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Analytical fragility curves for trees subject to ice loading in a changing climate

R. Campos'?, P. S. Harvey Jr' and G. Hou

School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK, USA

ABSTRACT

Recent severe ice storms across the United States severely damaged trees resulting in extensive
electrical power outages. Furthermore, trees and branches can fall on nearby roads, blocking traffic
flow and reducing the safety of drivers. In this study, trees subjected to ice loads were analyzed using
the finite element method and Monte Carlo simulation to develop analytical fragility curves. Two-
dimensional, fractal trees were constructed with randomly generated geometric and mechanical
parameters for four deciduous tree species: Acer saccharum, Tilia americana, Fagus grandifolia, and
Quercus alba. Two load case scenarios were considered — with and without the effects of leaves —
which were then subjected to varying ice accumulation thicknesses. The resulting fragility curves
suggest that leaves have a substantial impact on tree branch damage under ice loads, which is
significant because of the increase in unseasonably early ice storms due to climate change.

1. Introduction

Recent severe ice storms across the United States,
namely, in Oklahoma and Texas, severely deformed and
damaged trees resulting in extensive electrical power
outages (National Weather Service, 2020b, 2021).
Reports from the National Weather Service (2020a,b)
show ice accretions of up to 38.1 mm during the
October 2020 Oklahoma ice storm — Oklahoma'’s earliest
ice storm in the climatological record — which damaged
trees and electrical components and caused multiple
electrical outages. Furthermore, the destructive
interactions between trees and electrical components
during these ice storms have been observed to be
significant (Call, 2010; Degelia, Christian, Basara, et al.,
2016; Ismay, 2020). Ice storms are particularly
hazardous to the electrical infrastructure because ice
accretion on the electrical transmission and distribution
system components (e.g., electrical poles and lines) can
directly damage them, but also nearby trees laden with
ice have the potential to (a) come in contact with lines
causing electrical arcing or (b) bear or fall on electrical
power lines failing the components (Call, 2010).
Further, repairing the electrical transmission and
distribution systems after a severe ice storm can be
costly, often costing millions or billions of dollars (Tropea
& Stewart, 2021). For example, the October 2020
Oklahoma ice storm, which was declared a major
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sampling
over $100 M in total
public assistance

grants and over $4.5
M from FEMA Hazard Mitigation Grant Program (HMGP)
as of 16 February 2023. The HMGP obligation is about
three times that of 2022 Florida Hurricane lan (DR-4673-
FL), which received about six times as much in public
grant assistance. In the past decade, FEMA has granted
hundreds of millions of dollars and has declared 20
severe ice storms as major disasters in the United States,
nine of which were declared major disasters since 2020
(FEMA, 2023). Because climate change has been
increasing the frequency and intensity of severe
weather (Mostafavi, 2018), including ice storms (Klima
& Morgan, 2015; Kovacik & Kloesel, 2014), it is
important to understand and mitigate the resulting
failure of critical electrical infrastructure components
(Aktan, Brownjohn, Moon, et al., 2022; Khan & Conway,
2020; Swaminathan, Sridharan, & Hayhoe, 2018).
During extreme events, such as ice storms and
hurricanes, fallen trees can cause widespread disruption
to critical infrastructure systems (CIS) such as power and
transportation systems. For example, tree failures are
responsible for about 55.2% of distribution system
failures in the Northeast US (Li, Zhang, Luh, et al., 2014).
It can take up to months to remove tree debris from
roads following hurricanes (Laefer & Pradhan, 2006), not
only hindering the emergency response immediately
after extreme hazards but also affecting the recovery of
other lifeline infrastructure in the recovery phase.

CONTACT P. S. Harvey Jr @ harvey@ou.eduy;
2023 Informa UK Limited, trading as Taylor & Francis Group

disaster (4575-DR-OK) by the Federal Emergency
Management Agency (FEMA, 2023), has been obligated

Despite the severe consequences caused by fallen trees,
very little effort has been put into modeling tree fragility
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and assessing tree-induced risk to CIS. Currently, a range
of studies have attempted to model the tree fragility
following extreme winds and hurricanes (Ciftci, Arwade,
Kane, et al., 2014; Hou & Chen, 2020; Kakareko, Jung, &
Ozguven, 2020). However, most of them used simplified
structural models of trees, focusing primarily on trunk
failures, without considering branches or leaves. These
simplified models are unable to capture the branch
deflection, branch and leaf weight distribution
throughout the tree, or any resulting branch failure,
which could lead to inaccurate failure probabilities.
Moreover, these studies are limited to wind hazards;
fragility models of trees subjected to ice storms are still
missing. As a result, no literature was found that
considers tree-induced risk in the resilience/
performance assessment of CIS subjected to ice storms,
although a few studies have considered the impact of
wind-caused tree damage on the resilience of CIS (Hou
& Chen, 2020; Ma, Chen, & Wang, 2018; Tari, Sepasian,
& Kenari, 2021). Severe ice storms generally occur
during the winter season between December and March
(Dolce & Erdman, 2022; Semonin, 1987), such as the
December 2000 and December 2007 Oklahoma ice
storms (National Weather Service, 2000, 2007), but a
recent ice storm in Oklahoma occurred in October 2020
(National Weather Service, 2020b), which had a
significant impact due to trees still having their leaves
(Ismay, 2020). Researchers have attempted to quantify
ice damage to trees (Brommit,

Charbonneau, Contreras, et al., 2004; Takahashi, Arii, &
Lechowicz, 2007), but none has compared the
differences between trees subjected to ice loads with
and without the effects of leaves. Further, no attempts
have been made to analytically model trees subjected to
ice loads with the effects of leaves. However, research
has been conducted to analytically model trees
subjected to wind loads, with and without the effects of
leaves (Ciftci, Arwade, Kane, et al., 2014).

Trees are naturally complex, so it is beneficial to
simplify the geometry when constructing tree models
(Khiripet, Viruchpintu, Maneewattanapluk, et al., 2010;
Picard, Saint-André, & Henry, 2012). Further, tree and
plant structures are generally modeled with only the
trunk and branches (Honda & Hatta, 2004; Honda,
Tomlinson, & Fisher, 1981, 1982; Jinasena & Sonnadara,
2013; Khiripet, Viruchpintu, Maneewattanapluk, et al.,
2010; Lindenmayer & Prusinkiewicz, 1996; Wang, Zhao,
& Qi- Xing, 2001). A fractal, a reoccurring geometric
shape, is used to simulate many naturally occurring
patterns and is simple to generate with a computer
(Harmon, 2012; Saupe, 1988). Fractal generation is a

common method for modeling trees, branches, and
plants and is accomplished by implementing algorithms

based on, for example, the Cantor set or the
Lindenmayer system (Harmon, 2012; Khiripet,
Viruchpintu, Maneewattanapluk, et al., 2010;

Lindenmayer & Prusinkiewicz, 1996; Napolitano, 2015).
Symmetrically branching (binary) fractal trees are
iterated function system fractals that are created by
drawing an initial pattern, transforming that initial
pattern, and then combining the transformed and initial
patterns (Kak, 2022). Binary fractals are defined by a
branch-trunk scale factor r and tree- branch angle ¢
(Gulick, 2011; Kak, 2022). Further, the trunk bifurcates
at the top resulting in a branch on either side of the
trunk with each branch having a length of r times the
height of the trunk (Gulick, 2011). In a fractal, the tree
branch’s diameter decreases with each successive
iteration and is dependent on tree species, branch
length, branch weight, and environment (Wang, Zhao, &
Qi- Xing, 2001). There are two main methods for
determining the biomass of a tree: by directly measuring
the weight in the field or by using allometric equations
(Picard, Saint- André, & Henry, 2012). Allometric
equations, regression equations based on a linear or
nonlinear correlation between the increases in tree
dimensions, are commonly used to estimate the
biomass of a tree or multiple trees (Picard, Saint-André,
& Henry, 2012). The biomass of a tree is usually divided
into sections, such as the trunk, bark, branches, leaves,
large and medium-size roots and small roots (Picard,
Saint-André, & Henry, 2012). The geometric and
mechanical properties of multiple tree species have
been recorded (Forest Products Laboratory, 1999;
Jenkins, Chojnacky, Heath, et al., 2004), and researchers
have used them to develop and analyze tree models
(Hou & Chen, 2020). Tree vulnerability due to the
December 2007 Oklahoma ice storm has been assessed
using remote sensing (RS) and geographic information
systems (GIS) (Rahman, 2010). Consequently, the critical
factors resulting in tree damage from the December
2007 Oklahoma ice storm, ordered from most severe to
least severe, were determined to be ice thickness, tree
branch angle, pre-storm tree crown, wind, stem and
branch diameters (Rahman, 2010).

A fragility curve, commonly used in seismic risk
analysis (Guidotti, Chmielewski, Unnikrishnan, et al.,
2016; Sharma, Tabandeh, & Gardoni, 2018), is a
conditional failure probability of an element for a given
hazard intensity measurement (Ansari, Rao, & Jain,
2022; Pitilakis, Crowley, & Kaynia, 2014; Zentner,
Gundel, & Bonfils, 2017). Further, in seismic risk



analysis, fragility curves play a crucial role in establishing
a connection between the probabilistic seismic hazard
analysis (PSHA) and the effects of the predicted ground
motion on infrastructure components (Pitilakis, Crowley,
& Kaynia, 2014).

Additionally, seismic fragility curves are continuous
functions that describe the probability of exceeding a
set of particular building or infrastructure component
limit states for a specific ground motion intensity
measurement (e.g., peak-ground acceleration or peak-
ground displacement) (Erberik, 2014; Pitilakis, Crowley,
& Kaynia, 2014). Hazus, a standardized risk modeling
methodology developed by FEMA (2003), utilizes
fragility curves to assess the risk of building, electrical
and transportation infrastructure components. Hazus
considers four or five discrete damage states — none,
slight, moderate, extensive, or complete — where each
damage state’s definition is based on the structure type
and hazard (Kircher, Nassar, Kustu, et al., 1997).
Currently, Hazus utilizes fragility curves for various
structures subjected to hazards, such as earthquakes,
floods, tsunamis and hurricanes. An effort has been
made to develop fragility curves for urban or deciduous
trees subjected to wind loads (Ciftci, Arwade, Kane, et
al.,, 2014; Hou & Chen, 2020), but no literature was
found that developed or analyzed the fragility curves of
analytical tree models subjected to ice loads. However,
Proulx and Greene (2001) empirically studied the
relationship between ice thickness and tree damage
(crown loss) for hardwood trees without leaves, which is
in a way similar to a fragility curve.

In order to fill this gap in the literature, fractal trees
subjected to ice loads were analyzed using the finite
element (FE) and Monte Carlo sampling methods to
develop fragility curves. The generation of fractal trees,
formulation and analysis of the FE model and the
development of the fragility curves are described in
Section 2. The resulting fragility curves and the
development of a method for estimating the fallen
weight of a failed tree branch are discussed in Section 3
followed by concluding remarks in Section 4.
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2. Methods

Four common hardwood tree species—Acer saccharum
(Sugar Maple), Tilia americana (American Beech), Fagus
grandifolia (American Basswood), and Quercus alba
(White Oak)—were studied. In order to model and
analyze these deciduous trees, which are highly variable
and geometrically complex, a few assumptions had to be
made (Picard, Saint-André, & Henry, 2012). The tree was
modeled as a two- dimensional fractal and only includes
the trunk and branches (Figure 1(a)).

The smaller branches and leaves, which grow from
the large branches, were not modeled geometrically and
instead were added as loads on the larger branches by
utilizing allometric equations obtained from the
literature. MATLAB (MathWorks, 2021) was used to
model two-dimensional trees subjected to ice loads and
develop fragility curves by using the Monte Carlo
sampling method with a total of 40,000 quasi-static
simulations. Two load cases were considered: load case
1 includes the loads due to the weight of the branches
and ice on the branches; and load case 2 includes the
same loads as case 1 but with the addition of loads due
to the weight of the leaves and ice on the leaves. A total
of 10,000 randomly generated two-dimensional trees
were utilized in two analyses (cases 1 and 2) per species.
Fifty ice load cases, ranging from 0 to 50.8 mm of ice
thickness were used in both load cases 1 and 2. Ice
thickness was used as an intensity measurement (Proulx
& Greene, 2001), and the range of ice thickness used in
this study is based on historical observations and the ice
thickness maps provided in the ASCE/SEI 7-16 Standard
(ASCE, 2017). OpenSees (McKenna & Feneves, 2000)
was used to construct and solve the two-dimensional FE
model subjected to both load cases 1 and 2 and the
resulting total stresses were then compared to the
modulus of rupture (MOR), which measures the bending
strength, of the tree species to determine if the tree had
failed. The failure criteria were based on the total
stresses exceeding the MOR in sections that were
categorized by successive fractal iterations and

20

branches.
20
—=ice weight
13%2 1 l biomass weight
15 12%1 18fis 151 1 /
29
¥
E ol S S
> / /
I trunk or stem
[ primary branch | | sk ‘
I sccondary branch {
® node 1
element ‘ ‘
\ . ! 0 \ . \ \ ) \
-5 0 5 10 15 20 25 30 -5 0 5 10 15 20 25 30

(b)

Figure 1. Visualization of model: (a) tree branch segments (left) and finite element model (right), and (b) weight comparison
between load case 1 (left) and load case 2 (right) considering biomass and ice loads at tice % 25:4 mm.
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2.1. Two-dimensional fractal tree

A MATLAB script, FraktalT (Dmitry, 2021), was used to
generate two-dimensional fractal trees, which requires
specific input arguments: number of branch iterations,
branch-trunk scale factor (r), tree-branch angle (9), and
trunk X- and Y-coordinates. The number of branch
iterations refers to the number of branches that are
generated beginning from the end (or top) of the tree’s
trunk. The branch-trunk scale factor (r) scales the
branches relative to the length of the tree’s trunk, and
the tree-branch angle (J) orientates the branches
relative to the Y-axis. Three branch iterations were
considered in the development of each tree’s geometric
dimensions and load estimations. Due to the
computationally expensive nature of Monte Carlo
simulation, only two branch iterations were considered
for the FE analysis to keep the computational time and
output data size to a reasonable amount, while still
capturing the branching nature of the tree.

A fractal tree was randomly generated and then
discretized into 28 elements with the trunk, the first
fractal iteration, and the second fractal iteration being
composed of 4, 8, and 16 elements, respectively. Figure
1(a) shows the FE discretization of a representative
fractal tree. The geometric properties for each element
were calculated based on the length of each element
and the tree diameter at breast height (DBH) where the
DBH is measured 1.37 m from the ground. The height (H)
of the tree was estimated by using an exponential
regression equation (Kenefic & Nyland, 1999) that is
based on the DBH of the hardwood sugar maple tree and
is given by

H = 1.3 4 36.86 exp[—15.4/(100 x DBH + 3.8)] W
(in meters)
where DBH is in meters. Reliable species-specific
allometric equations or parameters were not found in
the literature; consequently, Equation 1 is used to
calculate the height for each tree species in this study.
The trunk’s height (h:) was then estimated relative to the
height (H) of the tree as h:% 0:24H, which is based on an
estimate by McPherson and Peper (2012) for a 60-year-
old hardwood green ash tree (Fraxinus pennsylvanica).
The X- coordinate of the trunk was always taken as zero
(i.e., perfectly straight, vertical trunk).

This model considers a linear decrease in branch
diameter where each branch bifurcation (branching)
results in equivalent areas between the two resulting
branches (i.e., primary branches from the trunk and
secondary branches from the primary branch), as
shown in Figure 1(a). Further, to complement the

linearity that is common in fractal tree iterations
(Gulick, 2011; Kak, 2022; Lindenmayer & Prusinkiewicz,
1996), a linear scaling approach was employed to
calculate the radius of each element by utilizing the
ratio of the branch path length (/,) to the total branch
path length (/5;toral). The total branch path length (/5;total)
defines the total path length for a three iteration fractal
and is given by

L total = he + hyr + he* + her’ (2)

All paths in a fractal tree have the same total path length
(/p;total). In Equation 2, a path is considered to begin at
the base of the tree and finish at the end of a branch in
the third iteration fractal. Because the development of
the tree’s FE model considers only two fractal iterations,
there are only four possible total branch paths. The
radius of an element is taken to be

_DBH (1 e lp71> )

2 lp,total

Te

where /pe is the length along the branch path from the
base of the tree to the center of the element, and /,;1is
the path length to the center of the first element, which
is equal to 0:5 h=4. Equation 3 ensures that the
element at the base of the tree has a diameter equal to
the DBH. The volume (V.) for each element was
calculated assuming a cylindrical element. The
element’s mass was then estimated based on V.and the
density (p) of the wood.

2.2. Generating random parameters

Monte Carlo sampling is used to propagate uncertainties
in tree parameters — both geometric and material — to
the fragility functions. The randomly generated
geometric parameters used to develop the two-
dimensional tree are DBH, r, and &; the random material
parameters are density of wood (p), modulus of
elasticity (E), and MOR. No literature was found for the
common distributions of these tree parameters.
Further, there is a general confusion in the wood science
research community as to which type of distribution is
suitable for E and MOR (Owens, Verrill, Shmulsky, et al.,
2019). Consequently, a uniform distribution is assumed:

U™ Yla, b] (4)



for random variable U 2 fDBH; r; &; p; E; MORg where a
and b are the minimum and maximum values,

Table 1. Lower (a) and upper (b) bounds used for uniform random variables for different tree species

investigated herein.

SUSTAINABLE AND RESILIENT INFRASTRUCTURE

Tree Species

White
Random variable Bounds Sugar Maple Beech Basswood Oak
DBH [m] a 0.06 0.11 0.16 0.11
b 0.70 0.62 0.68 0.66
rl-] a 0.56 0.50 0.62 0.70
b 0.96 0.92 0.91 0.93
J [rad] a 0.040 0.080 0.010 0.080
b 0.660 0.750 0.480 0.870
p [kg/m3] a 560 560 320 600
b 630 640 370 680
E [MPa] a 10,700 9,500 7,200 8,600
b 12,600 11,900 10,100 12,300
MOR [MPa] a 65 59 34 57
b 109 103 60 105

respectively. The typical ranges for the DBH, p, E and
MOR of wood used in this study were determined by
other researchers (Forest Products Laboratory, 1999;
Jenkins, Chojnacky, Heath, et al., 2004). The bounds for
p, E, and the MOR are based on the moisture content of
the wood, where the lower bound is at a green cut or
100% moisture content and the upper bound is at 12%
moisture content (Forest Products Laboratory, 1999).
The bounds for r and ¢ for specific species of trees were
not found in the literature and are therefore based on
the observations of multiple tree species. Table 1 shows
the a and b values for various tree species used in this
study, and Figure 2 shows the variation of the fractal
tree for each species due to the uniformly distributed
variables with 100 realizations.
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2.3. Load cases

The term ‘large branch’, or simply ‘branch’, is used to
describe the mass of wood that sprouts from the trunk
or stem. In this study, fractal iterations are comprised of
branches, where each branch is

30 T T T T T 30 T T T T
——trunk
1st iteration
250 2nd iteration 1 25r
3rd iteration
20 1 20
-g- 15F B .E. 15
> >
10F 1 10F
5F 1 5F
0 i L n 0 n L n
-20 10 20
10 20 -20 -10
(a) X [m]
30 T T T T T 30 T T T T
25F 4 25}
20F 1 20F
-g- 15F 1 -E- 15
> >
10F 1 10F
5F 1 5F
0 " " 1 L s 0 s L L
-20 -10 0 10 20 -20 -10 20

X [m]

Figure 2. Graphical representation of uniformly distributed variables (100 samples) by tree species with the first (gray), second

(d)

X [m]

(blue), and third (red) iterations: (a) sugar maple, (b) beech, (c) basswood, and (d) white oak.




discretized into elements. The branch may split further
into smaller branches, which are considered to bear the
weight of the foliage or leaves. For load cases 1 and 2,
an element’s mass was calculated based on the volume
of the cylinder and the density p of the wood, and the
weight of each element was then calculated by
multiplying this mass by gravitational acceleration g %
9:81 m/s?. The total biomass (Mb of the tree, which
includes the mass of the branches and leaves, was
separated into foliage and small branch mass
components, and M was calculated using a logarithmic
regression equation from the literature of the form

M = exp[B, + B, In(DBH)] (5)

where Bpand B; are regression parameters for hardwood
species, such as Maple, Oak or Beech (Jenkins,
Chojnacky, Heath, et al., 2003).

For load case 1, the small branch mass component
(Mg) was utilized to approximate the mass of smaller
branches that could not be captured by the branch mass
calculations and is given by

0.8160
Mg = M exp {—1.6911 + 10 ] (6)

0 x DBH

where DBH is in meters. Comparatively, for load case 2,
the foliage mass component (Mr) was utilized in
addition to the branch mass component where the
foliage mass component is estimated by

5.8816
Mg = Mexp {4.0813 + }

T (7)
100 x DBH

where DBH is in meters. These mass components were

then used to determine the crown density (ocrown) for

each load case as follows:
MB/Vcrowna

_ load case 1
Pcrown a (MB + MF)/Vcrown;

8
load case2 (8)
where Viown is the total volume of the crown. This
volume was estimated as a hemisphere of diameter
dcrown as follows:

Verown = 3 B (9)

2_7T |:dcrown:| }
The crown diameter (dcown) is then given by the

regression equation
17.845 4+ 1.022 x (DBH/0.0254)

(in meters)
3.281

dcrown =

(10)

where DBH is in meters (Lamson, 1987). Similar to
Equation 1, reliable species-specific allometric
equations or parameters were not found in the
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literature; consequently, Equation 10 is used to estimate
the crown diameter for each tree species in this study.

The leaf cluster approach developed by Honda and
Fisher (1979) was used to distribute spherical clusters in
the model, as an approximation for the observed leaf
distribution in branches. The leaf cluster approach
applied on a random tree is shown two-dimensionally in
Figure 3. Spheres were placed at each splitting node
beginning at the top of the trunk and ending at the third
iteration nodes. Each sphere had a radius equal to 80%
of the length of the longest distal element (Honda &
Fisher, 1979). The 15 15 interaction volume matrix
between the spheres was calculated analytically using a
MATLAB function developed by Jacquenot (2022b). The
intersection, or overlap, volume between the interacting
spheres was distributed to each sphere in equal parts
resulting in an adjusted volume (V)) for the jth sphere (j
% 1; 2,...; 15) to satisfy the leaf cluster approach. This
volume was multiplied by pcrown (Equation 8) to calculate
the biomass distributed to the associated node for
determining the loads to be applied.

Ice loads were calculated for two cases, one without
the effects of leaves and one with the effects of leaves.
The ice load case without leaves takes into consideration
only the ice on the branches of the tree. Comparatively,
the ice load case with leaves takes into consideration the
ice on the branches and the ice on the effective leaf
area. The mass of the ice on the branches and the leaves
was calculated using their respective surface areas. The
surface area for each element was calculated based on
a cylinder, which was multiplied by the ice thickness (tice)
to obtain the volume of ice for each element:

Vicee = tice X 20Tl

SUSTAINABLE AND RESILIENT INFRASTRUCTURE

(11)

where the element length (/) is determined by
discretizing a branch into four equally spaced elements
(see Figure 1). The ice’s mass was then obtained by

25— T T T T T T T T
20r 1
— 15F 4
E
>
10 4
——trunk
5r 1st iteration |+
2nd iteration
3rd iteration
ol L " L " 1 1
-15 -10 -5 0 5 10 15 20 25

X [m]

Figure 3. Leaf cluster approach with all three fractal iterations.
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multiplying the volume of ice by the density of ice, picc %4
917 kg/m?3. The ice load for each element was then
determined and distributed such that each end of the
element received half of the element’s ice load.

The ice mass on the leaves was calculated by using
the effective leaf area where the effective leaf area was
determined similar to the clustering approach outlined
above, except with circular areas (Jacquenot, 2022a)
instead of spherical volumes. It is important to note that
the third iteration branches, biomass, and ice loads for
loads cases 1 and 2 were included as point loads at the
ends of their corresponding second iteration branches.
The third iteration branch geometries and loads were
calculated along with the first and second iteration
fractals using the same method discussed in Section 2.1.
Similarly, the biomass and ice loads due to the third
iteration branches for both load cases 1 and 2 were
determined using the methods outlined in this section.

Figure 1(b) shows the comparison between the two
load cases — one without leaves and one with leaves —
applied to a randomly generated tree. The increase in
weights for the tree branches shown in Figure 1(b) due
to an ice accumulation of 25.4 mm is 1.3 and 4.8 times
for load cases 1 and 2, respectively. For load case 1, the
average weight increase for all four tree species due to
an ice accumulation of 25.4 mm was found to be about
double that of the branches weight with an average
standard deviation of 0.7 for the ice-branch weight
multiplier. Comparatively, for load case 2, the average
weight increase due to an ice accumulation of 25.4 mm
was found to be nine times higher for Beech, Basswood,
and Oak and 12 times higher for Sugar Maple with
standard deviations of 16, 7.3, 5.3, and 7.5 for Sugar
Maple, Beech, Basswood, and Oak, respectively. These
values are comparable to the increases in branch weight
due to ice accumulation reported by Hauer, Wang, and
Dawson (1993).

2.4. Finite element method and analysis

The FE software OpenSees (McKenna & Feneves, 2000)
was utilized to create and solve the FE model of the two-
dimensional fractal tree. An example of a seven-
element two-branch tree is shown in Figure 1(a). The
tree was modeled with 29 nodes and 28 elements with
each element being modeled as an Euler-Bernoulli beam
element (elasticBeamColumn). A corotational geometric
transformation, generally used with structures that
experience large displacements and small strains, was
used to transform the elements based on a local
coordinate reference frame. A static analysis was

performed using the Newton algorithm and 2% load
increments. This analysis was performed for each of the
10,000 randomly generated trees for both load cases 1
and 2 for four tree species. The outputs that were
recorded include the local element forces — axial forces
(Fx) and bending moments (M; - and nodal
displacements. The recorded local forces were used to
compute the total stress for each element:

Omax = Fx/Ae =+ Mz/se (12)

where omax is the maximum total stress, Fxis the axial
force in the local x-axis, A is cross-sectional area of the
element, M, is the local bending moment at the ends of
the element and S. is the element’s section modulus,
which is equal to ntr.*=4 for the circular cross-section.

2.5. Fragility curves

Fragility curves were developed for three branch
damage states (DSs). These DSs were characterized by
rupture due to the combined bending and axial stresses
within a branch (Equation 12) exceeding MOR, i.e.,
failure occurring if omax MOR. In the fragility analysis,
each tree was divided into two separate branch
structures: left side (elements 5-16) and right side
(elements 17-28) depicted in Figure 1(a). Consequently,
the total number of analysed structures increased by a
factor of two, resulting in N % 20,000 branch structures
per tree species for both load cases 1 and 2. For each
branch structure, the first (dsi), second (ds;) and third
(ds3) damage states are characterized by at least one
secondary branch failure, two secondary branch
failures, and a primary branch failure, respectively. The
fragility function is based on the probability of DS
reaching or exceeding ds; (i % 1, 2, 3) given a specific
intensity measure (tice):

1 N
PIDS > dsiftice) =) L0 syor  (13)
i—1

where PY% is the probability, tice is the ice thickness, N is
the total number of branch structures, and
I, Omax = MOR

I ¢pu>MoR = { 0, otherwise. (14)

When any branch failure occurs, the weight that is
dropped (i.e., the fallen weight of a branch with ice) can
be considered to be a fallen object that can potentially
land on electrical components and disrupt or damage
the electrical system. For this reason, the probability of
having at least one secondary branch failure (DS ds;)
was used in the fallen weight (W) probability analysis.



The marginal probability of having a fallen weight of W

given a certain ice thickness (tice) is expressed as

P[W |tice] = P[W, DS > ds; | tice] + P[W, DS < ds; | tice)
(15a)

= P[W|DS 2 dSl, tice}]P)[DS 2 dS] |tice]
+ P[W|DS <dsjy, tice| P[DS < ds; | tice] (15b)

where the definition of conditional probability has been

used to go from Equation 15a to Equation 15b, viz.

P WaD fice
]P)[W‘D, tice} = W

(16)
for events D 2 fDS dsj; DS < ds;g. The probability shown
in Equation 15b describes the potential scenarios for
having fallen weight W. The first term of the first
expression on the right-hand side of Equation 15b
corresponds to the normalized PDF of W given that any
branch failure occurred (DS ds;) for a certain tice. The
second term of the first expression on the right-hand
side of Equation 15b corresponds to the fragility curve
(Equation 13) where any branch failure occurred (DS
ds1) given a certain tice. The first term of the second
expression on the right-hand side of Equation 15b
corresponds to the case of having fallen weight W when
no branch failures occurred (DS dsi). This probability
corresponds to the Dirac delta function, i.e., P2W jDS <
ds; tice ¥4 63WP; hence, the results will be presented in
terms of the cumulative distribution, which takes the
form of a Heaviside function. The second term of the
second expression on the right-hand side of Equation
15b corresponds to the complement of the Monte
Carlo—based fragility curve where no branch failures
occurred (DS < dsy), i.e.,

P%DS < dsi jtice % 1 PYADS dsi jtice. Also of interest is the
expected fallen weight, which is given by

20 . 50
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17)
In the following section, results from the Monte Carlo
sampling of tree responses are used to fit analytical
expressions for the various probabilities discussed here.

3. Results and discussion

3.1. Tree deformation

A comparison of the displacements for each load case is
shown in Figure 4 for a representative tree. Larger nodal
displacements are developed in the load case with
leaves (Figure 4(a)) than in the load case without leaves
(Figure 4(b)). This is due to the leaves’ surface area,
which allows for more ice to accumulate (see

Figure 1(b)) and leads to significantly larger
displacements than the load case without leaves. Figure
4 shows that for both cases the secondary sections tend
to have the largest nodal displacements for all ice
thickness increments. Further, Figure 4(b) shows that
tree branches that extend the furthest, perpendicular to
the Y-axis, experience the largest deflections. This is due
to the large moments produced by the increasing
moment arm. It is interesting to note that in Figure 4,
both load cases have a net deflection to the right of the
initial position. This is counter-intuitive to the notion
that the branches would deflect down and in the
direction of the primary branch, orthogonal to the
trunk. The direction of the deflection for each branch,
and more importantly, the entire tree’s final position, is
influenced by the initial position of the tree and the
interactions between the two branch structures (i.e.,
the left and right side of the tree). Further, this may be
helpful to the electrical infrastructure when responding
to a severe ice storm threat by pruning a portion of the
tree that are near electrical components. This is because

20 T T 50

lce thickness [mm]

20

X [m]

Figure 4. Comparison of nodal displacements between load case without leaves (left) and load case with leaves (right) at

varying ice thicknesses.
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pruning entire trees may be infeasible due to time
constraints, especially if the trees are large. As shown in
Figure 4(b), ice loads from the leaves produce large
displacements and have the potential of causing a
power outage from electrical arcing due to the tree
branches completing the circuit between electrical lines.
This is crucial in particular for electrical power
distribution in urban areas, because shorts can occur
even without the structural failure of a line or pole.
Further, if the tree bears its weight on electrical
components, the entire electrical line and the pole could
fail structurally. Additionally, for a tree near a road, the
displaced branches due to a severe ice storm, as shown
in Figure 4(b), may cause a hazardous environment for
traffic due to the obstruction caused by the deformed
tree.

3.2. Fragility curves

Figure 5 shows the fragility curves (Equation 13) based
on Monte Carlo sampling for the load cases without and
with leaves for every damage state ds; for the four tree
species.

The Monte Carlo—based fragility curves shown in
Figure 5 were fit assuming a log-normal cumulative
distribution function (CDF):

100
ds, (MC)
ds, (MC)
§ 80 dss (MC) w/ leaves
o ——ds, (Fitted) o
~2 60f - ds, (Fitted) ~—
w ds, (Fitted) we
©
Al
w0
[ w/o leaves

P(

20 30 40 50
Ice thickness tice [mm]

Fys,(tice) = P[DS > dsiltice] = @ (M) (18)

where @®db is the standard normal CDF, tie; is the
median value of ice thickness tice at which the tree
reaches the threshold of damage state (ds)), and 8;is the
logarithmic standard deviation for damage state ds;. The
fitted parameters and statistics for various damage
states used in Equation 18 are shown in Table 2 for the
cases without and with leaves. Table 2 shows a high
coefficient of determination (R?) for dss, ds,, and ds; for
both load cases. From Table 2, it is shown that there is
not much variation between each predicted fragility
curve’s statistics within each species for the case
without leaves. Comparatively, the case with leaves
shows larger variations in the predicted fragility curve’s
statistics within each species. Figure 5 shows the fitted
fragility curves predicted by Equation 18. It is observed
that the predicted fragility curves trend well with the
Monte Carlo—based fragility curves for both load cases
without and with the effects of leaves.

For the case without leaves, the fragility curves for
each ds; are nearly identical for a given tree species,
which indicates that tree branches under ice loads
without leaves will likely fail in the primary section (dss).
Additionally, because the failure occurs in the primary
section, the secondary section branches will also fall

with the primary section branch. The nearly identical
100 : :
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Figure 5. Fragility curves based on Monte Carlo (MC) simulation and fitted log-Normal distribution for all damage states ds;without
and with the effects of leaves for each tree species: (a) sugar maple, (b) beech, (c) basswood, and (d) white oak.
Table 2. Fitted parameters and coefficient of determination (R?) for fragility curves (Equation 18).

Tree Species

hi
Load Case Damage State Parameter Sugar Maple Beech Basswood \(,)vaklte

w/o leaves ds: tice;1 265.6 308.9 339.7 196.6

61 1.392 1.238 1.561 1.380

R2 0.994 0.997 0.991 0.990

ds> tice.2 264.5 314.5 352.8 201.5

8, 1.383 1.242 1.562 1.375

R2 0.995 0.997 0.992 0.990

ds3 tice;3 264.8 3145 353.2 202.4

83 1.383 1.242 1.563 1.378

R2 0.995 0.997 0.992 0.990

w/ leaves dsy tice;1 28.47 29.64 27.55 12.11

81 1.546 1431 1.307 1.294

R2 1.000 1.000 1.000 0.998

ds, tice.2 39.25 39.61 38.32 16.63

8, 1.596 1.447 1.358 1.357

R2 1.000 1.000 1.000 0.999

dss3 tice;3 44.75 45.11 42.48 19.09

83 1.682 1.531 1.436 1.486

R2 1.000 1.000 1.000 1.000

fragility curves for trees without leaves are potentially
due to the trees’ linearly decreasing geometric
proportions and uniform ice distribution. It is also
observed that the fragility curves for the case without
leaves are low with failure probabilities of 11.7%, 7.2%,
11.6% and 16.9% at tice ¥ 50:8 mm for Sugar Maple,
Beech, Basswood and White Oak, respectively.

For the cases with leaves, Figure 5 shows that there
is a dramatic increase in the failure probability when
compared to the case without leaves. For example, at
tice 4 25:4 mm, the failure probabilities jumped by as
little as 31% and as much as 65% due to the inclusion of
leaves. Such increases in the probability of branch
failure highlight the additional hazard posed by

unseasonably early ice storms, like the October 2020
Oklahoma ice storm, when leaves are still on trees.
Figure 5 additionally shows that fragility curves for the
three damage states (dsi, ds;, and dss) differ from one
another. This is because there are instances where one
or two secondary branches fail, while the primary
branch remains intact. This is due to the geometric
shape of the trees and the distribution of leaves. Each
tree has at least one branch that extends out away from
the trunk, which develops larger bending stresses and
increases the probability of failure compared to the
branches closer to the trunk. Additionally, tree branches
that are further from other tree branches also have a
smaller interaction volume and area. These smaller
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Figure 6. Cumulative probability of fallen weight W given that some damage is observed (DS ds;) for a given ice thickness tic for
each tree species—(a) sugar maple, (b) beech, (c) basswood, and (d) white oak—without the effects of leaves.

interactions result in branches that carry larger amounts
of biomass and therefore carry more ice. The
combination of large bending stresses and increased
biomass and ice loads results in more instances of ds; or
ds, occurring for every tree species. Consequently,
White Oak (Figure 5(d)), a tree species with a relatively
larger crown diameter, exhibits higher failure
probabilities compared to the other tree species. For
the cases with leaves, the differences between ds;, ds;
and dssz are similar for all four species, which indicates
that each species experiences single and two branch
failure instances similarly between species for the case
with leaves. Leaves are shown to increase the likelihood
of having a primary branch failure, which is important to
mention due to the potential of having a large fallen
weight. Further, the weight dropped from a primary
section failure can be critical due to the possible
addition of the weight of the secondary branches.
Additionally, even though the weight dropped by a
secondary branch failure is smaller than a primary
branch failure, the increased probability of having a
secondary failure is still important due to the potential
of causing an electrical short when the fallen branch
comes in contact with electrical lines. The variation in
the fragility curves from one species to another is likely

due to the geometric properties of each tree species
(see Figure 2). It must be noted that a small portion of
tree branches, for each species, failed under its own
self- weight. These self-weight failures were small in
guantity and were considered to be insignificant and
therefore disregarded.

3.3. Fallen weight

Figures 6 and 7 show representative CDFs of fallen
weight W based on Monte Carlo simulation, given that
some damage is observed (DS dsi) for the load cases
without and with leaves, respectively, for the four tree
species.

These distributions correspond to the first term of
the first expression on the right-hand side of Equation
15b. A Weibull distribution was fitted to the Monte
Carlo data for each tree species. At each ice thickness
tice, the Weibull CDF is given by

Fw(w|DS > dsy, tice) = P[W < w|DS > dsy, tice)

—1- exp{—[w/A(tice)}B(t“e)} (19)

where Adti.P and BotieP are the scale and shape
parameters, respectively, which depend on the ice
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Figure 7. Cumulative probability of fallen weight W given that some damage is observed (DS ds;) for a given ice thickness ti. for
each tree species—(a) sugar maple, (b) beech, (c) basswood, and (d) white oak—with the effects of leaves.

thickness. At each ice thickness, these parameters were
fit to the Monte Carlo data, and the fitted parameters A
and B are shown in Figures 8 and 9, respectively, for the
trees without and with leaves at each ice thickness tice.
Some representative fitted CDFs are shown in Figures 6
and 7.

The corresponding fitted Weibull parameters were
then used to develop regression equations to predict
the Weibull parameters with tiee. The following
regression equations are used for the Weibull scale
parameter A and shape parameter B, respectively:

A(tice) = adp + dytice + a2tizce (20)

B(tice) = bo + bitice + by In(tice) (21)

where ao, a1, a2, bo, b1, and b, are the regression
coefficients (hyperparameters). Figures 8 and 9 show
the fitted curves for the Weibull parameters A and B,
respectively, along with the fitted regression equations
and coefficients of determination (R?). It is observed
from Figures 8 and 9 that the regression equations trend
well with the fitted Weibull parameters. Further, Figures
8 and 9 show high R? values for the Weibull scale
parameters A and B for the cases without and with
leaves. The overall high R? values of the regression
equations in Figures 8 and 9 show that the regression

equations are suitable for predicting the Weibull
parameters for a given ice thickness tice. The Weibull
parameters predicted with Equation 20 and Equation 21
were then used to construct the predicted Weibull CDF
surfaces (Equation 19) shown in Figures 6 and 7. It is
observed from Figures 6 and 7 that the fitted and
predicted CDFs trend well with the Monte Carlo CDF for
all tice values and tree species. Importantly, these
equations can be used to predict fallen weights for ice
thicknesses other than those calculated based on the
Monte Carlo analysis.

From Figures 6 and 7, there is an apparent difference
in the distribution of W among the tree species given
some level of damage (DS ds;). For example, for the
load case without leaves at tice %4 50:8 mm, the expected
values (coefficients of variation) of W are 4.24 kN (1.41),
3.72 kN (0.949), 3.93 kN (0.748), and 4.53 kN (0.938) for
Sugar Maple, Beech, Basswood, and White
Oak, respectively. For the load case with leaves at tice %
50:8 mm, the expected values (coefficients of variation)
of W are 21.89 kN (1.26), 17.12 kN (1.07), 19.82 kN
(0.868), and 24.54 kN (0.935) for Sugar Maple, Beech,
Basswood, and White Oak, respectively. For both load
cases, the Sugar Maple and White Oak have the higher
expected W, with Sugar Maple having the highest
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variation in both cases. Given some level of damage, the
expected dropped weight W is around five times higher
for the load case with ice than without ice.

From the foregoing discussion, not only are the
probabilities of failure higher for the load case with
leaves (see Figure 5) but the expected dropped weight
W is also much higher (see Figures 6 and 7). Equation
15b captures this combined effect of the tree fragility
and branch weight, which is shown in Figure 10 in the
form of the CDF for the Sugar Maple without and with
leaves. There is an instantaneous jump in the probability
at W % 0 due to the probability of not having a failure,
associated with the second expression on the right-
hand side of Equation 15b. Then, for the cases with
failures, there is a distribution of the weights expected
to fall, associated with the first expression on the right-
hand side of Equation 15b. Portrayed in this way, the
effect of leaves is more pronounced, i.e., higher failure
probabilities and fallen weight given failure. Figure 11
shows the expected fallen weight with ice thickness
(Equation 17) for all four species without and with ice.
The expected fallen weights for trees with leaves are
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about 30 to 40 times higher than for trees without
leaves, exhibiting the compounding effect of higher
probabilities of failure (fragility) and greater expected
weight drop given a failure. Even though the Sugar
Maple and White Oak showed similar expected dropped
weights given a branch failure (DS ds;), the expected
fallen weight — considering cases with and without
failures — for the White Oak is significantly higher
because it was the more fragile tree (see Figure 5).

3.4. Implications for ice-storm resilience
assessments

The fragility curves and fallen weight distributions
developed in this study have implications for future
resilience assessments considering ice storms (Hou,
Muraleetharan, Panchalogaranjan, et al.,, 2023). In
particular, hazards from fallen branches could be
integrated into models of electrical and transportation
networks. Given a geo-spatial distribution of ice
accretions, fallen weight from trees in proximity to
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Figure 8. Variation of Weibull scale parameter A with ice thickness ti. for each tree species—(a) sugar maple, (b) beech, (c)
basswood, and (d) white oak—without and with the effects of leaves.
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roads or power lines could be predicted. In a resilience
framework using Monte Carlo sampling, this would
involve randomly generating fallen weights from the
distribution in Equation 15b. This would involve first
generating a uniform random variable U,U%:0; 1, which
would be compared to the probability of failure
determined from the fitted fragility curve, i.e., Equation
18 with parameters tice;1 and 81 taken from Table 2. If U
> Fya0ticeP, the branch would not have failed, and W %
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0; if U Fgs:0ticeP, the branch would have failed, and a
random fallen weight would be generated from a
Weibull distribution with scale parameter Adltic.P and
shape parameter BdtieP determined from the
regression Equation 20 and Equation 21, respectively.
These randomly generated fallen weights would serve
as loads on electrical lines or the like. It is important to
note that the fragility curves presented herein need to
be validated due to assumptions made in the tree
parameters, development of the tree model, estimation
of the leaf’s surface area, and the assumption to treat
ice accretion as linear (i.e., uniform ice thickness around
elements).

4. Conclusions

Recent ice storms have demonstrated that trees have
the potential to cause electrical outages, damage
electrical poles, and create hazardous environments for
vehicle drivers. In this study, fragility curves based on
the Monte Carlo method were developed with fractal
trees for a range of ice accumulation. Two scenarios
were considered, one which includes the effects of
leaves and one which does not include the effects of
leaves. A method for generating the distribution of
fallen weight W was also provided. The fragility curves
show that the presence of leaves produces a significant
increase in the probability of tree failure thanin the case
without leaves, which is important because of the
occurrence of unseasonably early ice storms due to
climate change. Branches with leaves experience large
deformations due to the weight of ice, which may be
hazardous due to the branch’s potential interaction with
roads, traffic, and nearby electrical components. When
exposed to various amounts of ice accretion, the most
vulnerable branches of the tree are those branches,
which are furthest from the trunk. The developed
fragility curves and fallen weight distributions will be
useful for assessing resilience strategies and
frameworks for future ice storms. Future research
should consider a three-dimensional tree to better
model the displacement of branches. Furthermore,
more accurate allometric equations for determining the
weight of leaves should be considered. Future research
must consider more fractal iterations to better capture
the weight of all branches. Wind loads should also be
considered as they may increase the deformation of the
entire tree resulting in new failure modes.
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