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Nonlinear dielectric response of dilute protein
solutions
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A theory for the nonlinear dielectric response of dilute protein solutions is presented. The field-dependent
dielectric function of the protein solution changes linearly with the electric field squared in the lowest order.
The slope of this dependence is expressed in terms of the protein dipole moment M, its volume fraction in
solution 1o, and the second osmotic virial coefficient. For practical conditions, the nonlinear dielectric
response scales as 1o°Mo®. This strong dependence on the protein dipole moment and concentration
establishes a sharp contrast between the nonlinear response of solvated proteins relative to the
surrounding polar solvent. Nonlinear dielectric response can serve as a sensitive tool for monitoring
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1 Introduction

Consider a particle carrying the dipole moment M, immersed in
a polar liquid with the dielectric constant &g (subscript “0”
stands for solute properties). When an external (Maxwell*) field
E is applied to the solution along the laboratory axis z, the
dipole moment orients along the field to allow an average dipole
projection on the field (My,)z, where (...)z specifies a statistical
ensemble average in the presence of the field. The Maxwell field
E = ¢/d, given as the ratio of the voltage ¢ at a plane capacitor to
the distance d between the plates, is related to the vacuum field
of external charges E,,. trough the static dielectric constant of
the solution &gy as Eyge = solF = &GE.

If the response of the dipole is linear in the applied field, the
standard perturbation theory yields the following result>*

(My)p = SxBME. e

In this equation, y. is the cavity-field susceptibility®>® that
connects the uniform field of external charges E,,. to the local
field acting on the solute dipole, M, is the dipole moment
magnitude, and 8 = (kgT)™* is the inverse temperature.

Proteins typically carry large dipole moments of the order of
several hundreds of Debye units due to asymmetric distribu-
tions of charged residues exposed to water and charges of the N-
and C-termini.®® The value of the cavity-field susceptibility was
estimated as x. = 1.1-1.2 for proteins.”'® With these numbers,
one arrives at

(Mo.) gl My = 0.23E (kV ' cm™"), (2)
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protein conformations and physiological activity.

when E is expressed in kv cm ™! and water at room temperature
is considered as the solvent. This estimate implies that the
dipole moment aligned along the field becomes a substantial
portion of the dipole moment magnitude at fields exceeding =1
kv em™ . Such fields are available in many experimental setups,
raising the question of significance of nonlinear dielectric
susceptibilities extending beyond the linear term in eqn (1).
This study offers an analytical theory of the nonlinear dielectric
effect (NDE) of dilute protein solutions limited to the lowest-
order nonlinear term quadratic in the applied field E.

Measuring NDE in bulk polar liquids requires much stronger
electric fields, ~100 kv cm™".** The gap in field magnitudes
between bulk liquids and protein solutions suggests that NDE
can be used to probe the protein component separately from
a much weaker nonlinear response of the surrounding solvent.
Given that the dipole moment is sensitive to protein's confor-
mations and physiological activity,”*** NDE can potentially
monitor alterations in the protein structure, phosphorylation,
and redox reactions. Despite some preliminary reports on
cells'”*® and membrane-bound proteins,"” NDE of proteins in
solution has not been measured and the formalism proposed
here remains a theoretical prediction at this moment.

The NDE is quantified by the dielectric function of the
solution ¢40(E) depending on the applied electric field, in
contrast to the linear dielectric constant (a material property)
&so1 independent of the field. The difference eg)(E) — €501 is linear
in E? in the lowest order. The proportionality constant a is the
Piekara coefficient'?**

AE(E) = ESOI(E) — &ol = (ZEZ. (3)

The theory presented here calculates a for low-concentration
protein solutions when interaction between individual protein
molecules are sufficiently weak to be viewed as perturbations
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(see below). It shows that A¢(E) changes its scaling from «c,M,*
at low concentrations to «c,’M,® at larger protein concentra-
tions ¢, (in g L™"). The slope of the dielectric constant vs. ¢, at ¢,
— 0 provides access to the ratio, My* M, of the fourth power of
the protein dipole moment M, and the protein molar mass M,,.
A strong dependence of the protein NDE on the protein
dipole moment provides high contrast of solvated proteins
relative to a much weaker background signal from the solvent.
Linear dielectric spectroscopy of solutions also allows® access to
M,” from the slope of the solution dielectric increment e, — &
vs. the protein concentration (Oncley's formula®). A much
stronger scaling Ae(E) « ¢,°M,° compared to &1 — &5 * ¢pMy°
grants a much higher sensitivity of the NDE to the presence of
proteins in solution compared to linear dielectric spectra.

2 Model

A general formulation of the problem of nonlinear dielectric
polarization** represents the Piekara coefficient in eqn (3) in
terms of the parameter describing non-Gaussian fluctuations of
the dipole moment projection M,

3(Mo2)? W

axN [1 —
Here, en ensemble average (...) is taken over the sample
configurations in the absence of the applied field and (M,,) =
0 is assumed.

The term in the brackets in eqn (4) describes non-Gaussian
statistics of the dipole moment projection. It vanishes for
a macroscopic sample with a large number of dipoles N as
stipulated by the central limit theorem. This is avoided by
multiplying the bracket term with N thus resulting in a finite
value of the Piekara coefficient a.

Non-Gaussian statistics of the dipole moment can arise from
both internal protein motions, such as conformational transi-
tions, and from correlated rotations of the protein dipoles in
solution. The present formulation considers only the latter
mechanism, leaving the possibility of intrinsic conformations
and field-induced opening of membrane-bound protein
pumps'®**?¢ as a source of non-Gaussian statistics to future
studies. Nevertheless, conformational transitions altering the
protein dipole moment should project to an altering NDE.

Assuming that proteins behave as rigid dipoles, the fourth-
order statistical central moment in eqn (4) introduces dipolar
correlations of up to the fourth order. Some of these correla-
tions decouple, allowing one to cast the Piekara coefficient in
terms of the second, third, and fourth-order correlations of the
protein dipoles®**”

Tcﬂ3M04P0

aqa= — [H(z) + H(3’4)}.

10 )

Here, po = No/V is the number density of N, solutes in the
solution volume V and the two correlation terms, H? and H®Y,
describe binary and higher-order (three- and four-particle)
dipolar correlations, respectively. The term H®* vanishes at
low concentrations and only binary correlations survive. We will
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therefore drop HCY in eqn (5) and focus solely on the binary
term24,27

Sxr _
2

H® =6(gx — 1) + 1. (6)

In this equation, gx is the Kirkwood factor of protein dipoles
describing short-ranged binary orientational correlations and
defined by the following expression

g =1+ (&¢).

j>1

)

Here, €; = M;/M, is the unit vector specifying the orientation of
jth protein dipole. Further, x in eqn (6) is the isothermal
osmotic compressibility*®*?* scaled with the ideal-gas
compressibility i = (poksT)*. The ratio of two compressibil-
ities in eqn (6) can be expressed in terms of the k = 0 value of the
density-density structure factor Soo(k) of proteins in solution. It
represents thermal fluctuations of the local protein density

Xilc'l Po

XTI Spo(k = 0) = V@. (8)

When the density of dipoles is low, the Kirkwood factor gk in
eqn (6) can be calculated as a series expansion in the dimen-
sionless density of protein dipoles®?
dielectric theories

commonly appearing in

41t

=3 )

y ﬁl)()/"lo2 = YoMNo,

where 1, = NoQ,/V is the volume fraction (packing fraction®?) of
proteins in solution and y, = (47/9Q,)8M,> is the effective
dipolar strength defined for a single protein molecule with the
volume Q,. Gaussian electrostatic units are used here and one
gets yo = BM,y*/(9¢0Q,) in SI units, where ¢, is the vacuum
permittivity. Similarly, the transformation to SI units in eqn (5)
is achieved by the replacement My> — My*/(4Tce,).

The lowest-order perturbation expansion of gk in terms of
Yono reads*

17
gk =1 +E(J/0770)2 T

(10)
From eqn (9) and (10), one obtains for the Piekara coefficient

96* My’
a =

51 5
*(yoﬂo)z + 5500(770) =11, (11)

40 YoNo 3
where we have explicitly indicated the dependence of Syy(10) =
Soo(10, £ = 0) on the protein density.

The ideal-gas limit for So(no) is the Poisson fluctuations of
the protein density leading to Soo = 1 at n, — 0 in eqn (8). This
limit does not, however, apply to charged proteins in electrolyte
solutions: the ideal-gas limit is not reached even when there are
no interactions between the protein molecules.** The reason is
that electroneutrality condition imposes a constrain on the
protein density fluctuations, which become coupled to corre-
sponding density fluctuations of the electrolyte. Following
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Stockmayer** and Asthagiri et al.** one can calculate Sy, from
the derivative of the protein density over the protein chemical

potential uq
dln
SOO = < pO) 5
Bug T.p.py

where the derivative is taken at the constant particle density p,
of the electrolyte ions. Assuming that the protein carries the
charge z, and is placed in the 1:1 electrolyte (e.g., NaCl), one
can write the equations for the chemical potentials of the
protein and electrolyte ions, which are coupled to each other
through the electroneutrality condition. Finding the derivative
in eqn (12) becomes a matrix inversion problem.** Assuming
ideal electrolyte on non-interacting ions, one arrives at

(12)

Zozpo -
+2Boopy |

Soo = |14+-—2P0
° 2p; + Zopy

(13)
where B, is the second osmotic virial coefficient. The Donnan
term®** z,%/(2p4 + Zopo) does not allow reaching the ideal-gas limit
for Soo even with no inter-protein interactions, By — 0. The
physiological concentration of electrolyte, ~0.1 M, substantially
exceeds the protein concentration, ~1 mM, at typical experi-
mental conditions an one can re-write eqn (13) as>***3

Soo =1 + 2Bono] ", (14)

where

By = 4Boo/ Boy + zo°l(p1BGo). (15)
The first term in this equation is the osmotic coefficient reduced
with its hard-sphere (HS) value Byg = 482,

One finally arrives at the following equation for the Piekara
coefficient

_98TM’ 51 >

2 3 —4Bn,
a= T)’ono g(y(ﬂlo)

2(1+2Bomy)|" (16)

Below, this equation is applied to known parameters of proteins
in solution to establish the relative significance of two terms in
the brackets and the anticipated scaling of the protein NDE with
the protein dipole moment and the solution concentration.

3 Discussion and model calculations

A positive NDE (a > 0) is found here for a dilute protein solution.
In contrast, the NDE is typically negative (a < 0) for bulk polar
liquids, thus leading to a dielectric decrement in the applied
field."* While a negative NDE is often related to dielectric
saturation through the Langevin equation,® an exact theoretical
formalism® leading to eqn (5) assigns negative NDE to multi-
dipolar correlations responsible for a negative HCY in eqn (5),
which exceeds in magnitude the typically positive binary term
H®. The binary term can in principle be negative for a suffi-
ciently large positive second virial osmotic coefficient (B, in eqn
(16)), which can lead to rather complex concentration depen-
dencies for the NDE of binary mixtures of polar and nonpolar
liquids.**

© 2023 The Author(s). Published by the Royal Society of Chemistry
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For typically large protein dipole moments, the polar term, 6
(gx — 1), dominates in eqn (5) and (6) thus leading to a positive
NDE. This result is generally consistent with an increment of
dielectric constant of protein solutions over that of the solvent,®
also arising from a large protein dipole moment. The strong
polarity of proteins in solution is allowed by reorientations of
the protein dipole to align along the applied field. When the
protein is immobilized, its internal dielectric constant is low,*
&, = 4, because the internal dipoles are restricted, by the
protein fold, from aligning along the field.

The present theory is not limited to protein solutions and
can be applied to test the widely accepted dielectric saturation
paradigm? for the NDE. The Langevin equation used to describe
dipole's saturation predicts a linear scaling,>** —a « °M,"p, o
po, of a negative Piekara coefficient with the solute concentra-
tion. The derivation of the Langevin equation is performed for
a single dipoles and specific assumptions need to be imposed
when the theory is extended to an ensemble of dipoles. While
those are often omitted, it is implicitly assumed that dipoles are
placed on a rigid lattice with a low compressibility (xr < x¢
1) and they do not interact (gx = 1).> Eqn (5) then reduces to
a result, a = —wB>M,*p,o/10, very close to the result of the Lan-
gevin model, which additionally requires adopting a specific
form for the cavity-field susceptibility x. (see eqn (1)).>*

Saturation prescribed by the Langevin framework can be
distinguished from correlations advocated here by measuring
NDE of dilute solutions of dipolar particles (dipolar molecules,
proteins, or ferroelectric nanoparticles®?) in less polar or
nonpolar solvents. A positive Piekara coefficient in the present
formulation scales linearly with the concentration in the
infinite dilution limit, a = 37t8>M,"p,/20, but becomes propor-
tional to the third power of the concentration, a « py°, when
binary dipolar correlations start dominating over the
compressibility term in the brackets of eqn (16). The distinction
in the sign and in the concentration scaling should allow one to
discriminate between saturation and binary correlations when
dielectric measurement are performed at sufficiently low
frequencies below the frequency of solute tumbling.

The positive Donnan term in eqn (15) can be neglected at
sufficiently large electrolyte concentrations and pH close to the
isoelectric point. The second osmotic coefficient becomes
negative at high pH and high electrolyte concentrations.**** A
negative By, is a good predictor of protein crystallization®*** or
of the liquid-liquid phase separation.*®** For a negative value of
By in eqn (15), the truncation of the osmotic virial expansion
produces a divergence in the structure factor Sy, in eqn (14) at 1
+ 2Bgno — 0. Such a singularity, reached at the critical point or
at the spinodal line, might signal the onset of the liquid-liquid
phase separation of the protein solution®****® or arise from the
failure of the truncated expansion for the osmotic pressure. The
range of protein concentrations is chosen to ensure 1 + 2Bgyn, >
0 in the present calculations.

It is clear that the second term in the brackets in eqn (16)
dominates over the first term at n, — 0. Given that By, is of the
order of B&y,**** and 7, < 0.2 at typical protein concentrations
<20 g L7 the first term gains in importance at
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Table 1 Calculation parameters for proteins at 300 K in 0.1 M
electrolyte

Protein® 20 Qo, nm?® M,, D Yo By/4
Lys” 8 24 208 61 29
Lys* —0.87
BSA? -8 137 384 36 4.5¢
“Lys = lysozyme, BSA = bovine serum albumin. ” Second virial

coefficient at pH = 7 and ¢; = 7 mM is taken from ref. 35. © Data at
pH = 6 and ¢, = 0.1 M from ref. 30. ¢ Data taken at pH = 7 and ¢, =
15 mM from ref. 40 where corrections for the Donnan term were
implemented. ¢ Values =—2.4 at ¢; = 7 mM were reported in the
presence of trivalent salts.*®*°

19> 2/(v/17y,). With the typical values of y, for proteins
(Table 1), this condition puts 7, within the range of protein
concentrations studied by light scattering?>***
spectroscopy**® of protein solutions. One can, therefore,
anticipate a crossover from the linear scaling, a « M04cp, to
a cubic dependence a « M,’c,’. However, by virtue of being
multiplied with 7, in the Piekara coefficient in eqn (16), the low-
concentration range is not prominent in the overall dependence
a(cp).

Fig. 1 shows a(cp)/|a,| normalized with the Piekara coeffi-
cient for bulk water at 293 K:*" a,, = —0.8 x 10~ *> m*> V2. The
calculations are done for lysozyme (Lys, second line in Table 1)
and bovine serum albumin (BSA) proteins (Table 1). The full
calculation according to eqn (16) (solid lines) is compared to the
results with the second term in the brackets, containing the
second osmotic coefficient, dropped (dashed lines). At
concentrations ¢, > 10 g L', one can neglect the virial coeffi-
cient component and approximate the Piekara coefficient by the
dipolar term

and dielectric

2
a=0.93 x 107 M2 (yon,)* (9) , (17)

A%

where the numerical coefficient is evaluated at 7= 300 K and M,
is in Debye units (y, is unitless, see Table 1). It is clear from the

150

Cp g/L

Fig.1 Reduced Piekara coefficient a/ja,| (aw = —0.8 x 107> m?V~2is
the Piekara coefficient for bulk water) vs. the protein concentration ¢,
(g L™ for Lys (black, second line in Table 1) and BSA (blue). The solid
lines indicate calculations based on eqgn (16) and dashed lines refer to
calculations with the second term in the brackets (involving the
second virial coefficient) dropped.
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Fig. 2 a/(law|cp) vs. cp2 for Lys (black, second line in Table 1) and BSA
(blue).

0 100 400

plot that the Piekara coefficient of protein solutions exceeds
that of bulk water by about two orders of magnitude in the
concentration range shown in the plot.

If the purpose of measuring the Piekara coefficient is to gain
access to the protein dipole moment, a better strategy might be
to plot a/c,, vs. ¢,”. Both the slope and intercept should provide
access to M, the intercept becomes (37/20)8°M,*Na/M,, where
M, is the protein molar mass and N, is the Avogadro number.
Extrapolation from high concentrations can be of limited value
because of the curvature of the plot at ¢, — 0, as is seen in Fig. 2
for BSA. The slope (17/5)8°M,*(TNA/(3M,))*, provides a more
robust access to M,. A strong temperature dependence of the
slope, o« T, can be used to test theory predictions.

From a general perspective, the Piekara coefficient quantifies
the non-linear dielectric response and non-Gaussian statistics
of the sample dipole moment** (eqn (4)). In bulk dipolar
materials, the NDE arises from rotations of individual non-
interacting dipoles (Langevin model) or from mutual correla-
tions of dipoles (the present description). Non-Gaussian
statistics of the dipole moment can also arise from intrinsic
conformational transitions of the protein. Intrinsically disor-
dered proteins or disordered domains of folded proteins*® can
potentially be good candidates for observing the NDE. The field
required to observe protein NDE, =1-10 kV em™", is compa-
rable to the field strength of protein capture on nanopores by
another nonlinear dielectric effect, the protein dielectropho-
resis.*>*® Extending the theory to the response of entire cells®
requires modeling the field-induced changes of the membrane-
bound protein pumps.*

4 Conclusions

An analytical theory for the nonlinear dielectric response of
protein solutions developed here shows high contrast between
the nonlinear response of proteins in solution and surrounding
water. The contrast arises from a strong scaling, o« cp3M08, of the
nonlinear response with the large protein dipole. The Piekara
coefficient of proteins in solution exceeds that of surrounding
water by two orders of magnitude at the typical protein
concentrations used in light-scattering and dielectric
measurements.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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