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ABSTRACT

Interest in the phenomenon of dielectrophoresis has gained significant attention in recent years due to its potential for sorting,
manipulation, and trapping of solutes, such as proteins, in aqueous solutions. For many decades, protein dielectrophoresis was
considered impossible, as the predicted magnitude of the force arising from experimentally accessible field strengths could not
out-compete thermal energy. This conclusion was drawn from the mainstay Clausius–Mossotti (CM) susceptibility applied to the
dielectrophoretic force. However, dielectric interfacial polarization leading to the CM result does not account for a large protein dipole
moment that is responsible for the dipolar mechanism of dielectrophoresis outcompeting the CM induction mechanism by three to
four orders of magnitude in the case of proteins. Here, we propose an explicit geometry within which the dipolar susceptibility may be
put to the test. The electric field and dielectrophoretic force are explicitly calculated, and the dependence of the trapping distance on
the strength of the applied field is explored. A number of observable distinctions between the dipolar and induction mechanisms are
identified.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0144564

I. INTRODUCTION

Dielectrophoresis (DEP) is a general phenomenon in which a
neutral particle experiences a force from a nonuniform electric
field,1–4 in contrast to the electrophoretic force acting on a
charged particle. The DEP force is not strictly speaking a mechan-
ical force as it arises from the dependence of the free energy of
the particle in a nonuniform external field on its position. The
free energy in the field FE(r), depending on the particle coordi-
nate r, is a special case of the potential of mean force. The spatial
gradient of the particle’s chemical potential specifies the thermo-
dynamic force5,6 fDEP ¼ �∇FE involving an entropic component
and depending on the thermodynamic state.7,8 We show below
that fDEP / T�1 when the particle permanent dipole dominates in
the DEP response, in contrast to mechanical forces which are
independent of temperature.

The origin of the polarization free energy is the
interaction of the average dipole moment at the particle

hM0iE with the (Maxwell) electric field E in the dielectric
medium

FE ¼ � εs
2
hM0iE � E, (1)

where εs is the dielectric constant (relative electric permittiv-
ity9) of the medium.

The neutral particle is viewed as being polarizable, that is, the
dipole moment hM0iE ¼ hM0i is zero in the absence of the field
and is proportional to the field in the lowest order in E,

hM0iE / E: (2)

Substituting Eq. (2) into Eq. (1) and taking the spatial derivative of
the electrostatic free energy yields the DEP force proportional to
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the gradient of the electric field squared,

fDEP ¼ ε0χDEP∇E
2, (3)

where ε0 ≃ 8:854� 10�12 (F/m) is the vacuum permittivity. By
the fact of relating the force to the external field squared, the DEP
susceptibility χDEP is a nonlinear10 (quadratic) transport coefficient.
Calculation and measurement of χDEP is the main challenge to the
theoretical understanding of DEP in application to separation of
particles of the nanometer length scale.

It is convenient to scale the DEP susceptibility with the
dimensionless polarization parameter K ,

χDEP ¼ 3
2
εsΩ0K: (4)

Here, Ω0 ¼ (4π=3)R3
0 is the volume of a particle represented by a

sphere with the effective radius R0. The standard procedure to eval-
uate hM0iE and χDEP involves solving the Maxwell boundary-value
problem9 for the polarization of the surface dividing the dielectrics
assigned to the particle from the surrounding medium. This solu-
tion leads to the polarization factor K ¼ KCM specified by the
Clausius–Mossotti (CM) form4,11,12

KCM ¼ εp � εs
εp þ 2εs

≃ � 1
2
: (5)

It is constructed with the dielectric constants of the protein, εp, and
the solvent, εs; the common condition εp � εs leads to second
approximate relation.

Given that K ¼ KCM in Eqs. (4) and (5) depends only on the
dielectric constants at the dielectric interface, the DEP susceptibility
scales linearly13 with the volume of the particle or proportionally
to the cube of particle’s effective radius R0,

χCMDEP ¼ 3
2
εsΩ0KCM / R3

0: (6)

The particle size is the most significant parameter in defining
the DEP force in Eq. (6). When applied to proteins, their relatively
small size, R0 � 1 nm, yields a force too low to trap a protein at
the practical field strength E � 10 V/μm.14–17 Nevertheless,
Washizu et al. demonstrated protein trapping with fields E � 1 V/
μm (3 V/μm in Ref. 18), an order of magnitude smaller than
expected.19 This observation had remained puzzling20 until it was
recognized that a large intrinsic permanent dipole moment of a
protein produces an induced dipole hM0iE nearly four orders of
magnitude higher than what follows for the induced dipole from
the CM factor.21 The DEP susceptibility from the permanent
dipole moment was also predicted to carry a sign of the polariza-
tion factor K opposite to that from Eq. (5): positive from the
protein dipole vs negative for the CM factor. This theoretical result
justified previously reported trapping of protein by DEP18,19,22 con-
necting to a number of potential systems where such effects can be
realized.11,17,23–28 It is now increasingly appreciated that DEP sus-
ceptibilities of proteins are mostly consistent between different
reports11,26,29 and do not follow dielectric predictions based on the

CM factor.29–32 The reported instances of negative protein DEP
can be traced back to aggregation as the CM induction mechanism
becomes dominant for sufficiently large aggregates (see below).

The electric field magnitude required for trapping the protein
can be estimated by a balancing condition equating the magnitude
of the free energy jFEj to the thermal kinetic energy (3=2)kBT of
the particle.11,19,33 The resulting equation for the trapping field
strength is

Etrap ≃ βε0εsΩ0Kð Þ�1=2≃ 38ffiffiffiffiffiffiffiffi
KR3

0

p : (7)

Here, the field is in V/μm and K ¼ jKCMj for the negative DEP in
the CM model [Eq. (5)] or K ¼ Kd for positive DEP due to pro-
tein’s dipole as discussed below. The second approximate relation
is estimated for εs ≃ 78 of the aqueous solution and T ¼ 300 K; R0

is in nm. For the parameters of lysozyme in Table I with K ¼ Kd ,
one obtains Etrap ≃ 0:3 V/μm.

The purpose of the present article is to offer a simple trapping
geometry that may allow testing theory predictions and potentially
be applied to building practical trapping devices. The gradient of
the electric field is produced by a circular solid-state nanopore34–36

cut through a conducting plate of a plane capacitor with the
asymptotic electric (Maxwell) field Eapp in its lower part (Fig. 1).
Applying this condition to a particle carrying the permanent dipole
M0 and positioned at the symmetry axis of the nanotrap in Fig. 1,
one obtains the following condition for the trapping distance z*

along the z axis (see below for details):

z*

d
¼ 4βΩ0ε0εsK

9π2

� �1=6

E1=3
app: (8)

Substituting fundamental constants, one obtains

z*

d
¼ 0:22� εsK

T

� �1=6

R1=2
0 E1=3

app, (9)

where Eapp is in V/μm, temperature T is in K, and the radius R0 is
in nm. The analytical result in Eq. (8) is obtained in the dipolar
limit of the full analytical solution discussed below. Figure 2 com-
pares Eq. (8) to the full solution showing that the dipolar approxi-
mation is accurate at z*=d . 1.

The trapping distance z* reaches zero value, that is, the
protein is trapped at the center of the aperture, at the applied field

E*
app ¼ 6:7� 102

1ffiffiffiffiffiffiffiffiffiffiffiffi
εsKR3

0

p , (10)

where the field is in V/μm and R0 is in nm. This threshold electric
field can be viewed as the lowest field in the capacitor device to allow
protein trapping. This value becomes equal to E*

app ≃ 0:5 V/μm with
the parameters of lysozyme in Table I.

Our discussion starts with a review of the standard polariza-
tion model of DEP [Eq. (5)] and the model based on induced ori-
entation of the molecular permanent dipole.21 These results are
applied to deriving trapping conditions on a circular nanopore
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(Fig. 1). The dipolar DEP susceptibility χDEP has not been directly
measured so far, but an alternative route based on solution dielec-
tric measurements has been identified.31,32 We conclude with out-
lining predictable consequences of the model and critical

experiments that can be used to distinguish between dielectric polari-
zation and dipolar orientational mechanisms of DEP. The present
model does not account for the polarization of the double electrolyte
layer around the protein37 and, therefore, is limited, in practical
applications, by frequencies of the applied field exceeding �1 kHz.29

II. PHYSICAL MODEL

The CM Eq. (5) is derived by assuming that the dividing
surface between the dielectric medium and the protein molecule is
polarized by the field of external charges E0 resulting in the macro-
scopic Maxwell field E inside the dielectric medium. The induced
dipole is directed opposite to the applied field [Fig. 3(a), negative
DEP] when the medium is more polarizable than the particle
(εs . εp). The dipole moment assigned to an effective sphere

FIG. 1. Diagram of the nanotrap. A uniform field is applied to a grounded con-
ducting plane with a circular hole. A dilute solution flows through the top
chamber with the velocity v. Near the aperture, the protein molecule carrying
the permanent dipole M0 is pulled into the field gradient to be trapped at the
point with cylindrical coordinates (z�, ρ�).

FIG. 2. Energy balancing distance z� at ρ ¼ 0 as a function of the applied field
Eapp for lysozyme and concanavaline proteins (Table I). The dipole approxima-
tion [dashed lines, Eq. (8)] converges on the general solution (solid lines) for
sufficiently large applied field strengths.

TABLE I. Dielectric and DEP data for proteins in solutions.

Protein Mp
a (kDa) Δεsol=c0

b (mM−1) Kd
c χc

d M0, D R0 (nm)e y0

Ubiquitin (Ubiq) 8.6 3.82 8 354 1.08 221 1.37 153
Cytochrome c (Cyt-c) 13 6.70 6 643 1.09 238 1.87 70
Lysozyme (Lys) 14.3 1.75 3 751 1.20 208 1.79 61
Trypsin (Tryp) 23 6.74 7 126 1.30 271 2.0 74
Carboxypeptidase (Carb) 34 37.24 28 464 569 2.12 275
Hemoglobin (Hb) 64 26.9 12 155 1.12 495 2.57 115
BSAf,g 66 1.11 3 849 1.13 384 3.31 33
Concanavaline (Conc) 102 15.31 16 474 433 1.91 217
IgGf 150 25.9 4 552 1.14 840 4.3 70

aMolecular mass.
bTaken from Refs. 11 and 12 and other experimental data as explained in the supplementary material.
cFrom experimental data [Eq. (29)]; εs ¼ 78:4 and ε1 ¼ 3:2.
dEstimates from dielectric measurements [Eq. (31)].
eProtein radii are calculated in the supplementary material.
fBSA = bovine serum albumin, IgG = immunoglobulin G.
gRecent measurements28 involving a eDEP trapping configuration report K = 402 (Lys) and 5 (BSA). The calculated ∇E2 and Etrap were not corrected for
electrolyte screening. If the energy balance condition in Eq. (7) with reported Etrap is applied, one obtains K = 32 (Lys) and 1.4 (BSA).
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representing the solute becomes8,9

Mind
0 ¼ �3ε0Ω0

εs � εp
2εs þ εp

E: (11)

When substituted to Eq. (1), this equation leads to the DEP sus-
ceptibility in Eqs. (5) and (6).

An alternative mechanism of inducing a dipole at the particle
is through aligning the permanent dipole M0 along the external
field E. Random rotations of M0 produce hM0i ¼ 0 in the absence
of the field (E ¼ 0), but there will be a net average dipole moment
hM0iE in the presence of the field [Fig. 3(b)]. This dipole moment
is found by applying the first-order perturbation theory in terms of
the perturbation �M � E0 aligning the solute and liquid dipoles
along the field of external charges E0.

9 The external field acts on
the entire dipole of the system

M ¼
XN0

i¼1

M0,i þMs (12)

including the dipole moment of the medium (solvent) Ms and N0

non-interacting protein dipoles M0,i (infinite dilution). By neglect-
ing interactions between protein dipoles in solution, one can apply
the first-order perturbation theory21,38 to find the magnitude of the
individual protein dipole aligned along the field

hM0iE ¼ εs
3
βhM0 �MiE ¼ εs

3
βχcM

2
0E: (13)

Here, the statistical average h� � �i refers to no applied electric field
and the macroscopic connection E0 ¼ εsE between E0 and E
through the medium dielectric constant εs has been adopted.

Equation (13) assumes that the induced dipole is a small fraction of
the permanent dipole of the protein (linear response). This
assumption can be violated in very strong fields: one gets
hM0iE=M0 ≃ 0:2 at E ≃ 0:1 V/μm and M0 ¼ 100 D. The replace-
ment of the left-hand-side of Eq. (13) with the Langevin function39

is required in strong fields.
The average dipole in Eq. (13) aligned along the field is speci-

fied by statistical correlations between the particle dipole M0 and
the total dipole moment of the sample M [first relation in
Eq. (13)]. The cross correlations, hM0 �Msi, between M0 and the
solvent component of the sample dipole Ms are accounted for by
the cavity-field susceptibility21 χc in the second relation in Eq. (13).
This susceptibility is defined as the ratio of the electric field inside
the solute (cavity) Ec and the field of external charges E0 (vacuum
field). The cavity-field susceptibility is difficult to measure directly,
but it was found to be close to unity, χc ≃ 1:0� 1:4, in numerical
simulations of proteins31,32 and can be dropped in practical
calculations.

The vacuum field E0 of external charges sets up the perturba-
tion used in statistical–mechanical formulations of the theory. It
needs to be related to the Maxwell field inside the dielectric E for
practical calculations. The simple connection εsE ¼ E0 used here
starting from Eq. (1) applies only to equipotential surfaces pro-
duced by immersing conductors into dielectrics40 and becomes
inapplicable when interfaces between dielectrics with different
dielectric constants are involved in producing E (such as in
insulator-based, iDEP, applications). Our present calculations apply
only to that former configuration realized in electrode-based
(eDEP) devices.4 One has to realize that DEP requires a gradient of
the field E0 produced by free charges, which are external charges at
the metal electrodes and ions in the solution and at interfaces.
From this perspective, the connection εsE ¼ E0 does not apply to
electrolyte solutions where the dielectric constant enters also the
Debye–Hückel screening parameter. The theory should be formu-
lated in terms of E0 in such applications.

By applying Eq. (13) to Eqs. (1) and (3), one obtains for the
dipolar mechanism of DEP (superscript “d”),

χdDEP ¼ ε2s
6ε0

βχcM
2
0 ≃ 50:6 ε2s χcM

2
0 : (14)

The last equation gives the DEP susceptibility in Å3 assuming
T ¼ 300 K and M0 in debye units. The dimensionless polarization
factor K in Eq. (4) is given by the dipolar form31

Kd ¼ εsχcy0, (15)

where

y0 ¼ βM2
0=(9ε0Ω0) (16)

is the dimensionless polarity parameter of the solute. This parame-
ter is far greater than unity for a typical globular protein32

(Table I). With εs ≃ 78 for aqueous solutions of proteins,
Kd � 103–104 far exceeds jKCMj ≃ 0:5.21,32 A recent report28 lists
K ¼ 402 and 5 for lysozyme and BSA, respectively. The reported
trapping fields Etrap ¼ 2:6 (Lys) and 5.26 V/μm (BSA)28 used in

FIG. 3. Schematics of the dipole moment Mind
0 induced at a polarizable particle

(a) and the dipole moment hM0iE averaged over orientations of the permanent
dipole moment M0 in the presence of the external field E inside the dielectric
(b). “þ” and “�” in (a) indicate surface charges induced at the dielectric inter-
face. Tumbling of the permanent dipole with the relaxation time τp of dielectric
β-relaxation results in hM0i ¼ 0 in the absence of an external electric field. The
average dipole hM0iE in the presence of the field is oriented along the field,
while the induced dipole Mind

0 is opposite to the field when the solvent is more
polarizable than the protein.
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Eq. (7) produce K ¼ 32 (Lys) and 1.4 (BSA) (Table I footnote).
Given that electrolyte screening was not accounted for in experi-
mental estimates, Eq. (7) yielding 0.3 V/μm (Lys) and 0.1 V/μm
(BSA) with parameters from Table I provides the low boundary for
the capturing field. Based on the current theory and these experi-
mental results, positive DEP has to be expected for proteins and
other nanoparticles carrying permanent dipole moments.

An important distinction between the dielectric interface
polarization [CM, Fig. 3(a)] and dipolar [Fig. 3(b)] mechanisms
of DEP is in the scaling of the force with the particle size. One
gets linear scaling with the particle volume, /R3

0 [Eq. (6)], in
the former case and proportionality to the dipole moment
squared, /M2

0 , in the latter case [Eq. (14)]. Assuming that the
dipole moments grow linearly with the particle size,41 one gets
χDEP / R2

0 when the permanent dipole dominates in the DEP
susceptibility. Note that this scaling only specifies a trend since
the dipole moment is also affected by the protein symmetry (see
IgG in Table I as an example). Nevertheless, different scaling
laws should be anticipated and a negative DEP, based on the
CM factor, should dominate for large particles of submicron
and micron size, while positive DEP is important for asymmet-
ric molecular solutes carrying large permanent dipoles. The
condition

2εsχcy0 ≃ 1 (17)

reached at increasing the solute size provides the crossover from
the positive dipolar DEP to the standard CM mechanism
(K ≃ 0 when this condition is satisfied). Note that the dipolar
alignment and interfacial polarization can mostly be viewed as
independent and the overall polarization parameter is a sum of
the two contributions allowing a continuous transition between
two scaling trends

K ¼ Kd þ KCM: (18)

Since KCMj j � Kd for individual proteins, only the dipolar
mechanism is considered here. Nevertheless, protein aggrega-
tion, increasing the volume of each particle, can lead to the
return to the standard CM mechanism of DEP.

There is another essential distinction between χCMDEP in Eq. (6)
and χdDEP in Eq. (14). The former is only weakly temperature
dependent, through density and εs(T), whereas the latter is explic-
itly proportional to the inverse temperature, χdDEP / T�1. This tem-
perature scaling is distinct from both the mechanical force, which
is temperature-independent, and the entropic force7 scaling as /T .
The entropy, SE , and enthalpy, HE , of the protein polarization
become [see Eq. (1)]

TSE ¼ FE , HE ¼ 2FE: (19)

The temperature scaling characteristic of dipolar DEP will propa-
gate to all parameters derived from the corresponding dielectropho-
retic force. For instance, the capture distance in Eq. (9) is also

affected by temperature

z* / T�1=3: (20)

To summarize this section, several key distinctions between
KCM and Kd carry full analogy with the well-recognized distinctions
between theories of nonpolar (but polarizable) and polar (carrying
molecular dipoles) bulk liquids. The former concerns itself with the
field induced in a macroscopic polarizable (virtual) cavity carved
from a fluid of electronically induced dipoles oriented along the
external field. The result is the CM factor appearing in the expres-
sion for the dielectric constant of nonpolar liquids.2,39 In contrast,
the theory of polar liquids operates with permanent liquid dipoles
m experiencing constant rotations due to thermal agitation and
averaging to zero in the absence of an external field, hmi ¼ 0. The
permanent dipole of the polar liquid induced by an external field
and not averaged to zero is found by perturbation theory formu-
lated similarly to Eq. (13). Such a perturbation description yields
the liquid dielectric constant through the Onsager and Kirkwood–
Onsager equations38,39 operating in terms of the dimensionless
density of liquid dipoles y ¼ βρm2=(9ε0), where ρ is the liquid
number density. The parameter y0 appearing in Eqs. (15) and (16)
is an obvious analog of this standard formulation applied to a
single protein dipole occupying the volume Ω0.

III. NANOTRAP MODEL

Nanometer to micrometer holes drilled in substrates or mem-
branes have been used for the manipulation of biomolecules.34,42–45

The geometry shown in Fig. 1 assumes that the hole diameter is
much larger than the membrane thickness, leading to a limit of a
circular aperture in an infinitely thin conducting plate. However,
the solution for the electrostatic potential in oblate spheroidal coor-
dinates40 used here applies to an arbitrary hourglass-shaped nano-
pore35 when the restriction of an infinitely thin membrane used
here is lifted. A solution for the geometry of a thin one-
dimensional nanogap16 can be obtained along similar lines.
Nanohole arrays have been employed elsewhere for protein46 and
DNA47 DEP. In those applications, capture is achieved at the hole
opening and the geometry of the hole and the inter-electrode space
become significant. A simplified geometry used here aims at pro-
viding an analytical framework allowing asymptotic solutions.

The field Eapp between two capacitor plates leaks through the
opening in the top conduction plate creating the field gradient in
the space above it (Fig. 1). By using the oblate spheroidal coordi-
nates as defined in Ref. 48, the cylindrical coordinates z, ρ are
transformed to ξ1, ξ2,

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ξ21 þ d2)(1� ξ22)

q
, z ¼ ξ1ξ2: (21)

The solution of the Poisson equation for the electrostatic potential
f(ξ1, ξ2) in the upper half-plane is given in coordinates ξ1, ξ2 as
follows (see the supplementary material for details):

f(ξ1, ξ2) ¼
Eapp
π

ξ2ξ1
d
ξ1

� atan
d
ξ1

� �
: (22)
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The z- and ρ-components of the electric field follow by taking the
potential gradient (see the supplementary material),

πEz
Eapp

¼ atan
d
ξ1

� dξ1
ξ21 þ d2ξ22

,

πEρ
Eapp

¼ � ρz

ξ21 þ d2ξ22

d
ξ1

� ξ1d

ξ21 þ d2
þ 1� d

ξ1

� �
atan

d
ξ1

� �
:

(23)

At large distances from the hole, the electrostatic field becomes the
field of a dipole. The field along the z axis becomes

E ¼ Ez ¼ 2d2

3πz3
Eapp: (24)

This expression is used to derive the trapping distance z* in Eq. (8)
as shown in Fig. 2.

From two field projections in Eq. (23), one can arrive at the
magnitude of the field squared,

π2E2

E2
app

¼ atan2
d
ξ1

þ d2

ξ21 þ d2ξ22
1� d2ξ22

ξ21 þ d2
� 2ξ1

d
atan

d
ξ1

� �
: (25)

This scalar function is used to calculate the gradient of E2 to arrive
at the DEP force in Eq. (3).

When the protein is driven by the hydrodynamic flow with
the velocity v along the x-axis parallel to the plate, the trapping
position in the capacitor x, y- plane can be determined by equating
the x-projection of the DEP force (Fig. 1) with the hydrodynamic
drag10,49 experienced by the protein in the uniform flow along the
x axis,

ε0εs
3η

R2
0K∇xE

2 ¼ �v, (26)

where η is the liquid’s shear viscosity. The trapping contour deter-
mined by this condition with E2 from Eq. (25) is shown in Fig. 4.
An oval shape of the trapping contour is a reflection of the dipolar
symmetry of the electric field produced by the spherical aperture.

IV. PROTEIN DEP

The DEP susceptibility χDEP has never been directly measured
(see, however, Ref. 28) and alternative sources of experimental
input need to be sought. The access to Kd and χdDEP is allowed by
the observation31,32 that the factor χcy0 that defines Kd in Eq. (15)
also enters the expression for the dielectric constant of a dilute sol-
ution of N0 dipolar particles carrying permanent dipole moments
M0 and dissolved in the polar solvent with the bulk dielectric cons-
tant εs. Dielectric experiments are typically performed with exter-
nal fields oscillating with the circular frequency ω and applied to a
plane capacitor. Rotations of the solute dipole in solution are
reflected by the dielectric relaxation process known as
β-dispersion.50–52

The dielectric function of the medium ε(ω) becomes the static
dielectric constant εs in the limit ω ! 0: εs ¼ Re[ε(ω ! 0)]. The
high-frequency limit of the dielectric function is ε1 ¼ Re[ε(ω
! 1)] defining the dielectric increment Δε(ω) ¼ ε(ω)� ε1. The

increment of the dielectric function of solution over that of the
pure solvent, Δεsol(ω) ¼ εsol(ω)� ε(ω), is given32 in terms of the
volume fraction of solutes η0 ¼ N0Ω0=Ω (Ω is the solution
volume),

Δεsol(ω)
η0

þ Δε(ω) ¼ 9
2
y0(ω)(2χc(ω)� 1): (27)

Here, the solute polarity parameter y0 [Eq. (16)] and the cavity-
field susceptibility χc [Eq. (13)] both become functions of ω. Given
that in many practical situations (2χc(ω)� 1 ≃ 1, the equation for
the dielectric increment of solution simplifies32 at small particle
concentrations, η0 ! 0, when the second term on the left-hand
side can be dropped. One obtains in this limit

Δεsol
c0

¼ 9:14� 10�5M2
0 : (28)

The numerical factor in this equation is calculated for c0 in mM
and the protein dipole in debye units. This is an alternative form of
Oncley’s equation53 connecting the dielectric increment to protein’s
dipole. The dipolar DEP factor is obtained by substituting Eq. (28)
to Eq. (15) with the result (χc ≃ 1),

Kd ¼ 2
9
εs Δεsol=η0 þ Δεð Þ: (29)

The limit of Eq. (28) implies dropping the second summand in the
brackets in this equation. One obtains in this limit

Kd ≃ 36:9
εs
Ω0

Δεsol
c0

, (30)

where Ω0 is in nm3 and c0 is in mM.

FIG. 4. Trapping contour in the x � y plane for Eapp ¼ 1 V/μm and z ¼ 1 μm.
The calculations are carried out for lysozyme (Table I) with v ¼ 10 cm/s and
η ¼ 1 cP for water at normal conditions used in Eq. (26). The black circle indi-
cates the aperture with d ¼ 1 μm.
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When the frequency dependence is maintained in Eq. (29), it
predicts a crossover in the sign of Kd(ω)

15,16 when Δεsol(ω)
becomes negative at frequencies comparable with the frequency of
tumbling of the protein dipole (ν ¼ ω=(2π) � 10MHz). This relax-
ation process is classified as β-dielectric relaxation of protein solu-
tions characterized by the dielectric increment Δεβ . There is a
higher-frequency, �100MHz,50,52,54,55 relaxation process called
δ-relaxation. Its origin has been attributed to cross correlations
between the protein and water dipoles.56–59 From this assignment,
the cavity-field susceptibility can be estimated from the ratio of the
dielectric increment for δ- and β-relaxation processes,32

χc ¼ 1þ Δεδ
2Δεβ

: (31)

The data for Δεδ and Δεβ
54,60 are used to estimate χc in Table I

(see the supplementary material for details). The resulting χc is
close to unity and can be dropped from calculations of Kd . This
simple result is not trivial since the cavity susceptibility of the
protein–water interface turns out to be significantly higher than the
prescription of dielectric theories,38,39

χc ¼ 3=(2εs þ εp): (32)

The parameters required to calculate the dipolar polarization
factor Kd [Eq. (29)] are taken from solution dielectric data for ubiq-
uitin,58 lysozyme,61 and IgG60 (as is common in dielectric litera-
ture,62 fitting of dielectric spectra is involved in extracting the static
dielectric data). The dielectric data for the rest of proteins in
Table I are from Refs. 11 and 12. The protein radii were taken from
Ref. 32 and additionally calculated by using the software McVol63

(see the supplementary material). The dipole moments are from
Refs. 64–66 and water’s dielectric parameters are from Ref. 67.

V. DISCUSSION

The discussion presented here distinguishes between two
mechanisms of nanometer-scale DEP: polarization of bound
charges at the dielectric interface (CM factor) and alignment of the
solute’s molecular permanent dipole along the external field
(dipolar DEP). These two mechanisms lead to numerically different
dimensionless polarization parameters K entering the DEP suscept-
ibility [Eq. (4)]: jKCMj ≃ 0:5 and the dipolar parameter Kd of the
order 103–104 for proteins studied here (Table I). A substantially
larger value of Kd allows protein trapping on nanopore devices. As
discussed above, the scaling of K with the particle size is different
for two mechanisms: /R3

0 for dielectric polarization and /R2
0 for

the dipolar mechanism. The latter result is qualitatively confirmed
by the data accumulated in Table I. Figure 5 shows Ω0Kd vs R0 for
proteins listed in Table I. The scaling exponent in the scaling law
χDEP / Rα

0 is α ≃ 2:03. The linear regression shown in Fig. 5 allows
one to estimate χDEP in Eq. (4) from the protein radius.

Two physically significant factors allow large values of the
polarization parameter K for proteins: (i) a large dipole moment of
a typical globular protein and (ii) a large value of the cavity-field
susceptibility χc ≃ 1 far exceeding the dielectric estimate in
Eq. (32). A large cavity-field susceptibility is characteristic of the

protein–water interface, which is much distinct from what is antici-
pated in theories of dielectric interfaces. The main physical reason
for unusual dielectric properties is a large density of positive a neg-
ative ionized residues at the protein surface.41 These residues orient
the surface water into clusters (nanodomains68) with dipole
moments directed along the local electric field. This physical situa-
tion is illustrated in Fig. 6 where two domains, next to a positive
and a negative surface charge, are shown. The cavity susceptibility
results from the cross correlation of the protein, M0, and solvent,

FIG. 6. Schematic drawing of dipolar water domains at the protein surface.
Surface cations and anions rotate the domain dipoles outward and inward from
the dividing surface, respectively. The water molecules shown in the plot indicate
their preferential orientations within the domains. Releasing O–H bonds toward
a surface anion requires less frustration of interfacial waters than pointing O–H
bonds toward the bulk. Cross correlations of the protein dipole M0 and the
surface water dipoles determine the deviation of χc from unity [Eq. (33)].

FIG. 5. Ω0Kd vs R0 (logarithmic scale) for proteins listed in Table I. The
dashed line is the linear fit showing the scaling exponent equal to 2.03. The
dashed line shows the linear regression: lnΩ0Kd ¼ 6:56þ 2:03 lnR0.
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Ms, dipole moments21 [Eqs. (12) and (13)],

χc ¼ 1þ hδM0 � δMsi=hδM0 � δM0i, (33)

where for a protein permanent dipole spanning isotropic orienta-
tions, one gets hδM0 � δM0i ¼ M2

0 .
The deviation of the cavity-field susceptibility from χc ¼ 1 is,

therefore, caused by cross correlations between the protein dipole
and water dipoles in protein’s hydration shell. Such correlations are
substantial when orientations of interfacial dipoles are predomi-
nantly caused by the dipolar field of the solute as assumed in the
standard dielectric theories.39 The resulting negative cross correla-
tions lead to χc � 1 [Eq. (32)]. When, on the contrary, the dipolar
orientations and their fluctuations are governed by the local fields
of the surface charged residues, the domains with opposite local
orientations tend to cancel each other resulting in χc ≃ 1 (Fig. 6).
The dipoles within domains next to cations and anions can be dif-
ferent given that releasing O–H bonds next to a surface anion
requires lower stress and frustration than turning O–H bonds
toward the bulk near a surface cation (Fig. 6). The compensation
between the domains is incomplete and χc can even slightly exceed
unity as is empirically found (Table I). These estimates are based
on the assumption that δ-relaxation of the protein solution reflects
cross correlations between the protein and hydration water dipoles
[Eqs. (31) and (33)], which still requires experimental scrutiny.
Nevertheless, the appearance of the cavity-field susceptibility con-
sistent with estimates listed in Table I also follows from the concen-
tration dependence69 of THz radiation absorption by protein
solutions.70

There are a number of observable qualitative distinctions
between induction and dipolar mechanisms of DEP. As mentioned,
the dipolar DEP predicts a significant dependence on temperature,
Kd / T�1, with the corresponding temperature dependence affect-
ing the trapping distance [Eq. (20)]. Given that Kd /M2

0 [Eqs. (15)
and (16)], any physical property altering the protein dipole, such as
mutations or unfolding, should be reflected by the DEP susceptibil-
ity. In particular, the protein dipole moment is affected by pH of
the solution71 and corresponding effects of pH on protein DEP
have been reported in the past.23,72,73 Our calculations indicate that
changing pH should substantially affect the DEP susceptibility.
Figure 7 shows the dependence of the DEP polarization parameter

Kd on the solution pH calculated from the data available for the
BSA protein.71,74

The results presented here discuss trapping of proteins by
static inhomogeneous electric fields. This discussion is extended to
oscillatory fields by allowing the frequency-dependent dielectric
function for the solvent εs(ω) and the corresponding frequency-
dependent protein dipole moment density y0(ω) in Eq. (16).31,32

The frequency dependence of y0(ω) is caused by tumbling of the
protein dipole with the relaxation time τp of β-relaxation in dielec-
tric spectroscopy. For simplest exponential relaxation of the protein
dipole, one arrives at the Debye relaxation form

y0(ω) ¼ y0 1� iωτp
� ��1

: (34)

Alternatively, y0(ω) follows from Eq. (27), which can involve more
complex relaxation functions for the protein dipole. The change in
the sign of the right-hand side of Eq. (27) at high frequencies will
produce the crossover from positive to negative DEP. The change
of sign of DEP is a direct consequence of dynamic freezing of
protein rotations at high frequencies.

The question of the minimum field gradient j∇E2j required
for protein trapping has been raised in a number of recent
reviews.23,26,29 The values typically estimated26 for the CM polariza-
tion mechanism are of the order of 1021 V/m3. Capture of proteins
often requires much lower field gradients,26,28 sometimes down to
1012 V/m3. Figure 8 presents field gradients for the nanopore trap-
ping geometry at the uniform field in the lower part of the capaci-
tor equal to Eapp ¼ 1 V/μm. The field gradients shown in Fig. 8 are
calculated for proteins from Table I at the capturing distance z*

determined from the energy match condition specified by Eq. (7).
The field gradient of the order of 1017 V/m3 is required for the
dipolar mechanism of DEP at the adopted strength of the capacitor
field Eapp ¼ 1 V/μm responsible for the field gradient at the pore
opening: j∇E2j scales linearly with E2

app [Eq. (25)]. Experimentally,
the field gradient of j∇E2j ≃ 1017 V2/m3 was reported for BSA
capturing.75

FIG. 7. Kd vs pH for BSA protein.
FIG. 8. rzE2 vs z� for the proteins listed in Table I. The calculations are done
at Eapp ¼ 1 V/μm and d ¼ 1 μm.
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VI. CONCLUSIONS

DEP is a potentially powerful method to trap proteins and we
have demonstrated that protein trapping can be achieved on a
nanopore of micrometer length scale with the electric field strength
and gradient values accessible to experimental conditions. The
dipolar mechanism of DEP can be viewed as dominant for proteins
given the present state of theory and empirical data.

SUPPLEMENTARY MATERIAL

See the supplementary material for derivation of equations
presented in the text, maps of electrostatic potential around the
nanotrap, and parameters for proteins used in the calculations.
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