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1. Introduction 

Recent severe ice storms across the United States, 

namely, in Oklahoma and Texas, severely deformed and 

damaged trees resulting in extensive electrical power 

outages (National Weather Service, 2020b,  2021). 

Reports from the National Weather Service (2020a,b) 

show ice accretions of up to 38.1 mm during the 

October 2020 Oklahoma ice storm – Oklahoma’s earliest 

ice storm in the climatological record – which damaged 

trees and electrical components and caused multiple 

electrical outages. Furthermore, the destructive 

interactions between trees and electrical components 

during these ice storms have been observed to be 

significant (Call, 2010; Degelia, Christian, Basara, et al.,  

2016; Ismay, 2020). Ice storms are particularly 

hazardous to the electrical infrastructure because ice 

accretion on the electrical transmission and distribution 

system components (e.g., electrical poles and lines) can 

directly damage them, but also nearby trees laden with 

ice have the potential to (a) come in contact with lines 

causing electrical arcing or (b) bear or fall on electrical 

power lines failing the components (Call, 2010). 

Further, repairing the electrical transmission and 

distribution systems after a severe ice storm can be 

costly, often costing millions or billions of dollars (Tropea 

& Stewart, 2021). For example, the October 2020 

Oklahoma ice storm, which was declared a major 

disaster (4575-DR-OK) by the Federal Emergency 

Management Agency (FEMA, 2023), has been obligated 

over $100 M in total 

public assistance 

grants and over $4.5 

M from FEMA Hazard Mitigation Grant Program (HMGP) 

as of 16 February 2023. The HMGP obligation is about 

three times that of 2022 Florida Hurricane Ian (DR-4673-

FL), which received about six times as much in public 

grant assistance. In the past decade, FEMA has granted 

hundreds of millions of dollars and has declared 20 

severe ice storms as major disasters in the United States, 

nine of which were declared major disasters since 2020 

(FEMA, 2023). Because climate change has been 

increasing the frequency and intensity of severe 

weather (Mostafavi,  2018), including ice storms (Klima 

& Morgan, 2015; Kovacik & Kloesel, 2014), it is 

important to understand and mitigate the resulting 

failure of critical electrical infrastructure components 

(Aktan, Brownjohn, Moon, et al., 2022; Khan & Conway, 

2020; Swaminathan, Sridharan, & Hayhoe, 2018). 

During extreme events, such as ice storms and 

hurricanes, fallen trees can cause widespread disruption 

to critical infrastructure systems (CIS) such as power and 

transportation systems. For example, tree failures are 

responsible for about 55.2% of distribution system 

failures in the Northeast US (Li, Zhang, Luh, et al., 2014). 

It can take up to months to remove tree debris from 

roads following hurricanes (Laefer & Pradhan, 2006), not 

only hindering the emergency response immediately 

after extreme hazards but also affecting the recovery of 

other lifeline infrastructure in the recovery phase. 

Despite the severe consequences caused by fallen trees, 

very little effort has been put into modeling tree fragility 
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and assessing tree-induced risk to CIS. Currently, a range 

of studies have attempted to model the tree fragility 

following extreme winds and hurricanes (Ciftci, Arwade, 

Kane, et al., 2014; Hou & Chen, 2020; Kakareko, Jung, & 

Ozguven, 2020). However, most of them used simplified 

structural models of trees, focusing primarily on trunk 

failures, without considering branches or leaves. These 

simplified models are unable to capture the branch 

deflection, branch and leaf weight distribution 

throughout the tree, or any resulting branch failure, 

which could lead to inaccurate failure probabilities. 

Moreover, these studies are limited to wind hazards; 

fragility models of trees subjected to ice storms are still 

missing. As a result, no literature was found that 

considers tree-induced risk in the resilience/ 

performance assessment of CIS subjected to ice storms, 

although a few studies have considered the impact of 

wind-caused tree damage on the resilience of CIS (Hou 

& Chen, 2020; Ma, Chen, & Wang, 2018; Tari, Sepasian, 

& Kenari, 2021). Severe ice storms generally occur 

during the winter season between December and March 

(Dolce & Erdman, 2022; Semonin, 1987), such as the 

December 2000 and December 2007 Oklahoma ice 

storms (National Weather Service, 2000, 2007), but a 

recent ice storm in Oklahoma occurred in October 2020 

(National Weather Service, 2020b), which had a 

significant impact due to trees still having their leaves 

(Ismay, 2020). Researchers have attempted to quantify 

ice damage to trees (Brommit,  

Charbonneau, Contreras, et al., 2004; Takahashi, Arii, & 

Lechowicz, 2007), but none has compared the 

differences between trees subjected to ice loads with 

and without the effects of leaves. Further, no attempts 

have been made to analytically model trees subjected to 

ice loads with the effects of leaves. However, research 

has been conducted to analytically model trees 

subjected to wind loads, with and without the effects of 

leaves (Ciftci, Arwade, Kane, et al., 2014). 

Trees are naturally complex, so it is beneficial to 

simplify the geometry when constructing tree models 

(Khiripet, Viruchpintu, Maneewattanapluk, et al., 2010; 

Picard, Saint-André, & Henry, 2012). Further, tree and 

plant structures are generally modeled with only the 

trunk and branches (Honda & Hatta, 2004; Honda, 

Tomlinson, & Fisher, 1981, 1982; Jinasena & Sonnadara, 

2013; Khiripet, Viruchpintu, Maneewattanapluk, et al., 

2010; Lindenmayer & Prusinkiewicz, 1996; Wang, Zhao, 

& Qi- Xing, 2001). A fractal, a reoccurring geometric 

shape, is used to simulate many naturally occurring 

patterns and is simple to generate with a computer 

(Harmon, 2012; Saupe, 1988). Fractal generation is a 

common method for modeling trees, branches, and 

plants and is accomplished by implementing algorithms 

based on, for example, the Cantor set or the 

Lindenmayer system (Harmon, 2012; Khiripet, 

Viruchpintu, Maneewattanapluk, et al., 2010; 

Lindenmayer & Prusinkiewicz, 1996; Napolitano, 2015). 

Symmetrically branching (binary) fractal trees are 

iterated function system fractals that are created by 

drawing an initial pattern, transforming that initial 

pattern, and then combining the transformed and initial 

patterns (Kak, 2022). Binary fractals are defined by a 

branch-trunk scale factor r and tree- branch angle θ 

(Gulick, 2011; Kak, 2022). Further, the trunk bifurcates 

at the top resulting in a branch on either side of the 

trunk with each branch having a length of r times the 

height of the trunk (Gulick, 2011). In a fractal, the tree 

branch’s diameter decreases with each successive 

iteration and is dependent on tree species, branch 

length, branch weight, and environment (Wang, Zhao, & 

Qi- Xing, 2001). There are two main methods for 

determining the biomass of a tree: by directly measuring 

the weight in the field or by using allometric equations 

(Picard, Saint- André, & Henry, 2012). Allometric 

equations, regression equations based on a linear or 

nonlinear correlation between the increases in tree 

dimensions, are commonly used to estimate the 

biomass of a tree or multiple trees (Picard, Saint-André, 

& Henry, 2012). The biomass of a tree is usually divided 

into sections, such as the trunk, bark, branches, leaves, 

large and medium-size roots and small roots (Picard, 

Saint-André, & Henry, 2012). The geometric and 

mechanical properties of multiple tree species have 

been recorded (Forest Products Laboratory,  1999; 

Jenkins, Chojnacky, Heath, et al., 2004), and researchers 

have used them to develop and analyze tree models 

(Hou & Chen, 2020). Tree vulnerability due to the 

December 2007 Oklahoma ice storm has been assessed 

using remote sensing (RS) and geographic information 

systems (GIS) (Rahman, 2010). Consequently, the critical 

factors resulting in tree damage from the December 

2007 Oklahoma ice storm, ordered from most severe to 

least severe, were determined to be ice thickness, tree 

branch angle, pre-storm tree crown, wind, stem and 

branch diameters (Rahman, 2010). 

A fragility curve, commonly used in seismic risk 

analysis (Guidotti, Chmielewski, Unnikrishnan, et al., 

2016; Sharma, Tabandeh, & Gardoni, 2018), is a 

conditional failure probability of an element for a given 

hazard intensity measurement (Ansari, Rao, & Jain, 

2022; Pitilakis, Crowley, & Kaynia, 2014; Zentner, 

Gündel, & Bonfils,  2017). Further, in seismic risk 
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analysis, fragility curves play a crucial role in establishing 

a connection between the probabilistic seismic hazard 

analysis (PSHA) and the effects of the predicted ground 

motion on infrastructure components (Pitilakis, Crowley, 

& Kaynia, 2014).  

Additionally, seismic fragility curves are continuous 

functions that describe the probability of exceeding a 

set of particular building or infrastructure component 

limit states for a specific ground motion intensity 

measurement (e.g., peak-ground acceleration or peak-

ground displacement) (Erberik, 2014; Pitilakis, Crowley, 

& Kaynia, 2014). Hazus, a standardized risk modeling 

methodology developed by FEMA (2003), utilizes 

fragility curves to assess the risk of building, electrical 

and transportation infrastructure components. Hazus 

considers four or five discrete damage states – none, 

slight, moderate, extensive, or complete – where each 

damage state’s definition is based on the structure type 

and hazard (Kircher, Nassar, Kustu, et al., 1997). 

Currently, Hazus utilizes fragility curves for various 

structures subjected to hazards, such as earthquakes, 

floods, tsunamis and hurricanes. An effort has been 

made to develop fragility curves for urban or deciduous 

trees subjected to wind loads (Ciftci, Arwade, Kane, et 

al., 2014; Hou & Chen, 2020), but no literature was 

found that developed or analyzed the fragility curves of 

analytical tree models subjected to ice loads. However, 

Proulx and Greene (2001) empirically studied the 

relationship between ice thickness and tree damage 

(crown loss) for hardwood trees without leaves, which is 

in a way similar to a fragility curve. 

In order to fill this gap in the literature, fractal trees 

subjected to ice loads were analyzed using the finite 

element (FE) and Monte Carlo sampling methods to 

develop fragility curves. The generation of fractal trees, 

formulation and analysis of the FE model and the 

development of the fragility curves are described in 

Section 2. The resulting fragility curves and the 

development of a method for estimating the fallen 

weight of a failed tree branch are discussed in Section 3 

followed by concluding remarks in Section 4. 

2. Methods 

Four common hardwood tree species—Acer saccharum 

(Sugar Maple), Tilia americana (American Beech), Fagus 

grandifolia (American Basswood), and Quercus alba 

(White Oak)—were studied. In order to model and 

analyze these deciduous trees, which are highly variable 

and geometrically complex, a few assumptions had to be 

made (Picard, Saint-André, & Henry, 2012). The tree was 

modeled as a two- dimensional fractal and only includes 

the trunk and branches (Figure 1(a)). 

The smaller branches and leaves, which grow from 

the large branches, were not modeled geometrically and 

instead were added as loads on the larger branches by 

utilizing allometric equations obtained from the 

literature. MATLAB (MathWorks, 2021) was used to 

model two-dimensional trees subjected to ice loads and 

develop fragility curves by using the Monte Carlo 

sampling method with a total of 40,000 quasi-static 

simulations. Two load cases were considered: load case 

1 includes the loads due to the weight of the branches 

and ice on the branches; and load case 2 includes the 

same loads as case 1 but with the addition of loads due 

to the weight of the leaves and ice on the leaves. A total 

of 10,000 randomly generated two-dimensional trees 

were utilized in two analyses (cases 1 and 2) per species. 

Fifty ice load cases, ranging from 0 to 50.8 mm of ice 

thickness were used in both load cases 1 and 2. Ice 

thickness was used as an intensity measurement (Proulx 

& Greene,  2001), and the range of ice thickness used in 

this study is based on historical observations and the ice 

thickness maps provided in the ASCE/SEI 7–16 Standard 

(ASCE, 2017). OpenSees (McKenna & Feneves, 2000) 

was used to construct and solve the two-dimensional FE 

model subjected to both load cases 1 and 2 and the 

resulting total stresses were then compared to the 

modulus of rupture (MOR), which measures the bending 

strength, of the tree species to determine if the tree had 

failed. The failure criteria were based on the total 

stresses exceeding the MOR in sections that were 

categorized by successive fractal iterations and 

branches. 

 

Figure 1. Visualization of model: (a) tree branch segments (left) and finite element model (right), and (b) weight comparison 

between load case 1 (left) and load case 2 (right) considering biomass and ice loads at tice ¼ 25:4 mm. 
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2.1. Two-dimensional fractal tree 

A MATLAB script, FraktalT (Dmitry, 2021), was used to 

generate two-dimensional fractal trees, which requires 

specific input arguments: number of branch iterations, 

branch-trunk scale factor (r), tree-branch angle (θ), and 

trunk X- and Y-coordinates. The number of branch 

iterations refers to the number of branches that are 

generated beginning from the end (or top) of the tree’s 

trunk. The branch-trunk scale factor (r) scales the 

branches relative to the length of the tree’s trunk, and 

the tree-branch angle (θ) orientates the branches 

relative to the Y-axis. Three branch iterations were 

considered in the development of each tree’s geometric 

dimensions and load estimations. Due to the 

computationally expensive nature of Monte Carlo 

simulation, only two branch iterations were considered 

for the FE analysis to keep the computational time and 

output data size to a reasonable amount, while still 

capturing the branching nature of the tree. 

A fractal tree was randomly generated and then 

discretized into 28 elements with the trunk, the first 

fractal iteration, and the second fractal iteration being 

composed of 4, 8, and 16 elements, respectively. Figure 

1(a) shows the FE discretization of a representative 

fractal tree. The geometric properties for each element 

were calculated based on the length of each element 

and the tree diameter at breast height (DBH) where the 

DBH is measured 1.37 m from the ground. The height (H) 

of the tree was estimated by using an exponential 

regression equation (Kenefic & Nyland, 1999) that is 

based on the DBH of the hardwood sugar maple tree and 

is given by  

 

where DBH is in meters. Reliable species-specific 

allometric equations or parameters were not found in 

the literature; consequently, Equation 1 is used to 

calculate the height for each tree species in this study. 

The trunk’s height (ht) was then estimated relative to the 

height (H) of the tree as ht ¼ 0:24H, which is based on an 

estimate by McPherson and Peper (2012) for a 60-year-

old hardwood green ash tree (Fraxinus pennsylvanica). 

The X- coordinate of the trunk was always taken as zero 

(i.e., perfectly straight, vertical trunk). 

This model considers a linear decrease in branch 
diameter where each branch bifurcation (branching) 
results in equivalent areas between the two resulting 
branches (i.e., primary branches from the trunk and 
secondary branches from the primary branch), as 
shown in Figure 1(a). Further, to complement the 

linearity that is common in fractal tree iterations 
(Gulick,  2011; Kak, 2022; Lindenmayer & Prusinkiewicz, 
1996), a linear scaling approach was employed to 
calculate the radius of each element by utilizing the 
ratio of the branch path length (lp) to the total branch 
path length (lp;total). The total branch path length (lp;total) 
defines the total path length for a three iteration fractal 
and is given by  

 

All paths in a fractal tree have the same total path length 

(lp;total). In Equation 2, a path is considered to begin at 

the base of the tree and finish at the end of a branch in 

the third iteration fractal. Because the development of 

the tree’s FE model considers only two fractal iterations, 

there are only four possible total branch paths. The 

radius of an element is taken to be  

 

where lp;e is the length along the branch path from the 

base of the tree to the center of the element, and lp;1 is 

the path length to the center of the first element, which 

is equal to 0:5  ht=4. Equation 3 ensures that the 

element at the base of the tree has a diameter equal to 

the DBH. The volume (Ve) for each element was 

calculated assuming a cylindrical element. The 

element’s mass was then estimated based on Ve and the 

density (ρ) of the wood. 

2.2. Generating random parameters 

Monte Carlo sampling is used to propagate uncertainties 

in tree parameters – both geometric and material – to 

the fragility functions. The randomly generated 

geometric parameters used to develop the two-

dimensional tree are DBH, r, and θ; the random material 

parameters are density of wood (ρ), modulus of 

elasticity (E), and MOR. No literature was found for the 

common distributions of these tree parameters. 

Further, there is a general confusion in the wood science 

research community as to which type of distribution is 

suitable for E and MOR (Owens, Verrill, Shmulsky, et al., 

2019). Consequently, a uniform distribution is assumed:  
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for random variable U 2 fDBH; r; θ; ρ; E; MORg where a 

and b are the minimum and maximum values, 

respectively. The typical ranges for the DBH, ρ, E and 

MOR of wood used in this study were determined by 

other researchers (Forest Products Laboratory, 1999; 

Jenkins, Chojnacky, Heath, et al.,  2004). The bounds for 

ρ, E, and the MOR are based on the moisture content of 

the wood, where the lower bound is at a green cut or 

100% moisture content and the upper bound is at 12% 

moisture content (Forest Products Laboratory, 1999). 

The bounds for r and θ for specific species of trees were 

not found in the literature and are therefore based on 

the observations of multiple tree species. Table 1 shows 

the a and b values for various tree species used in this 

study, and Figure 2 shows the variation of the fractal 

tree for each species due to the uniformly distributed 

variables with 100 realizations. 

Table 1. Lower (a) and upper (b) bounds used for uniform random variables for different tree species 

investigated herein. 

Random variable Bounds 

 Tree Species  

Sugar Maple Beech Basswood 
White 

Oak 
DBH [m] a 0.06 0.11 0.16 0.11 

 b 0.70 0.62 0.68 0.66 

r [–] a 0.56 0.50 0.62 0.70 

 b 0.96 0.92 0.91 0.93 

θ [rad] a 0.040 0.080 0.010 0.080 

 b 0.660 0.750 0.480 0.870 

ρ [kg/m3] a 560 560 320 600 

 b 630 640 370 680 

E [MPa] a 10,700 9,500 7,200 8,600 

 b 12,600 11,900 10,100 12,300 

MOR [MPa] a 65 59 34 57 

 b 109 103 60 105 
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2.3. Load cases 

The term ‘large branch’, or simply ‘branch’, is used to 

describe the mass of wood that sprouts from the trunk 

or stem. In this study, fractal iterations are comprised of 

branches, where each branch is   

 

(a) 

-20 -10 0 
X [m] 

10 20 -20 -10 0 (b)
 X [m] 

10 20 

 

(c) 

-20 -10 0 
X [m] 

10 20 -20 

(d) 

-10 0 
X [m] 

10 20 

Figure 2. Graphical representation of uniformly distributed variables (100 samples) by tree species with the first (gray), second 

(blue), and third (red) iterations: (a) sugar maple, (b) beech, (c) basswood, and (d) white oak. 
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discretized into elements. The branch may split further 

into smaller branches, which are considered to bear the 

weight of the foliage or leaves. For load cases 1 and 2, 

an element’s mass was calculated based on the volume 

of the cylinder and the density ρ of the wood, and the 

weight of each element was then calculated by 

multiplying this mass by gravitational acceleration g ¼ 

9:81 m/s2. The total biomass (MÞ of the tree, which 

includes the mass of the branches and leaves, was 

separated into foliage and small branch mass 

components, and M was calculated using a logarithmic 

regression equation from the literature of the form  

 

where β0 and β1 are regression parameters for hardwood 

species, such as Maple, Oak or Beech (Jenkins, 

Chojnacky, Heath, et al., 2003). 

For load case 1, the small branch mass component 

(MB) was utilized to approximate the mass of smaller 

branches that could not be captured by the branch mass 

calculations and is given by  

 

where DBH is in meters. Comparatively, for load case 2, 

the foliage mass component (MF) was utilized in 

addition to the branch mass component where the 

foliage mass component is estimated by  

 

where DBH is in meters. These mass components were 

then used to determine the crown density (ρcrown) for 

each load case as follows:  

 

where Vcrown is the total volume of the crown. This 

volume was estimated as a hemisphere of diameter 

dcrown as follows:  

 

The crown diameter (dcrown) is then given by the 

regression equation  

 

where DBH is in meters (Lamson, 1987). Similar to 

Equation 1, reliable species-specific allometric 

equations or parameters were not found in the 

literature; consequently, Equation 10 is used to estimate 

the crown diameter for each tree species in this study. 

The leaf cluster approach developed by Honda and 

Fisher (1979) was used to distribute spherical clusters in 

the model, as an approximation for the observed leaf 

distribution in branches. The leaf cluster approach 

applied on a random tree is shown two-dimensionally in 

Figure 3. Spheres were placed at each splitting node 

beginning at the top of the trunk and ending at the third 

iteration nodes. Each sphere had a radius equal to 80% 

of the length of the longest distal element (Honda & 

Fisher, 1979). The 15  15 interaction volume matrix 

between the spheres was calculated analytically using a 

MATLAB function developed by Jacquenot (2022b). The 

intersection, or overlap, volume between the interacting 

spheres was distributed to each sphere in equal parts 

resulting in an adjusted volume (Vj) for the jth sphere (j 

¼ 1; 2;...; 15) to satisfy the leaf cluster approach. This 

volume was multiplied by ρcrown (Equation 8) to calculate 

the biomass distributed to the associated node for 

determining the loads to be applied. 

Ice loads were calculated for two cases, one without 

the effects of leaves and one with the effects of leaves. 

The ice load case without leaves takes into consideration 

only the ice on the branches of the tree. Comparatively, 

the ice load case with leaves takes into consideration the 

ice on the branches and the ice on the effective leaf 

area. The mass of the ice on the branches and the leaves 

was calculated using their respective surface areas. The 

surface area for each element was calculated based on 

a cylinder, which was multiplied by the ice thickness (tice) 

to obtain the volume of ice for each element:  

 

where the element length (le) is determined by 

discretizing a branch into four equally spaced elements 

(see Figure 1). The ice’s mass was then obtained by  

 

X [m] 

Figure 3. Leaf cluster approach with all three fractal iterations. 
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multiplying the volume of ice by the density of ice, ρice ¼ 

917 kg/m3. The ice load for each element was then 

determined and distributed such that each end of the 

element received half of the element’s ice load. 

The ice mass on the leaves was calculated by using 

the effective leaf area where the effective leaf area was 

determined similar to the clustering approach outlined 

above, except with circular areas (Jacquenot, 2022a) 

instead of spherical volumes. It is important to note that 

the third iteration branches, biomass, and ice loads for 

loads cases 1 and 2 were included as point loads at the 

ends of their corresponding second iteration branches. 

The third iteration branch geometries and loads were 

calculated along with the first and second iteration 

fractals using the same method discussed in Section 2.1. 

Similarly, the biomass and ice loads due to the third 

iteration branches for both load cases 1 and 2 were 

determined using the methods outlined in this section. 

Figure 1(b) shows the comparison between the two 

load cases – one without leaves and one with leaves – 

applied to a randomly generated tree. The increase in 

weights for the tree branches shown in Figure 1(b) due 

to an ice accumulation of 25.4 mm is 1.3 and 4.8 times 

for load cases 1 and 2, respectively. For load case 1, the 

average weight increase for all four tree species due to 

an ice accumulation of 25.4 mm was found to be about 

double that of the branches weight with an average 

standard deviation of 0.7 for the ice-branch weight 

multiplier. Comparatively, for load case 2, the average 

weight increase due to an ice accumulation of 25.4 mm 

was found to be nine times higher for Beech, Basswood, 

and Oak and 12 times higher for Sugar Maple with 

standard deviations of 16, 7.3, 5.3, and 7.5 for Sugar 

Maple, Beech, Basswood, and Oak, respectively. These 

values are comparable to the increases in branch weight 

due to ice accumulation reported by Hauer, Wang, and 

Dawson (1993). 

2.4. Finite element method and analysis 

The FE software OpenSees (McKenna & Feneves, 2000) 

was utilized to create and solve the FE model of the two-

dimensional fractal tree. An example of a seven- 

element two-branch tree is shown in Figure 1(a). The 

tree was modeled with 29 nodes and 28 elements with 

each element being modeled as an Euler-Bernoulli beam 

element (elasticBeamColumn). A corotational geometric 

transformation, generally used with structures that 

experience large displacements and small strains, was 

used to transform the elements based on a local 

coordinate reference frame. A static analysis was 

performed using the Newton algorithm and 2% load 

increments. This analysis was performed for each of the 

10,000 randomly generated trees for both load cases 1 

and 2 for four tree species. The outputs that were 

recorded include the local element forces – axial forces 

(Fx) and bending moments (Mz) – and nodal 

displacements. The recorded local forces were used to 

compute the total stress for each element:  

 

where σmax is the maximum total stress, Fx is the axial 

force in the local x-axis, Ae is cross-sectional area of the 

element, Mz is the local bending moment at the ends of 

the element and Se is the element’s section modulus, 

which is equal to πre
4=4 for the circular cross-section. 

2.5. Fragility curves 

Fragility curves were developed for three branch 

damage states (DSs). These DSs were characterized by 

rupture due to the combined bending and axial stresses 

within a branch (Equation 12) exceeding MOR, i.e., 

failure occurring if σmax  MOR. In the fragility analysis, 

each tree was divided into two separate branch 

structures: left side (elements 5–16) and right side 

(elements 17–28) depicted in Figure 1(a). Consequently, 

the total number of analysed structures increased by a 

factor of two, resulting in N ¼ 20;000 branch structures 

per tree species for both load cases 1 and 2. For each 

branch structure, the first (ds1), second (ds2) and third 

(ds3) damage states are characterized by at least one 

secondary branch failure, two secondary branch 

failures, and a primary branch failure, respectively. The 

fragility function is based on the probability of DS 

reaching or exceeding dsi (i ¼ 1; 2; 3) given a specific 

intensity measure (tice):  

 

where P½ is the probability, tice is the ice thickness, N is 

the total number of branch structures, and  

 

When any branch failure occurs, the weight that is 

dropped (i.e., the fallen weight of a branch with ice) can 

be considered to be a fallen object that can potentially 

land on electrical components and disrupt or damage 

the electrical system. For this reason, the probability of 

having at least one secondary branch failure (DS  ds1) 

was used in the fallen weight (W) probability analysis. 
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The marginal probability of having a fallen weight of W 

given a certain ice thickness (tice) is expressed as  

 

 

where the definition of conditional probability has been 

used to go from Equation 15a to Equation 15b, viz.  

 

for events D 2 fDS  ds1; DS < ds1g. The probability shown 

in Equation 15b describes the potential scenarios for 

having fallen weight W. The first term of the first 

expression on the right-hand side of Equation 15b 

corresponds to the normalized PDF of W given that any 

branch failure occurred (DS  ds1) for a certain tice. The 

second term of the first expression on the right-hand 

side of Equation 15b corresponds to the fragility curve 

(Equation 13) where any branch failure occurred (DS  

ds1) given a certain tice. The first term of the second 

expression on the right-hand side of Equation 15b 

corresponds to the case of having fallen weight W when 

no branch failures occurred (DS  ds1). This probability 

corresponds to the Dirac delta function, i.e., P½W jDS < 

ds1; tice ¼ δðWÞ; hence, the results will be presented in 

terms of the cumulative distribution, which takes the 

form of a Heaviside function. The second term of the 

second expression on the right-hand side of Equation 

15b corresponds to the complement of the Monte 

Carlo–based fragility curve where no branch failures 

occurred (DS < ds1), i.e.,  

P½DS < ds1 jtice ¼ 1 P½DS  ds1 jtice. Also of interest is the 

expected fallen weight, which is given by  

 
In the following section, results from the Monte Carlo 

sampling of tree responses are used to fit analytical 

expressions for the various probabilities discussed here. 

3. Results and discussion 

3.1. Tree deformation 

A comparison of the displacements for each load case is 

shown in Figure 4 for a representative tree. Larger nodal 

displacements are developed in the load case with 

leaves (Figure 4(a)) than in the load case without leaves 

(Figure 4(b)). This is due to the leaves’ surface area, 

which allows for more ice to accumulate (see  

Figure 1(b)) and leads to significantly larger 

displacements than the load case without leaves. Figure 

4 shows that for both cases the secondary sections tend 

to have the largest nodal displacements for all ice 

thickness increments. Further, Figure 4(b) shows that 

tree branches that extend the furthest, perpendicular to 

the Y-axis, experience the largest deflections. This is due 

to the large moments produced by the increasing 

moment arm. It is interesting to note that in Figure 4, 

both load cases have a net deflection to the right of the 

initial position. This is counter-intuitive to the notion 

that the branches would deflect down and in the 

direction of the primary branch, orthogonal to the 

trunk. The direction of the deflection for each branch, 

and more importantly, the entire tree’s final position, is 

influenced by the initial position of the tree and the 

interactions between the two branch structures (i.e., 

the left and right side of the tree). Further, this may be 

helpful to the electrical infrastructure when responding 

to a severe ice storm threat by pruning a portion of the 

tree that are near electrical components. This is because 

 

Figure 4. Comparison of nodal displacements between load case without leaves (left) and load case with leaves (right) at 

varying ice thicknesses. 
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pruning entire trees may be infeasible due to time 

constraints, especially if the trees are large. As shown in 

Figure 4(b), ice loads from the leaves produce large 

displacements and have the potential of causing a 

power outage from electrical arcing due to the tree 

branches completing the circuit between electrical lines. 

This is crucial in particular for electrical power 

distribution in urban areas, because shorts can occur 

even without the structural failure of a line or pole. 

Further, if the tree bears its weight on electrical 

components, the entire electrical line and the pole could 

fail structurally. Additionally, for a tree near a road, the 

displaced branches due to a severe ice storm, as shown 

in Figure 4(b), may cause a hazardous environment for 

traffic due to the obstruction caused by the deformed 

tree. 

3.2. Fragility curves 

Figure 5 shows the fragility curves (Equation 13) based 

on Monte Carlo sampling for the load cases without and 

with leaves for every damage state dsi for the four tree 

species. 

The Monte Carlo–based fragility curves shown in 

Figure 5 were fit assuming a log-normal cumulative 

distribution function (CDF):  

 
where ΦðÞ is the standard normal CDF, tice;i is the 

median value of ice thickness tice at which the tree 

reaches the threshold of damage state (dsi), and βi is the 

logarithmic standard deviation for damage state dsi. The 

fitted parameters and statistics for various damage 

states used in Equation 18 are shown in Table 2 for the 

cases without and with leaves. Table 2 shows a high 

coefficient of determination (R2) for ds1, ds2, and ds3 for 

both load cases. From Table 2, it is shown that there is 

not much variation between each predicted fragility 

curve’s statistics within each species for the case 

without leaves. Comparatively, the case with leaves 

shows larger variations in the predicted fragility curve’s 

statistics within each species. Figure 5 shows the fitted 

fragility curves predicted by Equation 18. It is observed 

that the predicted fragility curves trend well with the 

Monte Carlo–based fragility curves for both load cases 

without and with the effects of leaves. 

For the case without leaves, the fragility curves for 

each dsi are nearly identical for a given tree species, 

which indicates that tree branches under ice loads 

without leaves will likely fail in the primary section (ds3). 

Additionally, because the failure occurs in the primary 

section, the secondary section branches will also fall 

with the primary section branch. The nearly identical  
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Figure 5. Fragility curves based on Monte Carlo (MC) simulation and fitted log-Normal distribution for all damage states dsi without 

and with the effects of leaves for each tree species: (a) sugar maple, (b) beech, (c) basswood, and (d) white oak. 
Table 2. Fitted parameters and coefficient of determination (R2) for fragility curves (Equation 18). 

Load Case Damage State Parameter 

 Tree Species  

Sugar Maple Beech Basswood 
White 

Oak 
w/o leaves ds1 tice;1 265.6 308.9 339.7 196.6 

  β1 1.392 1.238 1.561 1.380 

  R2 0.994 0.997 0.991 0.990 

 ds2 tice;2 264.5 314.5 352.8 201.5 

  β2 1.383 1.242 1.562 1.375 

  R2 0.995 0.997 0.992 0.990 

 ds3 tice;3 264.8 314.5 353.2 202.4 

  β3 1.383 1.242 1.563 1.378 

  R2 0.995 0.997 0.992 0.990 

w/ leaves ds1 tice;1 28.47 29.64 27.55 12.11 

  β1 1.546 1.431 1.307 1.294 

  R2 1.000 1.000 1.000 0.998 

 ds2 tice;2 39.25 39.61 38.32 16.63 

  β2 1.596 1.447 1.358 1.357 

  R2 1.000 1.000 1.000 0.999 

 ds3 tice;3 44.75 45.11 42.48 19.09 

  β3 1.682 1.531 1.436 1.486 

  R2 1.000 1.000 1.000 1.000 

fragility curves for trees without leaves are potentially 

due to the trees’ linearly decreasing geometric 

proportions and uniform ice distribution. It is also 

observed that the fragility curves for the case without 

leaves are low with failure probabilities of 11.7%, 7.2%, 

11.6% and 16.9% at tice ¼ 50:8 mm for Sugar Maple, 

Beech, Basswood and White Oak, respectively. 

For the cases with leaves, Figure 5 shows that there 

is a dramatic increase in the failure probability when 

compared to the case without leaves. For example, at 

tice ¼ 25:4 mm, the failure probabilities jumped by as 

little as 31% and as much as 65% due to the inclusion of 

leaves. Such increases in the probability of branch 

failure highlight the additional hazard posed by 

unseasonably early ice storms, like the October 2020 

Oklahoma ice storm, when leaves are still on trees. 

Figure 5 additionally shows that fragility curves for the 

three damage states (ds1, ds2, and ds3) differ from one 

another. This is because there are instances where one 

or two secondary branches fail, while the primary 

branch remains intact. This is due to the geometric 

shape of the trees and the distribution of leaves. Each 

tree has at least one branch that extends out away from 

the trunk, which develops larger bending stresses and 

increases the probability of failure compared to the 

branches closer to the trunk. Additionally, tree branches 

that are further from other tree branches also have a 

smaller interaction volume and area. These smaller 
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interactions result in branches that carry larger amounts 

of biomass and therefore carry more ice. The 

combination of large bending stresses and increased 

biomass and ice loads results in more instances of ds1 or 

ds2 occurring for every tree species. Consequently, 

White Oak (Figure 5(d)), a tree species with a relatively 

larger crown diameter, exhibits higher failure 

probabilities compared to the other tree species. For 

the cases with leaves, the differences between ds1, ds2 

and ds3 are similar for all four species, which indicates 

that each species experiences single and two branch 

failure instances similarly between species for the case 

with leaves. Leaves are shown to increase the likelihood 

of having a primary branch failure, which is important to 

mention due to the potential of having a large fallen 

weight. Further, the weight dropped from a primary 

section failure can be critical due to the possible 

addition of the weight of the secondary branches. 

Additionally, even though the weight dropped by a 

secondary branch failure is smaller than a primary 

branch failure, the increased probability of having a 

secondary failure is still important due to the potential 

of causing an electrical short when the fallen branch 

comes in contact with electrical lines. The variation in 

the fragility curves from one species to another is likely 

due to the geometric properties of each tree species 

(see Figure 2). It must be noted that a small portion of 

tree branches, for each species, failed under its own 

self- weight. These self-weight failures were small in 

quantity and were considered to be insignificant and 

therefore disregarded. 

3.3. Fallen weight 

Figures 6 and 7 show representative CDFs of fallen 

weight W based on Monte Carlo simulation, given that 

some damage is observed (DS  ds1) for the load cases 

without and with leaves, respectively, for the four tree 

species. 

These distributions correspond to the first term of 

the first expression on the right-hand side of Equation 

15b. A Weibull distribution was fitted to the Monte 

Carlo data for each tree species. At each ice thickness 

tice, the Weibull CDF is given by  

 

where AðticeÞ and BðticeÞ are the scale and shape 

parameters, respectively, which depend on the ice 

 

Figure 6. Cumulative probability of fallen weight W given that some damage is observed (DS  ds1) for a given ice thickness tice for 

each tree species—(a) sugar maple, (b) beech, (c) basswood, and (d) white oak—without the effects of leaves. 
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thickness. At each ice thickness, these parameters were 

fit to the Monte Carlo data, and the fitted parameters A 

and B are shown in Figures 8 and 9, respectively, for the 

trees without and with leaves at each ice thickness tice. 

Some representative fitted CDFs are shown in Figures 6 

and 7. 

The corresponding fitted Weibull parameters were 

then used to develop regression equations to predict 

the Weibull parameters with tice. The following 

regression equations are used for the Weibull scale 

parameter A and shape parameter B, respectively:  

 
where a0, a1, a2, b0, b1, and b2 are the regression 

coefficients (hyperparameters). Figures 8 and 9 show 

the fitted curves for the Weibull parameters A and B, 

respectively, along with the fitted regression equations 

and coefficients of determination (R2). It is observed 

from Figures 8 and 9 that the regression equations trend 

well with the fitted Weibull parameters. Further, Figures 

8 and 9 show high R2 values for the Weibull scale 

parameters A and B for the cases without and with 

leaves. The overall high R2 values of the regression 

equations in Figures 8 and 9 show that the regression 

equations are suitable for predicting the Weibull 

parameters for a given ice thickness tice. The Weibull 

parameters predicted with Equation 20 and Equation 21 

were then used to construct the predicted Weibull CDF 

surfaces (Equation 19) shown in Figures 6 and 7. It is 

observed from Figures 6 and 7 that the fitted and 

predicted CDFs trend well with the Monte Carlo CDF for 

all tice values and tree species. Importantly, these 

equations can be used to predict fallen weights for ice 

thicknesses other than those calculated based on the 

Monte Carlo analysis. 

From Figures 6 and 7, there is an apparent difference 

in the distribution of W among the tree species given 

some level of damage (DS  ds1). For example, for the 

load case without leaves at tice ¼ 50:8 mm, the expected  

values (coefficients of variation) of W are 4.24 kN (1.41), 

3.72 kN (0.949), 3.93 kN (0.748), and 4.53 kN (0.938) for 

Sugar Maple, Beech, Basswood, and White  

Oak, respectively. For the load case with leaves at tice ¼ 

50:8 mm, the expected values (coefficients of variation) 

of W are 21.89 kN (1.26), 17.12 kN (1.07), 19.82 kN 

(0.868), and 24.54 kN (0.935) for Sugar Maple, Beech, 

Basswood, and White Oak, respectively. For both load 

cases, the Sugar Maple and White Oak have the higher 

expected W, with Sugar Maple having the highest 

 

Figure 7. Cumulative probability of fallen weight W given that some damage is observed (DS  ds1) for a given ice thickness tice for 

each tree species—(a) sugar maple, (b) beech, (c) basswood, and (d) white oak—with the effects of leaves. 
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variation in both cases. Given some level of damage, the 

expected dropped weight W is around five times higher 

for the load case with ice than without ice. 

From the foregoing discussion, not only are the 

probabilities of failure higher for the load case with 

leaves (see Figure 5) but the expected dropped weight 

W is also much higher (see Figures 6 and 7). Equation 

15b captures this combined effect of the tree fragility 

and branch weight, which is shown in Figure 10 in the 

form of the CDF for the Sugar Maple without and with 

leaves. There is an instantaneous jump in the probability 

at W ¼ 0 due to the probability of not having a failure, 

associated with the second expression on the right-

hand side of Equation 15b. Then, for the cases with 

failures, there is a distribution of the weights expected 

to fall, associated with the first expression on the right-

hand side of Equation 15b. Portrayed in this way, the 

effect of leaves is more pronounced, i.e., higher failure 

probabilities and fallen weight given failure. Figure 11 

shows the expected fallen weight with ice thickness 

(Equation 17) for all four species without and with ice. 

The expected fallen weights for trees with leaves are 

about 30 to 40 times higher than for trees without 

leaves, exhibiting the compounding effect of higher 

probabilities of failure (fragility) and greater expected 

weight drop given a failure. Even though the Sugar 

Maple and White Oak showed similar expected dropped 

weights given a branch failure (DS  ds1), the expected 

fallen weight – considering cases with and without 

failures – for the White Oak is significantly higher 

because it was the more fragile tree (see Figure 5). 

3.4. Implications for ice-storm resilience 

assessments 

The fragility curves and fallen weight distributions 

developed in this study have implications for future 

resilience assessments considering ice storms (Hou, 

Muraleetharan, Panchalogaranjan, et al., 2023). In 

particular, hazards from fallen branches could be 

integrated into models of electrical and transportation 

networks. Given a geo-spatial distribution of ice 

accretions, fallen weight from trees in proximity to  

 

Figure 8. Variation of Weibull scale parameter A with ice thickness tice for each tree species—(a) sugar maple, (b) beech, (c) 

basswood, and (d) white oak—without and with the effects of leaves. 



 SUSTAINABLE AND RESILIENT INFRASTRUCTURE  569 

 

Figure 9. Variation of Weibull shape parameter B with ice thickness tice for each tree species—(a) sugar maple, (b) beech, (c) 

basswood, and (d) white oak—without and with the effects of leaves. 

 

Figure 10. Cumulative probability of fallen weight W for a given ice thickness tice for the sugar maple without (a) and with  
(b) the effects of leaves. 

 
t  [mm] ice 

Figure 11. Variation of the expected fallen weight W with ice 

thickness tice for each tree species without (—) and with (– – –

) the effects of leaves. 

roads or power lines could be predicted. In a resilience 

framework using Monte Carlo sampling, this would 

involve randomly generating fallen weights from the 

distribution in Equation 15b. This would involve first 

generating a uniform random variable U,U½0; 1, which 

would be compared to the probability of failure 

determined from the fitted fragility curve, i.e., Equation 

18 with parameters tice;1 and β1 taken from Table 2. If U 

> Fds1ðticeÞ, the branch would not have failed, and W ¼ 
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0; if U  Fds1ðticeÞ, the branch would have failed, and a 

random fallen weight would be generated from a 

Weibull distribution with scale parameter AðticeÞ and 

shape parameter BðticeÞ determined from the 

regression Equation 20 and Equation 21, respectively. 

These randomly generated fallen weights would serve 

as loads on electrical lines or the like. It is important to 

note that the fragility curves presented herein need to 

be validated due to assumptions made in the tree 

parameters, development of the tree model, estimation 

of the leaf’s surface area, and the assumption to treat 

ice accretion as linear (i.e., uniform ice thickness around 

elements). 

4. Conclusions 

Recent ice storms have demonstrated that trees have 

the potential to cause electrical outages, damage 

electrical poles, and create hazardous environments for 

vehicle drivers. In this study, fragility curves based on 

the Monte Carlo method were developed with fractal 

trees for a range of ice accumulation. Two scenarios 

were considered, one which includes the effects of 

leaves and one which does not include the effects of 

leaves. A method for generating the distribution of 

fallen weight W was also provided. The fragility curves 

show that the presence of leaves produces a significant 

increase in the probability of tree failure than in the case 

without leaves, which is important because of the 

occurrence of unseasonably early ice storms due to 

climate change. Branches with leaves experience large 

deformations due to the weight of ice, which may be 

hazardous due to the branch‘s potential interaction with 

roads, traffic, and nearby electrical components. When 

exposed to various amounts of ice accretion, the most 

vulnerable branches of the tree are those branches, 

which are furthest from the trunk. The developed 

fragility curves and fallen weight distributions will be 

useful for assessing resilience strategies and 

frameworks for future ice storms. Future research 

should consider a three-dimensional tree to better 

model the displacement of branches. Furthermore, 

more accurate allometric equations for determining the 

weight of leaves should be considered. Future research 

must consider more fractal iterations to better capture 

the weight of all branches. Wind loads should also be 

considered as they may increase the deformation of the 

entire tree resulting in new failure modes. 

Acknowledgments 

The authors thank Dr. Rodney Will for his expertise and 
assistance with regard to tree anatomy. 

Disclosure statement 

No potential conflict of interest was reported by the author(s). 

Funding 

This material is based upon work supported by the National 
Science Foundation under Grant No. 1946093 Any opinions, 
findings, and conclusions or recommendations expressed in 
this material are those of the authors and do not necessarily 
reflect the views of the National Science Foundation. 

Notes on contributors 

Mr. Richard Campos is a PhD Candidate in the School of Civil 
Engineering & Environmental Science at the University of 
Oklahoma. He is currently working with Oklahoma EPSCoR to 
provide resilience strategies for infrastructure systems by 
analyzing hazards (e.g., ice storms, wildfires, earthquakes, and 
winds), risk, and fragility of electrical and transportation 
infrastructure components to increase infrastructure resiliency 
in Oklahoma. 

Prof. P. Scott Harvey Jr is an Associate Professor in the School 
of Civil Engineering & Environmental Science at the University 
of Oklahoma. His research is related to natural hazards, their 
effects on infrastructure, and techniques to mitigate their 
effects. 

Dr. Guangyang Hou is a Postdoctoral Research Associate at the 
University of Oklahoma. His current research interests include 
infrastructure resilience, probabilistic risk analysis, traffic 
safety, and seismic and wind performance of bridges. He 
received his PhD degree from Colorado State University in 
2019. He serves as a guest editor for a special issue in the 
journal Sustainability titled Towards Resilient Infrastructure”. 

ORCID 

R. Campos  http://orcid.org/0000-0002-9277-6281 
P. S. Harvey Jr  http://orcid.org/0000-0002-0565-3102 

Data availability statement 

Data will be made available on reasonable request. 

References 

Aktan, A. E., Brownjohn, J. M. W., Moon, F. L., Sjoblom, K. J., 
Bartoli, I., & Karaman, S. G. (2022). Civil engineer for urban 
livability, sustainability and resilience. Sustainable and 
Resilient Infrastructure, 7(5), 480–491. https://doi.org/  

https://doi.org/10.1080/23789689.2021.1937776


 SUSTAINABLE AND RESILIENT INFRASTRUCTURE  571 

10.1080/23789689.2021.1937776  
Ansari, A., Rao, K. S., & Jain, A. K. (2022). Seismic vulnerability 

of tunnels in Jammu and Kashmir for post seismic 
functionality. Geotechnical and Geological Engineering, 41 
(2), 1371–1396. https://doi.org/10.1007/s10706-022-
02341- 0  

ASCE. (2017). Minimum design loads and associated criteria 
for buildings and other structures (7-16 ed.). American 
Society of Civil Engineers (ASCE). 

Brommit, A. G., Charbonneau, N., Contreras, T. A., & Fahrig, L. 
(2004). Crown loss and subsequent branch sprouting of 
forest trees in response to a major ice storm. Journal of the 
Torrey Botanical Society, 131(2), 169–176.  
https://doi.org/10.2307/4126918  

Call, D. A. (2010). Changes in ice storm impacts over time: 
1886-2000. Weather, Climate, and Society, 2(1), 23–35.  
https://doi.org/10.1175/2009WCAS1013.1  

Ciftci, C., Arwade, S. R., Kane, B., & Brena, S. F. (2014). Analysis 
of the probability of failure for open-grown trees during 
wind storms. Probabilistic Engineering Mechanics, 37, 41–
50. https://doi.org/10.1016/j.probengmech.2014.04.002  

Degelia, S. K., Christian, J. I., Basara, J. B., Mitchell, T. J., 
Gardner, D. F., Jackson, S. E., Ragland, J. C., & Mahan, H. R. 
(2016). An overview of ice storms and their impact in the 
United States. International Journal of Climatology, 36(8), 
2811–2822. https://doi.org/10.1002/ joc.4525  

Dmitry. (2021). Generation of 2D fractal trees. Mathworks. 
https://www.mathworks.com/matlabcentral/fileexchange/ 
29536-generation-of-2d-fractal-trees  

Dolce, C., Erdman, J. (2022). 10 of the worst ice storms in U.S. 
history. Retrieved 26, July, 2022. Weather Underground. 
https://www.wunderground.com/article/storms/winter/ 
news/2022-02-03-united-states-worst-ice-storms  

Erberik, M. A. (2014). Seismic fragility analysis. In M. Beer, I. A. 
Kougioumtzoglou, E. Patelli, & I.-S.-K. Au (Eds.), 
Encyclopedia of Earthquake Engineering. pp. 10. Springer. 

FEMA. (2003). Multi-hazard loss estimation method: 
Earthquake model: HAZUS MR4 technical manual. Federal 
Emergency Management Agency. 

FEMA. (2023). Declared Disasters. Retrieved March 1, 2023. 
Federal Emergency Management Agency. https://www. 
fema.gov/disaster/declarations  

Forest Products Laboratory. (1999). Wood handbook: Wood as 
an engineering material. Technical report. https://doi. 
org/10.2737/fpl-gtr-113 . 

Guidotti, R., Chmielewski, H., Unnikrishnan, V., Gardoni, P., 
McAllister, T., & van de Lindt, J. (2016). Modeling the 
resilience of critical infrastructure: The role of network 
dependencies. Sustainable and Resilient Infrastructure, 1 
(3–4), 153–168. https://doi.org/10.1080/23789689.2016. 
1254999  

Gulick, D. (2011). Beauty of fractals six different views. 
American Mathematical Society. 

Harmon, S. M. (2012). Recurrence Relations, Fractals, and 
Chaos: Implications for Analyzing Gene Structure. Honors 
thesis, Colby College. 

Hauer, R. J., Wang, W., & Dawson, J. O. (1993). Ice storm 
damage to urban trees. Arboriculture & Urban Forestry, 19 
(4), 187–194. https://doi.org/10.48044/jauf.1993.031  

Honda, H., & Fisher, J. B. (1979). Ratio of tree branch lengths: 
The equitable distribution of leaf clusters on branches.  
Proceedings of the National Academy of Sciences, 76(8), 
3875–3879. https://doi.org/10.1073/pnas.76.8.3875 . 

Honda, H., & Hatta, H. (2004). Branching models consisting of 
two principles: Phyllotaxis and effect of gravity. FORMA, 
19(3), 183–196. 

Honda, H., Tomlinson, P. B., & Fisher, J. B. (1981). Computer 
Simulation of branch interaction and regulation by unequal 
flow rates in Botanical Trees. American Journal of Botany, 
68(4), 569–585. https://doi.org/10.1002/j.1537-2197.1981. 
tb07801.x  

Honda, H., Tomlinson, P. B., & Fisher, J. B. (1982). Two 
geometrical models of branching of Botanical Trees. Annals 
of Botany, 49(1), 1–11. https://doi.org/10.1093/ 
oxfordjournals.aob.a086218  

Hou, G., & Chen, S. (2020). Probabilistic modeling of disrupted 
infrastructures due to fallen trees subjected to extreme 
winds in urban community. Natural Hazards, 102(3), 1323–
1350. https://doi.org/10.1007/s11069-020- 03969-y  

Hou, G., Muraleetharan, K. K., Panchalogaranjan, V., Moses, P., 
Javid, A., Al Dakheeli, H., Bulut, R., Campos, R., Harvey, P. S., 
Miller, G., Boldes, K., & Narayanan, M. (2023). Resilience 
assessment and enhancement evaluation of power 
distribution systems subjected to ice storms. Reliability 
Engineering & System Safety, 230,  
[108964]. https://doi.org/10.1016/j.ress.2022.108964  

Ismay, J. (2020). Oklahoma ice storms leave thousands without 
power on eve of early voting. Retrieved 2, March, 2023. 
New York Times. https://www.nytimes.com/2020/10/28/ 
us/ice-storm-oklahoma.html  

Jacquenot, G. (2022a). Analytical intersection area between 

two circles. Mathworks. https://www.mathworks.com/ 

matlabcentral/fileexchange/15899-analytical-intersection- 

area-between-two-circles?s_tid=srchtitle  
Jacquenot, G. (2022b). Analytical intersection volume 

between two spheres. Mathworks. 

https://www.mathworks.com/ 

matlabcentral/fileexchange/18532-analytical-intersection- 

volume-between-two-spheres?s_tid=srchtitle  
Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. 

(2003). National-scale biomass estimators for United States 
tree species. Forest Science, 49(1), 12–35. https://www.fs.  
usda.gov/treesearch/pubs/6996  

Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. 
(2004). Comprehensive database of diameter-based 
biomass regressions for North American tree species. 
Technical Report NE-319, USDA Forest Service. 
https://doi.org/10. 2737/NE-GTR-319  

Jinasena, K. D. S., & Sonnadara, D. U. J. (2013). Computer 
simulation of tree development with random variations and 
probabilistic growth of branches. Journal of the National 
Science Foundation of Sri Lanka, 41(3), 229–235. https:// 
doi.org/10.4038/jnsfsr.v41i3.6058  

Kak, S. (2022). New classes of regular symmetric fractals. 
Circuits, Systems, and Signal Processing, 41(7), 4149–4159. 
https://doi.org/10.1007/s00034-022-01966-z  

Kakareko, G., Jung, S., & Ozguven, E. E. (2020). Estimation of 
tree failure consequences due to high winds using 

https://doi.org/10.1080/23789689.2021.1937776
https://doi.org/10.1007/s10706-022-02341-0
https://doi.org/10.1007/s10706-022-02341-0
https://doi.org/10.1007/s10706-022-02341-0
https://doi.org/10.2307/4126918
https://doi.org/10.1175/2009WCAS1013.1
https://doi.org/10.1016/j.probengmech.2014.04.002
https://doi.org/10.1002/joc.4525
https://doi.org/10.1002/joc.4525
https://www.mathworks.com/matlabcentral/fileexchange/29536-generation-of-2d-fractal-trees
https://www.mathworks.com/matlabcentral/fileexchange/29536-generation-of-2d-fractal-trees
https://www.wunderground.com/article/storms/winter/news/2022-02-03-united-states-worst-ice-storms
https://www.wunderground.com/article/storms/winter/news/2022-02-03-united-states-worst-ice-storms
https://www.wunderground.com/article/storms/winter/news/2022-02-03-united-states-worst-ice-storms
https://www.fema.gov/disaster/declarations
https://www.fema.gov/disaster/declarations
https://doi.org/10.2737/fpl-gtr-113
https://doi.org/10.2737/fpl-gtr-113
https://doi.org/10.1080/23789689.2016.1254999
https://doi.org/10.1080/23789689.2016.1254999
https://doi.org/10.1080/23789689.2016.1254999
https://doi.org/10.48044/jauf.1993.031
https://doi.org/10.1073/pnas.76.8.3875
https://doi.org/10.1002/j.1537-2197.1981.tb07801.x
https://doi.org/10.1002/j.1537-2197.1981.tb07801.x
https://doi.org/10.1093/oxfordjournals.aob.a086218
https://doi.org/10.1093/oxfordjournals.aob.a086218
https://doi.org/10.1093/oxfordjournals.aob.a086218
https://doi.org/10.1007/s11069-020-03969-y
https://doi.org/10.1007/s11069-020-03969-y
https://doi.org/10.1016/j.ress.2022.108964
https://www.nytimes.com/2020/10/28/us/ice-storm-oklahoma.html
https://www.nytimes.com/2020/10/28/us/ice-storm-oklahoma.html
https://www.mathworks.com/matlabcentral/fileexchange/15899-analytical-intersection-area-between-two-circles?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/15899-analytical-intersection-area-between-two-circles?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/15899-analytical-intersection-area-between-two-circles?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/18532-analytical-intersection-volume-between-two-spheres?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/18532-analytical-intersection-volume-between-two-spheres?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/18532-analytical-intersection-volume-between-two-spheres?s_tid=srchtitle
https://www.fs.usda.gov/treesearch/pubs/6996
https://www.fs.usda.gov/treesearch/pubs/6996
https://doi.org/10.2737/NE-GTR-319
https://doi.org/10.2737/NE-GTR-319
https://doi.org/10.4038/jnsfsr.v41i3.6058
https://doi.org/10.4038/jnsfsr.v41i3.6058
https://doi.org/10.1007/s00034-022-01966-z


572  R. CAMPOS ET AL. 
convolutional neural networks. International Journal of 
Remote Sensing, 41(23), 9039–9063. 
https://doi.org/10.1080/ 01431161.2020.1797219  

Kenefic, L. S., & Nyland, R. D. (1999). Sugar maple height-
diameter and age-diameter relationships in an uneven-aged 
 Northern  Hardwood  Stand. 
 Northern  

Journal of Applied Forestry, 16(1), 43–47. https://doi.org/  
10.1093/njaf/16.1.43  

Khan, T., & Conway, T. M. (2020). Vulnerability of common 
urban forest species to projected climate change and 
practitioners perceptions and responses. Environmental 
Management, 65(4), 534–547. https://doi.org/10.1007/ 
s00267-020-01270-z  

Khiripet, N., Viruchpintu, R., Maneewattanapluk, J., 
Spangenberg, J., & Jungck, J. R. (2010). Morphospace: 
Measurement, modeling, mathematics, and meaning. 
Mathematical Modelling of Natural Phenomena, 6(2), 54–81. 
https://doi.org/10.1051/mmnp/20116202 Kircher, C. A., 
Nassar, A. A., Kustu, O., & Holmes, W. T. (1997). Development 
of building damage functions for earthquake loss estimation. 
Earthquake Spectra, 13(4), 663–682. 
https://doi.org/10.1193/1.1585974  
Klima, K., & Morgan, M. G. (2015). Ice storm frequencies in a 

warmer climate. Climatic Change, 133(2), 209–222. 
https://doi.org/10.1007/s10584-015-1460-9  

Kovacik, C., & Kloesel, K. (2014). Changes in ice storm 

frequency across the United States, pp. 21. 

http://www.south 

ernclimate.org/publications/Ice_Storm_Frequency.pdf . 
Laefer, D. F., & Pradhan, A. R. (2006). Evacuation route 

selection based on tree-based hazards using light detection 
and ranging and GIS. Journal of Transportation Engineering, 
132(4), 312–320. https://doi.org/10.1061/ (ASCE)0733-
947X(2006)132:4(312 ) 

Lamson, N. I. (1987). D.b.h./crown diameter relationships in 
mixed Appalachian Hardwood Stands. Research Paper. 
Broomall, PA: U.S. Department of Agriculture, Forest 
Service, Northeastern Forest Experiment Station. https:// 
doi.org/10.2737/NE-RP-610 . 

Lindenmayer, A., & Prusinkiewicz, P. (1996). The algorithmic 
beauty of plants. Springer-Verlag. 

Li, G., Zhang, P., Luh, P. B., Li, W., Bie, Z., Serna, C., & Zhao, Z. 
(2014). Risk analysis for distribution systems in the 
Northeast U.S. under wind storms. IEEE Transactions on 
Power Systems, 29(2), 889–898. https://doi.org/10.1109/ 
TPWRS.2013.2286171  

Ma, S., Chen, B., & Wang, Z. (2018). Resilience enhancement 
strategy for distribution systems under extreme weather 
events. IEEE Transactions on Smart Grid, 9(2), 1442–1451. 
https://doi.org/10.1109/TSG.2016.2591885  

MathWorks. (2021). MATLAB, version 9.11.0.1873467. The 
MathWorks Inc. 

McKenna, F., & Feneves, G. L. (2000). Open System for 
Earthquake Engineering Simulation (OpenSees) (2.5.0 ed.). 
Pacific Earthquake Engineering Research Center,  
University of California. 

McPherson, E. G., & Peper, P. J. (2012). Urban tree growth 
modeling. Journal of Arboriculture & Urban Forestry, 38(5), 
175–183. https://doi.org/10.48044/jauf.2012.025  

Mostafavi, A. (2018). A system-of-systems framework for 
exploratory analysis of climate change impacts on civil 
infrastructure resilience. Sustainable and Resilient 
Infrastructure, 3 (4), 175–192. 
https://doi.org/10.1080/23789689.2017.1416845  

Napolitano, J. (2015). The Cantor Set as a Fractal and its Artistic 
Applications. Bachelor’s thesis, Colorado College. 

National Weather Service. (2000). December 25-26, 2000: Ice 
Storm Strikes the ArkLaTex. https://www.weather.gov/shv/ 
event_2000-12-25_ice_storm . 

National Weather Service. (2007). The December 8-11, 2007 
ice storm in Oklahoma. https://www.weather.gov/oun/ 
events-20071208 . 

National Weather Services. (2020a). Early and Icy start to 
Winter (October 25-28, 2020). https://www.weather.gov/ 
lub/events-2020-202001026-wintry . 

National Weather Services. (2020b). The ice storm of October 
26-29, 2020. https://www.weather.gov/oun/events- 
20201026 . 

National Weather Service. (2021). Snow/Ice maps and impacts 
summary from February 2021 back to back to back winter 
storms. https://www.weather.gov/rlx/2021- February-
Winter-Storms . 

Owens, F. C., Verrill, S. P., Shmulsky, R., & Ross, R. J. (2019). 
Distributions of modulus of elasticity and modulus of 
rupture in four mill-run lumber populations. Wood and 
Fiber Science, 51(2), 183–192. 
https://doi.org/10.22382/wfs-2019-019  

Picard, N., Saint-André, L., & Henry, M. (2012). Manual for 
building tree volume and biomass allometric equations. 
Food and Agriculture Organization of the United Nations 
(FAO). 

Pitilakis, K., Crowley, H., & Kaynia, A. M. (editors). (2014). 
SYNER-G: Typology definition and fragility functions for 
physical elements at seismic risk. Springer Netherlands. 

Proulx, O. J., & Greene, D. F. (2001). The relationship between 
ice thickness and northern hardwood tree damage during 
ice storms. Canadian Journal of Forest Research, 31(10), 
1758–1767. https://doi.org/10.1139/x01-104  

Rahman, M. T. (2010). Integration of geospatial techniques in 
the assessment of vulnerability of trees to ice storms in 
Norman, Oklahoma. PhD thesis, University of Oklahoma. 

Saupe, D. (1988). Algorithms for random fractals. In H.-O. 
Peitgen, & D. Saupe (Eds.), The Science of Fractal Images 
(pp. 71–136). Springer. 

Semonin, R. G. (1987). Severe weather climatology in the 
Midwest and arboriculture. Arboriculture & Urban Forestry, 
4(6), 128–136. https://doi.org/10.48044/jauf.1978.031  

Sharma, N., Tabandeh, A., & Gardoni, P. (2018). Resilience 
analysis: A mathematical formulation to model resilience of 
engineering systems. Sustainable and Resilient 
Infrastructure, 3(2), 49–67. https://doi.org/10.1080/ 
23789689.2017.1345257  

Swaminathan, R., Sridharan, M., & Hayhoe, K. (2018). A 
computational framework for modelling and analyzing ice 
storms. https://doi.org/10.48550/arXiv.1805.04907 . 

Takahashi, K., Arii, K., & Lechowicz, M. J. (2007). Quantitative 
and qualitative effects of a severe ice storm on an old-
growth beech–maple forest. Canadian Journal of Forest 
Research, 37 (3), 598–606. https://doi.org/10.1139/X06-
266  

https://doi.org/10.1080/01431161.2020.1797219
https://doi.org/10.1080/01431161.2020.1797219
https://doi.org/10.1093/njaf/16.1.43
https://doi.org/10.1093/njaf/16.1.43
https://doi.org/10.1007/s00267-020-01270-z
https://doi.org/10.1007/s00267-020-01270-z
https://doi.org/10.1051/mmnp/20116202
https://doi.org/10.1193/1.1585974
https://doi.org/10.1007/s10584-015-1460-9
http://www.southernclimate.org/publications/Ice_Storm_Frequency.pdf
http://www.southernclimate.org/publications/Ice_Storm_Frequency.pdf
http://www.southernclimate.org/publications/Ice_Storm_Frequency.pdf
https://doi.org/10.1061/(ASCE)0733-947X(2006)132:4(312
https://doi.org/10.1061/(ASCE)0733-947X(2006)132:4(312
https://doi.org/10.1061/(ASCE)0733-947X(2006)132:4(312
https://doi.org/10.2737/NE-RP-610
https://doi.org/10.2737/NE-RP-610
https://doi.org/10.1109/TPWRS.2013.2286171
https://doi.org/10.1109/TPWRS.2013.2286171
https://doi.org/10.1109/TPWRS.2013.2286171
https://doi.org/10.1109/TSG.2016.2591885
https://doi.org/10.48044/jauf.2012.025
https://doi.org/10.1080/23789689.2017.1416845
https://www.weather.gov/shv/event_2000-12-25_ice_storm
https://www.weather.gov/shv/event_2000-12-25_ice_storm
https://www.weather.gov/shv/event_2000-12-25_ice_storm
https://www.weather.gov/oun/events-20071208
https://www.weather.gov/oun/events-20071208
https://www.weather.gov/lub/events-2020-202001026-wintry
https://www.weather.gov/lub/events-2020-202001026-wintry
https://www.weather.gov/lub/events-2020-202001026-wintry
https://www.weather.gov/oun/events-20201026
https://www.weather.gov/oun/events-20201026
https://www.weather.gov/rlx/2021-February-Winter-Storms
https://www.weather.gov/rlx/2021-February-Winter-Storms
https://www.weather.gov/rlx/2021-February-Winter-Storms
https://doi.org/10.22382/wfs-2019-019
https://doi.org/10.1139/x01-104
https://doi.org/10.48044/jauf.1978.031
https://doi.org/10.1080/23789689.2017.1345257
https://doi.org/10.1080/23789689.2017.1345257
https://doi.org/10.48550/arXiv.1805.04907
https://doi.org/10.1139/X06-266
https://doi.org/10.1139/X06-266


 SUSTAINABLE AND RESILIENT INFRASTRUCTURE  573 
Tari, A. N., Sepasian, M. S., & Kenari, M. T. (2021). Resilience 

assessment and improvement of distribution networks 
against extreme weather events. International Journal of 
Electrical Power & Energy Systems, 125, [106414]. https:// 
doi.org/10.1016/j.ijepes.2020.106414  

Tropea, B., & Stewart, R. (2021). Assessing past and future 
hazardous freezing rain and wet snow events in Manitoba, 
Canada using a pseudo-global warming approach. 
Atmospheric Research, 259, [105656]. https://doi.org/10. 
1016/j.atmosres.2021.105656  

Wang, Z. H. I., Zhao, M. I. N. G., & Qi-Xing, Y. U. (2001). 
Modeling of branching structures of plants. Journal of 
Theoretical Biology, 209(4), 383–394. https://doi.org/10. 
1006/jtbi.2001.2252  

Zentner, I., Gündel, M., & Bonfils, N. (2017). Fragility analysis 
methods: Review of existing approaches and application. 
Nuclear Engineering and Design, 323, 245–258. https://doi. 
org/10.1016/j.nucengdes.2016.12.021 

https://doi.org/10.1016/j.ijepes.2020.106414
https://doi.org/10.1016/j.ijepes.2020.106414
https://doi.org/10.1016/j.atmosres.2021.105656
https://doi.org/10.1016/j.atmosres.2021.105656
https://doi.org/10.1006/jtbi.2001.2252
https://doi.org/10.1006/jtbi.2001.2252
https://doi.org/10.1006/jtbi.2001.2252
https://doi.org/10.1016/j.nucengdes.2016.12.021
https://doi.org/10.1016/j.nucengdes.2016.12.021

