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Abstract

In this work, we study the convergence in high probability of clipped gradient
methods when the noise distribution has heavy tails, i.e., with bounded pth
moments, for some 1 < p < 2. Prior works in this setting follow the same
recipe of using concentration inequalities and an inductive argument with union
bound to bound the iterates across all iterations. This method results in an
increase in the failure probability by a factor of 7', where T is the number of
iterations. We instead propose a new analysis approach based on bounding the
moment generating function of a well chosen supermartingale sequence. We
improve the dependency on 7' in the convergence guarantee for a wide range
of algorithms with clipped gradients, including stochastic (accelerated) mirror
descent for convex objectives and stochastic gradient descent for nonconvex
objectives. Our high probability bounds achieve the optimal convergence rates and
match the best currently known in-expectation bounds. Our approach naturally
allows the algorithms to use time-varying step sizes and clipping parameters when
the time horizon is unknown, which appears difficult or even impossible using
existing techniques from prior works. Furthermore, we show that in the case of
clipped stochastic mirror descent, several problem constants, including the initial
distance to the optimum, are not required when setting step sizes and clipping
parameters.

1 Introduction

Stochastic optimization is a well-studied area with many applications ranging from machine
learning, to operation research, numerical linear algebra and beyond. In contrast to deterministic
algorithms, stochastic algorithms might fail, and a pertinent question is how often does failure
happen and how to increase the success rate. These questions are especially important in critical
applications where failure is not tolerable, or when a single run is costly in time and resources.
Fortunately, the standard stochastic gradient descent (SGD) algorithm has been shown to converge
with high probability under a light-tailed noise distribution such as sub-Gaussian distributions
(23} 12} 27, [14, [11} [10} [18]], which gives strong guarantee on the success of single runs. However,
recent observations in popular deep learning applications, such as training attention models [33]
and convolutional networks [30], reveal a more challenging optimization landscape: the gradient
noises follow heavy-tailed distributions, where the variance may be infinite [29, 33 9], whereas
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the standard light-tailed setting assumes that all the moments are bounded. Heavy-tailed gradient
noises can cause algorithms like SGD to fail, and this mismatch between theory and practice has
been suggested to be one of the reasons for the strong preference of adaptive methods like Adam
over SGD in modern settings [33]].

In this work, we consider the setting of heavy-tailed noise proposed by Zhang et al., (2020) [33],
where the (unbiased) gradient noise only has bounded pth moments, for some p € (1,2]. While
standard SGD can fail to converge when the variance is unbounded, i.e. when p < 2, [33] show that
SGD with appropriate clipping (or Clipped-SGD) converges in expectation under heavy-tailed noise,
where the convergence rate depends on O (%) if § is the targeted maximum failure probability. It is
more desirable, however, to obtain convergence results in high probability, where the convergence
rate depends instead on O(log %) which gives better guarantees for single runs.

Recent follow-up works [2, 28| [19]] show that variants of Clipped-SGD in fact converge with high
probability. This is a pleasing result, extending the earlier work by [7] for p = 2. However,
there are several shortcomings of these results when compared with the corresponding bounds in
the light-tailed setting. First, the clipped algorithm uses a fixed step size and a fixed clipping
parameter depending on the number of iterations, which precludes results with unknown time
horizons. Secondly, the convergence guarantees are worse than the light-tailed bounds by a log T’
factor, even for fixed step sizes and clipping parameters. These issues beg a qualitative question:

Is heavy-tailed noise inherently harder than light-tailed noise?

In this work, we answer the above question for Clipped-SGD and the general clipped (accelerated)
stochastic mirror descent (Clipped-SMD) algorithm. We give an improved analysis framework that
not only gives tighter bounds matching the light-tailed noise setting, but also allows for step sizes
and clipping parameters for unknown time horizons. Furthermore, we show that this framework is
applicable to various settings, from finding minimizers of convex functions with arbitrarily large
domains using (accelerated) mirror descent, to finding stationary points for non-convex functions
using gradient descent.

1.1 Contributions and Techniques

Our work addresses several open questions posed by previous works including handling general
domains and dealing with an unknown time horizon under heavy-tailed noise. Qualitatively, we
close the logarithmic suboptimality gap and achieve the optimal rate in several settings. More
specifically:

— We demonstrate a novel approach to analyze clipped gradient methods in high probability that is
general and applies to various standard settings. In the convex setting, we analyze Clipped-SMD
and clipped stochastic accelerated mirror descent. In the non-convex setting, we analyze Clipped-
SGD. Using our new analysis, we show that clipped methods attain time-optimal convergence in
high probability for both convex and nonconvex objectives under heavy-tailed gradient noise. In the

convex setting, we obtain an O (T P ) convergence rate for arbitrary (not necessarily compact)

convex domains for Clipped-SMD and O (T%a + T_Q) for accelerated Clipped-SMD, where
o is the noise parameter. These rates are time-optimal and match the lower bounds in [26] [31].
In the nonconvex setting, we obtain the optimal convergence rate of O (T ﬁ) for clipped-SGD.

This bound is also time-optimal and matches the lower bound in [33]; it also complements the
in-expectation convergence of clipped-SGD provided by [33]].

— Previous works for heavy-tailed noises follow the recipe of using Freedman-type inequalities
[4) 3] as a blackbox and bound the iterates inductively for all iterations. This process incurs an
additional log T' dependency in the final convergence rate; in other words, the success probability
goes from 1 — § to 1 — T'§. The step sizes and clipping parameters of this approach depend on
the time horizon T to enable the union bound and induction across all iterations in the analysis,
excluding the important case when the time horizon is unknown. Our whitebox approach forgoes the
aforementioned induction, not only circumventing the log 7" loss but also allowing for an unknown
time horizon. We further show that our analysis allows for a choice of step size and clipping
parameters that do not depend on generally unknown parameters like the noise-parameter o, the



failure probability §, and the initial distance to the optimum, all of which appear impossible using
only the techniques from prior works.

— Our whitebox approach analyzes the moment generating function of a well chosen martingale
difference sequence to obtain tight rates for stochastic gradient methods. This approach is closest to
the work of [[18]], which only work in the light-tailed noise setting. In contrast to the light-tailed noise
setting where all the moments are well controlled, the heavy-tailed setting often requires algorithms
to incorporate gradient clipping for controlling the possibly infinite moments. However, this makes
the gradient estimate biased and requires more careful attention to control the bias propagating
through the algorithm. Naively applying the technique in [[18] is not enough to handle heavy-tailed
noise. Rather, as will be shown in our analysis, we introduce a novel history-dependent weights for
the martingale sequence that is able to cope with the propagating bias term of clipped methods for
heavy-tailed noise across various settings.

1.2 Related Works

High probability convergence for light-tailed noises. Convergence in high probability of
stochastic gradient algorithms has been established for sub-Gaussian noises in a number of prior
works, including [23} [12] |27} [14. [11} [10] for convex problems with bounded domain (or bounded
Bregman diameter) or with strong convexity. Other works [17, 20} [16] study convergence of variants
of SGD for nonconvex objectives, where they consider sub-Gaussian and sub-Weibull noises. The
most relevant to ours in this line of work is the one by [[18]], where a whitebox approach is employed
to obtain tight rates for stochastic gradient methods in the light-tailed noise setting. However, their
technique is not directly applicable in the heavy-tailed noise setting, where we need to introduce
new ideas to handle the biases introduced by gradient clipping.

High probability convergence for noises with bounded variance and heavy tails. The design
of new gradient algorithms and their analysis in the presence of heavy-tailed noises has drawn
significant recent interest. Starting from the work [25] which propose Clipped-SGD to handle
exploding gradients in recurrent neural networks, the recent works [30, 29, 33| 9] give new
motivation for clipped methods in the context of convolutional networks and attention deep networks
that attempts to explain the dominance of adaptive methods over SGD in practical modern scenarios.

While the convergence in expectation of vanilla SGD has been extensively studied [} 23] [13] [18]],
only recently has the convergence of Clipped-SGD with heavy tailed noises been closely examined.
There, [33] first show the convergence in expectation of Clipped-SGD for nonconvex functions
and provide a matching lower bound. In the convex regime, several works with different clipping
strategies for the case of p = 2 have shown high probability convergence for smooth problems
with bounded domain [22, 24], smooth unconstrained problems [7]], and non-smooth problems [S8]].
A variant of Clipped-SGD that utilizes momentum [2] has also been shown to converge with high
probability for bounded pth moments gradient noise. However, the analysis in [2] requires a strong
assumption which implies that the true gradients are bounded, a restrictive assumption that excludes
objectives like quadratic functions.

More recently, [28],119,|34]] give nearly-optimal convergence rates for several Clipped-SGD variants.
These works follow the recipe of using Freedman-type inequalities [4} 3] as a blackbox and bound
the iterates inductively for all iterations, which incur an additional logT" dependency in the final
convergence rate. We show in our work that existing convergence rates can be tightened up and
improved. Tight lower bounds for the optimal convergence rate have been shown by [26, 131] for
convex objectives and by [33] for nonconvex settings. In both cases, our paper provides optimal
convergence guarantees.

In a related but different line of work, [32]] show that vanilla SGD can converge with heavy tailed
noise for a special type of strongly convex functions, and [31]] show that stochastic mirror descent
converges in expectation for a special choice of mirror maps, although only for strongly convex
objectives with bounded domains.

2 Preliminaries: Assumptions and Notations

We study the problem min,ey f(z) where f : RY — R and X is the domain of the problem. In
the convex setting, we assume that X’ is a convex set but not necessarily compact. We let ||-|| be an



Table 1: Previous and new results for high-probability convergence (with failure probability §) of clipped SMD
and SGD under heavy tailed noise: E[||V f(x) =V f(2)||¥ | ] < o® for some p € (1, 2], where V f(x) denotes
the stochastic gradient at x for the objective f. For the convex setting, the error bounds are for the optimality
gaps + S°I_, f(x¢) — f*. For the nonconvex setting, we bound the gradient norm + SF IV F(2e)|?. Here,
O (+) hides polylog T factors. Note that, for simplicity, we do not compare against results in more specialized
settings such as bounded domain or bounded gradients, as well as other variants of clipped SGD.

l ‘ Assumptions ‘ Convex Setting (Clipped-SMD) Non-convex Setting (Clipped-SGD) ‘
T—p —2(p—1)
Lower bound p € (1,2] Q (T P >[31J Q (T 3p—2 )[33]
Previous
. - ~ 1-p ~ 1-p
high-probability Known 7" O (T P > 28] O (T P > 28]
results
T—p 2—2p
Known T' o (T P )(Thm 4.1 o (T 3p—2 )(Thm 3.1
Our results
— =p — —2p
T (0] (T B )(Thm 4.4 (0] <T 3p—2 ) (Thm|B.2

arbitrary norm and ||-|,, be its dual norm. In the nonconvex setting, we take X' to be R? and consider
only the ¢5 norm.

2.1 Assumptions

Our paper works with the following assumptions:

(1) Existence of a minimizer: In the convex setting, we assume that there exists z* €
argmingey f(x). Welet f* = f(z*).

(1) Existence of a finite lower bound: In the nonconvex setting, we assume that f admits a finite
lower bound, i.e., f* := inf cgra f(z) > —00.

(2) Unbiased estimator: We assume that our algorithm is allowed to query a stochastic first-order
oracle that returns a history-independent, unbiased gradient estimator V f(z) of V f(z) for any
x € X. That s, conditioned on the history and the queried point x, we have E[V f(z) | z] = V f(x).
(3) Bounded pth moment noise: We assume that there exists o > 0 such that for some 1 < p < 2
and for any x € X, V f(x) satisfies E[||V f(z) — Vf(x)|% | 2] < oP.

(4) L-smoothness: We consider the class of L-smooth functions: for all z,y € R4,
V(@)= VI, <Llz-yl.

2.2 Gradient Clipping Operator and Notations

We introduce the gradient clipping operator and its general properties used in Clipped-SMD

(Algorithm [2)) and Clipped-SGD (Algorithm [I). Let z; be the output at iteration ¢ of an algorithm
of interest. We denote by V f(z) the stochastic gradient obtained by querying the gradient oracle.

The clipped gradient estimate V f () is taken as
M
ﬁf (t)

*

Vf(xe) =min{ 1, Vi), )

where )\, is the clipping parameter used in iteration ¢. In subsequent sections, we let A; := f(x;) —
f* denote the optimal function value gap at x;. We let F; = o (@f(xl), e @f(a:t)) be the

natural filtration at time ¢ and define the following notations for the stochastic error, the deviation,
and the bias of the clipped gradient estimate at time ¢:

0, = Vi(x)—Vf(x); 0% =VF(z)—E|VF(ze) | fH] . 0 =E [%f(mt) | fH] —Vf(zy).

Note that 6} 4 0% = 6;. Regardless of the convexity of the function f, the following lemma provides
upper bounds for these quantities. These bounds can be found in prior works [7, 133} 119, 28]] for the



Algorithm 1 Clipped-SGD

Parameters: initial point 1, step sizes {n; }, clipping parameters {\; }
fort =1to 7T do

ef(xt) = min{l, M} @f(xt)

Tty1 = Tt — ntef(xt)

special case of /5 norm. The extension to the general norm follows in the same manner, which we
omit in this work.

Lemma 2.1. For stochastic gradients v f (x4) with bounded pth moment noise, the clipped gradients
V f(x¢) satisfy the following properties:

101 = |[V5 @) = B [V () | Fea]||_ <20 @
Furthermore, if ||V f(z)|, < &t then

[62]], = HE {ﬁf(l‘t) | ]:t—l} — Vf(z)

< 40PN 7P, 3)
e [16¢17] = & [[Fr60 - B [F0e0] |1 7] < 200735 @

Finally, we state a simple but important lemma that bounds the moment generating function of a
zero-mean bounded random variable. The proof can be found in, for example, equation (3) of [1]].

Lemma 2.2. Let X be a random variable such that E [X| = 0 and | X| < R almost surely. Then
Jor0 < A < %

E [exp (AX)] < exp (iﬂs [X2]> .

3 Clipped Stochastic Gradient Descent for Nonconvex Functions

In this section, we study the convergence of Clipped-SGD for nonconvex functions. Here, we
consider the domain to be R? equipped with the standard ¢, norm. We first outline a blackbox
concentration argument to show convergence in high probability of Algorithm [I] and then follow-
up with a more powerful whitebox approach that allows for a tight high probability convergence
analysis.

Comparison to previous works. In the simple setting of known time horizon and without

momentum for Clipped-SGD, the 5(T%) convergence rate has not been shown before to the
best of our knowledge. The recent work by [28] study this case and only give a suboptimal rate of

5(T1%P ). Note that [2} [19] study other variants of Clipped-SGD with momentums incorporated.

~ 2-2
Although [2] [19] achieve the nearly-optimal time dependency of O(T Sp*g) in the non-convex
settings, they rely on using blackbox concentration inequalities which result in a suboptimal
convergence rate that also requires a known time horizon.

We first present the guarantee for known time horizon 7" via our whitebox approach in Theorem
and defer the statement for unknown 7" in Theorem B.2]to the Appendix.

Theorem 3.1. Assume that f satisfies Assumption (1°), (2), (3), (4). Let v := max {log %; 1} and
Ay := f(x1) — f*. For known time horizon T, we choose A\; and n; such that

ﬁ 1 P 1 1
At = A := max {( & > TWUP];2\/90LA1§32PO'TW}

VLA,
o VAL T35 VAL 8y = . Tz T2

Ne =1 = = min T3—2gp1, ; .
8AV Ly 8v/ Ly VLA 2v/90LA, 32/Pc




Then with probability at least 1 — 0

T _1
1 8 p—1 2—2p P
= IV < 720 Almmax{( i ) T3
t=1

VIA;
2\/9OLA1T;’;25;321/1’0T§;25} =0 (T?»Ef‘é) .

Remark 3.2. In comparison to the corresponding results in [28] (Theorem E.2), while our result
achieves a poly T factor better rate when p < 2, the dependency on log % in our result contains a
dependency on p while the result in [28] does not. That term can dominate the convergence rate in
the regime when ¢ is very small and p is very close to 1. Hence, an open question is to remove such
dependency on p for the log % term while still maintain the optimal rate on 7.

Now, we turn to the analysis, starting with the key Lemma 3.3] (proof in the Appendix)

Lemma 3.3. Assume that f satisfies Assumption (1°), (2), (3), (4) and n; < L then for allt > 1,

3
PNVFH@OI? < A= Ausr+ (Lnf = m) (V£ (), 67) + 22 [|o2]”
+ L? (10317 = E [|617 | Fes]) + LnfE [nern A O

Remark 3.4. In Lemma [3.3] we decompose the RHS into appropriate terms that allow us to define
a martingale. This lemma helps us understand why we can achieve a better convergence rate

2—2
o(r 3%12)) (for minimizing the norm squared of the gradient) in comparison to the best rate of

O(Tl%) in the convex setting. We focus on the error term (V f(xt),0:) = (Vf(z),08) +
(V f(x¢),67) on the RHS of . Since this error contains the gradient V f(z;), we leverage
some of the gain |V f(z;)|? on the LHS of we use Cauchy-Schwarz to bound (V f(x¢), ;) <
LIV f(@)||* + 51167]|? and use the some of the gain to absorb the first term. Then setting our

parameters A, 7, appropriately to balance the remaining terms helps us achieve the O(Tgm%g) rate.
Contrast this to the convex setting in the next section: the mismatch between the error term that
contains the distance term ||2* — ;|| and the gain term that contains the function value gap f(x;)— f*
prevents us from using the gain to absorb some of the error. Thus, this explains the convergence rate
discrepancy between the convex case and the non-convex setting (see also Remark [4.6).

Before giving a sketch of our whitebox approach, we present a sketch of a blackbox argument
that gives a nearly time-optimal convergence rate. This approach has an additional log T" factor in
the final rate but will serve as a point of comparison for our new techniques, which will close the
logarithmic gap.

Blackbox approach. The key lies in the following lemma, which yields the near optimal O(T%)
convergence rate of Clipped-SGD. In this case, we assume that the clipping parameters \; and the
step sizes 7, are fixed. Note that the success probability is only 1 — T'6. This result uses Lemma
[3.3] and Freedman’s inequality (Theorem primarily as a blackbox to bound the error terms
inductively by the initial function value gap to optimality.

Lemma 3.5. For 1 < N < T + 1, let ny = n, Ay = X (the specific choices are omitted here for
brevity) and En be the event that forallk =1,... N,

k—1 k—1

L2 16812 + (L =) 3 (Vf (1), 0 "ZH@bH <A

t=1 t=1
Then En happens with probability at least 1 — W-1)5 for each N € [T +1].

With the above lemma, we can obtain a near-optimal convergence rate. However, this rate is still
suboptimal due to the use of 71" union bounds as part of the induction proof. We now discuss an
improved analysis that closes the remaining gap.

Whitebox approach. Our whitebox approach defines a novel supermartingale difference sequence
Z; (shown below) and analyzes its moment generating function from first principles. The sequence is



designed to leverage the structure of the problem and Clipped-SGD via carefully chosen decreasing
weights z; (shown below).

3 ,
Z = 2 (Zt IVF@I® + Aesr = A = 2 [[0F]]° = La?E [0 | ftlD

— (32 LA+ 6L ) B [[0¢)” | Fis |
1
2Ptnt)\t max;<t¢ v 2LAZ + SQtLT]tQ)\%

for P,,Q; € F;_1 > 1. We also define S; := Zle Z;. Note that by selecting Py, Q¢, n¢, At

appropriately so that P;n; \; and Q;n?)\? are constants (see for example the proof of Proposition
in the Appendix), we can ensure that the sequence z; is decreasing.

where z; :=

We now present Lemma [3.6| which is the main result for controlling the above martingale, whose
proof will offer insights into the main technique in this paper. The technique to prove Lemma [3.6]is
similar to the standard way of bounding the moment generating function in proving concentration
inequalities, such as Freedman’s inequality [4} 3]. The main challenge here is to find a way to
leverage the structure of Clipped-SGD and choose the suitable coefficients z;. Similarly to [18]]
where the authors analyze SGD with sub-Gaussian noise, we analyze the martingale difference
sequence in a “whitebox” manner. In [18]], however, thanks to the light-tailed noise, the weights
z¢ can be chosen depending only on the problem parameters and independently of the algorithm
history. On the other hand, to use Lemma , we have to make sure that z; < %, where R is an
upper bound for the martingale elements. The key here is to choose z; depending on the past iterates,
and use the function value gaps A; to absorb the error incurred during the analysis. We give a proof
sketch and defer the full version to the Appendix.

Lemma 3.6. For any § > 0, let E(J) be the event that forall1 <k <T

k k
1 1 3
5 S e VS @I + 24 Aen < 1A +log s+ 0 2 ot
t=1 t=1

k
2 ((?wfmfat + 6L222i N + 2 L) 031 | Fooa | )
t=1
Then Pr[E(6)] > 1 —4.
Proof Sketch. Using Lemmas [3.3] [2.2] and the condition for z;,, we can show that
E [exp (Z:) | Fi—1] < 1. This then implies
E[exp (Sy) | Fi—1] = exp (Si—1) E[exp (Zy) | Fi—1] < exp (S¢—1),

which means (exp (S¢)):>1 is a supermartingale. By Ville’s inequality, we have, for all £ > 1,
Pr [Sk > log %] < OE [exp (S1)] < 4. In other words, with probability at least 1 — §, for all & > 1,

Zle Z; < log %. Plugging in the definition of Z; we obtain the desired inequality. O

We now specify the choice of 7; and )\;. The following lemma gives a general condition for the
choice of 7; and \; that gives the right convergence rate in time 7.

Proposition 3.7. We assume that the event E() from Lemma happens. Suppose that for some
£ < T, there are constants C, Cy and C5 such that for all t < {

p p
Iy <O 2 () <0 3 ST L () M <Oy 4 V@] <

Then forallt < ¢+ 1

1< 2
52 m VI @) P+ Av < (VA +2VAC )
i=1

2 2
for a constant A > max {64 (1og % + GOZZC3> + 482 1’0208;14001’03 ; 1}.
1 1

Finally, the proof for Theorem [3.1]is a direct consequence of Proposition [3.7] where we defer the
details to the Appendix.



Algorithm 2 Clipped-SMD
Parameters: initial point x1, step sizes {1}, clipping parameters {);}, ¢ is 1-strongly convex wrt

I
fort =1to 1 do

V f(z;) = min {1, IW?;M} V iz

ree = argmingex {m (Vf(z).) + Dy (2,20))

4 Clipped Stochastic Mirror Descent for Convex Objectives

In this section, we present and analyze the Clipped Stochastic Mirror Descent algorithm (Algorithm
[2) under heavy-tailed noise, with a general domain and arbitrary norm.

We define the Bregman divergence Dy (z,y) = ¢(z) — ¢ (y) — (Vi (y), x — y), where 1 : R? — R
is a 1-strongly convex differentiable function with respect to the norm ||-|| on X. We assume for
convenience that dom (1)) = R?. Algorithm [2|is a generalization of Clipped-SGD for convex
functions to an arbitrary norm. The only difference from the standard Stochastic Mirror Descent
algorithm is the use of the clipped gradient V f(x) in place of the true stochastic gradient v f(zy)
when computing the new iterate z;4 ;.

Prior works such as [[7] only consider the setting where the global minimizer lies in X'. Our algorithm
and analysis does not require this restriction and instead only uses the following initial gradient
estimate assumption from [22]:

(5) Initial gradient estimate: Let x; be the initial point. We assume that we have access to an
upperbound V7 of ||V f(z1)]|, i.e. [V f(z1)|l, < V1. This assumption is justified as follows. If the
noise parameter o defined in assumption (3) is known, we can use the procedure of [21] to estimate
IV f(x1)]],: we take O (In(1/9)) stochastic gradient samples at x1, and let g; be the geometric
median of these samples; we then set V1 := ||g1||, + 100. It follows from [21] that ||V f(z1)||, <
V1 holds with probability at least 1 —0. If the domain contains the global optimum x* (V f (z*) = 0)
and the initial distance ||z; — 2*|| is known, we have the following alternative upper bound that
follows from V f(z*) = 0 and smoothness:||V f(z1)]], = [V f(x1) = Vf(z")|, < L||x1 — z*|.

Convergence guarantees. We first state the convergence guarantee for this algorithm in Theorem
[.1] which works for an arbitrary norm and a general domain which may not include the global
optimum. In this theorem, we assume that we know several problem parameters to show the main
idea of our analysis. In Theorem 4.4} we remove the knowledge of the problem parameters.
Theorem 4.1. Assume that convex f satisfies Assumptions (1), (2), (3), (4) and (5). Let v =
max {log 5;1}; Ry = /2Dy, (z*,21) , and assume that V1 is an upper bound of ||V f(z1)]],.
For known T, we choose \; and n; such that

267\ /7
Y

R Ry ff2r\7V" _ 1 5
Ne =mn = 24Atf>/ —%len{<ry) g ,5(3LR1+V1) .

Then with probability at least 1 — 0

1 T+1 1 1 1 1

1 1—-p p—1 _ 1—-p
A §48R1max{26pT 7oy 7 1 2(3LRy + V1) T w} =0 (T z ) .
t=2
Remark 4.2. This theorem shows that the convergence rate for the known time horizon case is
1—

O(TTP). This rate is known to be optimal, matching the lower bounds shown in [26, 31]]. The
above guarantee is also adaptive to o, i.e., when o — 0, we obtain the standard O(T 1) convergence
rate of deterministic mirror descent.
Remark 4.3. The term V in the above theorem comes from the inexact estimation of ||V f(z1)]],.

If we assume that the global optimum lies in the domain X, we can simply select V; = LR; without
using the estimation procedure, as discussed in (5).



In Theorem 4.1} we use the initial distance R; to the optimal solution to set the step sizes and
clipping parameters. This information is generally not available, but can be avoided. For example,
for constrained problems where the domain radius is bounded by R, we can replace 1 in Theorem
4.1|by R without change in the dependency. However, for the general problem, we present Theorem
4.4, where we do not require knowledge of the constants 7', 0,6 or Ry to set the step sizes and
clipping parameters. However, we still need the mild assumption of knowing an upper bound V; on
IV f(z1)]l,. As discussed in (5), V1 can be estimated with good accuracy when o is known.

Theorem 4.4. Assume that convex f satisfies Assumption (1), (2), (3), (4) and (5). Let v =

max {log £;1}; Ry = /2Dy, (z*,x1), and assume that V1 is an upper bound of ||V f(z1)]|,.
We choose A\, and 1 such that

L
At = max{(52t(1 +logt)®cs) /p (L max lw; — 21| + V1> gl }, and

cl ¢l 2 \—1/p 1 6
= = — 52t(1 + logt ; T— 0,
e 24)\t 24 min {( ( tiog ) 62) 2 (L max;<¢ ||CL‘Z - $1|| + Vl) LCl }

where the absolute constants c1 and co are to ensure the correctness of the dimensions. Then, with
probability at least 1 — §, we have

| T+l 97\ \ 2 .
= Z Ay < (R1 + = <7 + )) max{ (52T(1 + IOgT)QCQ) /p;
T 3 C2

P ~ _,
4R1L+23ﬂL (7 20 )+2V1, Lcl} =0(17).
Co

Sketch of the analysis. In the remainder of this section, we provide a sketch of the analysis for
Theorem [.1] which starts with the following lemma.

Lemma 4.5. Assume that convex f satisfies Assumption (1), (2), (3), (4) and n; <
sequence (x4)y>1 output by Algorithmsatisﬁes the following:
Nt A1 < Dy (2%, 2¢) — Dy (2%, 2p 1) + 0 (&7 — 4, 08) + 1 <a:* — xt,9b>
+ 202 (10212 — B (10712 | Fia]) + 207E 10212 | Fia | + 202 |02

Remark 4.6. In contrast to Remark [3.4] there is a mismatch between the gain A, and the loss
(x* — x4, 0:). Since the distance ||z* — x| and the function value gap A; cannot be related in the
general convex case, we do not obtain the same rate as in the nonconvex case.

< 4L, the iterate

We now define the following terms for ¢ > 1:

Ty =z (ntAt_H + Dy (2", 441) — Dy (z*, ) — 14 <x* — x4, 9£’> —2n? HGin
3
— 2R [ |0312 | Fi- 4) - <W+24Z?7721A3)E (1617 | Foa]

1
2\ max;<t /2Dy (2%, ;) + 16Qn7 A7
for a constant ) > 1. We also define S; := 22:1 Z;. We have the following lemma, which is
analogous to Lemma [3.6]in the nonconvex case.

Lemma 4.7. For any § > 0, let E(J) be the event that forall1 < k <T

where z; :=

k k
1
> zmAiir + 2Dy (2%, 2k41) < 21Dy (27, 21) + log 57T >z (=@, 07)
t=1 t=1
+2szt ot + Z ({202 + g + 2as2ni02 ) 10212 7] ).

(6)
Then Pr[E(0)] > 1 —6.



Algorithm 3 Clipped-ASMD

Parameters: initial point y; = 21, step sizes {n;}, clipping parameters {)\;}, and mirror map ,
where v is 1-strongly convex wrt ||-||.
Fort =1to T do:

Set Qp = t"!‘%

ze = (1— )y + 2.

Vf(2) = min {1, M} V£ ().

Zt41 = argMinge v {m <%f(a:t),x> + Dy (z, zt)}
Yerr = (1 — o) Y + o zeq1.

We now specify the choice of 7; and ;. The following proposition gives a general condition for the
choice of 7, and )\, that gives the right convergence rate in time 7.

Proposition 4.8. We assume that the event E() from Lemma happens. Suppose that for some
¢ < T, there are constants C, Cs, C3, and A such that for all t < ¢

p 2p p
Lam=0 280 () <0 3 (E)7 <G (X)) 4 Ivial < ¥
Then forallt < ¢+ 1

t
D milip1 + Dy (2, wp41) <

i=1

(Rl + 8A01)2

DN | =

for A > max {log% + 260PCy + 2”2];%; 1}.

Theorem [.1] follows from Proposition Both proofs can be found in the Appendix.

5 Accelerated Stochastic Mirror Descent and Extensions

In Section[D]in the Appendix, we also show the convergence and its analysis for Clipped Accelerated
Stochastic Mirror Descent (Algorithm [3). We require the following additional assumption:

(5’) Global minimizer: We assume that V f(z*) = 0.

In other words, we assume that the global minimizer lies in the domain of the problem. This
assumption is consistent with the works of [7 28]. Our analysis readily extends to non-smooth
settings, and more generally to functions that satisty f(y) — f(z) < (Vf(z),y —z)+ G |ly — z|| +

Ly - z||*, Vy,a € X.This condition is satisfied by both Lipschitz functions (when L = 0) and
smooth functions (when G = 0). The key step is to extend Lemma[4.5] The proof follows from [15]
and can be found in the Appendix.

6 Conclusion

In this work, we propose a new approach to design and analyze various clipped gradient algorithms
in the presence of heavy-tailed noise. Our analysis applies to various standard settings, including
Clipped-SMD and accelerated Clipped-SMD for convex objectives with general domains and
Clipped-SGD for nonconvex objectives, and gives optimal high probability rates in all settings. Our
algorithms allow for setting step-sizes and clipping parameters when the time horizon and problem
parameters such as the initial distance are unknown. For future work, since our algorithms have
the limitation of still requiring the knowledge of parameters like L and p, it is of great interest to
investigate the existence of a fully-adaptive method, like Adagrad, that converges under heavy-tailed
noise without requiring the knowledge of any problem parameter. Finally, it would be interesting to
extend our techniques to the setting of variational inequalities under heavy-tailed noise [6].
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A Freedman’s inequality

Lemma A.1 (Freedman’s inequality). Let (X;);>1 be a martingale difference sequence. Assume
that there exists a constant ¢ > 0 such that | X;| < c almost surely for all t > 1 and define

O't = [X2 | X 1,...,X1].Thenforallb>O,F>OandT21

T b2
S x, oo (gp ).
. 2F + 2cb/3

T
> band Zaf <F
t=1

B Missing Proofs from Section 3|

Proof of Lemma[3.3] By the smoothness of f and the update z;11 = ¢ — —V f(z;) we have

f(zeg1) — flze)

L
<V (@), 21 — @) + 5 et — 2|

2

=" <Vf(95t)a %f(xt)> + LTmQ H%f(xt)

— L} 2

= O e VH) S )

= V5 (9 £, 0) + I 07 + ZIE I ) P+ I (9 )00
~ (= EE) po st + ||et||2 + (g - m) (V5(r0),00)

2
(m _ Ln) IV £l + 2101 + (Lnf =) (V7). 07 +02)
—_———

<0

Using Cauchy-Schwarz, we have (V f(z),0%) < L[|V f(z)[|* + 3 HGfHQ Thus, we derive
2 L Ln?
Beva = 8 = (P 9 )+ L 0 4 (L =) (91008

- L L
R O = A T

IA

t L t m t
— LIV F @Ol + = e +(Ln§—m) (VF(0), 0 + 5 |60

IN

3
=LAV £+ Ln 1617 + (Lo? = we) (V. (2),05) + 2 8]

where the third inequality is due to [|6;]|* < 2162 + 2 s

ne < 1. Rearranging, adding, and subtracting E [||t9§‘||2 | .7-}_1} , we obtain the lemma.

— LIV )+ Lm 16217 + (Ln = me) (Vf (), 03) + (Ln? + @) 1ot

|2, and the last inequality is due to

O

Detailed proof of Lemma[3.5] We state the following simple properties of the choice of 7 and A in

Theorem 3.1l We have

(3=

%‘»—lh\’—‘ =

)
(®)
©))



TL ()\) X < 2?418 (10

We will now prove by induction on N that Ey happens with probability at least 1 — %. For

_ . S (N=1)§
N = 1, the event happens with probability 1. Suppose that for some N < T', Pr [Ey] > 1 ——%—.
We will prove that Pr [Ey 1] > 1 — NTE

Since the LHS of @) is non-negative, for £ < N, we have, under the event Ey,

k—1 k—1
Ak < A1+ (L =) S (S (), 0) + In® Y (10717 B o)) )
t=1 t=1

+ YN0 + Lo? Yo [l6017] < 2.
t=1 t=1

From the induction hypothesis and Lemma we have that for all k < N, A, < 2A;. Since the
LHS of () is non-negative, by summing over ¢t from 1 to N we have,

3 N
Ans1 < (n— L Z A CONA RS 7
t=1 t=1

A B

oS (I ) + oo i)

t=1 t=1

c D

The bounds for B and D are straightforward from Lemma [2.1] First, with probability 1, we have
|163]] < 2. By the smoothness of f and the fact that f is bounded below, we have

IV f(zo)ll < V2LA.

Furthermore, when the event E'xr happens, we have

A
IVf(zo)ll < V2LA, < VALA, < 3

Thus, we can apply Lemmaand obtain ||67|| < 46PA'~P and E, [||9§‘||2} < 400P\27P.
Upperbound for B. By (3), when the event £y happens,

N
B =2 or)* < 305 1607022 = sagPerz-gy
t=1

< uUT (%)2” A2 < U4TL (A) A2 < 381

= 256"
Upperbound for D. By when the event E'; happens,

N N
D=Ly E, {Heyuﬂ < LY 4007 N>
t=1 t=1
_ 5A;
< 406PN2PLp?N < 40LT .
< 400PATELTN < 40 ()\) (n)* < 256

To bound A and C, we use Freedman’s inequality (Theorem E]) We define, for ¢ > 1, the
following random variables

70 otherwise.

Thus || Z¢|| < [V f(x4)|| < 24/LA; for all ¢.
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Upperbound for A. Instead of bounding A = (n — Ly®) Y1, (~=V (), 0), we will bound
A = (n—Ln?) Zf’zl (Zy,0y). We check the conditions to apply Freedman’s inequality. First
E, [(n—LnQ) <Zt,9f>] = 0. Further, with probability 1, ||9§L||2 < 2\ and Z; < 2v/LA4,
thus|(n — L®) (Z. 01)| < (n— Ln?) | Zo|| 103 < 4VLAL (n — Ln*) X < 4V/LAmA. Hence,

{(77 — an) (Zy, 0?)} is a bounded martingale difference sequence. Therefore, for constant a and
F to be chosen we have

[

a2
<2e -
= 2o ( 2F ln% + gs/LAln/\a>

‘We choose a such that

> (= Ln*) (Z,0})

al 9 w2 4T
> a and ;Et [((n—Ln )(Z,61)) ] SF]HT

a? ]
2exp [ — =
P ( 2FIn 1T ¢ gx/LAm)\a> o7

which gives

9 0

2)2
a= (;L\/LAln/\—i—\/lGLAW\—FQF) lng.

If we choose F' = 64LA10”)\2’1’772T , we can easily show that a < 7f‘21. Therefore, with
probability at least 1 — T we have

TA,

Fa= {eitherA < 5

N
> (n—Ln?) (Z,0f)| <
t=1

al > AT
or ZEt [((777 Ln?) (Z,0)) } > Flné}.

Also notice that under the event E'ny, we have

SOE (0 1) (200

N N
< S E 1Z0P 1611P) < 4nLay Y [167)7]
t=1 t=1
AT
<GALA0PA2 PN < 64A, LT (%)p Xyt < F < Fln—. (11)

Under En, we have that Z; = —V f(z;) for all t < N. Therefore, when Ex N E4 happens, we
have A = A’ < a.

Upperbound for C. We check the conditions to apply Freedman’s inequality.
First, E, {an’ (||0§L||2—Et [||0;L||2m — 0. Further, with probability 1, [6¥]> <
2\, thus|Ln? (||9;;||2—Et [||9;;||2m < L (4N +432) =  SLA%’.  Hence

{Ln2 <||6’,ZJ I? — E [HH}J ||2} ) } is a bounded martingale difference sequence. Applying Freedman’s
inequality for constants ¢ and G to be chosen, we have

2% (11 a2 w2 al o (2 LT\ 2 AT
oY (101" = B [1031%)) | > cana S8 | (a2 (1o~ pee17])) | < 6 5
t=1 t=1
= zexp < 2G1n 4 f?L)x%%)

Pr
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We choose ¢ such that

0

2
BLN2e 2T

2e —
Xp( 2GIn AL 1

which gives

ALZNA AT
- <§LA2772 + GT" +2G> In =

If we choose G = 256L20p)\4_p774T a simple calculation shows that ¢ <
with probability at least 1 — the following event happens

LS (1oe1® —  flop )| < T2
t=1

or iu«: [(an (161 - &, [nefn?])f] > Gln‘f}.

Notice that when G = 256L2cPA\*~Pn*T, under E we have

Zm (G
§8L>\2n2;Et [| 2o (16217 £ [1621°]) ] < 6273 3B [16217]

t=1

74A81 . we can show that

2T’

Ec = {either C<

<256L20P A Pp*N < G < Gln %. (12)

Therefore, when Ex N E¢ happens, we have C' < c.

Finally, combining all the bounds for A, B,C, D using union bound and selecting A and 7
appropriately to simplify the constants, we obtain the lemma. O

Proof of Lemma[3.6] We have

Elexp (Z0) | For]exp (35 Inf A, + 6122200 A2) E 1077 | Foa )

B fexp (=0 (L0 =) (V0. 07) + Lo (10717 ~E[16¢17 1 Fia]))) | ]

®)

< exp (|3 (o (002 = ) (V100 + 2o (10317 = 8 [l0g1* 1 7)) 1 72| )

(0) 3 u 3 u
< oxp (B | 32 IVl 10017 | Fima| + 5 | S22t ot | 72 )

L exp (3ZLRAE[ |67 | Froa ] + 6125200 NE [ 1671 | Fioa )

= oxp (32 L7 A, + 6222200 B[ 1671 | o)
For (a) we use Lemma|[3.3] For (b) we use Lemmal[2.2} Notice that
E[(Vf(z0),01] = E [I6¢117 — B [I19717 | Foa] | = 0,
and since [|0%|| < 2\, and ||V f(z¢)|| < v/2LA; for an L-smooth function, we have

(Lo = 1) (V£ (o). 0) + I (10717~ E 10" | Fes]) |
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<2n [V (@)l + Lu? (1617 +E 110 | Fia])
<2 ||V S (o) || + 8Ln7 A
<2 A/ 2LA; + 8LnZA2.

Thus z; < T 2Lit+8Ln2/\2. For (c) we use (a + b)> < 2a® + 2b%> and E {(X —-E [X])ﬂ <
E [X?]. For (d), we use IV f(20)||> < 2LA, and [|0¥]| < 2);. We obtain

E [exp (Zf) | ft—l] S 1.
Therefore

E [exp (St) | ‘Ft—l] = exp (St—l) E [exp (Zt) | -/—"t—l]
< exp (Si-1)

which means (exp (S;))¢>1 is a supermartingale. By Ville’s inequality, we have, for all k > 1

1)
In other words, with probability at least 1 — §, for all £ > 1

k
Z Zy < log
t=1

Pr {Sk > log 1} < OE [exp (S1)] < 6.

| =

Plugging in the definition of Z; we have

k k
1
5 >z IV £ (0)|” + > (A1 — 24

t=1 t=1
k
<log 2+ 2 |t
t=1
k
+ 3 (B2 L07 A+ 6122003 + 20 L) E (10717 | Fia ])
t=1

Note that we have z; is a decreasing sequence by construction (see the proof of Proposition [3.7]
below). Hence, the LHS of the above inequality can be bounded by

E E
1
LHS = J ST am (IVF @)l + 2rlisr — 2181 + > (z6-1 — 21) Ay,

t=1 t=2

L

2 5 Z ZiMNt HVf(xt)||2 + ZkAk+1 — ZlAl.
t=1
We obtain the desired inequality. [

Proof of Proposition[3.7} We will prove by induction on & that
1 2
5 Zm‘ IV£(2:)]]? + Apr < (\/Al + 2\/201) .
i=1

The base case k = 0 is trivial. Suppose the statement is true for all ¢ < k < ¢. Now we show for
k + 1. Recall that

1
B 2Ptnt)\t max;<t¢ v 2LAZ + SQtL’I]?)\% .

Zt

Let us choose
G >1
)\tnt vV 2L

17



sz

Qt 2[//]152)\2 =
We have
1
Zt = .
' 201 max;<t¢ v Az + 4012\/ A

Now, note that (z;);>1 is a decreasing sequence. By the induction hypothesis max;<j v/A; <

VAT + 2V/AC,. Hence:
2z 2C) max;<p VA; + 4012\/Z
2k - 2C) max;<¢ VA; + 4012\/Z
20, (\/E + 2\/201) +4C2VA
= 2011 +4C3VA
_ VAL + 4V ACH <9
VAL +2VAC, T

By the choice of A, forall t < k, ||V f(xy)|| < %, we can apply the second part of Lemma to
obtain

621 < 407277
E {HQ;LHQ | ]"t—1} < 400N
Thus,

k
1 2
5%k ; NIV @)™ + zeBrta

1, 3
<mAr+log s+ 2 6t
t=1

)=

+ 37 (B2 L2 A+ 61220103 + 2o L) E (1671 | Fia |)

t

1 k 1 2p
<z1A; + log 5 + 2407 Z LY (/\)
t=1 t

1

k
1 p
+ 400? Z <(32t2At + 627 L A} + 2¢) Lp A} <)\t) ) .

Since £t < 2, we have

k
1
52 IV £ (@) + Ak

k 2p

ZlAl 1 1 2 2 1
—log = + 48077 ) “niA? ( —

. +Zk og§+ o t:177t N

k

1 p
+ 8007 Z <(3ztAt + 62, L7 A} + 1) Lyg A} <A) >
t=1 t

<

AL+ 4VAC, 1 K 1\?
< Aq + 20 (VAL +4VAC ) log = +4802Cy > L)% [ —
oo 0 (VA s ey i

2
k 3 (/AL + 2V AC, P
+8OJ”Z ( ) +i+1 L2A2<1>
—\\ 20 (\ﬁAl T 2\/201) 8Q At
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(®) 1
<AL+ 2/ AVAC + 20, (\/A1 + 4\/201) log 5 +480% C5C

3(\/AT+2\/201) e
20, 4]
<AL+ 2V/AWVAC) +20, (VA +AVAG)) (log o 600p03)
+ 48577 CyC3 + 14007 C
DAr 4 2V AVAC 420 (W+4\Fcl) g +AC?
< (x/E+ 2x/ZCl)

P
For (a), we use (%ﬁ) < CsLnm; and the induction hypothesis.  For (b), we use

S L (/\%) A2 < C3 and Q; > 1. For (c), we have

+ 800”

1 600PCy VA

log — < —
B5tT T SR
480°PCyCs + 14007C3 < ACZ,
since
1 6007Cs\* 48052 CyCs + 14007 C5.
A>64|(log =
= (Og 5T or ) c?
This concludes the proof. O

Lemma B.1. The choices of 1, and A, in Theorem [3.1] satisfy the condition (1)-(3) of Proposition

B A for

o = Yo
1= )
4\/?7
1
02 = ;a
A
C3= ———.
20480Py

Proof. We verify for the first case. The second follows exactly the same. First, we have p > 1 hence

VAT VAL
Vel = 8v/Ly T 4V2y

NeAe = (.

1
Since n; = VSAT; E ,p>1land \; > (\/%) A e

which gives



Finally, we have \, > 32'/PoT 32 hence

p
i T3p1:2 < 1 .
)\t — 320P

Therefore,

T
1 1 A
< —
<72 5390 6472
Ay < Ay
3207 64y2 — 20480,y

O

1—

Proof of Theorem[3.1] Note that n < 1?\}% < 1. We have that with probability at least 1 — 4,

event E(0) happens. Conditioning on this event, we verify the conditions of Proposition We
select the following constants

NN 1 A
1= =3 Cr=—; C3= "y
42y oP 204807~
We verify in Lemma [B.T] that for these choice of constants, conditions (1)-(3) of Proposition [3.7)are
satisfied. Furthermore, we have

1 600PC5\?  4802PCyC5 + 14007Cs
64 ( log

A = 25672,

st %
1 132 A\’ Ay A\ 32
= 64 (log - + 60log =~ 4 14 o2
0 (°g5+60 85 A 2048> * ( 5043 T %018 ) &,
< 25677 = A.

We only need to show that, for all ¢, |V f(z;)|| < 2t. We will show this by induction. Indeed, for
the base case we have ||V f(z)| < v2LA; < 2L. Suppose that it is true for all ¢ < k. We will

prove that |V f(zr+1)]] < % By Proposition [3.7|and the induction hypothesis
2

2
Apr < (VA +2VAG)) < (JAT + ;\g; x 167) < 454,

Thus, we get

A
IVF(@isn)| < V2LAL < VOOLAL < 207
as needed. From Proposition [3.7] we have

T
IO IV @) + Apga < 4541,
t=1

Therefore

1 T 2 90A1 8’7 ﬁ 2-2p P 1-2p 1 2—2p

TZ”W(%)” < e = 7201/A; Ly max (m) T3-2g75-1;2¢/90LA, T52;32v gT5-2 o .
t=1 1

O
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Theorem B.2. Assume that | satisfies Assumption (1°), (2), (3), (4). Let v = max {log %; 1} and
Ay = f(z1) — f*. For unknown T, we choose A and n; such that

1

= I o
)\t:max{( al ) (2t (1+10g)7) "7 07772 90LA1;32éo—(2t(1+1ogt)2)3p_2},

VLA,
o
VA (Zt (1+log t)2> B
" 8/\t\E”Y
Then with probability at least 1 —
1 X 8 =T _p s
7Z||vf(xt)||2 <720 AlLfymaX{ ( ) 21 +10g 7)) 7 7 o T TS,
o) )

D

—1
—5  1-2p

2/90LA, (2 1+ 1ogT)2) s 30h (2 1+ 1ogT)2) = }

We again verify the conditions of Proposition [3.7] for the choices of 7, and A, in Theorem [B.2}
Lemma B.3. The choices of n, and )\, in Theorem [B.2] satisfy the condition (1)-(3) of Proposition

@for

o _ VA
1 4\/577
1

02 = ;a
Ay

Cs = 204807~

The proof utilizes the following fact:

Fact B.4. We have Z)C:il m <1

Proof. First, we have p > 1 hence

1-p

VA, (Zt (1+log t)2) v
8\/Z'y
= (.

ntAtVQL = V2L

< Y&
T 4V2y

1 1-p
P

i=r 50T 3p—2
Since 7, = %,p> land \; > (\/?Tl)p ' (2t(1+logt)2) R
t

1

VA (2t (1+1log t)z) v
8V Ly

vV Al (Qt (1 +1Ogt)2>m S,Y 9 37;%12
(2t (1+ log?) ) o7
8\/Z’)/ AV LAl

p—1
/\t

77t>\f =

Y

L )

which gives



Finally, we have \; > 3270 (215 (1+log t)2> = hence

LY (2t (11 t)2>3p%2 <2 (13)
— O, .
N & = 3207
Therefore,
T p T p 2
1 1 =2 (/A
SL(— Z <2t( —Hogt))3 & !
t=1 At =1 A 8V Ly
T P _p
1 1 o\ sz Aq
=N"r—— (=) (2t(1+1logt
; 2t (1 4 logt)” <)\t) ( ( 2é) ) 64+2
T
1 1 A
<M L (b )
; 2t (1 + log t)? 3207 6472 Y@
1
~ 3200 6472 Z 2t (1+ log t)?
1 A A
: by Fact
= 3207 6472 — 2048077 (by Fact[B-4)
O

Proof of Theorem|B.2] Note that

1—p

VAL (2t (1+ logt)z) e
"= SAt\/Z’Y
(2t (1+log t)2) W
16 Ly+/90

1

< —.
— L

Note that with Lemma [B.3] verifying the conditions of Proposition [3.7]

theorem 3.1} We have that with probability at least 1 — 4, event E(9)
with probability at least 1 — §:

T
1
5 Z V@I + Axpr < 454,

Since 7, is decreasing, we have

This means that

T 1
8y \r! 2\ 3—2
z:: IV ()] < 720 AlL'ymaX{ <\/L7A1> (2(1+logT) )

1-2
3

90LA1( (1+1logT) ) &=

22

is identical to the proof of

) from [3.7| happens. We have

v

2-2p
opr— 1T3P

P
3p—2

72,3250 (2 1+ logT)z) !

2—2p

T3p—2

O

}.



C Missing Proofs from Section [4]

Lemma C.1. Suppose that n; < ﬁ and assume f satisfies Assumption (1), (2), (3) as well as the
following condition

fly) = f(2) <(Vf(@),y —2) + Glly -zl + é ly ==, Vy.xeX. (14)
Then the iterate sequence (x)y>1 output by Algorithmsatisﬁes the following:
A1 <Dy (%, 24) — Dy (@, 2441) 4+ me (2" — 24, 0)) + 1y (2% — 4, Hf>
+ 202 (16212 — B (16712 | Fir ] ) + 207E 16712 | Foa | + 202 |61} + 26207,

Proof. By condition (T4) and convexity,
f@e1) = f(@7) < f(@eq1) = f (@) + f @) = f(27)

condition (T4) convexity

L

<AV (2r) w41 — 24) + 3 |zt — 241 + G llwe = za || + (VS (24) , 24 — %)
L

=(Vf (), 2141 —2%) + 3 |z — 2er1l” + G llze — veral|

* — * L
= (B,0" — o) + (V@) @i =) + 5 e =z |+ Gl — @]
By the optimality condition, we have

<77t%f(zt) + VoDy (241, 2¢) 2" — $t+1> >0
and thus
<77tvf($t)a Le4+1 — $*> <(VuDy (@11, 24) , 2" — 441) -
Note that

(VaDy (T41,70) , 2" — 2p41) = (VY (2441) — VY (21) , 27 — 2441)
=Dy (2%, 2¢) — Dy (T441,7¢) — Dy (2%, 2441) -

Thus
M <§f($t)7$t+1 - $*> < Dy (2%, 2¢) = Dy (27, 241) — Dy (Te41,7¢)

<Dy (2%, 2¢) — Dy (2", 2441) [

2

where we have used that Dy, (2411, 3¢) > 5 [|2441 — a¢||? by the strong convexity of .

Combining the two inequalities, and using the assumption that Ln; < %, we obtain
A1 + Dy (2%, 241) — Dy (27, 2¢)

Lo

1
5 e = wepa||” + G |z — 2o || — 3 ler1 — 2|

< b, —wq1) +
N 3
< (O, 0% — 2¢) + 0 (O, T — Tp41) — 3 lzt41 — xtHQ + G [|ve — g |
< e (B, " — o) + 07 |0 + 2607
2 2
<n (0 + 0y, z* — xy) + 207 |63 + 207 ||9?H* +2G%n;.

This is what we want to show. O

Proof of Lemma We have
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3
Blexp (20) | Fioa] x oxp (3o + 24220008 B [10012 1 7ica) )

ZE [exp (=1 (@ =0 0) + 202 (10217 = E[16717 1 Fics]))) | Focs]

e (B[] (s (o = ) 4 202 (012~ £ [10012 1 7)) 1 7200 )

(c) 3 * u u
<o ( (Gt e = P 10012 | Fica] + ol [l | 7] ))

E
<exp(( 2 o ) + 20620002 ) B (16717 7ica) )

< exp ( = 4242 m) E[llo317 | fHD .
For (a), we use Lemma For (b), we use Lemma[2.2] Notice that

E [ — 0, 67)] = E 16712 —E 1612 | Feea] | = 0,

and since ||0}]|, < 2, we have
* u 2 w2 w2
me (@t = w0, 0 + 207 (10312 — B 16712 | Foa])|

* u u||2 w2
< mella — @l 1071 + 207 (1617 + B 10712 | Fier ])
< 2 [lo* — @il + 1607 A

< 20 A/ 2Dy (2%, 2) + 16777

Thus, z; < le\t\/sz(;*7%”16”3/\%. For (c), we use the inequalities (a + b)? < 2a? + 2b* and

E [(X —E[X])ﬂ < E [X?]. For (d), we use the fact [|0]|> < 4)? to get E [[|6%]|* | fH} <
AN’E [||9,?||Z | .7-},1}. For (e), we use the fact that ||6}'||, < 2), and

*
— 1
2 ||(E* o xt” § Nt ||fE th § )
2m:di/2Dy (2%, @) — 2N

We obtain E [exp (Z;) | Fi—1] < 1. Therefore
Elexp (S¢) | Fi—1] = exp (Se—1) Efexp (Z1) | Fi—1] < exp (Si—1).

which means (exp (S;))¢>1 is a supermartingale. By Ville’s inequality, we have, for all k > 1

Pr {Sk > log H < OE [exp (S1)] < 0.

In other words, with probability at least 1 — §, for all £ > 1

- 1
Z Z; <log —.
0
t=1

Plugging in the definition of Z; we have

k k
Z ZtntAt+1 + Z (Zth/; ((E*, $t+1) — ZtDu; ($*7 l’t))
t=1 t=1
k

. k
glogg + E 2y (@ — x4, 67) 42 E zn; Hﬁin
t=1
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3
+ Z ((tant Y] + 2427 f)\f) E [||92‘||i | ]"t_1]) i

Note that we have z; is a decreasing sequence, hence the LHS of the above inequality can be bounded
by

k k
LHS = ZZf'r]fAt+1 + 2Dy (2%, Tp1) — 21Dy (2%, 21) + Z Z—1 — 2i) Dy (2, 1)
t=1 t=
k
> Z 2 A1 + 2Dy (27, 2pq1) — 21Dy (7, 21)
t=1
We obtain from here the desired inequality. O

Proof of Proposition We will prove by induction that on &

k

S nilig1 + Dy (a5 wpp1) < 5 (Ri+8ACH)? .
=1

N —

The base case k = 0 is trivial. We have D, (z*,21) = RT?. Suppose the statement is true for all
t < k < £. Now, we show for k£ + 1. Recall that

Zt =

1
2\ max;<; /2Dy, (27, ;) + 16QN7A7

Let us choose Q = A > 1. By the induction hypothesis, we have max;<; /2Dy, (z*,z;) <
Ry 4+ 8AC1, which implies
1 1

Zk 2> =

20 Ak (R1 + 8A01) + 161477,%)\% 2C, (R1 + 16A01)'

For an upperbound, since /2Dy, (2*,z1) = R1, we have:

1
< .
=90 (Ry + 8AC)

Since zy, is a decreasing sequence, we have

k k
1
zkE A1 + 25Dy (2%, Tp41) < 21Dy (2%, 21) + log — +E ztm<x — @, 0 >+2§ ZW?H@Hi
t=1

t=1
442 w||2
((2Zt77t By + 247 t)‘t> E |:||9t I | ftl}) ‘

By the choice of A\, for all ¢ < k, ||Vf(xt) I, < 7* we can apply Lemmaand have
[621], < 407X s
B (67 | Fioa] < 40072377,

Thus, we have

k

2 Y Ay + 2Dy (2%, Tx41)
=1

k k
1
<z1Dy (2", z1) + log 5T 4 Z ztntU”AT”\/ 2Dy (z*,2¢) + 32 Z 2o AT
t=1 t=1
3 _
+ 402 <<2ztm e + 2422 fAf) oP N P)
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1 2C; (Ry +8AC)) o? 1\? 16C252p 1\*
<Dy (z* log = — s —
<z1Dy (", 21) + og 5+ Cr (Rr 1 8AC)) ; " +01(R1+8A01); »

%, 3 6C} ( 1 )p
+40 ———-—+ -+ i \r
((Jl (B +8AC1) 8  C2(R, + 8AC1)2 ’ Z At

t=1

k
1

R% 1 20.2130203
< log = + 207Cy + 22258 | o450
SI(CiR, +8ACY) ToBg TRt o Aoty
R2
1

< A
SI(CiR, + 8ACT) T

P 2p P
where for the last inequality we use Zle (}%) < Cs and (/\%) < (s (/\%) . We obtain

k

RZ
A D, (z* <20 (R, + 16AC 1 A
;nt t41 + Dy (2%, 2p41) < 2C, (R + 1) (4(C’1R1+8AC’12)+ )

1, 4AC?R? 9
=z —— 1L +24 16A
2R1+01R1+8A012 +2A (C1Ry + 16ACY)

1
< 53? +6AC R, + 32AC?
1 2
< 3 (R1 +8ACY)".
O
Proof of Theorem@.1) Note that our choice of 7 ensures n < £ - Irr < 7p- We have that with
probability at least 1 — 4, event F(§) happens. Conditioning on this event, inwe choose
Ry v gl
Ci=—; = = ;o A= 3y.
LT o4y Y27 %6007 3T 26Top 7
We have
Aene = Ch

1 20°2%P
max{log§ + 260PC5 + M; 1}

A
‘We only need to show that for all ¢

A
IVF @)l <5

We will show this by induction. Indeed, we have

A
Vi@l < Vi< 5

Suppose that it is true for all £ < k. We prove that

A
IV kel < =5

lzkt1 — x*|| < /2Dy (2%, xp4+1) < R1 +8ACT = 2R;.

26
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Thus
IVf(@rsD)ll S IV F(@rsr) = V@), + V(1) = V@), + V()]
< L||xgsr — ||+ L |lz1 — 2™ + V1

A
<3LR, +V, <2kt

as needed. Therefore from Lemmal4.7] we have
T

1Y Avpi + Dy (¢%, 27041) < 2R],

t=1

which gives

T+1 2
1 2R _
O A< T —asRy max{QG%Tlp”m
"
t=2

p—1
P

;2 (3LR1 + Vl) T_l’y} .

O

Theorem C.2. Assume that f satisfies Assumption (1), (2), (3), (4) and (5). Let v = max {log %; 1};
Ry = /2Dy, (z*, x1) assume that V1 is an upper bound of |V f(z1)||,. For unknown T', we choose

1/p

52t (1 +logt)?

A; = max ((—&—0g)> 0;2(3LRy + V1) p, and
Y

o P Ru (5215(1 +logt)?
' 52t (1 + logt)”

-1/
= = — min ' _1'1(3LR +vy) !
T2y 24y ~ ) LTV

Then with probability at least 1 — 0
T+1

1 1 _1-p 2 p—1 _1 ~ 1-p
TZAt §48R1max{52PT » (1+logT)? oy » ;2(3LR1+ V)T ’y} :O(T B )
=2

Proof. We can follow the similar steps. Notice that (1)) is a decreasing sequence. We also use Fact

[B-4Jto verify the second condition of Proposition4.8] The proof is omitted. O
Proof of Theorem@-4] Note that n; < -%-. We have that with probability at least 1 — 4, event E(6)
happens. Conditioning on this event, in We choose
o 1 1 207
C1=—; =—y (C3=—; A= —
YT TP T %60, 0T B2ey L

We verify the conditions of Proposition 48]
Ay = Cq

(1) < e o
A/ T 52t(1 4 logt)2cy — 26c2 2

t=1

i 2P< 1 i p<C ip
) T B2te \N) T T\

1 202 CyC 1 P P
max{log(S + 260PCy + UAQS;I} :max{log6 + 7 + 0;1} <A,
C2 C2

2p ¥
where we have QUA% < 202PC5C5 x 525 < ‘;—2 Also, note that

IVF(@)ll < IVf(x) = V@)l + V()]

A
< Ly =z, + V@)l < 5
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Therefore, from Lemma[4.7] we have
T

nr Z Aip1+ Dy (2%, 2741)

t=1

IN

1
5 (Bi+ 8ACH)?

2
1 c1 20P
= — R _— —_—
2( 113 <7+ Cz))

which gives

T+1 2
1 1 c1 20P
—E AN < — R — —

T t_2T77T(1+3(7+c >)

t=2
2
= Ticl (R1 + %1 (fy + 2;5)) max{(SQT(l + logT)2cQ)1/p;2 (Lrl_n<a%( |lz; — 1| + V1> ,g} .
Note that
i — x| <l — 27| + [lor — 27|
<2+ (v + 26";)
which gives us the final convergence rate. O

D Clipped Accelerated Stochastic Mirror Descent

In this section, we extend the analysis of Clipped-SMD to the case of Clipped Accelerated Stochastic
Mirror Descent (Algorithm [3). We will see that the analysis is basically the same with little
modification. We present in Algorithm the clipped version of accelerated stochastic mirror descent

(see [13]), where the clipped gradient V f(x;) is used to update the iterates in place of the stochastic
gradient V f(z;).

We use the following additional assumption:

(5°) Global minimizer: We assume that V f(z*) = 0.

Theorem D.1. Assume that f satisfies Assumption (1), (2), (3), (4) and (5°). Let v =
max {log %; 1}; and Ry = \/m

1. For known T, we choose a constant ¢ and \; and n; such that

4(T+1)(M)%o—

~

’yLRl ’

¢ = max 104;

A=y 6(t+1) t+1 \ ~

1 R {4(t+1) t+1 (26T)_1/p _1}
i = min ; — o .

cRiyLoy _ X{lO‘*RwL. T+1 (26T>1/p0}

T 3¢y2Lay | 24y 10°RAL T+1\ ~
Then with probability at least 1 — 0

f(yrs1) — f (2*) < 6max {104L72Rf(T F1)72 4R (T +1)7 (2617 VL?O} .

2. For unknown T, we choose c;, Ay and 1y such that

1
4(t+1) <452t<1fylogt>2)5 o

YL Ry ’

¢ = max { 10%;
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4 2 1/17
ciRyyLoy 10°RyyL (5215 (1+1logt) > o

)\ = =
! 8 S EVTONE D ~
2 -1/p
_ 1 B &min 4(t+1) (52t(1+logt) i
= 3c;y2 Loy 24y 104 R~ L’ %

Then with probability at least 1 —
* 47 2p2 -2 -1 2\ 5 _p=1
Flyri1) — f (z )<6max{10 Ly2R3(T +1)"24Ry (T + 1) (52T(1+1og:r) ) V' a}.

Remark D.2. One feature of the accelerated algorithm is the interpolation between the two regimes:
1—

When o is large, the algorithm achieves the O (TTP) convergence rate, which is the same

as unaccelerated algorithms; however, when o is sufficiently small, the algorithm achieves the

accelerated O (T*Q) rate.

We also start the analysis of accelerated stochastic mirror descent with the following lemma.

Lemma D.3. Assume that f satisfies Assumption (1), (2), (3), (4) and n; < ﬁ the iterate
sequence (xy)y>1 output by Algorithmsatisﬁes the following

2 (f () — S (a)) - 200

<o (0,2 = 20) + (0,0 = z0) + 20 (110712 —E 10713 | Foa] ) + 207 |61

(f (ge) = £ (27)) + Dy (27, 2641) — Dy (27, 2)

2 U
"+ 22E (162 Fiea]

Proof of Lemma|D.3}] We have
fer) = f @) = [ (yer) = [ @) + f (@) = f(27)

smoothness convexity

L
<AV (2e)  Yeg1 — ) + b lyer1 — $t||2

+ o (Vf(ze), 20 —2") + (1 — o) (f (we) — f (7))
=1 = a)(Vf (@), y — 20) +a (Vf (1), 2001 — )

convexity

+ 58 o — 2+ (- ) (F (20) ~ £ (2°))

<X =) (f (W) = f @) + (1 =) (f (1) = [ (7))
. = N, Laf 2
+ oy (O, " — 2441) + 4 <Vf($t)72t+1 -z > + 5 |ze41 — 2|
< (X —a) (f (ye) = f (@) + (O, 2" — 241)
~ 2
+ oy <Vf($t), 241 — 96*> + % lzt+1 — Zt||2 .
By the optimality condition, we have

<’l7t6f(l't) + va’/’ (Zt+1, Zt) ,.’ﬂ* — Zt+1> Z 0

and thus
<77tvf($t), Zi41 — $*> <(V:Dy (2t41,2t) s " — ze41) -
Note that

<VzD1p (Zt+17zt) ,xt — Zt+1> = <V1/1 (Zt+1) -V (Zt) ,xt — Zt+1>
=Dy (2%, 2¢) = Dy (241, 2¢) — Dy (27, 241) -
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Thus
Nt <6f($t)7 Zt41 — $*> < Dap ($*7 Zt) - Dw (ﬂf*a Zt+1) - Dw (Zt+17 Zt)
1
<Dy (2%, 2) — Dy (2%, 2441) — 3 I2e11 — 2]

where we have used that D, (2,41, 2¢) > % |zt 41 — 2t ||2 by the strong convexity of ). We have

F i) = F (@) < (1 =) (f (ye) = f(27)) + (0, 2% — 241)

fon N lon N La% lon 9
D - %D s s 1 — 2.
+ — (z*, 2) . (%, 2041) + ( 5 277t) ze4+1 — 2]l

Dividing both sides by and using the condition Ln, oy < 5, we have

% (f (1) = £ (@) + Dy (2", 2041) = Dy (2", 2)

t

1—« * *
s%ﬂ(ﬂyt)fﬂx )+ e (01, 2" — 20)
1 — Ln«
+ 0 (01, 26 — 2e41) — % 241 — Zt”Z
(1-a . .
<L) (7 ) £ @)+ (0”2
I 1
2(1 — Lnoy)
l-a * u *
S%tt)(f(yt) = J @) + e (O + 07,27 — z1)
+ 202 1672 + 207 || 6}
as needed. :

Similarly to the previous section, we define the following variables

Z =z (” (F () — £ @) = 70 (£ () () 1+ Dy (2%, 2241) — Dy (27, 22)

Qi Qi

— (), 2" = =) — 20 |6}

u 3 u
— 22K (|63 | Fi 1}) —(8A2+24z§nzu?)n<:[|et 1?1 Fia]
t

where z; =

1
2\ max;<¢ /2Dy (2%, x;) + 16Qn7 A7

for a constant ) > 1. We also let S; = Zle Z;. Pollowing the same analysis as in previous
sections, we can obtain Lemma [D.4] and Proposition [D.5] for which we will omit the proofs here.
The only step we need to pay attention to when showing Lemma [D.4]is when we bound the sum

k 24y 2 (1 — o)
SO () — 7 @) — AT (o)

(2
=1 t t

1_
If we assume "* L> "‘(047(“)

since z; is a decreasing sequence and «v; = 0, we can lower bound
the above sum by the last term Z£™ (f (yx+1) — f (2)), which gives us the desired inequality.

Lemma D.4. Assume that for all t > 1, 0, satisfies % > %:at) For any 6 > 0, let E(6) be
the event that forall 1 < k <T

T () = £ (@) + 2Dy (2 a041)
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k k
1
<z Dy (z%,21) + logg + Zztnt <9€* - xt,9§> + 2Zzt77t2 HG?Hi

t=1

k
+y ((22mt + g 2 ;uz) E |l | ]:tl]) .
t=1

Then Pr[E(6)] > 1 — 4.

Finally, we state a general condition for the choice of 7, and A;, which follows exactly the same as
in Proposition 4.8] The proof for Theorem[D.T]is a direct consequence of this.

Proposition D.5. We assume that the event E(§) from Lemma happens. Suppose that for some
£ < T, there are constants C and Cs such that for all t < {

p 2p p
L =C 2.5, (AL) <Gy 3. (%) <Oy (%) ;4 V@), < A
Then forallt < {41

% (f (yesr) = f(27)) + Dy (2%, 2041) < 5 (R +8A01)

| —

for A > max {log% + 2607C4 + %; 1} ,

Proof of Theorem|[D.1] 1. Note that 1, < Wle < 57+ and

M1 _ 2
a1 8cy?L
ne (1 — ay) _ (t+1)—-1)
o 8cy?L

thus Zt—’ll > 2:(1=at)  We have that with probability at least 1 — J, event E(6) happens.

- (e 7
Conditioning on this event, in[.8| We choose
Ry
— . ) = L; C3 = L;
260P 26T 0P
We can verify the conditions of Proposition@ similarly as in previous section for these choices of
Cl, Cg, and Cg.

We will show by induction that for all ¢t > 1, |Vf(z)|, < &
max {[[z; — 2|, lye — 2*[| ;|2 — 27|} < 2R

= 3.

and

For t = 1, notice that 1 = y; = 2;. Thus, we have

IV fa)l. = IV SG) = TS @], < LRy < 5

Now assume that the claim holds for 1 < ¢ < k. By Proposition[D.3] we know that

2
2 £ (gopr) — F (2°) + [ 2rgr — 27]% < ARZ.

Furthermore
lyk1 — 2" < (1 — ) lye — 2" + e [|2k41 — 27| < 2Ry
[ohr1 — 2| < (1 —ar) |Yes1 — $*|| +ag [[zp1 — 2" < 2Ry

Okt1 2
< 1’ l—ap41 ~ k

For k > 1 we have 41 = <5 S 2041 and o < 2at+1. Hence,

=
IVf(zres)ll, < NIVFf(zrs1) = Vf(yk+1)||* + IV (Y1) = V"),
< L@ksr — yrsr | + V2L (f Wrtr) — f (27))

L — L
g |Thg1 — zpga | ey Lag

1— a1 2n;

31



3
<ALR 2L 49 /2R Loy
1-— [077ER} 2

/3
< 8’}/LR104H_1 +3 ic’yLRlOéH_l

/3
S (8 +3 EC)Rl’}/LOéhLl

16(8 +3,/3c) A den
2c - 2

as needed. Therefore, we have

o (F lyren) = £ () + Dy (a7 o) < 2R3

which gives
< QR%OZT
ST
4 2 p2 -2 -1 1 p-1
= Gmax { 10' L RY(T +1)7% 6R, (T + 1)1 (267)7 77 o}

fyrs1) — f(2¥) = 6Rfcy2La%

2. Following the similar steps to the proof of Theorem and noticing that (¢;) is a increasing
sequence, we obtain the convergence rate. O
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