instead rely on
pre-declaring the linearity of operations (i.e., no inference for control-flow linearity) and a syntactic
check to ensure that resumptions are not invoked more than once. Compared to the qualified effect
system of Q◦

eff
, their system does not support effect subtyping and abstraction over linearity.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

Soundly Handling Linearity 54:25

Structural Types and Control Effects. Tov and Pucella [2011b] propose a calculus _URAL (�) which
extends the substructural _-calculus _URAL [Ahmed et al. 2005] with abstract control effects �
given by a set of effects, a pure effect, and an effect-sequencing operator. They show how to
instantiate _URAL (�) with concrete control effects including exceptions and shift/reset [Danvy and
Filinski 1990] separately. Similar to F◦

eff
and Q◦

eff
, the _URAL (�) calculus also uses type-and-effect

system to check that control effects do not violate the substructural usage guarantees for values. It
includes a judgement on effect types to determine whether control effects may discard or duplicate
their continuations, which roughly corresponds to our notion of control-flow linearity. The main
difference between our work and _URAL (�) is that we consider the tracking of control-flow linearity
in the presence of algebraic effects and effect handlers, which are more involved than exceptions
and shift/reset both statically and dynamically. While it is theoretically possible to instantiate
_URAL (�) to effect handlers, this task is itself highly non-trivial due to the richer effect systems of
effect handlers. Conversely, we can also easily encode exceptions and shift/reset as user-defined
effects in F◦

eff
and Q◦

eff
using effect handlers [Forster et al. 2019; Piróg et al. 2019].

Linear Type Systems. Type inference with linear types is a well-studied area. Mazurak et al. [2010]
propose using kinds to track linearity, using subkinding to enable polymorphism over linearities.
Tov and Pucella [2011a] develop an expanded approach to tracking structural restrictions in kinds;
among other differences they introduce subtyping for function types and require fewer explicit
linearity annotations than Mazurak et al.. Gan et al. [2014] use qualified types to characterise types
that admit structural rules in a substructural type system: for example, in a linear type system,
unlimited types are exactly types g that support operations dup : g → (g, g) and drop : g → ().
Morris [2016] extends the approach of Tov and Pucella to generalise the treatment of function
types, introducing the linearity ordering constraint g ⪯ h; he also generalises their description of
unlimited types to type schemes, but does so unsoundly. In contrast, the current work does not
interpret unlimited types via operations like dup and drop; we also avoid Morris’s unsoundness in
the treatment of type schemes. An alternative approach tracks linearity exclusively in function
types, rather than in kinds. This approach is developed by Ghica and Smith [2014], McBride [2016],
and Atkey [2018], and has been implemented in Idris [Brady 2021] and an extension to the GHC
Haskell compiler [Bernardy et al. 2018].

Row-based Effect Types. Row types and row polymorphism are a popular way of implementing
effect systems in programming languages. Links [Hillerström and Lindley 2016] adopts Rémy style
row polymorphism [Rémy 1994], where the row types are able to represent the absence of labels
and each label is restricted to appear at most once. Koka [Leijen 2017] and Frank [Lindley et al.
2017] use row polymorphism based on scoped labels [Leijen 2005] which allows duplicated labels.
We believe the idea of tracking control-flow linearity in F◦

eff
should work well with all kinds of

different row-based effect systems.

Subtyping-based Effect Types. Some versions of Eff [Bauer and Pretnar 2014; Pretnar 2014] use an
effect system based on subtyping. Karachalias et al. [2020] describe an explicit target calculus ExEff
with a subtyping-based effect system and a type inference algorithm that elaborates Eff source code
into it. Eff uses a row-like representation of effect types and defines a subtyping relation for effect
types similar to the that of Q◦

eff
. One difference is that Eff incorporates full subtyping relations

between all types and implicit subsumption, whereas we only introduce subtyping between row
types and allow explicit subsumption in necessary positions (like Q-Seq and Q-Handle). In this
respect our qualified effect system is more lightweight. Algebraic subtyping [Dolan 2016; Dolan
and Mycroft 2017] combines subtyping and parametric polymorphism with elegant principal types.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

54:26 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

It would be interesting to explore the possibility of combining linear types and effect types based
on algebraic subtyping with control-flow linearity.

One-shot control operators. One-shot continuations were first introduced by Friedman and Haynes
[1985] in the form of a linear variant of call/cc. Similarly, Filinski [1992] considers a one-shot variant
of the C operator [Felleisen et al. 1987].

One-shot Effect Handlers. OCaml 5 [Sivaramakrishnan et al. 2021], the C++-effects library [Ghica
et al. 2022], and the typed continuations proposal for adding effect handlers toWebAssembly [Hiller-
ström et al. 2022; Phipps-Costin et al. 2023] all implement dynamically-checked one-shot effect
handlers. Continuations captured by such effect handlers can be thought of as linear resources
themselves, and thus play nicely with other linear resources. Any attempt to invoke a continuation
more than once throws a runtime error. In contrast, our type systems can be used to statically
ensure that handlers are one-shot. In fact, its considerably easier to build a system that ensures
that all handlers are uniformly one-shot than a system like ours that supports both one-shot and
multi-shot handlers, as in the former case there is no need to track the use of linear resources
specially. Another advantage of one-shot continuations is that they admit efficient implementations
which are compatible with linear resources, as a one-shot continuation need not copy its underlying
stack [Bruggeman et al. 1996]. Hillerström et al. [2023] present a substructural type system for a
calculus with effect handlers based on dual intuitionistic linear logic [Barber 1996] which restricts
all effect handlers to be one-shot (actually one- or zero-shot). They use it to show an asymptotic
performance gap between one-shot and multi-shot effect handlers, but are not concerned with
linear resources other than continuations.

Multi-shot Effect Handlers. Eff [Bauer and Pretnar 2015], Effekt [Brachthäuser et al. 2020],
Koka [Leijen 2017], and Helium [Biernacki et al. 2019] are research programming languages with
multi-shot handlers. In contrast to one-shot handlers, multi-shot handlers can invoke the captured
continuations an arbitrary number of times. This enables a range of interesting applications. For
instance, asymptotic efficient backtracking search [Hillerström et al. 2020b], nondeterminism [Kam-
mar et al. 2013], and UNIX fork-style concurrency [Hillerström 2022] can all be given a direct
semantics in terms of multi-shot handlers. However, one obstacle is that the aforementioned lan-
guages cannot statically optimise uses of one-shot continuations, as they must conservatively expect
the ambient context to have nonlinear control flow, thus requiring them to copy the continuation a
priori [Hillerström 2016; Hillerström et al. 2016]. Our type systems can enable static optimisation
of one-shot continuations through static identification of linear and nonlinear contexts.

8 CONCLUSION AND FUTURE WORK

We have explored the interplay between effect handlers and linear types. We have demonstrated
that in order to soundly combine potentially non-linear effect handlers with linear types, it is
necessary to add a mechanism for tracking control-flow linearity too. We incorporated control-flow
linearity into two quite different core languages as well as realising control-flow linearity in Links.
Directions for future work include: implementing a programming language based on Q◦

eff
;

developing more precise type systems for combining control-flow linearity with shallow handlers;
combining control-flow linearity with other forms of effect type systems, such as those that support
generative effects, duplicate effects, capabilities, and modal effect types; adapting the constraints
of Q◦

eff
to algebraic subtyping [Dolan and Mycroft 2017]; and adapting control-flow linearity for

uniqueness types and for quantitive type theory [Atkey 2018; McBride 2016].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

Soundly Handling Linearity 54:27

DATA AVAILABILITY STATEMENT

The implementation of F◦
eff

in Links is available on Zenodo [Tang et al. 2023].

ACKNOWLEDGMENTS

This work was supported by the UKRI Future Leaders Fellowship “Effect Handler Oriented Pro-
gramming” (reference number MR/T043830/1).

REFERENCES

Amal J. Ahmed, Matthew Fluet, and Greg Morrisett. 2005. A step-indexed model of substructural state. In ICFP. ACM, 78–91.

https://doi.org/10.1145/1086365.1086376

Robert Atkey. 2018. Syntax and Semantics of Quantitative Type Theory. In LICS. ACM, 56–65. https://doi.org/10.1145/

3209108.3209189

Andrew Barber. 1996. Dual Intuitionistic Linear Logic. Technical Report ECS-LFCS-96-347. Laboratory for Foundations of

Computer Science, The University of Edinburgh, UK.

Andrej Bauer and Matija Pretnar. 2014. An Effect System for Algebraic Effects and Handlers. Log. Methods Comput. Sci. 10, 4

(2014). https://doi.org/10.2168/LMCS-10(4:9)2014

Andrej Bauer and Matija Pretnar. 2015. Programming with Algebraic Effects and Handlers. J. Log. Algebraic Methods

Program. 84, 1 (2015), 108–123. https://doi.org/10.1016/J.JLAMP.2014.02.001

Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and Arnaud Spiwack. 2018. Linear

Haskell: Practical Linearity in a Higher-Order Polymorphic Language. Proc. ACM Program. Lang. 2, POPL (2018), 5:1–5:29.

https://doi.org/10.1145/3158093

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Abstracting Algebraic Effects. Proc. ACM

Program. Lang. 3, POPL (2019), 6:1–6:28. https://doi.org/10.1145/3290319

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2020. Binders by day, labels by night: effect instances

via lexically scoped handlers. Proc. ACM Program. Lang. 4, POPL (2020), 48:1–48:29. https://doi.org/10.1145/3371116

Jonathan Immanuel Brachthäuser and Daan Leijen. 2023. Qualified Effect Types – Taming Control-Flow through Linear

Effect Handlers. Technical Report MSR-TR-2023-42. Microsoft. https://www.microsoft.com/en-us/research/publication/

qualified-effect-types/

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as Capabilities: Effect Handlers and

Lightweight Effect Polymorphism. Proc. ACM Program. Lang. 4, OOPSLA (2020), 126:1–126:30. https://doi.org/10.1145/

3428194

Edwin C. Brady. 2021. Idris 2: Quantitative Type Theory in Practice. In ECOOP (LIPIcs, Vol. 194). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 9:1–9:26. https://doi.org/10.4230/LIPIcs.ECOOP.2021.9

Carl Bruggeman, Oscar Waddell, and R. Kent Dybvig. 1996. Representing Control in the Presence of One-Shot Continuations.

In PLDI. ACM, 99–107. https://doi.org/10.1145/231379.231395

Guillaume Combette and Guillaume Munch-Maccagnoni. 2018. A Resource Modality for RAII. In LOLA 2018: Workshop on

Syntax and Semantics of Low-Level Languages. 1–4.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006. Links: Web Programming Without Tiers. In FMCO

(Lecture Notes in Computer Science, Vol. 4709). Springer, 266–296. https://doi.org/10.1007/978-3-540-74792-5_12

Luís Damas and Robin Milner. 1982. Principal Type-Schemes for Functional Programs. In POPL. ACM Press, 207–212.

https://doi.org/10.1145/582153.582176

Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In LISP and Functional Programming. ACM, 151–160.

https://doi.org/10.1145/91556.91622

Stephen Dolan. 2016. Algebraic Subtyping. Ph. D. Dissertation. Computer Laboratory, University of Cambridge, United

Kingdom.

Stephen Dolan and Alan Mycroft. 2017. Polymorphism, subtyping, and type inference in MLsub. In POPL. ACM, 60–72.

https://doi.org/10.1145/3009837.3009882

Alan A.A. Donovan and Brian W. Kernighan. 2015. The Go Programming Language (1st ed.). Addison-Wesley Professional.

Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce F. Duba. 1987. A Syntactic Theory of Sequential

Control. Theor. Comput. Sci. 52 (1987), 205–237. https://doi.org/10.1016/0304-3975(87)90109-5

Andrzej Filinski. 1992. Linear Continuations. In POPL. ACM Press, 27–38. https://doi.org/10.1145/143165.143174

Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2019. On the expressive power of user-defined effects:

Effect handlers, monadic reflection, delimited control. J. Funct. Program. 29 (2019), e15. https://doi.org/10.1017/

S0956796819000121

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

54:28 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

Daniel P. Friedman and Christopher T. Haynes. 1985. Constraining Control. In POPL. ACM Press, 245–254. https:

//doi.org/10.1145/318593.318654

Daniel P. Friedman, Christopher T Haynes, and Eugene Kohlbecker. 1984. Programming with Continuations. In Program

Transformation and Programming Environments, Peter Pepper (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

263–274. https://doi.org/10.1007/978-3-642-46490-4_23

Edward Gan, Jesse A. Tov, and Greg Morrisett. 2014. Type Classes for Lightweight Substructural Types. In LINEARITY

(EPTCS, Vol. 176). 34–48. https://doi.org/10.4204/EPTCS.176.4

Dan R. Ghica, Sam Lindley, Marcos Maroñas Bravo, and Maciej Piróg. 2022. High-level effect handlers in C++. Proc. ACM

Program. Lang. 6, OOPSLA2 (2022), 1639–1667. https://doi.org/10.1145/3563445

Dan R. Ghica and Alex I. Smith. 2014. Bounded Linear Types in a Resource Semiring. In ESOP (Lecture Notes in Computer

Science, Vol. 8410). Springer, 331–350. https://doi.org/10.1007/978-3-642-54833-8_18

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith, and Gavin Bierman. 2023. The Java Language

Specification: Java SE 20 Edition. https://docs.oracle.com/javase/specs/jls/se20/html/index.html. [Accessed 2023-07-11].

Daniel Hillerström. 2022. Foundations for Programming and Implementing Effect Handlers. Ph. D. Dissertation. School of

Informatics, The University of Edinburgh, UK.

Daniel Hillerström, Daan Leijen, Sam Lindley, Matija Pretnar, Andreas Rossberg, and KC Sivamarakrishnan. 2022. WebAssem-

bly Typed Continuations Proposal. https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Explainer.md

[Accessed 2023-11-14].

Daniel Hillerström and Sam Lindley. 2016. Liberating effects with rows and handlers. In TyDe@ICFP. ACM, 15–27. https:

//doi.org/10.1145/2976022.2976033

Daniel Hillerström and Sam Lindley. 2018. Shallow Effect Handlers. In APLAS (Lecture Notes in Computer Science, Vol. 11275).

Springer, 415–435. https://doi.org/10.1007/978-3-030-02768-1_22

Daniel Hillerström, Sam Lindley, and Robert Atkey. 2020a. Effect handlers via generalised continuations. J. Funct. Program.

30 (2020), e5. https://doi.org/10.1017/S0956796820000040

Daniel Hillerström, Sam Lindley, and John Longley. 2020b. Effects for Efficiency: Asymptotic Speedup with First-Class

Control. Proc. ACM Program. Lang. 4, ICFP (2020), 100:1–100:29. https://doi.org/10.1145/3408982

Daniel Hillerström, Sam Lindley, and John Longley. 2023. Asymptotic Speedup with Effect Handlers. Draft.

Daniel Hillerström. 2016. Compilation of Effect Handlers and their Applications in Concurrency. Master by Research thesis.

School of Informatics, The University of Edinburgh, UK.

Daniel Hillerström, Sam Lindley, and KC Sivaramakrishnan. 2016. Compiling Links Effect Handlers to the OCaml Backend.

ML Workshop.

Mark P. Jones. 1994. A Theory of Qualified Types. Sci. Comput. Program. 22, 3 (1994), 231–256. https://doi.org/10.1016/0167-

6423(94)00005-0

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in Action. In ICFP. ACM, 145–158. https://doi.org/10.1145/

2500365.2500590

Georgios Karachalias, Matija Pretnar, Amr Hany Saleh, Stien Vanderhallen, and Tom Schrijvers. 2020. Explicit effect

subtyping. J. Funct. Program. 30 (2020), e15. https://doi.org/10.1017/S0956796820000131

Oleg Kiselyov and Chung-chieh Shan. 2009. Embedded Probabilistic Programming. In DSL (Lecture Notes in Computer

Science, Vol. 5658). Springer, 360–384. https://doi.org/10.1007/978-3-642-03034-5_17

Daan Leijen. 2005. Extensible records with scoped labels. In Trends in Functional Programming (Trends in Functional

Programming, Vol. 6). Intellect, 179–194.

Daan Leijen. 2008. HMF: simple type inference for first-class polymorphism. In ICFP. ACM, 283–294. https://doi.org/10.

1145/1411204.1411245

Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects. In POPL. ACM, 486–499. https://doi.org/10.

1145/3009837.3009872

Sam Lindley and James Cheney. 2012. Row-based effect types for database integration. In TLDI. ACM, 91–102. https:

//doi.org/10.1145/2103786.2103798

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do be do be do. In POPL. ACM, 500–514. https://doi.org/10.

1145/3009837.3009897

Sam Lindley and J Garrett Morris. 2017. Lightweight functional session types. Behavioural Types: from Theory to Tools. River

Publishers (2017), 265–286.

Alberto Martelli and Ugo Montanari. 1982. An Efficient Unification Algorithm. ACM Trans. Program. Lang. Syst. 4, 2 (1982),

258–282. https://doi.org/10.1145/357162.357169

Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. 2010. Lightweight Linear Types in System F> (TLDI ’10). Association

for Computing Machinery, New York, NY, USA, 77–88. https://doi.org/10.1145/1708016.1708027

Conor McBride. 2016. I Got Plenty o’ Nuttin’. In A List of Successes That Can Change the World - Essays Dedicated to Philip

Wadler on the Occasion of His 60th Birthday (Lecture Notes in Computer Science, Vol. 9600), Sam Lindley, Conor McBride,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

54:50 Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garre� Morris

Philip W. Trinder, and Donald Sannella (Eds.). Springer, 207–233. https://doi.org/10.1007/978-3-319-30936-1_12

J. Garrett Morris. 2016. The best of both worlds: linear functional programming without compromise. In ICFP. ACM, 448–461.

https://doi.org/10.1145/2951913.2951925

J. Garrett Morris and James McKinna. 2019. Abstracting extensible data types: or, rows by any other name. Proc. ACM

Program. Lang. 3, POPL (2019), 12:1–12:28. https://doi.org/10.1145/3290325

Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerström, KC Sivaramakrishnan, Matija Pretnar,

and Sam Lindley. 2023. Continuing WebAssembly with Effect Handlers. Proc. ACM Program. Lang. 7, OOPSLA2 (2023),

460–485. https://doi.org/10.1145/3622814

Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Typed Equivalence of Effect Handlers and Delimited Control. In

FSCD (LIPIcs, Vol. 131). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 30:1–30:16. https://doi.org/10.4230/LIPICS.

FSCD.2019.30

Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Log. Methods Comput. Sci. 9, 4 (2013).

François Pottier. 1998. Type inference in the presence of subtyping: from theory to practice. Ph. D. Dissertation. INRIA.

François Pottier. 2001. Simplifying Subtyping Constraints: A Theory. Inf. Comput. 170, 2 (2001), 153–183. https://doi.org/10.

1006/inco.2001.2963

Ron Pressler. 2018. Project Loom: Fibers and Continuations for the Java Virtual Machine. https://cr.openjdk.org/~rpressler/

loom/Loom-Proposal.html. Accessed 2023-04-14.

Matija Pretnar. 2014. Inferring Algebraic Effects. Log. Methods Comput. Sci. 10, 3 (2014). https://doi.org/10.2168/LMCS-10(3:

21)2014

Didier Rémy. 1994. Theoretical Aspects of Object-oriented Programming. MIT Press, Cambridge, MA, USA, Chapter Type

Inference for Records in Natural Extension of ML, 67–95.

K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting

effect handlers onto OCaml. In PLDI. ACM, 206–221. https://doi.org/10.1145/3453483.3454039

Wenhao Tang, Daniel Hillerström, Sam Lindley, and Garrett Morris. 2023. POPL24 Artifact for Soundly Handling Linearity.

https://doi.org/10.5281/zenodo.10120126

Jesse A. Tov and Riccardo Pucella. 2011a. Practical affine types. In POPL. ACM, 447–458. https://doi.org/10.1145/1926385.

1926436

Jesse A. Tov and Riccardo Pucella. 2011b. A theory of substructural types and control. In OOPSLA. ACM, 625–642.

https://doi.org/10.1145/2048066.2048115

David Walker. 2005. Substructural type systems. Advanced topics in types and programming languages (2005), 3–44.

Ningning Xie, Youyou Cong, Kazuki Ikemori, and Daan Leijen. 2022. First-Class Names for Effect Handlers. Proc. ACM

Program. Lang. 6, OOPSLA2 (2022), 30–59. https://doi.org/10.1145/3563289

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 54. Publication date: January 2024.

	Abstract
	1 Introduction
	2 Overview
	2.1 Value Linearity
	2.2 Control-Flow Linearity
	2.3 Qualified Linear Types
	2.4 Qualified Effect Types

	3 An explicit handler calculus with linear types
	3.1 Syntax and Kinding Rules
	3.2 Typing Rules
	3.3 Operational Semantics
	3.4 Metatheory
	3.5 Linearity Safety of Evaluation

	4 Control-Flow Linearity in Links
	5 An Implicit Calculus with Qualified Types
	5.1 Syntax
	5.2 Typing
	5.3 Entailment
	5.4 Type Inference
	5.5 Factorising Predicates
	5.6 Constraint Solving

	6 Shallow Handlers
	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

