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Abstract

In this work, we study the convergence in high probability of clipped gradient
methods when the noise distribution has heavy tails, i.e., with bounded pth
moments, for some 1 < p ≤ 2. Prior works in this setting follow the same
recipe of using concentration inequalities and an inductive argument with union
bound to bound the iterates across all iterations. This method results in an
increase in the failure probability by a factor of T , where T is the number of
iterations. We instead propose a new analysis approach based on bounding the
moment generating function of a well chosen supermartingale sequence. We
improve the dependency on T in the convergence guarantee for a wide range
of algorithms with clipped gradients, including stochastic (accelerated) mirror
descent for convex objectives and stochastic gradient descent for nonconvex
objectives. Our high probability bounds achieve the optimal convergence rates and
match the best currently known in-expectation bounds. Our approach naturally
allows the algorithms to use time-varying step sizes and clipping parameters when
the time horizon is unknown, which appears difficult or even impossible using
existing techniques from prior works. Furthermore, we show that in the case of
clipped stochastic mirror descent, several problem constants, including the initial
distance to the optimum, are not required when setting step sizes and clipping
parameters.

1 Introduction

Stochastic optimization is a well-studied area with many applications ranging from machine
learning, to operation research, numerical linear algebra and beyond. In contrast to deterministic
algorithms, stochastic algorithms might fail, and a pertinent question is how often does failure
happen and how to increase the success rate. These questions are especially important in critical
applications where failure is not tolerable, or when a single run is costly in time and resources.
Fortunately, the standard stochastic gradient descent (SGD) algorithm has been shown to converge
with high probability under a light-tailed noise distribution such as sub-Gaussian distributions
[23, 12, 27, 14, 11, 10, 18], which gives strong guarantee on the success of single runs. However,
recent observations in popular deep learning applications, such as training attention models [33]
and convolutional networks [30], reveal a more challenging optimization landscape: the gradient
noises follow heavy-tailed distributions, where the variance may be infinite [29, 33, 9], whereas
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the standard light-tailed setting assumes that all the moments are bounded. Heavy-tailed gradient
noises can cause algorithms like SGD to fail, and this mismatch between theory and practice has
been suggested to be one of the reasons for the strong preference of adaptive methods like Adam
over SGD in modern settings [33].

In this work, we consider the setting of heavy-tailed noise proposed by Zhang et al., (2020) [33],
where the (unbiased) gradient noise only has bounded pth moments, for some p ∈ (1, 2]. While
standard SGD can fail to converge when the variance is unbounded, i.e. when p < 2, [33] show that
SGD with appropriate clipping (or Clipped-SGD) converges in expectation under heavy-tailed noise,
where the convergence rate depends on O

(︁
1
δ

)︁
if δ is the targeted maximum failure probability. It is

more desirable, however, to obtain convergence results in high probability, where the convergence
rate depends instead on O(log 1

δ ), which gives better guarantees for single runs.

Recent follow-up works [2, 28, 19] show that variants of Clipped-SGD in fact converge with high
probability. This is a pleasing result, extending the earlier work by [7] for p = 2. However,
there are several shortcomings of these results when compared with the corresponding bounds in
the light-tailed setting. First, the clipped algorithm uses a fixed step size and a fixed clipping
parameter depending on the number of iterations, which precludes results with unknown time
horizons. Secondly, the convergence guarantees are worse than the light-tailed bounds by a log T
factor, even for fixed step sizes and clipping parameters. These issues beg a qualitative question:

Is heavy-tailed noise inherently harder than light-tailed noise?

In this work, we answer the above question for Clipped-SGD and the general clipped (accelerated)
stochastic mirror descent (Clipped-SMD) algorithm. We give an improved analysis framework that
not only gives tighter bounds matching the light-tailed noise setting, but also allows for step sizes
and clipping parameters for unknown time horizons. Furthermore, we show that this framework is
applicable to various settings, from finding minimizers of convex functions with arbitrarily large
domains using (accelerated) mirror descent, to finding stationary points for non-convex functions
using gradient descent.

1.1 Contributions and Techniques

Our work addresses several open questions posed by previous works including handling general
domains and dealing with an unknown time horizon under heavy-tailed noise. Qualitatively, we
close the logarithmic suboptimality gap and achieve the optimal rate in several settings. More
specifically:

− We demonstrate a novel approach to analyze clipped gradient methods in high probability that is
general and applies to various standard settings. In the convex setting, we analyze Clipped-SMD
and clipped stochastic accelerated mirror descent. In the non-convex setting, we analyze Clipped-
SGD. Using our new analysis, we show that clipped methods attain time-optimal convergence in
high probability for both convex and nonconvex objectives under heavy-tailed gradient noise. In the
convex setting, we obtain an O

(︂
T

1−p
p

)︂
convergence rate for arbitrary (not necessarily compact)

convex domains for Clipped-SMD and O
(︂
T

1−p
p σ + T−2

)︂
for accelerated Clipped-SMD, where

σ is the noise parameter. These rates are time-optimal and match the lower bounds in [26, 31].
In the nonconvex setting, we obtain the optimal convergence rate of O

(︂
T

2−2p
3p−2

)︂
for clipped-SGD.

This bound is also time-optimal and matches the lower bound in [33]; it also complements the
in-expectation convergence of clipped-SGD provided by [33].

− Previous works for heavy-tailed noises follow the recipe of using Freedman-type inequalities
[4, 3] as a blackbox and bound the iterates inductively for all iterations. This process incurs an
additional log T dependency in the final convergence rate; in other words, the success probability
goes from 1 − δ to 1 − Tδ. The step sizes and clipping parameters of this approach depend on
the time horizon T to enable the union bound and induction across all iterations in the analysis,
excluding the important case when the time horizon is unknown. Our whitebox approach forgoes the
aforementioned induction, not only circumventing the log T loss but also allowing for an unknown
time horizon. We further show that our analysis allows for a choice of step size and clipping
parameters that do not depend on generally unknown parameters like the noise-parameter σ, the
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failure probability δ, and the initial distance to the optimum, all of which appear impossible using
only the techniques from prior works.

− Our whitebox approach analyzes the moment generating function of a well chosen martingale
difference sequence to obtain tight rates for stochastic gradient methods. This approach is closest to
the work of [18], which only work in the light-tailed noise setting. In contrast to the light-tailed noise
setting where all the moments are well controlled, the heavy-tailed setting often requires algorithms
to incorporate gradient clipping for controlling the possibly infinite moments. However, this makes
the gradient estimate biased and requires more careful attention to control the bias propagating
through the algorithm. Naively applying the technique in [18] is not enough to handle heavy-tailed
noise. Rather, as will be shown in our analysis, we introduce a novel history-dependent weights for
the martingale sequence that is able to cope with the propagating bias term of clipped methods for
heavy-tailed noise across various settings.

1.2 Related Works

High probability convergence for light-tailed noises. Convergence in high probability of
stochastic gradient algorithms has been established for sub-Gaussian noises in a number of prior
works, including [23, 12, 27, 14, 11, 10] for convex problems with bounded domain (or bounded
Bregman diameter) or with strong convexity. Other works [17, 20, 16] study convergence of variants
of SGD for nonconvex objectives, where they consider sub-Gaussian and sub-Weibull noises. The
most relevant to ours in this line of work is the one by [18], where a whitebox approach is employed
to obtain tight rates for stochastic gradient methods in the light-tailed noise setting. However, their
technique is not directly applicable in the heavy-tailed noise setting, where we need to introduce
new ideas to handle the biases introduced by gradient clipping.

High probability convergence for noises with bounded variance and heavy tails. The design
of new gradient algorithms and their analysis in the presence of heavy-tailed noises has drawn
significant recent interest. Starting from the work [25] which propose Clipped-SGD to handle
exploding gradients in recurrent neural networks, the recent works [30, 29, 33, 9] give new
motivation for clipped methods in the context of convolutional networks and attention deep networks
that attempts to explain the dominance of adaptive methods over SGD in practical modern scenarios.

While the convergence in expectation of vanilla SGD has been extensively studied [5, 23, 13, 18],
only recently has the convergence of Clipped-SGD with heavy tailed noises been closely examined.
There, [33] first show the convergence in expectation of Clipped-SGD for nonconvex functions
and provide a matching lower bound. In the convex regime, several works with different clipping
strategies for the case of p = 2 have shown high probability convergence for smooth problems
with bounded domain [22, 24], smooth unconstrained problems [7], and non-smooth problems [8].
A variant of Clipped-SGD that utilizes momentum [2] has also been shown to converge with high
probability for bounded pth moments gradient noise. However, the analysis in [2] requires a strong
assumption which implies that the true gradients are bounded, a restrictive assumption that excludes
objectives like quadratic functions.

More recently, [28, 19, 34] give nearly-optimal convergence rates for several Clipped-SGD variants.
These works follow the recipe of using Freedman-type inequalities [4, 3] as a blackbox and bound
the iterates inductively for all iterations, which incur an additional log T dependency in the final
convergence rate. We show in our work that existing convergence rates can be tightened up and
improved. Tight lower bounds for the optimal convergence rate have been shown by [26, 31] for
convex objectives and by [33] for nonconvex settings. In both cases, our paper provides optimal
convergence guarantees.

In a related but different line of work, [32] show that vanilla SGD can converge with heavy tailed
noise for a special type of strongly convex functions, and [31] show that stochastic mirror descent
converges in expectation for a special choice of mirror maps, although only for strongly convex
objectives with bounded domains.

2 Preliminaries: Assumptions and Notations

We study the problem minx∈X f(x) where f : Rd → R and X is the domain of the problem. In
the convex setting, we assume that X is a convex set but not necessarily compact. We let ∥·∥ be an
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Table 1: Previous and new results for high-probability convergence (with failure probability δ) of clipped SMD
and SGD under heavy tailed noise: E[∥ˆ︁∇f(x)−∇f(x)∥p∗ | x] ≤ σp for some p ∈ (1, 2], where ˆ︁∇f(x) denotes
the stochastic gradient at x for the objective f . For the convex setting, the error bounds are for the optimality
gaps 1

T

∑︁T
t=1 f(xt)−f∗. For the nonconvex setting, we bound the gradient norm 1

T

∑︁T
t=1 ∥∇f(xt)∥2. Here,

Õ (·) hides polylog T factors. Note that, for simplicity, we do not compare against results in more specialized
settings such as bounded domain or bounded gradients, as well as other variants of clipped SGD.

Assumptions Convex Setting (Clipped-SMD) Non-convex Setting (Clipped-SGD)

Lower bound p ∈ (1, 2] Ω

(︃
T

1−p
p

)︃
[31] Ω

(︃
T

−2(p−1)
3p−2

)︃
[33]

Previous

high-probability

results

Known T ˜︁O(︃
T

1−p
p

)︃
[28] ˜︁O(︃

T
1−p
p

)︃
[28]

Our results
Known T O

(︃
T

1−p
p

)︃
(Thm 4.1) O

(︃
T

2−2p
3p−2

)︃
(Thm 3.1)

Unknown T ˜︁O(︃
T

1−p
p

)︃
(Thm 4.4) ˜︁O(︃

T
2−2p
3p−2

)︃
(Thm B.2)

arbitrary norm and ∥·∥∗ be its dual norm. In the nonconvex setting, we take X to be Rd and consider
only the ℓ2 norm.

2.1 Assumptions

Our paper works with the following assumptions:

(1) Existence of a minimizer: In the convex setting, we assume that there exists x∗ ∈
argminx∈X f(x). We let f∗ = f(x∗).

(1’) Existence of a finite lower bound: In the nonconvex setting, we assume that f admits a finite
lower bound, i.e., f∗ := infx∈Rd f(x) > −∞.

(2) Unbiased estimator: We assume that our algorithm is allowed to query a stochastic first-order
oracle that returns a history-independent, unbiased gradient estimator ˆ︁∇f(x) of ∇f(x) for any
x ∈ X . That is, conditioned on the history and the queried point x, we have E[ˆ︁∇f(x) | x] = ∇f(x).
(3) Bounded pth moment noise: We assume that there exists σ > 0 such that for some 1 < p ≤ 2

and for any x ∈ X , ˆ︁∇f(x) satisfies E[∥ˆ︁∇f(x)−∇f(x)∥p∗ | x] ≤ σp.

(4) L-smoothness: We consider the class of L-smooth functions: for all x, y ∈ Rd,
∥∇f(x)−∇f(y)∥∗ ≤ L ∥x− y∥ .

2.2 Gradient Clipping Operator and Notations

We introduce the gradient clipping operator and its general properties used in Clipped-SMD
(Algorithm 2) and Clipped-SGD (Algorithm 1). Let xt be the output at iteration t of an algorithm
of interest. We denote by ˆ︁∇f(xt) the stochastic gradient obtained by querying the gradient oracle.
The clipped gradient estimate ˜︁∇f(xt) is taken as

˜︁∇f(xt) = min

⎧⎨⎩1,
λt⃦⃦⃦ ˆ︁∇f(xt)⃦⃦⃦

∗

⎫⎬⎭ ˆ︁∇f(xt), (1)

where λt is the clipping parameter used in iteration t. In subsequent sections, we let ∆t := f(xt)−
f∗ denote the optimal function value gap at xt. We let Ft = σ

(︂ˆ︁∇f(x1), . . . , ˆ︁∇f(xt))︂ be the
natural filtration at time t and define the following notations for the stochastic error, the deviation,
and the bias of the clipped gradient estimate at time t:

θt = ˜︁∇f(xt)−∇f(xt); θut = ˜︁∇f(xt)−E
[︂˜︁∇f(xt) | Ft−1

]︂
; θbt = E

[︂˜︁∇f(xt) | Ft−1

]︂
−∇f(xt).

Note that θut +θ
b
t = θt. Regardless of the convexity of the function f , the following lemma provides

upper bounds for these quantities. These bounds can be found in prior works [7, 33, 19, 28] for the
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Algorithm 1 Clipped-SGD
Parameters: initial point x1, step sizes {ηt}, clipping parameters {λt}
for t = 1 to T do˜︁∇f(xt) = min

{︃
1, λt

∥ˆ︁∇f(xt)∥
}︃ ˆ︁∇f(xt)

xt+1 = xt − ηt ˜︁∇f(xt)
special case of ℓ2 norm. The extension to the general norm follows in the same manner, which we
omit in this work.
Lemma 2.1. For stochastic gradients ˆ︁∇f(xt) with bounded pth moment noise, the clipped gradients˜︁∇f(xt) satisfy the following properties:

∥θut ∥∗ =
⃦⃦⃦ ˜︁∇f(xt)− E

[︂˜︁∇f(xt) | Ft−1

]︂⃦⃦⃦
∗
≤ 2λt. (2)

Furthermore, if ∥∇f(xt)∥∗ ≤ λt
2 then⃦⃦

θbt
⃦⃦
∗ =

⃦⃦⃦
E
[︂˜︁∇f(xt) | Ft−1

]︂
−∇f(xt)

⃦⃦⃦
∗
≤ 4σpλ1−pt ; (3)

E
[︂
∥θut ∥

2
∗

]︂
= E

[︃⃦⃦⃦ ˜︁∇f(xt)− Et
[︂˜︁∇f(xt)]︂⃦⃦⃦2

∗
| Ft−1

]︃
≤ 40σpλ2−pt . (4)

Finally, we state a simple but important lemma that bounds the moment generating function of a
zero-mean bounded random variable. The proof can be found in, for example, equation (3) of [1].
Lemma 2.2. Let X be a random variable such that E [X] = 0 and |X| ≤ R almost surely. Then
for 0 ≤ λ ≤ 1

R

E [exp (λX)] ≤ exp

(︃
3

4
λ2E

[︁
X2
]︁)︃

.

3 Clipped Stochastic Gradient Descent for Nonconvex Functions

In this section, we study the convergence of Clipped-SGD for nonconvex functions. Here, we
consider the domain to be Rd equipped with the standard ℓ2 norm. We first outline a blackbox
concentration argument to show convergence in high probability of Algorithm 1 and then follow-
up with a more powerful whitebox approach that allows for a tight high probability convergence
analysis.

Comparison to previous works. In the simple setting of known time horizon and without
momentum for Clipped-SGD, the ˜︁O(T

2−2p
3p−2 ) convergence rate has not been shown before to the

best of our knowledge. The recent work by [28] study this case and only give a suboptimal rate of˜︁O(T
1−p
p ). Note that [2, 19] study other variants of Clipped-SGD with momentums incorporated.

Although [2, 19] achieve the nearly-optimal time dependency of ˜︁O(T
2−2p
3p−2 ) in the non-convex

settings, they rely on using blackbox concentration inequalities which result in a suboptimal
convergence rate that also requires a known time horizon.

We first present the guarantee for known time horizon T via our whitebox approach in Theorem 3.1
and defer the statement for unknown T in Theorem B.2 to the Appendix.
Theorem 3.1. Assume that f satisfies Assumption (1’), (2), (3), (4). Let γ := max

{︁
log 1

δ ; 1
}︁

and
∆1 := f(x1)− f∗. For known time horizon T , we choose λt and ηt such that

λt := λ := max

{︄(︃
8γ√
L∆1

)︃ 1
p−1

T
1

3p−2σ
p
p−1 ; 2

√︁
90L∆1; 32

1
pσT

1
3p−2

}︄

ηt := η :=

√
∆1T

1−p
3p−2

8λ
√
Lγ

=

√
∆1

8
√
Lγ

min

{︄(︃
8γ√
L∆1

)︃ −1
p−1

T
−p

3p−2σ
−p
p−1 ;

T
1−p
3p−2

2
√
90L∆1

;
T

−p
3p−2

321/pσ

}︄
.
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Then with probability at least 1− δ

1

T

T∑︂
t=1

∥∇f(xt)∥2 ≤ 720
√︁

∆1Lγmax

{︄(︃
8γ√
L∆1

)︃ 1
p−1

T
2−2p
3p−2σ

p
p−1 ;

2
√︁
90L∆1T

1−2p
3p−2 ; 321/pσT

2−2p
3p−2

}︄
= O

(︂
T

2−2p
3p−2

)︂
.

Remark 3.2. In comparison to the corresponding results in [28] (Theorem E.2), while our result
achieves a poly T factor better rate when p < 2, the dependency on log 1

δ in our result contains a
dependency on p while the result in [28] does not. That term can dominate the convergence rate in
the regime when δ is very small and p is very close to 1. Hence, an open question is to remove such
dependency on p for the log 1

δ term while still maintain the optimal rate on T .

Now, we turn to the analysis, starting with the key Lemma 3.3 (proof in the Appendix).
Lemma 3.3. Assume that f satisfies Assumption (1’), (2), (3), (4) and ηt ≤ 1

L then for all t ≥ 1,

ηt
2
∥∇f(xt)∥2 ≤ ∆t −∆t+1 +

(︁
Lη2t − ηt

)︁
⟨∇f(xt), θut ⟩+

3ηt
2

⃦⃦
θbt
⃦⃦2

+ Lη2t

(︂
∥θut ∥

2 − E
[︂
∥θut ∥

2 | Ft−1

]︂)︂
+ Lη2tE

[︂
∥θut ∥

2 | Ft−1

]︂
. (5)

Remark 3.4. In Lemma 3.3, we decompose the RHS into appropriate terms that allow us to define
a martingale. This lemma helps us understand why we can achieve a better convergence rate
O(T

2−2p
3p−2 ) (for minimizing the norm squared of the gradient) in comparison to the best rate of

O(T
1−p
p ) in the convex setting. We focus on the error term ⟨∇f(xt), θt⟩ = ⟨∇f(xt), θut ⟩ +⟨︁

∇f(xt), θbt
⟩︁

on the RHS of (5). Since this error contains the gradient ∇f(xt), we leverage
some of the gain ∥∇f(xt)∥2 on the LHS of 5: we use Cauchy-Schwarz to bound

⟨︁
∇f(xt), θbt

⟩︁
≤

1
2∥∇f(xt)∥

2 + 1
2∥θ

b
t∥2 and use the some of the gain to absorb the first term. Then setting our

parameters λt, ηt appropriately to balance the remaining terms helps us achieve the O(T
2−2p
3p−2 ) rate.

Contrast this to the convex setting in the next section: the mismatch between the error term that
contains the distance term ∥x∗−xt∥ and the gain term that contains the function value gap f(xt)−f∗
prevents us from using the gain to absorb some of the error. Thus, this explains the convergence rate
discrepancy between the convex case and the non-convex setting (see also Remark 4.6).

Before giving a sketch of our whitebox approach, we present a sketch of a blackbox argument
that gives a nearly time-optimal convergence rate. This approach has an additional log T factor in
the final rate but will serve as a point of comparison for our new techniques, which will close the
logarithmic gap.

Blackbox approach. The key lies in the following lemma, which yields the near optimal ˜︁O(T
2−2p
3p−2 )

convergence rate of Clipped-SGD. In this case, we assume that the clipping parameters λt and the
step sizes ηt are fixed. Note that the success probability is only 1 − Tδ. This result uses Lemma
3.3 and Freedman’s inequality (Theorem A.1) primarily as a blackbox to bound the error terms
inductively by the initial function value gap to optimality.
Lemma 3.5. For 1 ≤ N ≤ T + 1, let ηt = η, λt = λ (the specific choices are omitted here for
brevity) and EN be the event that for all k = 1, . . . N ,

Lη2
k−1∑︂
t=1

∥θut ∥
2
+
(︁
Lη2 − η

)︁ k−1∑︂
t=1

⟨∇f(xt), θut ⟩+
3η

2

k−1∑︂
t=1

⃦⃦
θbt
⃦⃦2 ≤ ∆1.

Then EN happens with probability at least 1− (N−1)δ
T for each N ∈ [T + 1].

With the above lemma, we can obtain a near-optimal convergence rate. However, this rate is still
suboptimal due to the use of T union bounds as part of the induction proof. We now discuss an
improved analysis that closes the remaining gap.

Whitebox approach. Our whitebox approach defines a novel supermartingale difference sequence
Zt (shown below) and analyzes its moment generating function from first principles. The sequence is
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designed to leverage the structure of the problem and Clipped-SGD via carefully chosen decreasing
weights zt (shown below).

Zt := zt

(︃
ηt
2
∥∇f(xt)∥2 +∆t+1 −∆t −

3ηt
2

⃦⃦
θbt
⃦⃦2 − Lη2tE

[︂
∥θut ∥

2 | Ft−1

]︂)︃
−
(︁
3z2tLη

2
t∆t + 6L2z2t η

4
t λ

2
t

)︁
E
[︂
∥θut ∥

2 | Ft−1

]︂
where zt :=

1

2Ptηtλtmaxi≤t
√
2L∆i + 8QtLη2t λ

2
t

for Pt, Qt ∈ Ft−1 ≥ 1. We also define St :=
∑︁t
i=1 Zi. Note that by selecting Pt, Qt, ηt, λt

appropriately so that Ptηtλt and Qtη2t λ
2
t are constants (see for example the proof of Proposition 3.7

in the Appendix), we can ensure that the sequence zt is decreasing.

We now present Lemma 3.6 which is the main result for controlling the above martingale, whose
proof will offer insights into the main technique in this paper. The technique to prove Lemma 3.6 is
similar to the standard way of bounding the moment generating function in proving concentration
inequalities, such as Freedman’s inequality [4, 3]. The main challenge here is to find a way to
leverage the structure of Clipped-SGD and choose the suitable coefficients zt. Similarly to [18]
where the authors analyze SGD with sub-Gaussian noise, we analyze the martingale difference
sequence in a “whitebox” manner. In [18], however, thanks to the light-tailed noise, the weights
zt can be chosen depending only on the problem parameters and independently of the algorithm
history. On the other hand, to use Lemma 2.2, we have to make sure that zt ≤ 1

R , where R is an
upper bound for the martingale elements. The key here is to choose zt depending on the past iterates,
and use the function value gaps ∆t to absorb the error incurred during the analysis. We give a proof
sketch and defer the full version to the Appendix.
Lemma 3.6. For any δ > 0, let E(δ) be the event that for all 1 ≤ k ≤ T

1

2

k∑︂
t=1

ztηt ∥∇f(xt)∥2 + zk∆k+1 ≤ z1∆1 + log
1

δ
+

k∑︂
t=1

3ztηt
2

⃦⃦
θbt
⃦⃦2

+

k∑︂
t=1

(︄
(3z2tLη

2
t∆t + 6L2z2t η

4
t λ

2
t + ztLη

2
t )E

[︂
∥θut ∥

2 | Ft−1

]︂)︄
.

Then Pr [E(δ)] ≥ 1− δ.

Proof Sketch. Using Lemmas 3.3, 2.2, and the condition for zt, we can show that
E [exp (Zt) | Ft−1] ≤ 1. This then implies

E [exp (St) | Ft−1] = exp (St−1)E [exp (Zt) | Ft−1] ≤ exp (St−1) ,

which means (exp (St))t≥1 is a supermartingale. By Ville’s inequality, we have, for all k ≥ 1,
Pr
[︁
Sk ≥ log 1

δ

]︁
≤ δE [exp (S1)] ≤ δ. In other words, with probability at least 1− δ, for all k ≥ 1,∑︁k

t=1 Zt ≤ log 1
δ . Plugging in the definition of Zt we obtain the desired inequality.

We now specify the choice of ηt and λt. The following lemma gives a general condition for the
choice of ηt and λt that gives the right convergence rate in time T .
Proposition 3.7. We assume that the event E(δ) from Lemma 3.6 happens. Suppose that for some
ℓ ≤ T , there are constants C1, C2 and C3 such that for all t ≤ ℓ

1. λtηt
√
2L ≤ C1; 2. 1

Lηt

(︂
1
λt

)︂p
≤ C2; 3.

∑︁T
t=1 L

(︂
1
λt

)︂p
λ2tη

2
t ≤ C3; 4. ∥∇f(xt)∥ ≤ λt

2 .

Then for all t ≤ ℓ+ 1

1

2

t∑︂
i=1

ηi ∥∇f(xi)∥2 +∆t+1 ≤
(︂√︁

∆1 + 2
√
AC1

)︂2
for a constant A ≥ max

{︃
64
(︂
log 1

δ +
60σpC3

C2
1

)︂2
+ 48σ2pC2C3+140σpC3

C2
1

; 1

}︃
.

Finally, the proof for Theorem 3.1 is a direct consequence of Proposition 3.7 where we defer the
details to the Appendix.
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Algorithm 2 Clipped-SMD
Parameters: initial point x1, step sizes {ηt}, clipping parameters {λt}, ψ is 1-strongly convex wrt
∥·∥
for t = 1 to T do˜︁∇f(xt) = min

{︃
1, λt

∥ˆ︁∇f(xt)∥∗

}︃ ˆ︁∇f(xt)
xt+1 = argminx∈X

{︂
ηt

⟨︂˜︁∇f(xt), x⟩︂+Dψ (x, xt)
}︂

4 Clipped Stochastic Mirror Descent for Convex Objectives

In this section, we present and analyze the Clipped Stochastic Mirror Descent algorithm (Algorithm
2) under heavy-tailed noise, with a general domain and arbitrary norm.

We define the Bregman divergence Dψ(x, y) = ψ(x)−ψ(y)−⟨∇ψ(y), x− y⟩, where ψ : Rd → R
is a 1-strongly convex differentiable function with respect to the norm ∥·∥ on X . We assume for
convenience that dom (ψ) = Rd. Algorithm 2 is a generalization of Clipped-SGD for convex
functions to an arbitrary norm. The only difference from the standard Stochastic Mirror Descent
algorithm is the use of the clipped gradient ˜︁∇f(xt) in place of the true stochastic gradient ˆ︁∇f(xt)
when computing the new iterate xt+1.

Prior works such as [7] only consider the setting where the global minimizer lies in X . Our algorithm
and analysis does not require this restriction and instead only uses the following initial gradient
estimate assumption from [22]:

(5) Initial gradient estimate: Let x1 be the initial point. We assume that we have access to an
upperbound ∇1 of ∥∇f(x1)∥∗ i.e. ∥∇f(x1)∥∗ ≤ ∇1. This assumption is justified as follows. If the
noise parameter σ defined in assumption (3) is known, we can use the procedure of [21] to estimate
∥∇f(x1)∥∗: we take O (ln (1/δ)) stochastic gradient samples at x1, and let g1 be the geometric
median of these samples; we then set ∇1 := ∥g1∥∗ + 10σ. It follows from [21] that ∥∇f(x1)∥∗ ≤
∇1 holds with probability at least 1−δ. If the domain contains the global optimum x∗ (∇f(x∗) = 0)
and the initial distance ∥x1 − x∗∥ is known, we have the following alternative upper bound that
follows from ∇f(x∗) = 0 and smoothness:∥∇f(x1)∥∗ = ∥∇f(x1)−∇f(x∗)∥∗ ≤ L ∥x1 − x∗∥.

Convergence guarantees. We first state the convergence guarantee for this algorithm in Theorem
4.1 which works for an arbitrary norm and a general domain which may not include the global
optimum. In this theorem, we assume that we know several problem parameters to show the main
idea of our analysis. In Theorem 4.4, we remove the knowledge of the problem parameters.
Theorem 4.1. Assume that convex f satisfies Assumptions (1), (2), (3), (4) and (5). Let γ =
max

{︁
log 1

δ ; 1
}︁

; R1 =
√︁
2Dψ (x∗, x1) , and assume that ∇1 is an upper bound of ∥∇f(x1)∥∗.

For known T , we choose λt and ηt such that

λt = λ = max

{︄(︃
26T

γ

)︃1/p

σ; 2 (3LR1 +∇1)

}︄
, and

ηt = η =
R1

24λtγ
=

R1

24γ
min

{︄(︃
26T

γ

)︃−1/p

σ−1;
1

2
(3LR1 +∇1)

−1

}︄
.

Then with probability at least 1− δ

1

T

T+1∑︂
t=2

∆t ≤ 48R1 max
{︂
26

1
pT

1−p
p σγ

p−1
p ; 2 (3LR1 +∇1)T

−1γ
}︂
= O

(︂
T

1−p
p

)︂
.

Remark 4.2. This theorem shows that the convergence rate for the known time horizon case is
O(T

1−p
p ). This rate is known to be optimal, matching the lower bounds shown in [26, 31]. The

above guarantee is also adaptive to σ, i.e., when σ → 0, we obtain the standardO(T−1) convergence
rate of deterministic mirror descent.
Remark 4.3. The term ∇1 in the above theorem comes from the inexact estimation of ∥∇f(x1)∥∗.
If we assume that the global optimum lies in the domain X , we can simply select ∇1 = LR1 without
using the estimation procedure, as discussed in (5).
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In Theorem 4.1, we use the initial distance R1 to the optimal solution to set the step sizes and
clipping parameters. This information is generally not available, but can be avoided. For example,
for constrained problems where the domain radius is bounded by R, we can replace R1 in Theorem
4.1 by R without change in the dependency. However, for the general problem, we present Theorem
4.4, where we do not require knowledge of the constants T, σ, δ or R1 to set the step sizes and
clipping parameters. However, we still need the mild assumption of knowing an upper bound ∇1 on
∥∇f(x1)∥∗. As discussed in (5), ∇1 can be estimated with good accuracy when σ is known.
Theorem 4.4. Assume that convex f satisfies Assumption (1), (2), (3), (4) and (5). Let γ =
max

{︁
log 1

δ ; 1
}︁

; R1 =
√︁
2Dψ (x∗, x1), and assume that ∇1 is an upper bound of ∥∇f(x1)∥∗.

We choose λt and ηt such that

λt = max

{︃(︁
52t(1 + log t)2c2

)︁1/p
; 2

(︃
Lmax

i≤t
∥xi − x1∥+∇1

)︃
;
Lc1
6

}︃
, and

ηt =
c1

24λt
=
c1
24

min

{︃(︁
52t(1 + log t)2c2

)︁−1/p
;

1

2 (Lmaxi≤t ∥xi − x1∥+∇1)
;

6

Lc1

}︃
,

where the absolute constants c1 and c2 are to ensure the correctness of the dimensions. Then, with
probability at least 1− δ, we have

1

T

T+1∑︂
t=2

∆t ≤
8

Tc1

(︃
R1 +

c1
3

(︃
γ +

2σp

c2

)︃)︃2

max

{︄(︁
52T (1 + log T )2c2

)︁1/p
;

4R1L+
2c1
3
L

(︃
γ +

2σp

c2

)︃
+ 2∇1;

Lc1
6

}︄
= ˜︁O (︂T 1−p

p

)︂
.

Sketch of the analysis. In the remainder of this section, we provide a sketch of the analysis for
Theorem 4.1, which starts with the following lemma.
Lemma 4.5. Assume that convex f satisfies Assumption (1), (2), (3), (4) and ηt ≤ 1

4L , the iterate
sequence (xt)t≥1 output by Algorithm 2 satisfies the following:

ηt∆t+1 ≤ Dψ (x∗, xt)−Dψ (x∗, xt+1) + ηt ⟨x∗ − xt, θ
u
t ⟩+ ηt

⟨︁
x∗ − xt, θ

b
t

⟩︁
+ 2η2t

(︂
∥θut ∥

2
∗ − E

[︂
∥θut ∥

2
∗ | Ft−1

]︂)︂
+ 2η2tE

[︂
∥θut ∥

2
∗ | Ft−1

]︂
+ 2η2t

⃦⃦
θbt
⃦⃦2
∗ .

Remark 4.6. In contrast to Remark 3.4, there is a mismatch between the gain ∆t+1 and the loss
⟨x∗ − xt, θt⟩. Since the distance ∥x∗ − xt∥ and the function value gap ∆t cannot be related in the
general convex case, we do not obtain the same rate as in the nonconvex case.

We now define the following terms for t ≥ 1:

Zt := zt

(︄
ηt∆t+1 +Dψ (x∗, xt+1)−Dψ (x∗, xt)− ηt

⟨︁
x∗ − xt, θ

b
t

⟩︁
− 2η2t

⃦⃦
θbt
⃦⃦2
∗

− 2η2tE
[︂
∥θut ∥

2
∗ | Ft−1

]︂)︄
−
(︃

3

8λ2t
+ 24z2t η

4
t λ

2
t

)︃
E
[︂
∥θut ∥

2 | Ft−1

]︂
,

where zt :=
1

2ηtλtmaxi≤t
√︁
2Dψ (x∗, xi) + 16Qη2t λ

2
t

for a constant Q ≥ 1. We also define St :=
∑︁t
i=1 Zi. We have the following lemma, which is

analogous to Lemma 3.6 in the nonconvex case.
Lemma 4.7. For any δ > 0, let E(δ) be the event that for all 1 ≤ k ≤ T

k∑︂
t=1

ztηt∆t+1 + zkDψ (x∗, xk+1) ≤ z1Dψ (x∗, x1) + log
1

δ
+

k∑︂
t=1

ztηt
⟨︁
x∗ − xt, θ

b
t

⟩︁
+2

k∑︂
t=1

ztη
2
t

⃦⃦
θbt
⃦⃦2
∗ +

k∑︂
t=1

(︃(︃
2ztη

2
t +

3

8λ2t
+ 24z2t η

4
t λ

2
t

)︃
E
[︂
∥θut ∥

2
∗ | Ft−1

]︂)︃
.

(6)

Then Pr [E(δ)] ≥ 1− δ.

9



Algorithm 3 Clipped-ASMD
Parameters: initial point y1 = z1, step sizes {ηt}, clipping parameters {λt}, and mirror map ψ,
where ψ is 1-strongly convex wrt ∥·∥.
For t = 1 to T do:

Set αt = 2
t+1 .

xt = (1− αt) yt + αtzt.˜︁∇f(xt) = min

{︃
1, λt

∥ˆ︁∇f(xt)∥∗

}︃ ˆ︁∇f(xt).
zt+1 = argminx∈X

{︂
ηt

⟨︂˜︁∇f(xt), x⟩︂+Dψ (x, zt)
}︂

.
yt+1 = (1− αt) yt + αtzt+1.

We now specify the choice of ηt and λt. The following proposition gives a general condition for the
choice of ηt and λt that gives the right convergence rate in time T .

Proposition 4.8. We assume that the event E(δ) from Lemma 4.7 happens. Suppose that for some
ℓ ≤ T , there are constants C1, C2, C3, and A such that for all t ≤ ℓ

1. λtηt = C1; 2.
∑︁ℓ
t=1

(︂
1
λt

)︂p
≤ C2; 3.

(︂
1
λt

)︂2p
≤ C3

(︂
1
λt

)︂p
; 4. ∥∇f(xt)∥∗ ≤ λt

2 .

Then for all t ≤ ℓ+ 1

t∑︂
i=1

ηi∆i+1 +Dψ (x∗, xt+1) ≤
1

2
(R1 + 8AC1)

2

for A ≥ max
{︂
log 1

δ + 26σpC2 +
2σ2pC2C3

A ; 1
}︂

.

Theorem 4.1 follows from Proposition 4.8. Both proofs can be found in the Appendix.

5 Accelerated Stochastic Mirror Descent and Extensions

In Section D in the Appendix, we also show the convergence and its analysis for Clipped Accelerated
Stochastic Mirror Descent (Algorithm 3). We require the following additional assumption:

(5’) Global minimizer: We assume that ∇f(x∗) = 0.

In other words, we assume that the global minimizer lies in the domain of the problem. This
assumption is consistent with the works of [7, 28]. Our analysis readily extends to non-smooth
settings, and more generally to functions that satisfy f(y)−f(x) ≤ ⟨∇f(x), y − x⟩+G ∥y − x∥+
L
2 ∥y − x∥2 , ∀y, x ∈ X . This condition is satisfied by both Lipschitz functions (when L = 0) and
smooth functions (when G = 0). The key step is to extend Lemma 4.5. The proof follows from [15]
and can be found in the Appendix.

6 Conclusion

In this work, we propose a new approach to design and analyze various clipped gradient algorithms
in the presence of heavy-tailed noise. Our analysis applies to various standard settings, including
Clipped-SMD and accelerated Clipped-SMD for convex objectives with general domains and
Clipped-SGD for nonconvex objectives, and gives optimal high probability rates in all settings. Our
algorithms allow for setting step-sizes and clipping parameters when the time horizon and problem
parameters such as the initial distance are unknown. For future work, since our algorithms have
the limitation of still requiring the knowledge of parameters like L and p, it is of great interest to
investigate the existence of a fully-adaptive method, like Adagrad, that converges under heavy-tailed
noise without requiring the knowledge of any problem parameter. Finally, it would be interesting to
extend our techniques to the setting of variational inequalities under heavy-tailed noise [6].
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A Freedman’s inequality

Lemma A.1 (Freedman’s inequality). Let (Xt)t≥1 be a martingale difference sequence. Assume
that there exists a constant c > 0 such that |Xt| ≤ c almost surely for all t ≥ 1 and define
σ2
t = E

[︁
X2
t | Xt−1, . . . , X1

]︁
. Then for all b > 0, F > 0 and T ≥ 1

Pr

[︄⃓⃓⃓⃓
⃓
T∑︂
t=1

Xt

⃓⃓⃓⃓
⃓ > b and

T∑︂
t=1

σ2
t ≤ F

]︄
≤ 2 exp

(︃
− b2

2F + 2cb/3

)︃
.

B Missing Proofs from Section 3

Proof of Lemma 3.3. By the smoothness of f and the update xt+1 = xt − 1
ηt
˜︁∇f(xt) we have

f(xt+1)− f(xt)

≤⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

=− ηt

⟨︂
∇f(xt), ˜︁∇f(xt)⟩︂+

Lη2t
2

⃦⃦⃦ ˜︁∇f(xt)⃦⃦⃦2
=− ηt ⟨∇f(xt), θt +∇f(xt)⟩+

Lη2t
2

∥θt +∇f(xt)∥2

=− ηt ∥∇f(xt)∥2 − ηt ⟨∇f(xt), θt⟩+
Lη2t
2

∥θt∥2 +
Lη2t
2

∥∇f(xt)∥2 + Lη2t ⟨∇f(xt), θt⟩

=−
(︃
ηt −

Lη2t
2

)︃
∥∇f(xt)∥2 +

Lη2t
2

∥θt∥2 +
(︁
Lη2t − ηt

)︁
⟨∇f(xt), θt⟩

=−
(︃
ηt −

Lη2t
2

)︃
∥∇f(xt)∥2 +

Lη2t
2

∥θt∥2 +
(︁
Lη2t − ηt

)︁⏞ ⏟⏟ ⏞
≤0

⟨︁
∇f(xt), θut + θbt

⟩︁
.

Using Cauchy-Schwarz, we have
⟨︁
∇f(xt), θbt

⟩︁
≤ 1

2 ∥∇f(xt)∥
2
+ 1

2

⃦⃦
θbt
⃦⃦2

. Thus, we derive

∆t+1 −∆t ≤ −
(︃
2ηt − Lη2t

2

)︃
∥∇f(xt)∥2 +

Lη2t
2

∥θt∥2 +
(︁
Lη2t − ηt

)︁
⟨∇f(xt), θut ⟩

+
ηt − Lη2t

2
∥∇f(xt)∥2 +

ηt − Lη2t
2

⃦⃦
θbt
⃦⃦2

≤ −ηt
2
∥∇f(xt)∥2 +

Lη2t
2

∥θt∥2 +
(︁
Lη2t − ηt

)︁
⟨∇f(xt), θut ⟩+

ηt
2

⃦⃦
θbt
⃦⃦2

≤ −ηt
2
∥∇f(xt)∥2 + Lη2t ∥θut ∥

2
+
(︁
Lη2t − ηt

)︁
⟨∇f(xt), θut ⟩+

(︂
Lη2t +

ηt
2

)︂ ⃦⃦
θbt
⃦⃦2

≤ −ηt
2
∥∇f(xt)∥2 + Lη2t ∥θut ∥

2
+
(︁
Lη2t − ηt

)︁
⟨∇f(xt), θut ⟩+

3ηt
2

⃦⃦
θbt
⃦⃦2
,

where the third inequality is due to ∥θt∥2 ≤ 2 ∥θut ∥
2
+ 2

⃦⃦
θbt
⃦⃦2

, and the last inequality is due to

ηt ≤ 1
L . Rearranging, adding, and subtracting E

[︂
∥θut ∥

2 | Ft−1

]︂
, we obtain the lemma.

Detailed proof of Lemma 3.5. We state the following simple properties of the choice of η and λ in
Theorem 3.1. We have

1

L

(︂σ
λ

)︂p
≤ η (7)

η ≤ 1

L
(8)(︂σ

λ

)︂p
T

p
3p−2 ≤ 1

32
(9)
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TL
(︂σ
λ

)︂p
λ2η2 ≤ ∆1

2048
. (10)

We will now prove by induction on N that EN happens with probability at least 1 − (N−1)δ
T . For

N = 1, the event happens with probability 1. Suppose that for someN ≤ T , Pr [EN ] ≥ 1− (N−1)δ
T .

We will prove that Pr [EN+1] ≥ 1− Nδ
T .

Since the LHS of (5) is non-negative, for k ≤ N , we have, under the event EN ,

∆k ≤ ∆1 +
(︁
Lη2 − η

)︁ k−1∑︂
t=1

⟨∇f(xt), θut ⟩+ Lη2
k−1∑︂
t=1

(︂
∥θut ∥

2 − Et
[︂
∥θut ∥

2
]︂)︂

+
3η

2

k−1∑︂
t=1

⃦⃦
θbt
⃦⃦2

+ Lη2
k−1∑︂
t=1

Et
[︂
∥θut ∥

2
]︂
≤ 2∆1.

From the induction hypothesis and Lemma 3.3, we have that for all k ≤ N , ∆k ≤ 2∆1. Since the
LHS of (5) is non-negative, by summing over t from 1 to N we have,

∆N+1 ≤
(︁
η − Lη2

)︁ N∑︂
t=1

⟨−∇f(xt), θut ⟩⏞ ⏟⏟ ⏞
A

+
3η

2

N∑︂
t=1

⃦⃦
θbt
⃦⃦2

⏞ ⏟⏟ ⏞
B

+ Lη2
N∑︂
t=1

(︂
∥θut ∥

2 − Et
[︂
∥θut ∥

2
]︂)︂

⏞ ⏟⏟ ⏞
C

+Lη2
N∑︂
t=1

Et
[︂
∥θut ∥

2
]︂

⏞ ⏟⏟ ⏞
D

.

The bounds for B and D are straightforward from Lemma 2.1. First, with probability 1, we have
∥θut ∥ ≤ 2λ. By the smoothness of f and the fact that f is bounded below, we have

∥∇f(xt)∥ ≤
√︁
2L∆t.

Furthermore, when the event EN happens, we have

∥∇f(xt)∥ ≤
√︁

2L∆t ≤
√︁

4L∆1 ≤ λ

2
.

Thus, we can apply Lemma 2.1 and obtain
⃦⃦
θbt
⃦⃦
≤ 4σpλ1−p and Et

[︂
∥θut ∥

2
]︂
≤ 40σpλ2−p.

Upperbound for B. By (3), when the event EN happens,

B =
3η

2

⃦⃦
θbt
⃦⃦2 ≤ 3η

2

N∑︂
t=1

16σ2pλ2−2p = 24σ2pλ2−2pηN

≤ 24T
(︂σ
λ

)︂2p
λ2η ≤ 24TL

(︂σ
λ

)︂p
λ2η2 ≤ 3∆1

256
.

Upperbound for D. By 4, when the event EN happens,

D = Lη2
N∑︂
t=1

Et
[︂
∥θut ∥

2
]︂
≤ Lη2

N∑︂
t=1

40σpλ2−p

≤ 40σpλ2−pLη2N ≤ 40LT
(︂σ
λ

)︂p
(λη)

2 ≤ 5∆1

256
.

To bound A and C, we use Freedman’s inequality (Theorem A.1). We define, for t ≥ 1, the
following random variables

Zt =

{︃
−∇f(xt) if ∆t ≤ 2∆1

0 otherwise.

Thus ∥Zt∥ ≤ ∥∇f(xt)∥ ≤ 2
√
L∆1 for all t.

14



Upperbound for A. Instead of bounding A =
(︁
η − Lη2

)︁∑︁N
t=1 ⟨−∇f(xt), θut ⟩, we will bound

A′ =
(︁
η − Lη2

)︁∑︁N
t=1 ⟨Zt, θut ⟩. We check the conditions to apply Freedman’s inequality. First

Et
[︁(︁
η − Lη2

)︁
⟨Zt, θut ⟩

]︁
= 0. Further, with probability 1, ∥θut ∥

2 ≤ 2λ, and Zt ≤ 2
√
L∆1,

thus
⃓⃓(︁
η − Lη2

)︁
⟨Zt, θut ⟩

⃓⃓
≤
(︁
η − Lη2

)︁
∥Zt∥ ∥θut ∥ ≤ 4

√
L∆1

(︁
η − Lη2

)︁
λ ≤ 4

√
L∆1ηλ. Hence,{︁(︁

η − Lη2
)︁
⟨Zt, θut ⟩

}︁
is a bounded martingale difference sequence. Therefore, for constant a and

F to be chosen we have

Pr

[︄⃓⃓⃓⃓
⃓
N∑︂
t=1

(︁
η − Lη2

)︁
⟨Zt, θut ⟩

⃓⃓⃓⃓
⃓ > a and

N∑︂
t=1

Et
[︂(︁(︁

η − Lη2
)︁
⟨Zt, θut ⟩

)︁2]︂ ≤ F ln
4T

δ

]︄

≤ 2 exp

(︄
− a2

2F ln 4T
δ + 8

3

√
L∆1ηλa

)︄
We choose a such that

2 exp

(︄
− a2

2F ln 4T
δ + 8

3

√
L∆1ηλa

)︄
=

δ

2T

which gives

a =

(︄
4

3

√︁
L∆1ηλ+

√︃
16L∆1η2λ2

9
+ 2F

)︄
ln

4T

δ
.

If we choose F = 64L∆1σ
pλ2−pη2T , we can easily show that a ≤ 7∆1

12 . Therefore, with
probability at least 1− δ

2T we have

EA =

{︄
either A′ ≤

⃓⃓⃓⃓
⃓
N∑︂
t=1

(︁
η − Lη2

)︁
⟨Zt, θut ⟩

⃓⃓⃓⃓
⃓ ≤ 7∆1

12

or
N∑︂
t=1

Et
[︂(︁(︁

η − Lη2
)︁
⟨Zt, θut ⟩

)︁2]︂
> F ln

4T

δ

}︄
.

Also notice that under the event EN , we have
N∑︂
t=1

Et
[︂(︁(︁

η − Lη2
)︁
⟨Zt, θut ⟩

)︁2]︂
≤η2

N∑︂
t=1

Et
[︂
∥Zt∥2 ∥θut ∥

2
]︂
≤ 4η2L∆1

N∑︂
t=1

Et
[︂
∥θut ∥

2
]︂

≤64L∆1σ
pλ2−pη2N ≤ 64∆1LT

(︂σ
λ

)︂p
λ2η2 ≤ F ≤ F ln

4T

δ
. (11)

Under EN , we have that Zt = −∇f(xt) for all t ≤ N . Therefore, when EN ∩ EA happens, we
have A = A′ ≤ a.

Upperbound for C. We check the conditions to apply Freedman’s inequality.
First, Et

[︂
Lη2

(︂
∥θut ∥

2 − Et
[︂
∥θut ∥

2
]︂)︂]︂

= 0. Further, with probability 1, ∥θut ∥
2 ≤

2λ, thus
⃓⃓⃓
Lη2

(︂
∥θut ∥

2 − Et
[︂
∥θut ∥

2
]︂)︂⃓⃓⃓

≤ Lη2
(︁
4λ2 + 4λ2

)︁
= 8Lλ2η2. Hence{︂

Lη2
(︂
∥θut ∥

2 − Et
[︂
∥θut ∥

2
]︂)︂}︂

is a bounded martingale difference sequence. Applying Freedman’s
inequality for constants c and G to be chosen, we have

Pr

[︄⃓⃓⃓⃓
⃓Lη2

N∑︂
t=1

(︂
∥θut ∥

2 − Et
[︂
∥θut ∥

2
]︂)︂⃓⃓⃓⃓⃓ > c and

N∑︂
t=1

Et
[︃(︂
Lη2

(︂
∥θut ∥

2 − Et
[︂
∥θut ∥

2
]︂)︂)︂2]︃

≤ G ln
4T

δ

]︄

≤ 2 exp

(︄
− c2

2G ln 4T
δ + 16

3 Lλ
2η2c

)︄

15



We choose c such that

2 exp

(︄
− c2

2G ln 4T
δ + 16

3 Lλ
2η2c

)︄
=

δ

2T

which gives

c =

(︄
8

3
Lλ2η2 +

√︃
64L2λ4η4

9
+ 2G

)︄
ln

4T

δ

If we choose G = 256L2σpλ4−pη4T , a simple calculation shows that c ≤ 7∆1

48 . we can show that
with probability at least 1− δ

2T , the following event happens

EC =

{︄
either C ≤

⃓⃓⃓⃓
⃓Lη2

N∑︂
t=1

(︂
∥θut ∥

2 − Et
[︂
∥θut ∥

2
]︂)︂⃓⃓⃓⃓⃓ ≤ 7∆1

48

or
N∑︂
t=1

Et
[︃(︂
Lη2

(︂
∥θut ∥

2 − Et
[︂
∥θut ∥

2
]︂)︂)︂2]︃

≥ G ln
4T

δ

}︄
.

Notice that when G = 256L2σpλ4−pη4T , under EN we have
N∑︂
t=1

Et
[︃(︂
Lη2

(︂
∥θut ∥

2 − Et
[︂
∥θut ∥

2
]︂)︂)︂2]︃

≤8Lλ2η2
N∑︂
t=1

Et
[︂⃓⃓⃓
Lη2

(︂
∥θut ∥

2 − Et
[︂
∥θut ∥

2
]︂)︂⃓⃓⃓]︂

≤ 16L2λ2η4
N∑︂
t=1

E
[︂
∥θut ∥

2
]︂

≤256L2σpλ4−pη4N ≤ G < G ln
4T

δ
. (12)

Therefore, when EN ∩ EC happens, we have C ≤ c.

Finally, combining all the bounds for A,B,C,D using union bound and selecting λ and η
appropriately to simplify the constants, we obtain the lemma.

Proof of Lemma 3.6. We have

E [exp (Zt) | Ft−1] exp
(︂(︁

3z2tLη
2
t∆t + 6L2z2t η

4
t λ

2
t

)︁
E
[︂
∥θut ∥

2 | Ft−1

]︂)︂
(a)

≤ E
[︂
exp

(︂
zt

(︂(︁
Lη2t − ηt

)︁
⟨∇f(xt), θut ⟩+ Lη2t

(︂
∥θut ∥

2 − E
[︂
∥θut ∥

2 | Ft−1

]︂)︂)︂)︂
| Ft−1

]︂
(b)

≤ exp

(︃
E
[︃
3

4

(︂
zt

(︂(︁
Lη2t − ηt

)︁
⟨∇f(xt), θut ⟩+ Lη2t

(︂
∥θut ∥

2 − E
[︂
∥θut ∥

2 | Ft−1

]︂)︂)︂)︂2
| Ft−1

]︃)︃
(c)

≤ exp

(︃
E
[︃
3

2
z2t η

2
t ∥∇f(xt)∥

2 ∥θut ∥
2 | Ft−1

]︃
+ E

[︃
3

2
L2z2t η

4
t ∥θut ∥

4 | Ft−1

]︃)︃
(d)

≤ exp
(︂
3z2tLη

2
t∆tE

[︂
∥θut ∥

2 | Ft−1

]︂
+ 6L2z2t η

4
t λ

2
tE
[︂
∥θut ∥

2 | Ft−1

]︂)︂
= exp

(︂(︁
3z2tLη

2
t∆t + 6L2z2t η

4
t λ

2
t

)︁
E
[︂
∥θut ∥

2 | Ft−1

]︂)︂
For (a) we use Lemma 3.3. For (b) we use Lemma 2.2. Notice that

E [⟨∇f(xt), θut ⟩] = E
[︂
∥θut ∥

2
∗ − E

[︂
∥θut ∥

2
∗ | Ft−1

]︂]︂
= 0,

and since ∥θut ∥ ≤ 2λt and ∥∇f(xt)∥ ≤
√
2L∆t for an L-smooth function, we have⃓⃓⃓(︁

Lη2t − ηt
)︁
⟨∇f(xt), θut ⟩+ Lη2t

(︂
∥θut ∥

2 − E
[︂
∥θu∥2 | Ft−1

]︂)︂⃓⃓⃓
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≤2ηtλt ∥∇f(xt)∥+ Lη2t

(︂
∥θut ∥

2
+ E

[︂
∥θu∥2 | Ft−1

]︂)︂
≤2ηtλt ∥∇f(xt)∥+ 8Lη2t λ

2
t

≤2ηtλt
√︁
2L∆t + 8Lη2t λ

2
t .

Thus zt ≤ 1
2ηtλt

√
2L∆t+8Lη2tλ

2
t

. For (c) we use (a + b)2 ≤ 2a2 + 2b2 and E
[︂
(X − E [X])

2
]︂
≤

E
[︁
X2
]︁
. For (d), we use ∥∇f(xt)∥2 ≤ 2L∆t and ∥θut ∥ ≤ 2λt. We obtain

E [exp (Zt) | Ft−1] ≤ 1.

Therefore

E [exp (St) | Ft−1] = exp (St−1)E [exp (Zt) | Ft−1]

≤ exp (St−1)

which means (exp (St))t≥1 is a supermartingale. By Ville’s inequality, we have, for all k ≥ 1

Pr

[︃
Sk ≥ log

1

δ

]︃
≤ δE [exp (S1)] ≤ δ.

In other words, with probability at least 1− δ, for all k ≥ 1

k∑︂
t=1

Zt ≤ log
1

δ
.

Plugging in the definition of Zt we have

1

2

k∑︂
t=1

ztηt ∥∇f(xt)∥2 +
k∑︂
t=1

(zt∆t+1 − zt∆t)

≤ log
1

δ
+

k∑︂
t=1

3ztηt
2

⃦⃦
θbt
⃦⃦2

+

k∑︂
t=1

(︂(︁
3z2tLη

2
t∆t + 6L2z2t η

4
t λ

2
t + ztLη

2
t

)︁
E
[︂
∥θut ∥

2 | Ft−1

]︂)︂
.

Note that we have zt is a decreasing sequence by construction (see the proof of Proposition 3.7
below). Hence, the LHS of the above inequality can be bounded by

LHS =
1

2

k∑︂
t=1

ztηt ∥∇f(xt)∥2 + zk∆k+1 − z1∆1 +

k∑︂
t=2

(zk−1 − zk)∆k

≥ 1

2

k∑︂
t=1

ztηt ∥∇f(xt)∥2 + zk∆k+1 − z1∆1.

We obtain the desired inequality.

Proof of Proposition 3.7. We will prove by induction on k that

1

2

k∑︂
i=1

ηi ∥∇f(xi)∥2 +∆k+1 ≤
(︂√︁

∆1 + 2
√
AC1

)︂2
.

The base case k = 0 is trivial. Suppose the statement is true for all t ≤ k ≤ ℓ. Now we show for
k + 1. Recall that

zt =
1

2Ptηtλtmaxi≤t
√
2L∆i + 8QtLη2t λ

2
t

.

Let us choose

Pt =
C1

λtηt
√
2L

≥ 1

17



Qt =
C2

1

√
A

2Lη2t λ
2
t

≥ 1.

We have

zt =
1

2C1 maxi≤t
√
∆i + 4C2

1

√
A
.

Now, note that (zt)t≥1 is a decreasing sequence. By the induction hypothesis maxi≤k
√
∆i ≤√

∆1 + 2
√
AC1. Hence:

zt
zk

=
2C1 maxi≤k

√
∆i + 4C2

1

√
A

2C1 maxi≤t
√
∆i + 4C2

1

√
A

≤
2C1

(︂√
∆1 + 2

√
AC1

)︂
+ 4C2

1

√
A

2C1

√
∆1 + 4C2

1

√
A

=

√
∆1 + 4

√
AC1√

∆1 + 2
√
AC1

≤ 2.

By the choice of λt, for all t ≤ k, ∥∇f(xt)∥ ≤ λt
2 , we can apply the second part of Lemma 2.1 to

obtain ⃦⃦
θbt
⃦⃦
≤ 4σpλ1−pt ;

E
[︂
∥θut ∥

2 | Ft−1

]︂
≤ 40σpλ2−pt .

Thus,

1

2
zk

k∑︂
t=1

ηt ∥∇f(xt)∥2 + zk∆k+1

≤z1∆1 + log
1

δ
+

k∑︂
t=1

3ztηt
2

⃦⃦
θbt
⃦⃦2

+

k∑︂
t=1

(︂(︁
3z2tLη

2
t∆t + 6L2z2t η

4
t λ

2
t + ztLη

2
t

)︁
E
[︂
∥θut ∥

2 | Ft−1

]︂)︂
≤z1∆1 + log

1

δ
+ 24σ2p

k∑︂
t=1

ztηtλ
2
t

(︃
1

λt

)︃2p

+ 40σp
k∑︂
t=1

(︃(︁
3z2t∆t + 6z2tLη

2
t λ

2
t + zt

)︁
Lη2t λ

2
t

(︃
1

λt

)︃p)︃
.

Since zt
zk

≤ 2, we have

1

2

k∑︂
t=1

ηt ∥∇f(xt)∥2 +∆k+1

≤z1∆1

zk
+

1

zk
log

1

δ
+ 48σ2p

k∑︂
t=1

ηtλ
2
t

(︃
1

λt

)︃2p

+ 80σp
k∑︂
t=1

(︃(︁
3zt∆t + 6ztLη

2
t λ

2
t + 1

)︁
Lη2t λ

2
t

(︃
1

λt

)︃p)︃
(a)

≤
√
∆1 + 4

√
AC1√

∆1 + 2
√
AC1

∆1 + 2C1

(︂√︁
∆1 + 4

√
AC1

)︂
log

1

δ
+ 48σ2pC2

k∑︂
t=1

Lη2t λ
2
t

(︃
1

λt

)︃p

+ 80σp
k∑︂
t=1

⎛⎜⎝
⎛⎜⎝ 3

(︂√
∆1 + 2

√
AC1

)︂2
2C1

(︂√
∆1 + 2

√
AC1

)︂ +
6

8Qt
+ 1

⎞⎟⎠Lη2t λ
2
t

(︃
1

λt

)︃p⎞⎟⎠
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(b)

≤∆1 + 2
√︁
∆1

√
AC1 + 2C1

(︂√︁
∆1 + 4

√
AC1

)︂
log

1

δ
+ 48σ2pC2C3

+ 80σp

⎛⎝3
(︂√

∆1 + 2
√
AC1

)︂
2C1

+
7

4

⎞⎠C3

≤∆1 + 2
√︁

∆1

√
AC1 + 2C1

(︂√︁
∆1 + 4

√
AC1

)︂(︃
log

1

δ
+

60σpC3

C2
1

)︃
+ 48σ2pC2C3 + 140σpC3

(c)

≤∆1 + 2
√︁

∆1

√
AC1 + 2C1

(︂√︁
∆1 + 4

√
AC1

)︂ √
A

8
+AC2

1

≤
(︂√︁

∆1 + 2
√
AC1

)︂2
.

For (a), we use
(︂

1
λt

)︂p
≤ C2Lηt and the induction hypothesis. For (b), we use∑︁T

t=1 L
(︂

1
λt

)︂p
λ2tη

2
t ≤ C3 and Qt ≥ 1. For (c), we have

log
1

δ
+

60σpC3

C2
1

≤
√
A

8

48σ2pC2C3 + 140σpC3 ≤ AC2
1 ,

since

A ≥ 64

(︃
log

1

δ
+

60σpC3

C2
1

)︃2

+
48σ2pC2C3 + 140σpC3

C2
1

.

This concludes the proof.

Lemma B.1. The choices of ηt and λt in Theorem 3.1 satisfy the condition (1)-(3) of Proposition
3.7 for

C1 =

√
∆1

4
√
2γ
,

C2 =
1

σp
,

C3 =
∆1

2048σpγ
.

Proof. We verify for the first case. The second follows exactly the same. First, we have p > 1 hence

ηtλt
√
2L =

√
∆1T

1−p
3p−2

8
√
Lγ

√
2L ≤

√
∆1

4
√
2γ

= C1.

Since ηt =
√
∆1T

1−p
3p−2

8λt
√
Lγ

, p > 1 and λt ≥
(︂

8γ√
L∆1

)︂ 1
p−1

T
1

3p−2σ
p
p−1

ηtλ
p
t =

√
∆1T

1−p
3p−2

8
√
Lγ

λp−1
t

≥
√
∆1T

1−p
3p−2

8
√
Lγ

8γ√
L∆1

T
p−1
3p−2σp

=
σp

L

which gives

1

Lηt

(︃
1

λt

)︃p
≤ 1

σp
= C2.
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Finally, we have λt ≥ 321/pσT
1

3p−2 hence(︃
1

λt

)︃p
T

p
3p−2 ≤ 1

32σp
.

Therefore,
T∑︂
t=1

L

(︃
1

λt

)︃p
λ2tη

2
t =

T∑︂
t=1

L

(︃
1

λt

)︃p(︄√
∆1T

1−p
3p−2

8
√
Lγ

)︄2

=
1

T

T∑︂
t=1

L

(︃
1

λt

)︃p
T · T

2−2p
3p−2

∆1

64Lγ

=
1

T

T∑︂
t=1

(︃
1

λt

)︃p
T

p
3p−2

∆1

64γ2

≤ 1

T

T∑︂
t=1

1

32σp
∆1

64γ2

=
1

32σp
∆1

64γ2
≤ ∆1

2048σpγ
.

Proof of Theorem 3.1. Note that η ≤ T
1−p
3p−2

16
√
90Lγ

≤ 1
L . We have that with probability at least 1 − δ,

event E(δ) happens. Conditioning on this event, we verify the conditions of Proposition 3.7. We
select the following constants

C1 =

√
∆1

4
√
2γ

; C2 =
1

σp
; C3 =

∆1

2048σpγ
; A = 256γ2.

We verify in Lemma B.1 that for these choice of constants, conditions (1)-(3) of Proposition 3.7 are
satisfied. Furthermore, we have

64

(︃
log

1

δ
+

60σpC3

C2
1

)︃2

+
48σ2pC2C3 + 140σpC3

C2
1

= 64

(︃
log

1

δ
+ 60 log

1

δ

32

∆1

∆1

2048

)︃2

+

(︃
48

∆1

2048
+ 140

∆1

2048

)︃
32

∆1

≤ 256γ2 = A.

We only need to show that, for all t, ∥∇f(xt)∥ ≤ λt
2 . We will show this by induction. Indeed, for

the base case we have ∥∇f(x1)∥ ≤
√
2L∆1 ≤ λ1

2 . Suppose that it is true for all t ≤ k. We will
prove that ∥∇f(xk+1)∥ ≤ λk+1

2 . By Proposition 3.7 and the induction hypothesis

∆k+1 ≤
(︂√︁

∆1 + 2
√
AC1

)︂2
≤
(︃√︁

∆1 +

√
∆1

2
√
2γ

× 16γ

)︃2

≤ 45∆1.

Thus, we get

∥∇f(xk+1)∥ ≤
√︁
2L∆k+1 ≤

√︁
90L∆1 ≤ λk+1

2
as needed. From Proposition 3.7, we have

η

2

T∑︂
t=1

∥∇f(xt)∥2 +∆k+1 ≤ 45∆1.

Therefore

1

T

T∑︂
t=1

∥∇f(xt)∥2 ≤ 90∆1

ηT
= 720

√︁
∆1Lγmax

{︄(︃
8γ√
L∆1

)︃ 1
p−1

T
2−2p
3p−2σ

p
p−1 ; 2

√︁
90L∆1T

1−2p
3p−2 ; 32

1
pσT

2−2p
3p−2

}︄
.
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Theorem B.2. Assume that f satisfies Assumption (1’), (2), (3), (4). Let γ = max
{︁
log 1

δ ; 1
}︁

and
∆1 = f(x1)− f∗. For unknown T , we choose λt and ηt such that

λt = max

{︄(︃
8γ√
L∆1

)︃ 1
p−1 (︂

2t (1 + log t)
2
)︂ 1

3p−2

σ
p
p−1 ; 2

√︁
90L∆1; 32

1
pσ
(︂
2t (1 + log t)

2
)︂ 1

3p−2

}︄
,

ηt =

√
∆1

(︂
2t (1 + log t)

2
)︂ 1−p

3p−2

8λt
√
Lγ

.

Then with probability at least 1− δ

1

T

T∑︂
t=1

∥∇f(xt)∥2 ≤ 720
√︁
∆1Lγmax

{︄(︃
8γ√
L∆1

)︃ 1
p−1 (︂

2 (1 + log T )
2
)︂ p

3p−2

σ
p
p−1T

2−2p
3p−2 ;

2
√︁
90L∆1

(︂
2 (1 + log T )

2
)︂ p−1

3p−2

T
1−2p
3p−2 ; 32

1
pσ
(︂
2 (1 + log T )

2
)︂ p

3p−2

T
2−2p
3p−2

}︄
.

We again verify the conditions of Proposition 3.7 for the choices of ηt and λt in Theorem B.2.
Lemma B.3. The choices of ηt and λt in Theorem B.2 satisfy the condition (1)-(3) of Proposition
3.7 for

C1 =

√
∆1

4
√
2γ
,

C2 =
1

σp
,

C3 =
∆1

2048σpγ
.

The proof utilizes the following fact:
Fact B.4. We have

∑︁∞
t=1

1
2t(1+log t)2

< 1.

Proof. First, we have p > 1 hence

ηtλt
√
2L =

√
∆1

(︂
2t (1 + log t)

2
)︂ 1−p

3p−2

8
√
Lγ

√
2L

≤
√
∆1

4
√
2γ

= C1.

Since ηt =
√
∆1T

1−p
3p−2

8λt
√
Lγ

, p > 1 and λt ≥
(︂

8γ√
L∆1

)︂ 1
p−1

(︂
2t (1 + log t)

2
)︂ 1−p

3p−2

σ
p
p−1

ηtλ
p
t =

√
∆1

(︂
2t (1 + log t)

2
)︂ 1−p

3p−2

8
√
Lγ

λp−1
t

≥

√
∆1

(︂
2t (1 + log t)

2
)︂ 1−p

3p−2

8
√
Lγ

8γ√
L∆1

(︂
2t (1 + log t)

2
)︂ p−1

3p−2

σp

=
σp

L
,

which gives

1

Lηt

(︃
1

λt

)︃p
≤ 1

σp
= C2.
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Finally, we have λt ≥ 32
1
pσ
(︂
2t (1 + log t)

2
)︂ 1

3p−2

, hence(︃
1

λt

)︃p (︂
2t (1 + log t)

2
)︂ p

3p−2 ≤ 1

32σp
. (13)

Therefore,

T∑︂
t=1

L

(︃
1

λt

)︃p
λ2tη

2
t =

T∑︂
t=1

L

(︃
1

λt

)︃p (︂
2t (1 + log t)

2
)︂ 2−2p

3p−2

(︃ √
∆1

8
√
Lγ

)︃2

=

T∑︂
t=1

L
1

2t (1 + log t)
2

(︃
1

λt

)︃p (︂
2t (1 + log t)

2
)︂ p

3p−2 ∆1

64γ2

≤
T∑︂
t=1

L
1

2t (1 + log t)
2

1

32σp
∆1

64γ2
(by (13))

=
1

32σp
∆1

64γ2

T∑︂
t=1

1

2t (1 + log t)
2

≤ 1

32σp
∆1

64γ2
≤ ∆1

2048σpγ
. (by Fact B.4)

Proof of Theorem B.2. Note that

ηt =

√
∆1

(︂
2t (1 + log t)

2
)︂ 1−p

3p−2

8λt
√
Lγ

≤

(︂
2t (1 + log t)

2
)︂ 1−p

3p−2

16Lγ
√
90

≤ 1

L
.

Note that with Lemma B.3, verifying the conditions of Proposition 3.7 is identical to the proof of
theorem 3.1. We have that with probability at least 1 − δ, event E(δ) from 3.7 happens. We have
with probability at least 1− δ:

1

2

T∑︂
t=1

ηt ∥∇f(xt)∥2 +∆k+1 ≤ 45∆1.

Since ηt is decreasing, we have

1

T

T∑︂
t=1

∥∇f(xt)∥2 ≤ 90∆1

TηT
.

This means that

1

T

T∑︂
t=1

∥∇f(xt)∥2 ≤ 720
√︁
∆1Lγmax

{︄(︃
8γ√
L∆1

)︃ 1
p−1 (︂

2 (1 + log T )
2
)︂ p

3p−2

σ
p
p−1T

2−2p
3p−2 ;

2
√︁
90L∆1

(︂
2 (1 + log T )

2
)︂ p−1

3p−2

T
1−2p
3p−2 ; 32

1
pσ
(︂
2 (1 + log T )

2
)︂ p

3p−2

T
2−2p
3p−2

}︄
.
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C Missing Proofs from Section 4

Lemma C.1. Suppose that ηt ≤ 1
4L and assume f satisfies Assumption (1), (2), (3) as well as the

following condition

f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+G ∥y − x∥+ L

2
∥y − x∥2 , ∀y, x ∈ X . (14)

Then the iterate sequence (xt)t≥1 output by Algorithm 2 satisfies the following:

ηt∆t+1 ≤ Dψ (x∗, xt)−Dψ (x∗, xt+1) + ηt ⟨x∗ − xt, θ
u
t ⟩+ ηt

⟨︁
x∗ − xt, θ

b
t

⟩︁
+ 2η2t

(︂
∥θut ∥

2
∗ − E

[︂
∥θut ∥

2
∗ | Ft−1

]︂)︂
+ 2η2tE

[︂
∥θut ∥

2
∗ | Ft−1

]︂
+ 2η2t

⃦⃦
θbt
⃦⃦2
∗ + 2G2η2t .

Proof. By condition (14) and convexity,

f (xt+1)− f (x∗) ≤ f (xt+1)− f (xt)⏞ ⏟⏟ ⏞
condition (14)

+ f (xt)− f (x∗)⏞ ⏟⏟ ⏞
convexity

≤ ⟨∇f (xt) , xt+1 − xt⟩+
L

2
∥xt − xt+1∥2 +G ∥xt − xt+1∥+ ⟨∇f (xt) , xt − x∗⟩

= ⟨∇f (xt) , xt+1 − x∗⟩+ L

2
∥xt − xt+1∥2 +G ∥xt − xt+1∥

= ⟨θt, x∗ − xt+1⟩+
⟨︂˜︁∇f(xt), xt+1 − x∗

⟩︂
+
L

2
∥xt − xt+1∥2 +G ∥xt − xt+1∥ .

By the optimality condition, we have⟨︂
ηt ˜︁∇f(xt) +∇xDψ (xt+1, xt) , x

∗ − xt+1

⟩︂
≥ 0

and thus ⟨︂
ηt ˜︁∇f(xt), xt+1 − x∗

⟩︂
≤ ⟨∇xDψ (xt+1, xt) , x

∗ − xt+1⟩ .

Note that

⟨∇xDψ (xt+1, xt) , x
∗ − xt+1⟩ = ⟨∇ψ (xt+1)−∇ψ (xt) , x

∗ − xt+1⟩
= Dψ (x∗, xt)−Dψ (xt+1, xt)−Dψ (x∗, xt+1) .

Thus

ηt

⟨︂˜︁∇f(xt), xt+1 − x∗
⟩︂
≤ Dψ (x∗, xt)−Dψ (x∗, xt+1)−Dψ (xt+1, xt)

≤ Dψ (x∗, xt)−Dψ (x∗, xt+1)−
1

2
∥xt+1 − xt∥2 ,

where we have used that Dψ (xt+1, xt) ≥ 1
2 ∥xt+1 − xt∥2 by the strong convexity of ψ.

Combining the two inequalities, and using the assumption that Lηt ≤ 1
4 , we obtain

ηt∆t+1 +Dψ (x∗, xt+1)−Dψ (x∗, xt)

≤ ηt ⟨θt, x∗ − xt+1⟩+
Lηt
2

∥xt − xt+1∥2 +Gηt ∥xt − xt+1∥ −
1

2
∥xt+1 − xt∥2

≤ ηt ⟨θt, x∗ − xt⟩+ ηt ⟨θt, xt − xt+1⟩ −
3

8
∥xt+1 − xt∥2 +Gηt ∥xt − xt+1∥

≤ ηt ⟨θt, x∗ − xt⟩+ η2t ∥θt∥
2
∗ + 2G2η2t

≤ ηt
⟨︁
θut + θbt , x

∗ − xt
⟩︁
+ 2η2t ∥θut ∥

2
∗ + 2η2t

⃦⃦
θbt
⃦⃦2
∗ + 2G2η2t .

This is what we want to show.

Proof of Lemma 4.7. We have
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E [exp (Zt) | Ft−1]× exp

(︃(︃
3

8λ2t
+ 24z2t η

4
t λ

2
t

)︃
E
[︂
∥θut ∥

2
∗ | Ft−1

]︂)︃
(a)

≤E
[︂
exp

(︂
zt

(︂
ηt ⟨x∗ − xt, θ

u
t ⟩+ 2η2t

(︂
∥θut ∥

2
∗ − E

[︂
∥θut ∥

2
∗ | Ft−1

]︂)︂)︂)︂
| Ft−1

]︂
(b)

≤ exp

(︃
E
[︃
3

4

(︂
zt

(︂
ηt ⟨x∗ − xt, θ

u
t ⟩+ 2η2t

(︂
∥θut ∥

2
∗ − E

[︂
∥θut ∥

2
∗ | Ft−1

]︂)︂)︂)︂2
| Ft−1

]︃)︃
(c)

≤ exp

(︃(︃
3

2
z2t η

2
t ∥x∗ − xt∥2 E

[︂
∥θut ∥

2
∗ | Ft−1

]︂
+ 6z2t η

4
tE
[︂
∥θut ∥

4
∗ | Ft−1

]︂)︃)︃
(d)

≤ exp

(︃(︃
3

2
z2t η

2
t ∥x∗ − xt∥2 + 24z2t η

4
t λ

2
t

)︃
E
[︂
∥θut ∥

2
∗ | Ft−1

]︂)︃
(e)

≤ exp

(︃(︃
3

8λ2t
+ 24z2t η

4
t λ

2
t

)︃
E
[︂
∥θut ∥

2
∗ | Ft−1

]︂)︃
.

For (a), we use Lemma 4.5. For (b), we use Lemma 2.2. Notice that

E [⟨x∗ − xt, θ
u
t ⟩] = E

[︂
∥θut ∥

2
∗ − E

[︂
∥θut ∥

2
∗ | Ft−1

]︂]︂
= 0,

and since ∥θut ∥∗ ≤ 2λt, we have⃓⃓⃓
ηt ⟨x∗ − xt, θ

u
t ⟩+ 2η2t

(︂
∥θut ∥

2
∗ − E

[︂
∥θut ∥

2
∗ | Ft−1

]︂)︂⃓⃓⃓
≤ ηt ∥x∗ − xt∥ ∥θut ∥∗ + 2η2t

(︂
∥θut ∥

2
∗ + E

[︂
∥θut ∥

2
∗ | Ft−1

]︂)︂
≤ 2ηtλt ∥x∗ − xt∥+ 16η2t λ

2
t

≤ 2ηtλt

√︂
2Dψ (x∗, xt) + 16η2t λ

2
t .

Thus, zt ≤ 1

2ηtλt
√

2Dψ(x∗,xt)+16η2tλ
2
t

. For (c), we use the inequalities (a + b)2 ≤ 2a2 + 2b2 and

E
[︂
(X − E [X])

2
]︂
≤ E

[︁
X2
]︁
. For (d), we use the fact ∥θut ∥

2
∗ ≤ 4λ2t to get E

[︂
∥θut ∥

4
∗ | Ft−1

]︂
≤

4λ2tE
[︂
∥θut ∥

2
∗ | Ft−1

]︂
. For (e), we use the fact that ∥θut ∥∗ ≤ 2λt and

ztηt ∥x∗ − xt∥ ≤ ηt ∥x∗ − xt∥
2ηtλt

√︁
2Dψ (x∗, xt)

≤ 1

2λt
.

We obtain E [exp (Zt) | Ft−1] ≤ 1. Therefore

E [exp (St) | Ft−1] = exp (St−1)E [exp (Zt) | Ft−1] ≤ exp (St−1) .

which means (exp (St))t≥1 is a supermartingale. By Ville’s inequality, we have, for all k ≥ 1

Pr

[︃
Sk ≥ log

1

δ

]︃
≤ δE [exp (S1)] ≤ δ.

In other words, with probability at least 1− δ, for all k ≥ 1

k∑︂
t=1

Zt ≤ log
1

δ
.

Plugging in the definition of Zt we have

k∑︂
t=1

ztηt∆t+1 +

k∑︂
t=1

(ztDψ (x∗, xt+1)− ztDψ (x∗, xt))

≤ log
1

δ
+

k∑︂
t=1

ztηt
⟨︁
x∗ − xt, θ

b
t

⟩︁
+ 2

k∑︂
t=1

ztη
2
t

⃦⃦
θbt
⃦⃦2
∗
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+

k∑︂
t=1

(︃(︃
2ztη

2
t +

3

8λ2t
+ 24z2t η

4
t λ

2
t

)︃
E
[︂
∥θut ∥

2
∗ | Ft−1

]︂)︃
.

Note that we have zt is a decreasing sequence, hence the LHS of the above inequality can be bounded
by

LHS =

k∑︂
t=1

ztηt∆t+1 + zkDψ (x∗, xk+1)− z1Dψ (x∗, x1) +

k∑︂
t=2

(zk−1 − zk)Dψ (x∗, xk)

≥
k∑︂
t=1

ztηt∆t+1 + zkDψ (x∗, xk+1)− z1Dψ (x∗, x1) .

We obtain from here the desired inequality.

Proof of Proposition 4.8. We will prove by induction that on k

k∑︂
i=1

ηi∆i+1 +Dψ (x∗, xk+1) ≤
1

2
(R1 + 8AC1)

2
.

The base case k = 0 is trivial. We have Dψ (x∗, x1) =
R2

1

2 . Suppose the statement is true for all
t ≤ k ≤ ℓ. Now, we show for k + 1. Recall that

zt =
1

2ηtλtmaxi≤t
√︁
2Dψ (x∗, xi) + 16Qη2t λ

2
t

.

Let us choose Q = A > 1. By the induction hypothesis, we have maxi≤t
√︁
2Dψ (x∗, xi) ≤

R1 + 8AC1, which implies

zk ≥ 1

2ηkλk (R1 + 8AC1) + 16Aη2kλ
2
k

=
1

2C1 (R1 + 16AC1)
.

For an upperbound, since
√︁

2Dψ (x∗, x1) = R1, we have:

zt ≤
1

2C1 (R1 + 8AC1)
.

Since zk is a decreasing sequence, we have

zk

k∑︂
t=1

ηt∆t+1 + zkDψ (x∗, xk+1) ≤ z1Dψ (x∗, x1) + log
1

δ
+

k∑︂
t=1

ztηt
⟨︁
x∗ − xt, θ

b
t

⟩︁
+ 2

k∑︂
t=1

ztη
2
t

⃦⃦
θbt
⃦⃦2
∗

+

k∑︂
t=1

(︃(︃
2ztη

2
t +

3

8λ2t
+ 24z2t η

4
t λ

2
t

)︃
E
[︂
∥θut ∥

2
∗ | Ft−1

]︂)︃
.

By the choice of λt, for all t ≤ k, ∥∇f(xt)∥∗ ≤ λt
2 , we can apply Lemma 2.1 and have⃦⃦

θbt
⃦⃦
∗ ≤ 4σpλ1−pt ;

E
[︂
∥θut ∥

2
∗ | Ft−1

]︂
≤ 40σpλ2−pt .

Thus, we have

zk

k∑︂
t=1

ηt∆t+1 + zkDψ (x∗, xk+1)

≤z1Dψ (x∗, x1) + log
1

δ
+ 4

k∑︂
t=1

ztηtσ
pλ1−pt

√︂
2Dψ (x∗, xt) + 32

k∑︂
t=1

ztη
2
t σ

2pλ2−2p
t

+ 40

k∑︂
t=1

(︃(︃
2ztη

2
t +

3

8λ2t
+ 24z2t η

4
t λ

2
t

)︃
σpλ2−pt

)︃
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≤z1Dψ (x∗, x1) + log
1

δ
+

2C1 (R1 + 8AC1)σ
p

C1 (R1 + 8AC1)

k∑︂
t=1

(︃
1

λt

)︃p
+

16C2
1σ

2p

C1 (R1 + 8AC1)

k∑︂
t=1

(︃
1

λt

)︃2p

+ 40

(︄
C2

1

C1 (R1 + 8AC1)
+

3

8
+

6C4
1

C2
1 (R1 + 8AC1)

2

)︄
σp

k∑︂
t=1

(︃
1

λt

)︃p
≤ R2

1

4 (C1R1 + 8AC2
1 )

+ log
1

δ
+ 2σpC2 +

2σ2pC2C3

A
+ 24σpC2

≤ R2
1

4 (C1R1 + 8AC2
1 )

+A,

where for the last inequality we use
∑︁k
t=1

(︂
1
λt

)︂p
≤ C2 and

(︂
1
λt

)︂2p
≤ C3

(︂
1
λt

)︂p
. We obtain

k∑︂
t=1

ηt∆t+1 +Dψ (x∗, xk+1) ≤ 2C1 (R1 + 16AC1)

(︃
R2

1

4 (C1R1 + 8AC2
1 )

+A

)︃
=

1

2
R2

1 +
4AC2

1R
2
1

C1R1 + 8AC2
1

+ 2A
(︁
C1R1 + 16AC2

1

)︁
≤ 1

2
R2

1 + 6AC1R1 + 32A2C2
1

≤ 1

2
(R1 + 8AC1)

2
.

Proof of Theorem 4.1. Note that our choice of η ensures η ≤ R1

16
1

4LR1
≤ 1

4L . We have that with
probability at least 1− δ, event E(δ) happens. Conditioning on this event, in 4.8 we choose

C1 =
R1

24γ
; C2 =

γ

26σp
; C3 =

γ

26Tσp
; A = 3γ.

We have

λtηt = C1

T∑︂
t=1

(︃
1

λt

)︃p
≤

T∑︂
t=1

(︂ γ

26T

)︂ 1

σp
= C2(︃

1

λt

)︃2p

≤ 1

σp

(︂ γ

26T

)︂(︃ 1

λt

)︃p
= C3

(︃
1

λt

)︃p
max

{︃
log

1

δ
+ 26σpC2 +

2σ2pC2C3

A
; 1

}︃
≤ 3γ = A.

We only need to show that for all t

∥∇f(xt)∥∗ ≤ λt
2
.

We will show this by induction. Indeed, we have

∥∇f(x1)∥∗ ≤ ∇1 ≤ λ1
2
.

Suppose that it is true for all t ≤ k. We prove that

∥∇f(xk+1)∥∗ ≤ λk+1

2
.

By 4.8 we have

∥xk+1 − x∗∥ ≤
√︂
2Dψ (x∗, xk+1) ≤ R1 + 8AC1 = 2R1.
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Thus

∥∇f(xk+1)∥∗ ≤ ∥∇f(xk+1)−∇f(x∗)∥∗ + ∥∇f(x1)−∇f(x∗)∥∗ + ∥∇f(x1)∥∗
≤ L ∥xk+1 − x∗∥+ L ∥x1 − x∗∥+∇1

≤ 3LR1 +∇1 ≤ λk+1

2

as needed. Therefore from Lemma 4.7 we have

η

T∑︂
t=1

∆t+1 +Dψ (x∗, xT+1) ≤ 2R2
1,

which gives

1

T

T+1∑︂
t=2

∆t ≤
2R2

1

η
= 48R1 max

{︂
26

1
pT

1−p
p σγ

p−1
p ; 2 (3LR1 +∇1)T

−1γ
}︂
.

Theorem C.2. Assume that f satisfies Assumption (1), (2), (3), (4) and (5). Let γ = max
{︁
log 1

δ ; 1
}︁

;
R1 =

√︁
2Dψ (x∗, x1) assume that ∇1 is an upper bound of ∥∇f(x1)∥∗. For unknown T , we choose

λt = max

⎧⎨⎩
(︄
52t (1 + log t)

2

γ

)︄1/p

σ; 2 (3LR1 +∇1)

⎫⎬⎭ , and

ηt =
R1

24λtγ
=

R1

24γ
min

⎧⎨⎩
(︄
52t (1 + log t)

2

γ

)︄−1/p

σ−1;
1

2
(3LR1 +∇1)

−1

⎫⎬⎭ .

Then with probability at least 1− δ

1

T

T+1∑︂
t=2

∆t ≤ 48R1 max
{︂
52

1
pT

1−p
p (1 + log T )

2
p σγ

p−1
p ; 2 (3LR1 +∇1)T

−1γ
}︂
= ˜︁O (︂T 1−p

p

)︂
.

Proof. We can follow the similar steps. Notice that (ηt) is a decreasing sequence. We also use Fact
B.4 to verify the second condition of Proposition 4.8. The proof is omitted.

Proof of Theorem 4.4. Note that ηt ≤ 1
4L . We have that with probability at least 1 − δ, event E(δ)

happens. Conditioning on this event, in 4.8. We choose

C1 =
c1
24

; C2 =
1

26c2
; C3 =

1

52c2
; A = γ +

2σp

c2
.

We verify the conditions of Proposition 4.8

λtηt = C1

T∑︂
t=1

(︃
1

λt

)︃p
≤

T∑︂
t=1

1

52t(1 + log t)2c2
≤ 1

26c2
= C2(︃

1

λt

)︃2p

≤ 1

52tc2

(︃
1

λt

)︃p
≤ C3

(︃
1

λt

)︃p
max

{︃
log

1

δ
+ 26σpC2 +

2σ2pC2C3

A
; 1

}︃
= max

{︃
log

1

δ
+
σp

c2
+
σp

c2
; 1

}︃
≤ A,

where we have 2σ2pC2C3

A ≤ 2σ2pC2C3 × c2
2σp ≤ σp

c2
. Also, note that

∥∇f(xt)∥∗ ≤ ∥∇f(xt)−∇f(x1)∥∗ + ∥∇f(x1)∥∗

≤ L ∥xt − x1∥∗ + ∥∇f(x1)∥∗ ≤ λt
2
.
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Therefore, from Lemma 4.7, we have

ηT

T∑︂
t=1

∆t+1 +Dψ (x∗, xT+1) ≤
1

2
(R1 + 8AC1)

2

=
1

2

(︃
R1 +

c1
3

(︃
γ +

2σp

c2

)︃)︃2

which gives

1

T

T+1∑︂
t=2

∆t ≤
1

2TηT

(︃
R1 +

c1
3

(︃
γ +

2σp

c2

)︃)︃2

=
8

Tc1

(︃
R1 +

c1
3

(︃
γ +

2σp

c2

)︃)︃2

max

{︃(︁
52T (1 + log T )2c2

)︁1/p
; 2

(︃
Lmax
i≤T

∥xi − x1∥+∇1

)︃
;
L

8

}︃
.

Note that

∥xi − x1∥ ≤ ∥xi − x∗∥+ ∥x1 − x∗∥

≤ 2R1 +
c1
3

(︃
γ +

2σp

c2

)︃
which gives us the final convergence rate.

D Clipped Accelerated Stochastic Mirror Descent

In this section, we extend the analysis of Clipped-SMD to the case of Clipped Accelerated Stochastic
Mirror Descent (Algorithm 3). We will see that the analysis is basically the same with little
modification. We present in Algorithm 3 the clipped version of accelerated stochastic mirror descent
(see [15]), where the clipped gradient ˜︁∇f(xt) is used to update the iterates in place of the stochastic
gradient ˆ︁∇f(xt).
We use the following additional assumption:

(5’) Global minimizer: We assume that ∇f(x∗) = 0.
Theorem D.1. Assume that f satisfies Assumption (1), (2), (3), (4) and (5’). Let γ =
max

{︁
log 1

δ ; 1
}︁

; and R1 =
√︁
2Dψ (x∗, x1).

1. For known T , we choose a constant c and λt and ηt such that

c = max

⎧⎪⎨⎪⎩104;
4 (T + 1)

(︂
26T
γ

)︂ 1
p

σ

γLR1

⎫⎪⎬⎪⎭ ,

λt =
cR1γLαt

8
= max

{︄
104R1γL

6(t+ 1)
;
T + 1

t+ 1

(︃
26T

γ

)︃1/p

σ

}︄
,

ηt =
1

3cγ2Lαt
=

R1

24γ
min

{︄
4(t+ 1)

104R1γL
;
t+ 1

T + 1

(︃
26T

γ

)︃−1/p

σ−1

}︄
.

Then with probability at least 1− δ

f (yT+1)− f (x∗) ≤ 6max
{︂
104Lγ2R2

1(T + 1)−2; 4R1 (T + 1)
−1

(26T )
1
p γ

p−1
p σ

}︂
.

2. For unknown T , we choose ct, λt and ηt such that

ct = max

⎧⎪⎨⎪⎩104;
4 (t+ 1)

(︂
52t(1+log t)2

γ

)︂ 1
p

σ

γLR1

⎫⎪⎬⎪⎭ ,
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λt =
ctR1γLαt

8
= max

⎧⎨⎩104R1γL

4(t+ 1)
;

(︄
52t (1 + log t)

2

γ

)︄1/p

σ

⎫⎬⎭ ,

ηt =
1

3ctγ2Lαt
=

R1

24γ
min

⎧⎨⎩ 4(t+ 1)

104R1γL
;

(︄
52t (1 + log t)

2

γ

)︄−1/p

σ−1

⎫⎬⎭ .

Then with probability at least 1− δ

f (yT+1)− f (x∗) ≤ 6max

{︃
104Lγ2R2

1(T + 1)−2; 4R1 (T + 1)
−1
(︂
52T (1 + log T )

2
)︂ 1
p

γ
p−1
p σ

}︃
.

Remark D.2. One feature of the accelerated algorithm is the interpolation between the two regimes:
When σ is large, the algorithm achieves the O

(︂
T

1−p
p

)︂
convergence rate, which is the same

as unaccelerated algorithms; however, when σ is sufficiently small, the algorithm achieves the
accelerated O

(︁
T−2

)︁
rate.

We also start the analysis of accelerated stochastic mirror descent with the following lemma.

Lemma D.3. Assume that f satisfies Assumption (1), (2), (3), (4) and ηt ≤ 1
2Lαt

, the iterate
sequence (xt)t≥1 output by Algorithm 2 satisfies the following

ηt
αt

(f (yt+1)− f (x∗))− ηt (1− αt)

αt
(f (yt)− f (x∗)) +Dψ (x∗, zt+1)−Dψ (x∗, zt)

≤ηt ⟨θut , x∗ − zt⟩+ ηt
⟨︁
θbt , x

∗ − zt
⟩︁
+ 2η2t

(︂
∥θut ∥

2
∗ − E

[︂
∥θut ∥

2
∗ | Ft−1

]︂)︂
+ 2η2t

⃦⃦
θbt
⃦⃦2
∗ + 2η2tE

[︂
∥θut ∥

2
∗ | Ft−1

]︂
.

Proof of Lemma D.3. We have

f (yt+1)− f (x∗) = f (yt+1)− f (xt)⏞ ⏟⏟ ⏞
smoothness

+ f (xt)− f (x∗)⏞ ⏟⏟ ⏞
convexity

≤ ⟨∇f (xt) , yt+1 − xt⟩+
L

2
∥yt+1 − xt∥2

+ αt ⟨∇f (xt) , xt − x∗⟩+ (1− αt) (f (xt)− f (x∗))

= (1− αt) ⟨∇f (xt) , yt − xt⟩⏞ ⏟⏟ ⏞
convexity

+αt ⟨∇f (xt) , zt+1 − x∗⟩

+
Lα2

t

2
∥zt+1 − zt∥2 + (1− αt) (f (xt)− f (x∗))

≤ (1− αt) (f (yt)− f (xt)) + (1− αt) (f (xt)− f (x∗))

+ αt ⟨θt, x∗ − zt+1⟩+ αt

⟨︂˜︁∇f(xt), zt+1 − x∗
⟩︂
+
Lα2

t

2
∥zt+1 − zt∥2

≤ (1− αt) (f (yt)− f (x∗)) + αt ⟨θt, x∗ − zt+1⟩

+ αt

⟨︂˜︁∇f(xt), zt+1 − x∗
⟩︂
+
Lα2

t

2
∥zt+1 − zt∥2 .

By the optimality condition, we have⟨︂
ηt ˜︁∇f(xt) +∇xDψ (zt+1, zt) , x

∗ − zt+1

⟩︂
≥ 0

and thus ⟨︂
ηt ˜︁∇f(xt), zt+1 − x∗

⟩︂
≤ ⟨∇xDψ (zt+1, zt) , x

∗ − zt+1⟩ .

Note that

⟨∇xDψ (zt+1, zt) , x
∗ − zt+1⟩ = ⟨∇ψ (zt+1)−∇ψ (zt) , x

∗ − zt+1⟩
= Dψ (x∗, zt)−Dψ (zt+1, zt)−Dψ (x∗, zt+1) .
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Thus

ηt

⟨︂˜︁∇f(xt), zt+1 − x∗
⟩︂
≤ Dψ (x∗, zt)−Dψ (x∗, zt+1)−Dψ (zt+1, zt)

≤ Dψ (x∗, zt)−Dψ (x∗, zt+1)−
1

2
∥zt+1 − zt∥2

where we have used that Dψ (zt+1, zt) ≥ 1
2 ∥zt+1 − zt∥2 by the strong convexity of ψ. We have

f (yt+1)− f (x∗) ≤ (1− αt) (f (yt)− f (x∗)) + αt ⟨θt, x∗ − zt+1⟩

+
αt
ηt

Dψ (x∗, zt)−
αt
ηt

Dψ (x∗, zt+1) +

(︃
Lα2

t

2
− αt

2ηt

)︃
∥zt+1 − zt∥2 .

Dividing both sides by αt
ηt

and using the condition Lηtαt ≤ 1
2 , we have

ηt
αt

(f (yt+1)− f (x∗)) +Dψ (x∗, zt+1)−Dψ (x∗, zt)

≤ηt (1− αt)

αt
(f (yt)− f (x∗)) + ηt ⟨θt, x∗ − zt⟩

+ ηt ⟨θt, zt − zt+1⟩ −
1− Lηtαt

2
∥zt+1 − zt∥2

≤ηt (1− αt)

αt
(f (yt)− f (x∗)) + ηt ⟨θt, x∗ − zt⟩

+
η2t ∥θt∥

2
∗

2 (1− Lηtαt)

≤ηt (1− αt)

αt
(f (yt)− f (x∗)) + ηt

⟨︁
θut + θbt , x

∗ − zt
⟩︁

+ 2η2t ∥θut ∥
2
∗ + 2η2t

⃦⃦
θbt
⃦⃦2
∗

as needed.

Similarly to the previous section, we define the following variables

Zt = zt

(︄
ηt
αt

(f (yt+1)− f (x∗))− ηt (1− αt)

αt
(f (yt)− f (x∗)) +Dψ (x∗, zt+1)−Dψ (x∗, zt)

− ηt
⟨︁
θbt , x

∗ − zt
⟩︁
− 2η2t

⃦⃦
θbt
⃦⃦2
∗ − 2η2tE

[︂
∥θut ∥

2
∗ | Ft−1

]︂)︄
−
(︃

3

8λ2t
+ 24z2t η

4
t λ

2
t

)︃
E
[︂
∥θut ∥

2 | Ft−1

]︂
,

where zt =
1

2ηtλtmaxi≤t
√︁
2Dψ (x∗, xi) + 16Qη2t λ

2
t

for a constant Q ≥ 1. We also let St =
∑︁t
i=1 Zi. Following the same analysis as in previous

sections, we can obtain Lemma D.4 and Proposition D.5, for which we will omit the proofs here.
The only step we need to pay attention to when showing Lemma D.4 is when we bound the sum

k∑︂
t=1

ztηt
αt

(f (yt+1)− f (x∗))− ztηt (1− αt)

αt
(f (yt)− f (x∗)) .

If we assume ηt−1

αt−1
≥ ηt(1−αt)

αt
, since zt is a decreasing sequence and α1 = 0, we can lower bound

the above sum by the last term zkηk
αk

(f (yk+1)− f (x∗)), which gives us the desired inequality.

Lemma D.4. Assume that for all t ≥ 1, ηt satisfies ηt−1

αt−1
≥ ηt(1−αt)

αt
. For any δ > 0, let E(δ) be

the event that for all 1 ≤ k ≤ T

zkηk
αk

(f (yk+1)− f (x∗)) + zkDψ (x∗, xk+1)
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≤z1Dψ (x∗, x1) + log
1

δ
+

k∑︂
t=1

ztηt
⟨︁
x∗ − xt, θ

b
t

⟩︁
+ 2

k∑︂
t=1

ztη
2
t

⃦⃦
θbt
⃦⃦2
∗

+

k∑︂
t=1

(︃(︃
2ztη

2
t +

3

8λ2t
+ 24z2t η

4
t λ

2
t

)︃
E
[︂
∥θut ∥

2
∗ | Ft−1

]︂)︃
.

Then Pr [E(δ)] ≥ 1− δ.

Finally, we state a general condition for the choice of ηt and λt, which follows exactly the same as
in Proposition 4.8. The proof for Theorem D.1 is a direct consequence of this.
Proposition D.5. We assume that the event E(δ) from Lemma D.4 happens. Suppose that for some
ℓ ≤ T , there are constants C1 and C2 such that for all t ≤ ℓ

1. λtηt = C1; 2.
∑︁ℓ
t=1

(︂
1
λt

)︂p
≤ C2; 3.

(︂
1
λt

)︂2p
≤ C3

(︂
1
λt

)︂p
; 4. ∥∇f(xt)∥∗ ≤ λt

2 .

Then for all t ≤ ℓ+ 1

ηt
αt

(f (yt+1)− f (x∗)) +Dψ (x∗, zt+1) ≤
1

2
(R1 + 8AC1)

2

for A ≥ max
{︂
log 1

δ + 26σpC2 +
2σ2pC2C3

A ; 1
}︂
.

Proof of Theorem D.1. 1. Note that ηt ≤ 1
2cγ2Lαt

≤ 1
2Lαt

and

ηt−1

αt−1
=

t2

8cγ2L

ηt (1− αt)

αt
=

(t+ 1)(t− 1)

8cγ2L

thus ηt−1

αt−1
≥ ηt(1−αt)

αt
. We have that with probability at least 1 − δ, event E(δ) happens.

Conditioning on this event, in 4.8 We choose

C1 =
R1

24γ
; C2 =

γ

26σp
; C3 =

γ

26Tσp
; A = 3γ.

We can verify the conditions of Proposition D.5 similarly as in previous section for these choices of
C1, C2, and C3.

We will show by induction that for all t ≥ 1, ∥∇f(xt)∥∗ ≤ λt
2 and

max {∥xt − x∗∥ , ∥yt − x∗∥ , ∥zt − x∗∥} ≤ 2R1.

For t = 1, notice that x1 = y1 = z1. Thus, we have

∥∇f(x1)∥∗ = ∥∇f(x1)−∇f(x∗)∥∗ ≤ LR1 ≤ λ1
2
.

Now assume that the claim holds for 1 ≤ t ≤ k. By Proposition D.5, we know that

2ηk
αk

f (yk+1)− f (x∗) + ∥zk+1 − x∗∥2 ≤ 4R2
1.

Furthermore

∥yk+1 − x∗∥ ≤ (1− αk) ∥yk − x∗∥+ αk ∥zk+1 − x∗∥ ≤ 2R1

∥xk+1 − x∗∥ ≤ (1− αk) ∥yk+1 − x∗∥+ αk ∥zk+1 − x∗∥ ≤ 2R1

For k ≥ 1 we have αk+1 = 2
k+2 < 1; αk+1

1−αk+1
= 2

k ≤ 4
k+2 ≤ 2αt+1 and αt ≤ 3

2αt+1. Hence,

∥∇f(xk+1)∥∗ ≤ ∥∇f(xk+1)−∇f(yk+1)∥∗ + ∥∇f(yk+1)−∇f(x∗)∥∗
≤ L ∥xk+1 − yk+1∥+

√︁
2L (f (yk+1)− f (x∗))

≤ Lαk+1 ∥xk+1 − zk+1∥
1− αk+1

+ 2R1

√︄
Lαt
2ηt
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≤ 4LR1
αk+1

1− αk+1
+ 2

√︃
3

2
cγR1Lαt

≤ 8γLR1αt+1 + 3

√︃
3

2
cγLR1αt+1

≤ (8 + 3

√︃
3

2
c)R1γLαt+1

=
16(8 + 3

√︂
3
2c)λt+1

2c
≤ λt+1

2

as needed. Therefore, we have
ηT
αT

(f (yT+1)− f (x∗)) +Dψ (x∗, xT+1) ≤ 2R2
1

which gives

f (yT+1)− f (x∗) ≤ 2R2
1αT
ηT

= 6R2
1cγ

2Lα2
T

= 6max
{︂
104Lγ2R2

1(T + 1)−2; 6R1 (T + 1)
−1

(26T )
1
p γ

p−1
p σ

}︂
.

2. Following the similar steps to the proof of Theorem D.1, and noticing that (ct) is a increasing
sequence, we obtain the convergence rate.
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