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Recent work shows that quantum signal processing (QSP) and its multi-qubit
lifted version, quantum singular value transformation (QSVT), unify and im-
prove the presentation of most quantum algorithms. QSP/QSVT characterize
the ability, by alternating ansätze, to obliviously transform the singular values
of subsystems of unitary matrices by polynomial functions; these algorithms are
numerically stable and analytically well-understood. That said, QSP/QSVT
require consistent access to a single oracle, saying nothing about computing
joint properties of two or more oracles; these can be far cheaper to determine
given an ability to pit oracles against one another coherently.

This work introduces a corresponding theory of QSP over multiple vari-
ables: M-QSP. Surprisingly, despite the non-existence of the fundamental the-
orem of algebra for multivariable polynomials, there exist necessary and suffi-
cient conditions under which a desired stable multivariable polynomial trans-
formation is possible. Moreover, the classical subroutines used by QSP proto-
cols survive in the multivariable setting for non-obvious reasons, and remain
numerically stable and efficient. Up to a well-defined conjecture, we give proof
that the family of achievable multivariable transforms is as loosely constrained
as could be expected. The unique ability of M-QSP to obliviously approximate
joint functions of multiple variables coherently leads to novel speedups incom-
mensurate with those of other quantum algorithms, and provides a bridge from
quantum algorithms to algebraic geometry.

1 Introduction
Recent advances in the theory of quantum algorithms have led to a powerful method,
quantum singular value transformation (QSVT), for applying polynomial transformations
to the singular values of sub-blocks of unitary processes [1]. These algorithms demon-
strate the ability of simple circuit ansätze to expressively and efficiently control quantum
subsystem dynamics. In addition to improving the performance of many known quantum
algorithms [2, 3], QSVT has great explanatory utility: unifying the presentation of most
major known quantum algorithms [4]. This includes Hamiltonian simulation [5, 3], search
[1], phase estimation [2], quantum walks [1], fidelity estimation [6], sophisticated tech-
niques for measurement [7], and channel discrimination [8]. QSVT has found purchase in
surprisingly disparate subfields, from undergirding a general theory of quantum-inspired
classical algorithms for low-rank machine learning [9], to quantum cryptographic protocols
with zero-knowledge properties [10].
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At its core, QSVT is a sophisticated, lifted, multi-qubit extension to quantum sig-
nal processing (QSP) [11, 12, 13], which itself completely characterizes the achievable
polynomial transformations of a scalar value embedded in a single-qubit rotation. Again,
although the transformations possible with QSP are with respect to a simple circuit ansatz,
they are surprisingly general, and it is the simplicity of this ansatz in conjunction with
its expressibility that leads to QSP’s and QSVT’s numerical stability [14, 15, 16] and
usefulness. This single-qubit algorithm can be lifted to arbitrarily large systems of qubits
through the identification of natural qubit-like subspaces within high-dimensional uni-
taries, leading to the famed exponential performance improvements of quantum algorithms
for, e.g., matrix inversion [17], factoring [18], and simulation [19].

A natural extension to QSP considers the scenario when a computing party is given
access to not just one oracle encoding a scalar signal, but two such oracles whose relation
is unknown in general, as in Fig. 1. One can view this setting as a game, or else a coherent
interrogation between a quantum querent and a novel two-headed unitary oracle. As in
standard QSP, the querent hopes to decide on hidden properties of the oracle(s). The
motivation for this extension stems from a general interest in inference/communication: if
one is interested only in joint properties of two signals, rather than absolute properties, do
there exist corresponding realizable efficiencies in methods to decide on these properties?
Moreover, can these transformations be done entirely coherently, as is one major benefit
of QSP/QSVT? Any setting wherein one hopes to subject a quantum system to multiple
interleaved unitary operations, and equivalently where one hopes to talk of multivariable
polynomial transformations (of general interest in classical and quantum computer science
both [20, 21, 22]), promotes investigation into multivariable analogues of QSP/QSVT.

The two-headed oracleQuerent

Un : |ψ〉 7→ Un|ψ〉

A : |ψ〉 7→ UA|ψ〉

B : |ψ〉 7→ UB |ψ〉

|ψ〉

Figure 1: A meeting between the intrepid querent and the two-headed quantum oracle. The querent
can hold a quantum state and may submit it to the unitary action of either head, A or B, whose actions
are consistent. The querent may submit again and again to either oracle (possibly a different one each
time) with this same state, and may intersperse their own unitary gates Un along the way before finally
measuring. The querent seeks, of course, to interpret the oracle’s fragile mystery.

These considerations, in conjunction with inspiration by the success of standard QSP,
suggest the need for a theory of multivariable polynomial transforms embedded in unitary
matrices. The theory of multivariable polynomials, even outside the scope of quantum
information, is substantively more complex for fundamental reasons in algebraic geometry
including the loss of the fundamental theorem of algebra, and thus provides a highly
non-trivial elaboration on the theory of QSP-like algorithms. The fruit of this effort is
worthwhile, though, and provides additional methods for showing separations between
the performance of quantum algorithms for inference and their classical counterparts, as
well as an opportunity to leverage the deeply-studied mathematical subfield of algebraic
geometry in many dimensions for purposes of practical computing interest.

This work makes progress toward a comprehensive theory of achievable multivariable
polynomial transformations for QSP-like ansätze, constrained mostly to the two-variable
setting. In generic terms, as opposed to standard QSP which is the study of achievable
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functions from the circle to SU(2), M-QSP considers functions from the multitorus to
SU(2)

T→ SU(2)
Standard QSP

Tn → SU(2)
M-QSP

, (1)

where T is the set of complex numbers of modulus one. We will primarily study the case
n = 2. The business of QSP [14, 11, 12, 13, 1] and M-QSP comes in two fundamental
directions: (1) describing how the parameters Φ defining a circuit ansatz are taken to
polynomial transforms (the so-called Φ 7→ P,Q direction), and (2) providing simple con-
ditions under which a suitable partial specification of polynomial transforms P̃ , Q̃ (still
useful for solving a desired algorithmic problem) can be ‘completed’ and their correspond-
ing Φ calculated (the so-called P̃ , Q̃ 7→ Φ direction). These directions are made explicit
in Sec. 2.

Study of such functions relies on powerful extensions of results from single-variable
functional analysis and approximation theory to multivariable settings. To keep this elab-
oration organized, we introduce theorems of standard QSP and M-QSP in parallel, taking
care to state assumptions, methods, and underlying theorems that distinguish these two
paths. The loss of foundational theorems in the multivariable setting means M-QSP theo-
rems are more strongly qualified. This structure is presented diagrammatically in Figure 2,
and discussed in Sec. 1.2.

Standard QSP

M-QSP

O
rd
er

p
resen

ted

Theorem II.1: Unitary form of QSP:

Φ 7→ P,Q.

Theorem II.2: Positive extensions for QSP:

P̃ , Q̃ 7→ Φ.

Theorem II.3: Unitary form of M-QSP:

Φ, s 7→ P,Q.

Theorem II.4: Positive extensions for M-QSP:

P̃ , Q̃ 7→ Φ, s

Fejér-Riesz Theorem (FRT): Stable positive
extensions for trigonometric polynomials in two
variables.

Conjecture II.1: FRT = QSP; General positive
extension and decomposition theorem for poly-
nomials in two variables.

Fejér-Riesz Lemma (FRL): Positive extensions
for trigonometric polynomials in one variable.

Remark II.2

Figure 2: A summary of the major theorems and related conjectures of this work. Within standard
QSP (top half), the theorems are given without qualification; Thm. 2.2 is shown to depend entirely
on the single-variable Fejér-Riesz lemma. Crossing the horizontal dotted line to M-QSP (bottom half),
we give parallel theorems, save Thm. 2.3 now depends on Conjecture 2.1, and Thm. 2.4, now depends
on the intricate multivariable Fejér-Riesz theorem (FRT), itself reliant on Conjecture 2.1 to yield valid
M-QSP phases for a desired multivariable polynomial transformation. The relation between the FRT
and Conjecture 2.1 (the FRT = QSP conjecture) is discussed in Remark 2.3.

1.1 Prior work
As this work proposes a substantively distinct algorithm drawing on methods/assumptions
common in the study of QSP, we give a roadmap to prior major work. This work can
be laid along three broad directions: (1) fundamental work on the analytic form of of
QSP/QSVT protocols, (2) detailed work on the stability of numerically implementing
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optimizations over, and the classical subroutines of, QSP/QSVT and (3) concrete ap-
plications of QSP/QSVT as a ‘meta-algorithm’ or ‘algorithmic framework’ to previously
unconsidered problems.

(1) The theory of QSP has its origin in the study of composite pulse techniques in
NMR [11], though its first instantiation by name appeared in service of improved methods
for Hamiltonian simulation [12, 13]. These papers fleshed out theorems on the structure
and numerical stability of QSP. The curious ability to locate invariant qubit-like subspaces
in larger Hilbert spaces and perform QSP simultaneously within them, obliviously to the
eigenbases or singular vector bases of these subsystems as well as the eigenvalues or sin-
gular values, led to the far expanded QSVT [1], whose uses, robustness, and applications
[4, 1] have been recently explored. Finally, rephrasing QSVT in terms of Hamiltonian sim-
ulation [5] has both simplified the presentation and in some ways brought this algorithmic
story full circle. Ongoing work continues to simplify the presentation of these algorithms.

(2) Notably, initially proposed constructive methods for determining the defining pa-
rameters Φ of a QSP ansatz were known to be numerically unstable. Surprisingly, extensive
results have since shown that there exist novel, stable, divide-and-conquer classical meth-
ods for determining these parameters [15, 16, 14]. In addition to standard approximative
constraints for the embedded polynomial transformations, new work has also investigated
more sophisticated constraints and their effect on QSP performance [23]. Moreover, be-
yond algorithms for polynomial approximation and QSP phase read-off, recent forays into
symmetrized (restricted) QSP ansätze [24] have proven that the relevant loss landscapes
are, under some reasonable restrictions, convex.

(3) Finally, QSP/QSVT have recently been applied to a wide variety of subfields, both
in and out of quantum information. These include Hamiltonian simulation [3], phase
estimation [2], quantum zero-knowledge proofs [10], classical quantum-inspired machine
learning algorithms [9], semi-definite programming [25], quantum adiabatic methods [26],
the approximation of correlation functions [27], the approximation of fidelity [6], recov-
ery maps [7], and fast inversion of linear systems [28]. Efforts continue to bring further
computational problems into the fold of QSP/QSVT.

This work, by merit of considering a distinct ansatz that precludes many of the proof
methods of standard QSP, is somewhat incommensurate with the prior work given. How-
ever, there is good reason to believe that much of the wonderful studies into the numerical
stability of standard QSP may be (with suitable modification) applicable in the multivari-
able setting. Moreover, we hope that a variety of new, previously unconsidered problems
from the classical world may now fall under the purview of M-QSP, drawing on its use of
theorems originally designed for understanding autoregressive filter design and image anal-
ysis [29]. In a sense this work advocates going back to the bare metal of QSP algorithms:
reconsidering its basic ansatz, elaborating on tweaks to its setting, and demarcating a
family of QSP-like ansätze toward a better understanding of quantum algorithms.

1.2 Paper outline and informal theorem statements
This work introduces multivariable QSP (M-QSP) in the terms of QSP (and in parallel
with it), and thus assumes some familiarity with the constitutive theorems of the latter.
Concretely, Sec. 2.1 introduces two fundamental theorems of QSP that are argued to
be representative of the statements one would like to be able to make to pragmatically
understand its use. Next, Sec. 2.2 briefly covers concepts in algebraic geometry that will
support the major theorems of M-QSP in Sec. 2.3. The theorems of Sec. 2.3, given casual
statements below, are modelled quite closely after those of standard QSP, but require far
more involved techniques to resolve, as shown in Appendix A. Here, we give the informal
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statements of the major results of this work. Depiction of their constitutive assumptions
and relations is given in Figure 2.

Theorem. Unitary form of M-QSP. Informal statement of Theorem 2.3. All M-QSP
protocols, suitably defined by an alternating ansatz (Def. 2.1), have a simple unitary form
with parity, norm, and determinant constraints, up to the resolution of Conjecture 2.1
(here named the FRT = QSP conjecture).

Theorem. Positive extensions for M-QSP. Informal statement of Theorem 2.4. Given
a desired multivariable polynomial transform that satisfies parity and norm constraints
simpler than those in Theorem 2.3, the ability to find an M-QSP protocol that embeds
this transform depends solely on whether a well-defined matrix of Fourier components of
a related transform has low rank, under the assumption the related transform is stable
(Def. 2.3).

Corollary. Uniqueness of stable positive extensions for M-QSP. Informal statement of
Corollary 2.4.1. Given a unitary matrix of a valid M-QSP protocol, the real numbers
parameterizing the M-QSP protocol can be determined by an efficient classical algorithm.

In addition to showing presenting basic theorems M-QSP up to certain assumptions,
we conclude this work by providing a few worked examples in Sec. 3, explicitly providing
decision problems (here in a noiseless setting) for which M-QSP provides an intuitive and
quantitatively easy to show improvement over other algorithms. We present problems
for which the approach of M-QSP is natural, and for which no other obvious quantum
algorithmic methods are known. In essence, we show the ability for M-QSP protocols to
decide on joint properties of pairs of oracles, where these properties cannot be determined
as efficiently (or even deterministically) by serial or parallel standard QSP protocols using
each oracle individually; in other words, there exist scenarios where it is far better to
compute functions coherently ‘under the hood’ of a unitary evolution, followed by a precise
measurement, as opposed to classically following an estimative process. We show that
there exist non-trivial examples of algorithmic advantage in query complexity for M-QSP
protocols which permit no efficient reductions to a single-variable settings (Problem 3.1),
and provide accompanying geometric intuitions for why this is the case.

Finally, and more abstractly, taking inspiration from standard QSP in its natural
connection to the famed Chebyshev polynomials, we use M-QSP to define one infinite
family of multivariable Chebyshev-like polynomials and discuss their significance. In turn,
we point toward the usefulness of M-QSP in studying the theory of orthogonal polynomials,
which has great relevance to the theory of positive extensions and signal processing (both
classical and quantum).

For the interested reader, discussion on the outlook for M-QSP, its caveats, its open
problems, and its position in the pantheon of quantum algorithms, is presented in Sec. 4.

2 Construction and analysis of M-QSP
This section has two goals: (1) a quick re-introduction of the major theorems (and moral
takeaways) of QSP drawn from [1] (with some alternative proofs), followed by (2) a series
of appropriate definitions, lemmas, and finally analogous theorems for M-QSP. Proofs,
applications, caveats, and worked examples, are left to Secs. 4, 3, and Appendix A.
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2.1 Review of standard (single-variable) QSP
In standard QSP a computing party is given oracle access to a unitary operation A(x) =
exp (i arccosxσx) for some unknown x ∈ [−1, 1]; this oracle performs a consistent, un-
known rotation about a known axis on the Bloch sphere. By repeatedly applying this
oracle, interspersed with known rotations about a separate orthogonal (in this case σz)
axis, the unknown signal can be cleverly correlated with its previous applications to gen-
erate complex polynomial functions of the parameter x. This transformation can be done
oblivious to x. The circuit for QSP, as well as its defining parameters, are depicted in
Figure 3. Characterizing the possible polynomial transforms is the business of QSP, and
leads to surprising applications and performance improvements for many known quantum
algorithms as discussed previously. We quote two important theorems; the first (The-
orem 2.1) characterizes the explicit unitary form of the QSP ansatz, while the second
(Theorem 2.2) introduces a simple necessary and sufficient condition (and an implicit con-
structive method) under which a desired polynomial transform can be embedded. We
refer readers to the original proofs of these theorems, and provide an alternative proof for
Theorem 2.2 in Appendix A.

Theorem 2.1. Unitary form of quantum signal processing (QSP), i.e., Φ 7→ P,Q. The-
orem 3 in [1]. Let n ∈ N. There exists Φ = {φ0, φ1, · · · , φn} ∈ Rn+1 such that for all
x ∈ [−1, 1]:

UΦ(x) = eiφ0σz

n∏
k=1

(
A(x) eiφkσz

)
=
(

P (x) i
√

1− x2Q(x)
i
√

1− x2Q∗(x) P ∗(x)

)
, (2)

where A(x) = exp (i arccosxσx) if and only if P,Q ∈ C[x] such that

(1) deg(P ) ≤ n and deg(Q) ≤ n− 1.

(2) P has parity-n (mod 2) and Q has parity-(n− 1) (mod 2).

(3) For all x ∈ [−1, 1] the relation |P (x)|2 + (1− x2)|Q(x)|2 = 1 holds.

Note here and elsewhere σx, σz are the usual single-qubit Pauli matrices with non-zero
entries ±1.

Theorem 2.2. Reconstruction of QSP protocols from partial embeddings, i.e., P̃ , Q̃ 7→ Φ.
Theorem 5 in [1]. Let n ∈ N fixed. Let P̃ , Q̃ ∈ R[x]. There exists some P,Q ∈ C[x]
satisfying conditions (1-3) of Theorem 2.1 such that P̃ = <(P ) and Q̃ = <(Q) if and only
if P̃ , Q̃ satisfy conditions (1-2) of Theorem 2.1 and for all x ∈ [−1, 1]

|P̃ (x)|2 + (1− x2)|Q̃(x)|2 ≤ 1. (3)

The same holds if we replace real parts by imaginary parts and additionally P̃ ≡ 0 or Q̃ ≡ 0
can be chosen for simplicity. An alternative proof to that of [1] is given in Appendix A,
relying on the single-variable Fejér-Riesz lemma, working in the Laurent picture. A similar
method is used in the multivariable case.

The two theorems above were selected out of many given in the major references
[1, 11, 12, 13]. These together give a minimal toolkit for using and thinking about QSP.
Theorem 2.1 clearly states what QSP unitaries must look like (i.e., going from real phases
to embedded polynomials), while Theorem 2.2 addresses the reverse problem (going from
desired embedded polynomials to real phases). Moreover, Theorem 2.2 is a problem in
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matrix completions: given a partially specified QSP unitary whose elements are simply
constrained, can one find missing components that satsify a more complex constraint?
Consequently, for reasons to be discussed later, this completed matrix then immediately
yields a set of QSP phases Φ.

The utility of matrix completions is clear; note that in Theorem 2.2 one can choose
Q̃ = 0 identically, and observe that the |+〉 7→ |+〉 transition probability is simply |P̃ (x)|2.
The polynomial transformation is directly accessible for sampling. There are of course
many ways to partially specify a QSP protocol (discussed in prior work), but we claim that
Theorem 2.2 essentially captures their foundation. Consequently, the alternative proof in
the appendix provides a concrete connection from the theory of matrix completions to
methods vital to understanding the multivariable setting.

As a final note, we want to emphasize again that QSP performs its transformations
obliviously, that is, independent of x. By modifying the functional forms approximated
by the embedded polynomials, important properties of x can often be computed more
cheaply than if one were first to estimate x and apply a classical computation to this
classical result; moreover, because the circuit is coherent, the result of this transformation
can be used for further quantum computation. In the two variable case, this oblivious
transformation becomes even more useful; i.e., one may only want to compute a joint
property of two variables, deciding on properties of their correlation, rather than each
variable itself. Maintaining coherence and obliviousness of these functional transforms,
and thus avoiding classical post-processing at all costs, is essential to the great algorithmic
savings possible with QSP/QSVT.

2.2 QSP and algebraic geometry
We give a casual map for the intrepid but non-specialist reader to results in algebraic
geometry that permit the proofs of Theorems 2.3 and 2.4 in Appendix A. It is the hope
that merely introducing some common terms and ideas may lead others to the application
of similar techniques to low-hanging fruit in the theory of QSP-like algorithms.

The utility of QSP rests in the ability of the computing party to choose a simply-
constrained polynomial transform and efficiently determine QSP phases achieving this
transform. It turns out that this ability to simply specify a desired polynomial (see
proof of Theorem 2.2) relies on a special fact about positive trigonometric polynomials.
More specifically, these results reside in a family of what are known as positivstellensätze
(positive-locus-theorems), or for non-negative polynomials nichtnegativstellensätze (non-
negative locus-theorems). In turn these belong to an even larger family of nullstellensäztze
(zero-locus-theorems). These families of theorems seek to establish a relationship between
geometry and algebra going back to Diophantus (and more recently Hilbert, Weil, Rie-
mann, Grothendieck and Gröbner, to name but a few). Here are a few examples of the
types of statements common to these subfields [30].

(1) All positive single-variable polynomials over the reals can be written as the sum of
at most two squares.

(2) All multivariate polynomials that take only nonnegative values over the reals can be
written as sums of squares of real rational functions. (Hilbert’s 17th problem.)

(3) All nonnegative trigonometric polynomials can be written as exactly one square.

These theorems seek to establish succinct descriptions of algebraic functions (often poly-
nomials, for our purposes) which satisfy constraints on algebraic and semialgebraic sets
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(often products of intervals, for our purposes) [31]. In general these statements get weaker
as the number of variables increases (see Hilbert’s 17th problem above) [32, 33, 29], and
stronger as the family of considered polynomials is restricted (see the Fejér-Riesz lemma,
Lemma A.1). Moreover, such results can also often be extended to polynomials over
operators as well [34].

Remark 2.1. Here we provide a rapid series of quick, casual definitions of common terms
in this work. Algebraic sets are subsets of (for us) Rn or Cn defined by zeros of finite
sets of polynomial expressions. Sometimes it is required or preferred that one discusses
only irreducible algebraic sets, referred to as algebraic varieties (and where algebraic sets
can be thought of as finite unions of algebraic varieties). Semi-algebraic sets are defined
the same way, save as the locus of both roots of finitely many polynomial equations and
the solutions to finitely many polynomial inequalities. They are also preserved under
finite union and intersection. In principle these sets and varieties can be defined over
general algebraically closed fields, i.e., fields F where every non-constant polynomial in
F [x] (univariate polynomials with coefficients in F ) has a root in F . While the definitions
presented here can be made extremely general (e.g., the irreducible algebraic sets above
can be defined purely in terms of prime ideals of polynomial rings and closed subsets in
the Zariski topology), we try to keep close to Rn and Cn.

A foundational observation of algebraic geometry is the formalization of the often
overlooked fact that a univariate polynomial (an algebraic object) is uniquely defined by
its root-set in the corresponding field (a geometric object). For more general fields or in
multivariable settings, similar statements connect ideals of polynomial rings1 and algebraic
sets (e.g., Hilbert’s Nullstellensatz). By understanding algebraic objects through geometric
means (and vice versa) a variety of otherwise difficult problems can become amenable to
simpler, otherwise established methods of analysis.

This work will study a subset of Laurent polynomials, trigonometric polynomials, for
which relevant positivstellensätze are known to exist for two variables, albeit under com-
plicated restrictions [29, 31]. The primary work of Theorem 2.4 will be thus to guarantee
that the setting of M-QSP satisfies the requirements for the application of these positivstel-
lensätze, and to probe the induced properties of this application. We aim also to interpret
the meaning of these rather arcane methods in the context of quantum algorithms.

This work mostly relies on the generalization of a standard result for non-negative
single-variable trigonometric polynomials known and attributed variously [37] as the Fejér-
Riesz lemma (or theorem), given in Lemma A.1. This lemma states that such polynomials
can be reëxpressed as squares uniquely up to simple constraints. We claim, and show in the
alternative proof of 2.2, that this lemma is effectively the only non-trivial mathematical
fact made use of in QSP. The purpose of this lemma in both QSP and M-QSP is to
enable a partial specification of a unitary matrix to be completed under constraints. This
completed (i.e., filled-out) unitary is easily implementable as a series of simple quantum
gates. That is, if these partial specifications can be satisfied, then the other major theorem
of QSP (Theorem 2.1) guarantees that the corresponding QSP phases can be determined
efficiently (where further work has shown numerical stability as well).

In the multivariable setting, a generalized Fejér-Riesz theorem (now truly a theorem,
with proof in excess of thirty pages [29]) exists! We make use of this theorem to undergird

1We don’t define these here because they won’t be needed for the proofs given, but they are vital,
simple building blocks of the statements of algebraic geometry and abstract algebra generally. For some
classic textbooks see [35] and the more introductory [36].
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a new theory of M-QSP, and invite other researchers to make use of the rich related
literature to attack similar problems in the theory of alternating quantum circuit ansätze.

Remark 2.2. Note that the Fejér-Riesz theorem is disjoint from the classical algorithms
used to find the QSP phases of a QSP protocol given its corresponding unitary, as well as
classical optimization algorithms used to find good polynomial approximations to continu-
ous functions (e.g., the Remez-type exchange and Parks-McClellan algorithms [38, 39, 40]).
Both of these classical algorithmic families require far fewer modifications when moving
to the multivariable case than the Fejér-Riesz theorem.

2.3 Extension to M-QSP
We introduce a series of definitions toward analogues of Theorems 2.1 and 2.2 under the
assumption of oracle access to two signal operators whose relation is unknown in general.
This involves two steps: (1) a simple transformation of variables to clarify the statement
of the major theorems, and (2) an application of a series of results from the theory of
multivariable nullstellensätze. We start with the definition of multivariable quantum signal
processing (M-QSP) protocols, solidifying the intuition given by Fig. 1.

Definition 2.1. Multivariable quantum signal processing (M-QSP). Given oracle access
to two unitary operators A(xA) = exp (i arccosxA σx) and B(xB) = exp (i arccosxB σx),
an M-QSP protocol of length n is defined by the length-n binary string s ∈ {0, 1}n and
a set of real phases Φ = {φ0, φ1, · · · , φn} ∈ Rn+1 according to the map to the following
quantum circuit:

U(s,Φ)(xA, xB) = eiφ0σz

n∏
k=1

Ask(xA)B1−sk(xB)eiφkσz . (4)

This is again a product of rotations about orthogonal axes on the Bloch sphere. This map
is depicted in Figure 3.

· · ·
sn sn−1 s1φn φn−1 φn−2 φ1 φ0

Φ = {φ0, φ1, · · · , φn}
s = 00 · · · 0

7−→

· · ·
sn sn−1 s1φn φn−1 φn−2 φ1 φ0

Φ = {φ0, φ1, · · · , φn}
s ∈ {0, 1}n

7−→
M-QSP

QSP

= A(a)skB(b)1−sk

sk = 0, 1

= eiφkσz

φk

Circuit map:

Φ ∈ Rn+1, s ∈ {0, 1}n 7→ q. gates.

Figure 3: Circuit definitions for standard QSP and M-QSP, indicating the explicit map from the set of
real phases Φ (the QSP phases), and the bit-string s to single-qubit quantum circuits comprising X
and Z rotations. This realizes the generic protocol set forth in Fig. 1. M-QSP circuits come from an
exponentially large family in which the querent is allowed to apply either the unknown A(a) = eiθaσx

or B(b) = eiθbσx between Z rotations parameterized by Φ. Here a = eiθa and b = eiθb . For standard
QSP s = 11 · · · 1 or s = 00 · · · 0 depending on the variable of choice. Here A(a) versus A(xA) in
Eq. 2.1 refer to the Laurent picture (Def. 2.2) and x picture respectively; likewise for B.

While Def. 2.1 shares obvious similarities to the circuit given in Theorem 2.1 (its
major novel component being the bit-string s defining the order of A,B iterates), its form
is awkward. For the rest of the work we will use a mathematically equivalent picture
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(Def. 2.2) to more smoothly apply methods from algebraic geometry. Similar maps have
been considered in [14, 4] to improve numerical stability of algorithms for finding standard
QSP phases.

Definition 2.2. The Laurent picture. It will be helpful to consider M-QSP under the
map (xA, xB) ∈ [−1, 1]2 to (a, b) ∈ T2 = {a, b ∈ C2 s.t. |a| = |b| = 1} following from
replacing

xA 7→
1
2(a+ a−1), xB 7→

1
2(b+ b−1). (5)

Polynomial transforms in the x-picture are equivalent to pseudo-polynomial transforms in
the Laurent picture. Often however we will drop the pseudo prefix and simply refer to
both as polynomial transforms with the requisite caveats.

We will often be working with Laurent polynomials that are real on T2, so-called
Hermitian trigonometric polynomials which have the generic form (in two variables)

g(a, b) =
m∑

j=−m

n∑
k=−n

gj,ka
jbk, gj,k = g∗−j,−k, (6)

for nonnegative integers m,n, where the gj,k are complex. We define the degree of a poly-
nomial like that in Eq. 6 by the ordered tuple (m,n), and say that a polynomial of degree
(p, q) satisfies (p, q) 4 (m,n) if both p ≤ m and q ≤ n. We say such a polynomial as in Eq. 6
has inversion parity (dA, dB) (mod 2) if under the map a 7→ a−1 the polynomial trans-
forms as g 7→ (−1)dAg, and analogously for b 7→ b−1. We say, toward the following lemma,
that a multivariable polynomial in the x picture has negation parity (dA, dB) (mod 2) if
under the map xA 7→ −xA the polynomial tranaforms as g(xA, xB) 7→ (−1)dAg(xA, xB),
and analogously for xB 7→ −xB. Note that one can also consider negation parity in the
Laurent picture.

Before moving entirely to the Laurent picture we state a more familiar x picture form
of the future Theorem 2.3 in part to demonstrate the necessity for moving to the Laurent
picture.

Lemma 2.1. Unitary form of multivariable quantum signal processing (M-QSP) in the
x picture. Let n ∈ N. There exists Φ = {φ0, φ1, · · · , φn} ∈ Rn+1 such that for all
xA, xB ∈ [−1, 1]2 the circuit presented of length n in Definition 2.1 with m = |s| (the
Hamming weight of s) has the form:

Us,Φ(xA, xB) = P +Q
√

1− x2
a

√
1− x2

b R
√

1− x2
a + S

√
1− x2

b

−R∗
√

1− x2
a − S∗

√
1− x2

b P ∗ +Q∗
√

1− x2
a

√
1− x2

b

 , (7)

if and only if P,Q,R, S ∈ C[xA, xB] and

(1) deg(P ) 4 (m,n−m) and deg(Q) 4 (m− 1, n−m− 1) and deg(R) 4 (m− 1, n−m)
and deg(S) 4 (m,n−m− 1).

(2) P has negation parity-(m,n−m) (mod 2) andQ has negation parity-(m−1, n−m−1)
(mod 2) and R has negation parity-(m − 1, n − m) (mod 2) and S has negation
parity-(m,n−m− 1) (mod 2).
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(3) For all xA, xB ∈ [−1, 1]2 the relation

|P |2 + (1− x2
A)(1− x2

B)|Q|2 + (1− x2
A)|R|2 + (1− x2

B)|S|2

+
√

1− x2
A

√
1− x2

B(PQ+ P ∗Q∗ +RS +R∗S∗) = 1,
(8)

holds, where P,Q,R, S are in C[xA, xB].

(4) The statement of Conjecture 2.1 holds as given.

Proof follows from mapping Theorem 2.3 to the x picture. We give this theorem in
this form (the x-picture) mostly to match with the form of the standard QSP theorems.
Unfortunately proving things in this picture is not clean, mostly because the domain is a
square in x space due to branch cuts in the square root function, rather than a natural
toroidal domain in the Laurent picture.

While Lemma 2.1 sits in neat analogy with Theorem 2.1, it is largely useless for the
techniques of positive extensions beyond some opaque versions of Schmüdgen’s positivstel-
lensatz [30]. Consequently from here on we work in the simplified Laurent picture (in other
words, choosing to work on the natural torus carved out by the two rotation oracles).

Theorem 2.3. Unitary form of multivariable quantum signal processing (M-QSP). Let
n ∈ N. There exists Φ = {φ0, φ1, · · · , φn} ∈ Rn+1 such that for all (a, b) ∈ T2:

U(s,Φ)(a, b) = eiφ0σz

n∏
k=1

Ask(xA)B1−sk(xB)eiφkσz =
(

P Q
−Q∗ P ∗

)
, (9)

where A = I(a+ a−1)/2 + σx(a− a−1)/2 and B = I(b+ b−1)/2 + σx(b− b−1)/2 if and only
if P,Q ∈ C[a, b] (Laurent polynomials) and

(1) deg(P ) 4 (m,n−m) and deg(Q) 4 (m,n−m) for m = |s| the Hamming weight of
s.

(2) P has parity-n (mod 2) under (a, b) 7→ (a−1, b−1) and Q has parity-(n− 1) (mod 2)
under (a, b) 7→ (a−1, b−1).

(3) P has parity m (mod 2) under a 7→ −a and parity m − n (mod 2) under b 7→ −b
and Q has parity m−1 (mod 2) under a 7→ −a and parity n−m−1 (mod 2) under
b 7→ −b.

(4) For all (a, b) ∈ T2 the relation |P |2 + |Q|2 = 1 holds.

(5) The statement of Conjecture 2.1 holds as given.

This result is posed similarly to that of Theorem 2.1, and its proof is similar up to the use
of Conjecture 2.1, as shown in Appendix A.

Definition 2.3. Stable polynomials in one and many variables. A polynomial p(z1, z2, · · · , zn)
is said to be stable if the polynomial does not have zeros in the multi-disk

Dn = {(z1, z2, · · · , zn) ∈ Cn s.t. |z1| ≤ 1, |z2| ≤ 1, · · · , |zn| ≤ 1}. (10)

There exist other definitions where one considers polynomials with no zeros in the multi
upper half-plane, but these are equivalent up to conformal maps. This family of poly-
nomials is quite restricted, though they are ubiquitous in classical signal processing and
control theory.
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In the single and two variable case it is further known that all such polynomials are
determinantal, i.e., that for every p(z1, z2) of degree (n1, n2) with no zeros in the bidisk and
p(0, 0) = 1, one can write p(z1, z2) = det (I −KZ), where Z is an (n1 + n2) × (n1 + n2)
diagonal matrix with z1 or z2 in each diagonal position, and K a contraction. Here a
contraction is a linear map with ‖K‖∞ < 1 [41, 42].

Theorem 2.4. Let n ∈ N fixed. Let P̃ , Q̃ ∈ C[a, b] (Laurent) such that, for all (a, b) ∈ T2,
P̃ (a, b) and Q̃(a, b) ∈ R. There exist some stable P,Q ∈ C[a, b] (Laurent) satisfying
conditions (1-4) of Theorem 2.3 such that P̃ = <(P ) and Q̃ = <(Q) if and only if P̃ , Q̃
satisfy conditions (1-3) of Theorem 2.3 and for all a, b ∈ T2

f(a, b) = 1− |P̃ |2 − |Q̃|2 > 0, (11)

where f(a, b) is a Laurent polynomial, (note the strict inequality) and the additional
property holds that the doubly-indexed Toeplitz matrix cu−v (defined in Appendix A)
populated entirely by differences of the (finitely many) Fourier components of 1/f satisfies[

(cu−v)u,v∈Λ\{0,0}
]−1
{1,2,··· ,m}×{0}
{0}×{1,2,··· ,n−m}

= 0 (12)

where Λ = {0, · · ·m} × {0, · · ·n − m} for m = |s| as before. In this case f(a, b) can be
written as the square of a stable Laurent polynomial. The same result holds if we consider
purely imaginary P̃ , Q̃ on T2, and we can choose either P̃ ≡ 0 or Q̃ ≡ 0 if desired for
simplicity. If the conditions hold, the satisfying P,Q can be computed efficiently in n.
For an explicit construction of the Toeplitz matrix cu−v refer to the proof of this theorem
in Appendix A, which relies on intricate results in [29]. Note also that this result is
independent of Conjecture 2.1.

Conjecture 2.1. The FRT = QSP conjecture. In both standard QSP and M-QSP, one
is interested in the properties of the single-qubit unitary embedding certain symmetric
(trigonometric & Laurent) polynomial transformations, i.e.,

U =
(

P Q
−Q∗ P ∗

)
, (13)

where P,Q are one- or two-variable polynomials in each setting respectively. This matrix
has determinant 1; this imposes relations between the coefficients of P and Q. Specifically,
it means that certain sums of products of coefficients constituting the polynomial defining
the determinant, |P |2 + |Q|2 = 1, must be zero. In standard QSP, we make use of the
fact that this implies PdA

= eiφAQdA
where Pk is the coefficient of ak in P and so on,

and where dA is the largest positive degree of a present. It is this simple constraint that
permits QSP phase read-off (the QSP phase in fact relates closely to φA).

In the multivariable case the required property no longer holds manifestly, and must be
proven; crucially, and this is why we term this the FRT = QSP conjecture, in the single-
variable setting the use of the Fejér-Riesz theorem (FRT) in Theorem 2.2 allows QSP phase
read-off precisely because all unitaries of the form given in Eq. 13 satisfy PdA

= eiφAQdA
,

and thus all FRT-generated completions lead to achievable QSP unitaries. In the multi-
variable setting this same FRT = QSP equivalence corresponds to a strong property of
unitary matrices with multivariable polynomials as elements. This property is the conjec-
ture of interest, and there are reasons discussed in Remark 2.3 for its reasonableness. At
an intuitive level, it is the statement that unitary matrix completions with minimal sym-
metries and constraints on their elements (basically parity and norm) are always products
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of low-degree unitary iterates. This is, in again another sense, an extension of the FRT
for unitary matrix completions. We depict some of these relationships further in Fig. 2.

Having developed a little motivation, we give a precise statement for FRT = QSP.
Given a unitary matrix satisfying the conditions (1-4) of Theorem 2.3 (these are the
required symmetries and constraints), the single-variable Laurent polynomial coefficients
of P,Q satisfy one or both of the following relations for φA, φB ∈ R:

dB∑
k=−dB

PdA,kb
k = eiφA

 dB∑
k=−dB

QdA,kb
k

 (14)

dA∑
k=−dA

Pk,dB
ak = eiφB

 dA∑
k=−dA

Qk,dB
ak

 . (15)

Here dA, dB are the maximal positive degree of a, b respectively appearing in P,Q. In
other words, either of the two single-variable Laurent polynomial coefficients of maximal
degree terms in the other variable must differ only by an overall phase. As shorthand we
will denote this set of conditions by the following:

PdA
(b) = eiφAQdA

(b) (16)
PdB

(a) = eiφBQdB
(a). (17)

Here PdA
(b) denotes the single variable Laurent polynomial (in b) coefficient of the adA

term of P , and analogously for the other terms.

Simple inspection of a small subset of the equations relating the two polynomials P,Q
induced by condition (4) of Theorem 2.3 indicates that these polynomials could in general
differ by an overall phase and a conjugation of some subset of their root multisets, as
opposed to the requirement of Conjecture 2.1. Consequently this conjecture is strictly
stronger than what is induced by the highest order terms of condition (4), though there
are reasons to suspect its truth as discussed in Sec. 4 and Remark 2.3.

Remark 2.3. As discussed above, Conjecture 2.1 (FRT = QSP) is necessary and suffi-
cient for constructive theorems of M-QSP that rely only on the multivariable Fejér-Riesz
theorem. Put colloquially, it is the statement that unitary matrix completions furnished
by the FRT always allow themselves to be broken into products of low-degree unitary
iterates (in this case the X,Z rotations of QSP). This is a strong condition, but we discuss
intuition for why it might hold, as well as the usefulness of the FRT for understanding
the M-QSP ansatz (Def. 2.1) even when this conjecture does not hold. We also show that
M-QSP suggests useful elaborations on the FRT.

Separate in-progress numerical work shows that the conjecture holds for small-length
M-QSP protocols; it is the lack of a simple inductive or otherwise bootstrappable argument
that is of concern. That said, the path towards a solution may be obvious when rephrased
in terms of other subfields of algebraic geometry; methods towards showing the conjecture
involve looking at each of the O(dAdB) homogenous polynomial equations relating the
coefficients of P,Q according to condition (4) in Theorem 2.3. The study of simultaneous
systems of multivariable polynomial equations is rich, though full of its own conjectures.

Moreover, by simple counting arguments, we see that the coefficients of the lead-
ing degree terms of the pairs PdA

(b), QdA
(b) and PdB

(a), QdB
(a) in M-QSP are far more

constrained than in the single-variable case; namely each of the O(dB) or O(dA) scalar co-
efficients respectively of these single-variable polynomials itself enters into O(dAdB) other
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relations for lower-order homogeneous polynomial equations constituting the determinant.
Consequently it is not unreasonable that the roots of at least one of these pairs of polyno-
mials might be forced to differ by no non-trivial conjugations, toward contradiction of the
unitarity of the overall transform. In turn, such constructions would provide an entirely
new setting for realizing even non-stable matrix completions, for which FRT-like theorems
have had nothing to say [29].

The FRT = QSP conjecture is not all bad news; note that any stable polynomial
transform possible to embed in an M-QSP protocol will, by the uniqueness promise [29] of
the multivariable Fejér-Riesz theorem up to this stability, lead to a valid M-QSP unitary
whose corresponding phases can be efficiently determined by Corollary 2.4.1. Moreover, as
is the case in standard QSP, often one wishes not to determine a polynomial transforma-
tion directly and then determine its phases, but optimize over the space of possible QSP
transformations toward a well-functioning protocol; nothing in the construction of M-QSP
prevents this, and results in multivariable approximation theory, as given in Sec. 4, suggest
no major hits to efficiency either.

Corollary 2.4.1. Given a unitary which satisfies conditions (1-4) of Theorem 2.3 and is
promised to have the form of Definition 2.1, the bitstring s and M-QSP phases Φ can be
efficiently determined by a classical algorithm given P,Q. Note that the statement of this
corollary trivially circumvents Conjecture 2.1. Proof is given in Appendix A, within the
proof of Theorem 2.3.

This completes a minimal treatment of M-QSP. Evidently its defining theorems are
not as succinct as their single-variable analogues. This is for two reasons: (1) the addition
of the non-intuitive requirements of the multivariable Fejér-Riesz theorem in Theorem 2.4,
and the reliance on Conjecture 2.1 in Theorem 2.3. That said, there is positive news for
these theorems. Firstly, the initial hurdle of whether the exponentially-many possible or-
derings of A,B iterates (determined by the bitstring s of Definition 2.1) prevent efficient
phase read-off on principle is shown to be a non-issue by Corollary 2.4.1. Secondly, Con-
jecture 2.1 is simple to state and has a reasonable chance of being verified or disproven by
counterexample through techniques in the theory of systems of multivariable polynomial
equations. Finally, the uniqueness guarantee of multivariable Fejér-Riesz theorem shows
that if any sufficient condition for the embeddability of a stable multivariable polynomial
transform in an M-QSP protocol is found, that this theorem can immediately be used
to compute completions of unitary matrices, leading to efficient M-QSP phase read-off.
Many paths are possible to close the loop on a full characterization of M-QSP.

Nevertheless, the necessary and sufficient conditions given in Eq. 12 are opaque, and
the types of functions with compact Fourier support that satisfy them are hard to visualize.
Sec. 4 is in devotion to these caveats. However, while the space of achievable multivariable
polynomials of a given degree with M-QSP is not all possible polynomials of said degree
up to bound and parity constraints, we also give simple arguments for why this should not
even have been expected, and how slightly increasing the degree may resolve these issues.
Moreover, the numerical performance of algorithms optimizing over M-QSP protocols
approximating interesting multivariable functions should be relatively good up to known
results in multivariable approximation theory.

3 Worked examples
That the M-QSP ansatz can generate complicated multivariable transformations of the
eigenvalues of two commuting operators may be intuitively clear, but it is worthwhile
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to provide a couple worked examples and visualizations to this effect. In this section
we briefly examine two choices of parameterization for M-QSP protocols in which the
embedded polynomials have closed form, and discuss their utility.

(1) Trivial M-QSP. Recalling that the bit string s indicates the order in which iterates
are applied, take s to be the alternating string of length 2n, i.e., s = [01]n (where
this parenthetical shorthand indicates repetition of the length-two bit-string). For
the QSP phases Φ consider the all-zeros list Φ = {0, 0, · · · , 0} of length 2n+ 1. The
astute observer may note that in this setting the ordering of s does not matter.

(2) XYZ M-QSP. Take s indicating the order in which iterates are applied to again be
the alternating string of length 2n. Take the k-th element of Φ to be (−1)kπ/4, i.e.,
Φ = {π/4,−π/4, · · · ,−π/4, π/4} of length 2n+ 1.

We claim that these two ansätze give two useful classes of M-QSP protocols, and that
the latter can be used to answer certain promise problems in noiseless settings which
would have had no obvious deterministic quantum solution without the mechanisms of
M-QSP. In fact, much like in the single-variable setting, these protocols embed polyno-
mial transformations closely related to the Chebyshev polynomials, which are ubiquitous
in the theory of efficient functional approximation. While proposals for multivariable gen-
eralizations to Chebyshev polynomials are diverse [43, 44, 45], and the map between Φ
and the expansions of P,Q in a Chebyshev basis is highly non-trivial even for standard
QSP, it is useful that such simply described countably infinite families of multivariable
polynomials can be achieved. It remains for future study to determine if M-QSP suggests
an alternative construction for Chebyshev polynomials over many variables. One can ob-
serve that the transformations appearing in the top-left (P ) and top-right (Q) corners of
unitaries described in Lemmas 3.1 and 3.2 are not only not polynomials in the variables
xa = (a + a−1)/2 and xb = (b + b−1)/2, but do not satisfy the well-known orthogonality
relations that define Chebyshev polynomials; nevertheless, these are still real (Laurent)
polynomials of bounded magnitude on the torus, and achieve the same maximal derivative
(i.e., proportional to their degree) properties expected of Chebyshev polynomials.

Lemma 3.1. Trivial M-QSP. For so-called trivial M-QSP protocols defined in the previous
paragraph, the polynomials P,Q defining the resulting unitary have the following form for
fixed n:

P (a, b) = Tn

[1
2

(
a+ 1

a

)]
Tn

[1
2

(
b+ 1

b

)]

+ 1
4

(
a− 1

a

)(
b− 1

b

)
Un−1

[1
2

(
a+ 1

a

)]
Un−1

[1
2

(
b+ 1

b

)]
, (18)

Q(a, b) = 1
2

(
b− 1

b

)
Tn

[1
2

(
a+ 1

a

)]
Un−1

[1
2

(
b+ 1

b

)]

+ 1
2

(
a− 1

a

)
Tn

[1
2

(
b+ 1

b

)]
Un−1

[1
2

(
a+ 1

a

)]
, (19)

where Tk(x) and Uk(x) are the k-th Chebyshev polynomials of the first and second kind
evaluated on x. It is a small fun exercise to show that these polynomials must be Laurent
polynomials in (ab), exhibiting no cross terms of a, b with differing exponents. Note that
|P |2 + |Q|2 = 1 must hold, and thus each of these polynomials is bounded in magnitude
by 1 on T2.
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Lemma 3.2. XYZ M-QSP. For the XYZ M-QSP protocol defined in the previous para-
graph, the polynomials P,Q defining the resulting unitary have the following form for
fixed n:

P (a, b) = Tn

[1
4

(
a+ 1

a

)(
b+ 1

b

)]
+ i

4

(
a− 1

a

)(
b− 1

b

)
Un−1

[1
4

(
a+ 1

a

)(
b+ 1

b

)]
,

(20)

Q(a, b) = 1
4

[(
a− 1

a

)(
b+ 1

b

)
− i

(
a+ 1

a

)(
b− 1

b

)]
Un−1

[1
4

(
a+ 1

a

)(
b+ 1

b

)]
, (21)

where Tk(x) and Uk(x) are the k-th Chebyshev polynomials of the first and second kind
evaluated on x. Note that in most instances these polynomials are simpler in the θ
picture, as (a ± a−1) and (b ± b−1) have nicer expressions as cosine and sine of θa, θb for
a = eiθa , b = eiθb . The proof of this fact is by simple inspection according to the known
recurrence relation for the Chebyshev polynomials. Note that |P |2 + |Q|2 = 1 must hold,
and thus each of these polynomials is bounded in magnitude by 1 on T2.

Note that we call this XYZ M-QSP because the chosen phases can be seen to conjugate
one subset of the iterates to change them from X to Y rotations on the Bloch sphere,

eiθaσx 7→ e−iσzπ/4eiθaσxeiσzπ/4 = eiθaσy , (22)

and thus the ansatz looks like alternating X and Y rotations by θa, θb.

We can make a few cursory observations about the polynomial transformations embed-
ded by these ansätze. For trivial M-QSP, the ordering of iterates cannot matter, and thus
any embedded transformation must also be a polynomial purely of (ab) as a single-variable;
this is depicted in Fig. 4. Likewise, any time a product of A,B iterates is repeated with-
out intervening Z rotations, a corresponding reduction to a single-variable standard QSP
protocol is possible. In contrast, the polynomial transforms of XYZ M-QSP for n ≥ 2 do
not factor in this neat way, and we can come up with somewhat contrived but interesting
promise problems for which XYZ M-QSP provides a neat solution.

Problem 3.1. Consider the following multi-channel discrimination problem. A querent
is given free access to two oracles A = eiθa and B = eiθb and is told that one of the two
following scenarios holds:

(1) θa, θb are from the four-element set {{0,±π/2}} ∪ {{±π/2, 0}}.

(2) θa, θb satisfy the relation 4 cos2 θa cos2 θb = 1.

It can be shown that these two cases are disjoint. Moreover, this discrimination problem
can be solved deterministically in 6 total queries using M-QSP (shown in (II) of Fig. 4),
while for two quantum parties given access to A,B separately, there is no such algo-
rithm, for the same reasons as those discussed in [46, 8]. Additionally, while not discussed
here, this query complexity persists even in the presence of small noise [46]. That is, no
two quantum computing parties connected only by classical communication and sharing
no entanglement, given access to one each among the oracles in this problem, can de-
cide this problem deterministically with zero error, nor can this problem be reduced to
single-variable QSP by substitution. Consequently M-QSP has permitted the determinis-
tic computation of a structured joint property that is not related to sums or differences of
encoded signals (i.e., by reduction to single-variable QSP in anbm for integers n,m). Here,
M-QSP both outperforms serial application of QSP protocols on two oracles individually,
and does so for a highly non-trivial functional relation.
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Intuitively, note that this advantage relies crucially on an inability to decompose the
discrimination regions depicted in Figure 4 into blocks on which the circuit output should
be constant for a given discrimination problem. Consequently two parties, each given
access to one among the two oracles, cannot with certainty disambiguate these joint prop-
erties by projecting onto either the θa or θb axis, and classically computing the function
outside the quantum circuit.

−π θa = 0 π

(I) Trivial M-QSP, n = 1

−
π

θ b
=

0
π

−π θa = 0 π

(II) XYZ M-QSP, n = 3

−
π

θ b
=

0
π

0

1

2

1

Figure 4: Contour plots of |P (a, b)|2 for the (I) trivial M-QSP protocol with n = 1 and the (II) XYZ
M-QSP protocol with n = 3. Note that by definition that P is bounded in magnitude by 1. Here θa, θb
satisfy cos θa = (a + a−1)/2 and cos θb = (b + b−1)/2 and analogously for sine. The toroidal nature
of the domain is evident: the plots are also symmetric under θa 7→ −θa, equivalently inversion parity
a 7→ a−1, as well as θa 7→ θa+π, equivalently negation parity a 7→ −a, and likewise for the b variables.
The red line overlay in (II) represents the relation 4 cos2 θa cos2 θb = 1, as discussed in the text. Note
finally that (I) is a function purely of (θa + θb) as expected.

Remark 3.1. Note that for trivial M-QSP protocols the iterates A,B commute; con-
sequently the embedded functions are single-variable Laurent polynomials in the joint
variable ab. Clearly such polynomials are not stable, and thus these completions are not
furnished by Theorem A.1. However, through this single-variable reduction these comple-
tions are enabled by the simpler Fejér-Riesz lemma. It remains an open question whether
the application of Theorem A.1 fails only in the settings where a single-variable reduction
similar to this case exists. If this is the case, one could consider some non-trivial class
M-QSP? of multivariable protocols which admit no single-variable reduction, and thus
always (up to small perturbation) permit the application of the FRT as given. This would
represent a substantial elaboration on the theory of unitary matrix completions.

The central message from this section is a precise point about the utility of M-QSP
for computing joint functions of oracular parameters. While such functions could always
in principle be computed approximately classically outside a quantum circuit by first es-
timating the relevant parameters tomographically, this can be extremely costly, and may
provide more information than a querent wishes to know. As with standard QSP, M-
QSP allows precise and coherent control over both subsystem dynamics and information
extracted by measurement; known structure of the data encoded in the oracle can be
leveraged into query complexity savings, written in the language of functional approxima-
tion theory. If an M-QSP computation is oblivious to individual, expensive-to-determine
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properties of each oracle, then it can avoid lower bounds for computing these unimportant
properties! Its functional transforms can be carefully controlled, defined by interpolatory
or approximative constraints, and cascaded in the application of many QSP protocols
without unnecessary measurement and amplification.

4 Discussion
In this work we have developed a theory of multivariable quantum signal processing (M-
QSP) in two variables, and shown a variety of results about its properties through direct
analogies to theorems of standard QSP. Specifically, we give Theorem 2.3, which shows
that up to Conjecture 2.1, M-QSP polynomial transforms are only as constrained as those
of standard QSP. Moreover, we show in Corollary 2.4.1 that given a valid M-QSP protocol
there is no obstacle to determining its constitutive real phases Φ and the order s in which
these oracles are applied. Finally, we show Theorem 2.4: that given a partially-defined
M-QSP protocol, the existence of a stable completion of said protocol relies solely on
the guarantees of a multivariable Fejér-Riesz theorem. This result connects questions in
QSP-like algorithms to nullstellensätze, furnishes alternative proofs for results in standard
QSP, and opens a variety of concrete questions involving matrix completions in a quantum
information setting.

The remaining purpose of this section is fourfold: (1) state caveats related to M-QSP
insofar as its properties and guarantees have not been fully characterized, (2) discuss the
numerical outlook for M-QSP, (3) give a brief overview of how M-QSP informs a lifted,
many-qubit M-QSVT, and finally (4) state avenues of ongoing research and their basal
open questions.

4.1 Caveats and reminders
The story of M-QSP is not completely resolved in this work. The results in previous
sections provide only a partial characterization of the expressive powers of the M-QSP
ansatz, and do so in some cases with respect to specific conjectures and caveats. Here we
give succinct reminders tethered to these limitations.

(1) The space of embeddable polynomial transforms in M-QSP is smaller than the space
of polynomials with bounded norm and definite parity up to a given degree (as
opposed to standard QSP).

We argue that one should not have expected to be able to achieve all polynomial
transformations in M-QSP as permitted by the norm and parity constraints given
in Theorem 2.2. This a simple counting argument: for a multivariable polynomial
of degree (n,m) with definite parity and bounded norm on the bitorus, there exist
O(nm) possible small independent perturbations of the coefficients which preserve
these properties, but only O(n+m) real QSP phases parameterizing M-QSP ansätze.
It is precisely that the achievable transforms are some low rank subspace of this
space of norm-bounded definite-parity transforms that the multivariable Fejér-Riesz
theorem’s statement captures.

(2) The multivariable Fejér-Riesz theorem (FRT) can determine if there exist unitary
completions for partially defined polynomial transformations if and only if those
completions are stable polynomial transforms.

Stable polynomials in one and two variables, as discussed in Definition 2.3, have
special properties. It is also known that there exist polynomial transforms achieve-
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able by M-QSP which are not stable, and thus for which the FRT can say little in
the two-variable case. It is an interesting question whether such instability implies
the ability to reduce the corresponding transformation to a single-variable setting
(or else be infinitesimally perturbed to a stable setting). In the single-variable case,
such unstable polynomial embeddings can always be converted to stable ones as all
roots are isolated; a similar transformation for the multivariable case is not possible
in general [41].

The conjecture (FRT = QSP in Conjecture 2.1) that, like in the single-variable case,
the multivariable FRT is the only non-trivial mechanism underlying M-QSP, has a
succinct statement. Nevertheless, the methods to prove this statement depend on
the existence of solutions to simultaneous multivariable polynomial equations, which
is a hard problem in general. Any theory of M-QSP must overcome this difficulty.

(3) The guarantees of M-QSP critically rely on the two queryable oracles having the
same eigenbasis. Consequently lifting M-QSP to multiple qubits requires identical
singular vectors for the relevant block encoded operators.

While this restriction is unfortunate, it is not unexpected; considering a theorem of
QSP or QSVT for general interleaved non-commuting operators not only exposes us
to pathological cases where the oracle set is complete for unitary approximation or
quantum computation, but destroys the assumptions of Jordan’s lemma [47] (that
two interleaved rotations or reflections select invariant subspaces); such results fun-
damentally enable QSVT [1], and cannot be abandoned without drastically altering
the simple utility of the ansatz.

4.2 The numerical outlook for M-QSP
While the theoretical tools from algebraic geometry to understand multivariable polyno-
mials are necessarily not as strong as their single variable analogues [29], the theory of
multivariable polynomial approximation and interpolation is well-developed and in gen-
eral spells good news for those looking to approach M-QSP from a numerical perspective.
We give known results in multivariable approximation theory, showing that there is no
fundamental barrier to multivariable analogues for the multiple classical subroutines that
are used in standard QSP.

(1) Multivariable Stone-Weierstrass theorems. Most basically, it is known that multi-
variable trigonometric polynomials are dense in the space of continuous functions on
the multitorus, just as in the single-variable setting [37].

(2) Multivariable Jackson-type theorems. Jackson’s theorems or Jackson’s inequalities
relate the smoothness of a function and the required degree of a trigonometric poly-
nomial approximation to a desired uniform error. Such theorems exist in the mul-
tivariable case [48, 49] and have fundamentally the same character as in the single-
variable case, meaning the required degree’s best-case polylogarithmic dependence
on approximative error achieved by QSP is not forbidden in the M-QSP setting. That
said, directly comparing degree in the single-variable and multivariable context has
its own caveats [50].

(3) Multivariable Remez-type or Parks-McClellan algorithms. Beyond ensuring that
there exist good trigonometric polynomial approximations to desired continuous
functions, much work related to QSP has centered on good classical algorithms for
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efficiently computing said polynomial approximations, derived from the well-known
signal processing Remez-type/Parks-McClellan algorithms [39, 38, 51]. These algo-
rithms have multivariable counterparts with similar performance as in the single-
variable case [52], although their theoretical guarantees are less well-understood.

(4) Incorporating Fejér-Riesz constraints. If one seeks the stable factorizations guar-
anteed in [29], one may worry that optimizing over polynomials which satsify the
constraint given in Theorem 2.4 may itself be difficult. That said, numerical work
in [29, 53, 54] each support that this constraint leads to well-defined semi-definite
programming problems that, while not fully characterized, appear empirically com-
patible with common classical optimization algorithms discussed above.

(5) Optimizing over QSP protocols. Recent research in standard QSP has shown that
imposing symmetries on QSP phases leads to improved performance for numerical
optimization over QSP protocols, as well as guarantees of convexity of the search
space under well-defined constraints on the desired embedded functional transform
[24]. While we have observed evidence for the benefits of similar symmetrization for
M-QSP in our own numerical simulations, formally showing similar guarantees as in
the single-variable setting generally is a prime direction for future work.

4.3 Lifting M-QSP to M-QSVT
Much of the interest in QSP-like algorithms stems from their use at the core of algorithms
for manipulating the eigenvalues or singular values of larger linear systems embedded in
unitary matrices [1, 5, 13]. QSP can be thought of as the special case in which this
linear operator is just the single scalar value in the top left of a representation of an
SU(2) operator. We briefly review how to lift from QSP to QSVT, and show that M-QSP
immediately enables a lifted M-QSVT for pairs of operators that share the same singular
vectors (or equivalently, in the case that these operators are square, that they commute).

The purpose of this section is not to exhaustively build a theory of M-QSVT and its
uses, but to advertise the powerful fact that anything it is possible to prove about M-QSP
leads directly and simply to a lifted, many-qubit context.

As the authors of [1] succinctly note, interleaving any unitary U with simple phase
operators can induce polynomial transforms of the singular values of certain sub-blocks
of U ; the business of QSVT is to explicitly identify these sub-blocks. The preservation of
these blocks under repeated interleaving is a corollary of an old result, Jordan’s lemma
[47], and is the reason that any constructive non-commuting version of M-QSP is destined
for fundamental problems. Applications of this lemma are ubiquitous in other areas of
quantum information, from quantum walks [55] to quantum interactive proofs [56, 57],
and are useful to understand.

Following the conventions of [1], take HU some finite-dimensional Hilbert space on
which U acts, and Π̃,Π orthogonal projectors which locate the linear operator A according
to

A = Π̃UΠ. (23)

We say here that U block encodes A, and this idea is formalized through Sec. 4 of [1].
Taking d = rank(Π), d̃ = rank(Π̃), and dmin = min (d, d̃), the singular value decomposition
of A is simple. Take {|ψj〉}, j ∈ [d] and {|ψ̃j〉}, j ∈ [d̃] to be orthonormal bases for img(Π)
and img(Π̃) respectively, then

A =
dmin∑
j=1

ξj |ψ̃j〉〈ψj |, (24)
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where each of the ξj are in [0, 1], and ξj ≥ ξk for 1 ≤ j ≤ k ≤ dmin. The careful work of
[1] shows that the action of U with respect to this basis acts as

U = · · · ⊕
⊕
ξj 6=0,1

 ξj
√

1− ξ2
j√

1− ξ2
j −ξj

Hj

H̃j

⊕ · · · , (25)

where the block’s superscript Hj and subscript H̃j indicate that it maps from the space
spanned by the |ψj〉 to that spanned by the |ψ̃j〉, each of which is a subspace of the original
HU . The additional components in the direct sum, i.e., the action of U on the rest of HU ,
can be written explicitly, and correspond to actions of U outside the relevant images of
Π, Π̃; this careful bookkeeping is documented neatly in [1]. Their construction crucially
introduces two further phase operators which can be shown to be easily constructable,
namely

eiφ(2Π−I) = · · · ⊕
⊕
ξj 6=0,1

[
eiφ 0
0 e−iφ

]Hj

Hj

⊕ · · · , (26)

eiφ(2Π̃−I) = · · · ⊕
⊕
ξj 6=0,1

[
eiφ 0
0 e−iφ

]H̃j

H̃j

⊕ · · · , (27)

which together with the action of U allow us to recognize interleaved products of these
operators as performing effectively (up to substitutions of rotations for reflections) QSP
in each of the singular vector subspaces defined by these projectors. In effect, the blocks
as shown in the above equations multiply only with each other all thanks to Jordan’s
lemma, and each of these sub-blocks looks just like a product of single-qubit rotations (or
antiunitary reflections, in this setting). In more specific words, drawing from Definition 15
and Theorem 17 of [1], the alternating protocol (assuming for the moment the protocol’s
length n is even)

Uφ =
n/2∏
j=1

[
eiφ2j−1(2Π−I)U †eiφ2j(2Π̃−I)U

]
, (28)

can be shown to induce a desired polynomial transform in precisely the way QSP does,
explicitly that

Π̃UΦΠ =
dmin∑
j=1

P (ξj)|ψ̃j〉〈ψj |, (29)

where this polynomial transformation is effectively (again up to a simple map between
reflections and rotations) the same one as generated by the standard QSP protocol with
QSP phases Φ. All that is required for polynomial transformation of degree n are n uses of
U,U †, the Π, Π̃-controlled NOT gates needed for the phase operators, single-qubit phase
gates, and a constant number of auxiliary qubits.

The usefulness of this basic construction in lifting M-QSP should be clear; given two
linear operators A1, A2 which have the same singular vectors in their singular value decom-
positions and which are located within unitaries U1, U2 of the same size, the decompositions
given in Eqs. 25, 26, and 27 still hold. I.e.,

A1 = Π̃U1Π, A2 = Π̃U2Π, (30)

where only if A1, A2 share singular vectors do the subspaces discussed above remain in-
variant under operator interleaving. A simpler instance of this phenomenon is when U1, U2
block encode commuting operators, in which case this condition is obviously satisfied.
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Note that this is clearly a restrictive condition, though it should come as no surprise:
no analogue of Jordan’s lemma exists for interleaved products of more than two operators,
as there exist cases in which no non-trivial subspaces would be preserved by such action.
Here we choose to preserve the two-dimensional subspaces spanned by the singular vectors,
but allow the singular values to differ. Evidently M-QSVT is no harder to construct than
M-QSP, and it is left to the interested reader to port results in the latter to the context
of the former; any instance of block-encodable commuting operators can be discussed in
the terminology of M-QSP!

4.4 Ongoing work and open questions
Finally we outline major open avenues for M-QSP, aimed at theoretical physicists, theo-
retical computer scientists, those in industry, and pure mathematicians looking to switch
subfields. M-QSP, like its single-variable analogue, is ripe for simultaneous analytical and
numerical investigation; its utility is centered in the relative simplicity of its defining ansatz
in conjunction with the rigorously characterized expressiveness of its generated transfor-
mations. This, together with its low resource-overhead, makes it a good candidate for
continuing the legacy of QSVT in unifying the current pantheon of quantum algorithms,
as well as realizing them on near-term devices.

(1) M-QSP opens the door to considering other alternating ansätze: variations include
restrictions (e.g., strictly alternating protocols, protocols with symmetrized phases),
as well as elaborations (e.g., arbitrarily many oracles). It is the intent of Sec. 2.2
to introduce readers to the mathematical subfields which may in turn inform new,
far larger classes and families of QSP- and QSVT-like algorithms. Some of these
may not only make use of scalar factorization results, but the diverse families of
operator-valued results in the theory of positive extensions [29, 34].

(2) M-QSP can be used even in the absence of a complete characterization of all circuits
stemming from all reasonable ansätze. Indeed, the existence of even a single count-
ably infinite family of embedable polynomial transformations can yields proofs of
quantum advantage. Thus empirical research into such families, even by those who
have no wish to understand deep takes in algebraic geometry, is worthwhile.

(3) As stated, lifting M-QSP to M-QSVT gives a theory only of commuting block en-
coded operators; this is necessary in order to preserve the use of Jordan’s lemma.
Relaxing this constraint in general may be impossible, but investigating situations in
which more complicated subspaces are preserved by the interleaving operators used
in QSVT may be possible. Novel pure mathematical investigations into variants
of Jordan’s lemma have great utility for quantum information beyond QSP/QSVT
[56, 57], and are a great starting point for foundational work. In turn, these result
better inform our understanding of control of subsystem dynamics (a fundamental
question in quantum information) and a variety of other periodic circuit ansätze.

(4) Improved Fejér-Riesz theorems for non-stable factorizations. Known results in posi-
tive extensions consider stable factorizations, which in the single-variable case is no
problem because such polynomials have discrete zeros. While firmly in the realm
of pure mathematics, relaxing such theorems to consider both non-stable factoriza-
tions and nonnegative (rather than positive) multivariable trigonometric polynomials
would greatly impact the theory of quantum algorithms. Indeed, showing the FRT =
QSP Conjecture (Conjecture 2.1) would provide useful examples of such extensions,
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and thus add to a critical series of results in algebraic geometry from a pragmatic
computational perspective.

As a final takeaway: QSP-like algorithms derive their utility from their complete char-
acterization of control over subsystem dynamics of unitary evolutions. This is a bottom-up
approach that avoids the difficulties of circuit ansätze like VQEs or QNNs, whose prop-
erties are often difficult to treat rigorously, and which must primarily be investigated
numerically or heuristically. M-QSP remains in the vein of QSP’s original successful ap-
proach—it seeks to take advantage of the usual Feynmanian adage: there’s plenty of room
at the bottom.
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A Extensions to the Fejér-Riesz lemma
The purpose of this appendix is threefold: (1) incorporate the single-variable Fejér-Riesz
lemma into proofs of main theorems of single-variable QSP, (2) use modified and consider-
ably more involved multivariable versions of this lemma in the proofs of major properties
of M-QSP, and (3) generally acquaint the study of QSP-like ansätze with a relevant and
well-understood subfield of algebraic geometry. This work is inspired by results which
descend from the study of Hilbert’s 17th problem. Related statements are, with a lit-
tle maneuvering, ubiquitous in quantum information, and may offer more insight to the
interested researcher than the utilitarian implementation here.

A.1 Single-variable setting
We fulfill a promise to re-prove Theorem 2.2 in the Laurent picture, and show that it re-
lies entirely on a relatively simple and clean result, the aforementioned Fejér-Riesz lemma;
this lemma provides a concrete description of an entire sub-class of positive polynomi-
als. Almost all of the major results in the previous work on QSP outside of its classical
subroutines can be reformulated to center on this lemma, and are arguably made cleaner
and more compact by this reduction due to the removal of awkward branch cuts in the x
picture.

A.1.1 Related definitions and lemmas

Lemma A.1. Single-variable Fejér-Riesz lemma (an old result, recalled in [29]). A single-
variable trigonometric polynomial

f(z) =
n∑

k=−n
fkz

k, (31)

Accepted in Quantum 2022-09-02, click title to verify. Published under CC-BY 4.0. 26

https://dx.doi.org/10.1090/proc/13623
https://dx.doi.org/10.1090/proc/13623
https://dx.doi.org/10.1109/TCT.1972.1083419
https://dx.doi.org/10.1137/0712004
https://dx.doi.org/10.1016/S0165-1684(03)00057-4
https://dx.doi.org/10.1016/j.laa.2004.10.005
https://dx.doi.org/10.1109/FOCS.2004.53
https://dx.doi.org/10.1007/s00037-005-0194-x
https://dx.doi.org/10.1007/s00037-005-0194-x
https://dx.doi.org/10.26421/QIC9.11-12-8
https://dx.doi.org/10.26421/QIC9.11-12-8


taking non-negative values on T can always be expressed as the modulus squared of a
polynomial of the same degree, i.e., there exists g(z) = g0 + · · ·+ gnz

n ∈ C[z] such that

f(z) = |g(z)|2 = g(z)g∗(z−1), (32)

where the degree of g is the same as that of f . In fact one can choose g(z) to be outer,
i.e., g(z) 6= 0 for |z| < 1, and in the non-singular case, when f(z) > 0 for |z| = 1, one can
choose g(z) to be stable, namely g(z) 6= 0 for |z| ≤ 1. Up to this choice and an overall
phase the factorization is unique. A standard proof (among many) of this lemma is found
with Theorem 1.1 of [31], and relies only on the fundamental theorem of algebra.

A.1.2 Alternative proof of Theorem 2.2

We modify the statement of Theorem 2.2 in a way that is amenable to application of the
single-variable Fejér-Riesz lemma. This allows the proof of the multivariable analogue of
this theorem in Appendix A to be more familiar.

Consider, as was given in Theorem 2.2, that the real polynomials P̃ and Q̃ satisfy the
inequality |P̃ |2 + (1 − x2)|Q̃|2 ≤ 1. Consider instead a renaming of the polynomial P̃ (x)
by its Laurent picture version P (z) ∈ C[z] and the non-polynomial

√
1− x2Q̃(x) by its

Laurent picture version (now truly a Laurent polynomial) Q(z) = −(i/2)(z − z−1)Q̃(z).
In other words we consider the matrix(

P (z) + iR(z) Q(z) + iS(z)
−Q(z) + iS(z) P (z)− iR(z)

)
, (33)

where P (z) and Q(z) are known and real on T2, and where we want to determine if there
exist R(z) and S(z) (again real on T2) satisfying conditions (1-2) of the theorem statement
as well as the determinant condition

P (z)2 +Q(z)2 +R(z)2 + S(z)2 = 1. (34)

Note that we have used the known even z 7→ −z parity of each Laurent polynomial to
fill out Eq. 33, and that while each of these polynomials is either real or imaginary on
T2, this does not imply the coefficients of the Laurent polynomial are either all real or all
imaginary, only Hermitian as stated previously.

Now define the nonnegative degree-2n Laurent polynomial U(z) = 1− P (z)2 −Q(z)2

and apply the Fejér-Riesz lemma (Lemma A.1) to yield a stable real-coefficient (not real
on T2) polynomial of degree 2n of the form

T (z) =
2n∑
k=0

tkz
k, tk ∈ R, (35)

which must satisfy

U(z) = R(z)2 + S(z)2 = (R(z) + iS(z))(R(z)− iS(z))
= (T (z)z−n)(znT ∗(z−1))
= (T ′(z))(T ′∗(z−1)), (36)

where we have added dummy powers of z to make the T (z) guaranteed by the Lemma
A.1 into a degree-n Laurent polynomial T ′(z) with real coefficients. Consequently the
symmetric and antisymmetric components of this polynomial, with respect to z 7→ 1/z
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can be matched with R(z) and S(z) respectively and unambigously (the latter absorbing
the factor of i). This preserves the desired z 7→ −z parity of each element, condition
(2), the desired degree constraint, condition (1), and finally the determinant constraint,
condition (3), which is what we desired to show. Returning to the x picture and pulling
out the necessary factor of −(i/2)(z − z−1) from Q(z) (possible to pull out because of
the fundamental theorem of algebra guaranteeing roots at z = ±1), we recover the usual√

1− x2 term. Thus, without much extra work, the Fejér-Riesz lemma comes across as
the only non-trivial mechanism underlying the reverse problem (P̃ , Q̃ 7→ Φ) of QSP.

A.2 Multivariable setting
We provide proofs of the constitutive theorems of M-QSP. Beyond reference to some major
(and complexly derived) theorems in functional analysis, this subsection is self-contained,
and aimed toward a simplified analytic presentation. Where indicated we include explicit
reference to conjectures and related results as depicted in Fig. 2.

A.2.1 Related definitions and lemmas

In the following proofs we consider matrices whose rows and columns are indexed by
subsets of Z2 as described in [29]. For instance, if U = {(0, 0), (0, 1), (1, 0)} and V =
{(2, 1), (2, 2), (2, 3)} then we denote by C = (cu−v)u∈U,v∈V the U × V (i.e., 3× 3) matrix

C =

c−2,−1 c−2,−2 c−2,−3
c−1,−1 c−1,−2 c−1,−3
c−2,0 c−2,−1 c−2,−2

 , (37)

which evidently indexes elements in the i, j (row and column) position by taking the
difference of the i-th element of U and the j-th element of V .

We will usually consider the set Λ = {0, 1, · · · , n}×{0, 1, · · · ,m} and its use in gener-
ating a (n+1)×(n+1) block Toeplitz matrix whose blocks are themselves (m+1)×(m+1)
Toeplitz matrices. This Toeplitz matrix is the result of the multi-indexing procedure dis-
cussed previously, e.g., given c0, c1, · · · , cn one can define C = ci−j , i, j ∈ {0, 1, · · · , n}2
which has the form

C =


c0 c∗1 · · · c∗n

c1 c0
. . .

...
...

. . .
. . . c∗1

cn · · · c1 c0

 , (38)

where the ck we consider will have the additional Hermitian property c−k = c∗k.

Definition A.1. Doubly-indexed Toeplitz matrix of Fourier components. Suppose a
function f(a, b) : T2 → C has non-zero Fourier components f̂(k, l) = ckl for (k, l) ∈
{0, 1, · · · , n} × {0, 1, · · · ,m}. Then the doubly-indexed Toeplitz matrix Γ corresponding
to these Fourier components has form

Γ =

C0 · · · C−n
... . . . ...
Cn · · · C0

 , Cj =

 cj0 · · · cj,−m
... . . . ...

cj,m · · · cj0

 , (39)

for j ∈ {−n, · · · , n}, and where c−k,−l = c∗kl. Note this matrix is block-Toeplitz as
described previously, and has dimension (n + 1)(m + 1) × (n + 1)(m + 1). This strange
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looking construction is standard as discussed in [29], and is motivated by single-indexed
versions appearing in the proof of positive extensions and Schur complements in single-
variable settings.

A.2.2 Proof of Theorem 2.3

The proof of Theorem 2.3 will proceed similarly to its single-variable analogue, chiefly by
induction. First, we introduce a related lemma to be used in the backwards (⇐) direction
of the proof. This lemma underlies the need for Conjecture 2.1.

Lemma A.2. Let p, q be single-variable Laurent polynomials in C[x, x−1] which satisfy
the relation

|p(x)|2 = |q(x)|2, (40)

where |p(x)|2 = p(x)p∗(x) is the modulus squared of p assuming x real, and analogously
for q. Then q must be equal to p up to exactly (1) some overall phase eiφ and (2) complex
conjugation of some subset of its roots.

Proof. Condition (1) follows from the invariance of Eq. 40 up to an overall phase. Assume
without loss of generality, then, that the leading coefficients of p and q are identical.
Then one can express |p(x)|2 = |q(x)|2 in terms of its decomposition according to the
fundamental theorem of algebra (assuming p, q have degree n)

|p(x)|2 = |q(x)|2 = cx−2n
n∏
k=0

(x− ak)(x− a∗k), (41)

where the ak ∈ C are not necessarily distinct. We see that p and q can thus be chosen
to preserve this relation up to any of the 2n (possibly non-distinct) choices between ak
and a∗k as a root. This is precisely condition (2), and is the only other freedom without
knowing other properties of p, q.

We begin the proof of Theorem 2.3 in earnest now, showing both directions, the second
of which will depend on Conjecture 2.1.

(⇒) The forward direction is relatively easy, taking P = eiφ0 and Q = 0 which clearly
satisfy properties (1-4). We can show that properties (1-3), as the overall operator is
always unitary, are preserved by induction. Assume that for some length-(n− 1) protocol
the inductive hypothesis holds and the unitary has form

Us,Φ(a, b) =
(

P Q
−Q∗ P ∗

)
, (42)

where P,Q satisfy (1-4) in the Laurent picture. Without loss of generality we can apply
A(a)eiφnσz to yield a new M-QSP protocol with s′ = s ∪ {0} and Φ′ = Φ ∪ {φn}; this
unitary Us′,Φ′ has form,

1
2

(
eiφn

[
(a+ a−1)P + (a− a−1)Q

]
e−iφn

[
(a− a−1)P + (a+ a−1)Q

]
∗ ∗

)
, (43)

whose elements are still Laurent polynomials with degrees that match the desired bounds,
condition (1), parity under (a, b) 7→ (a−1, b−1) based on those known for P,Q, condition
(2), parity under a 7→ −a and b 7→ −b based on those known for P,Q, condition (3),
and the determinant condition, condition (4). These conditions clearly also hold if the
operator appended was B(b).
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(⇐) The reverse direction of this theorem is more involved, but again can be inspired
by the single-variable case and its proof in [1], relying on a few extra lemmas to make
the jump to the multivariable setting. We also make use of Conjecture 2.1, and indicate
clearly where this is done. First we consider the trivial case in which the degree of P
is zero. Due to the symmetries specified, this must mean |P (a = b = 1)| = 1 and thus
Q(a = b = 1) = 0. A simple solution to this is Φ = {φ0, π/2,−π/2, · · ·π/2,−π/2} in Rn+1

and s = 00 · · · 0 of length n, which satisfies these conditions. This is the base case of our
induction.

The key step in the inductive argument involves inspection of the determinant, condi-
tion (4) in Theorem 2.3, namely that for all a, b such that |a| = |b| = 1 the relation

P (a, b)P ∗(a−1, b−1) +Q(a, b)Q∗(a−1, b−1) = 1 (44)

holds identically. Our goal is to determine whether the application of an iterate of the
form e−iφnA†(a)snB†(b)1−sn can reduce the degrees of the embedded polynomials for any
choice of φn and sn. Inspection of this equation yields something very similar to Eq. 43,
namely a map (

P Q
−Q∗ P ∗

)
7→
(

P ′ Q′

−Q′∗ P ′∗

)
, (45)

where P ′, Q′ (the embedded polynomials after ‘peeling‘ off an M-QSP iterate A(a) or B(b))
are of smaller degree in a if sn = 1 and in b if sn = 0, and where the explicit form of this
circuit is, without loss of generality choosing sn = 1 for now

1
2

(
(a+ a−1)e−iφnP + (a− a−1)eiφnQ −(a− a−1)e−iφnP − (a+ a−1)eiφnQ

∗ ∗

)
. (46)

The condition under which the top-left and top-right embedded polynomials are of lower
degree than P,Q is precisely that the coefficients of the maximal degree in a of P,Q differ
exactly by an overall phase. Concretely, lowering the degrees of the embedded polynomials
in either a or b (corresponding to sn = 1, 0 respectively) requires that either of the two
pairs of polynomial coefficients of the highest degrees of a, b appearing in P,Q respectively,
namely

PdA
(b) =

dB∑
k=−dB

PdA,kb
k, QdA

(b) =
dB∑

k=−dB

QdA,kb
k (47)

PdB
(a) =

dA∑
k=−dA

Pk,dB
ak, QdB

(a) =
dA∑

k=−dA

Qk,dB
ak, (48)

relate by an overall phase. Note that we discuss only the coefficient of the largest positive
degree dA, dB of a or b; by the symmetries of these trigonometric Laurent polynomials,
the largest negative degree in either variable will also identically vanish if this condition
is satisfied.

This condition is precisely the statement of Conjecture 2.1. Note that this condition
also satisfies the requirement that the degrees of the bottom left and bottom right embed-
ded polynomials are decreased, due to their trivial relation (complex conjugation) to the
top left and top right embedded polynomials in Eq. 46. Moreover, because this condition
is a relation of coefficients, and these coefficients uniquely determine the roots of the cor-
responding single-variable polynomial coefficients of PdA

(b), QdA
(b) and PdB

(a), QdB
(a),

Conjecture 2.1 is both necessary and sufficient.
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If either of the conditions discussed in Conjecture 2.1 holds, then there exists some
choice of φn and sn such that the resulting lower-degree polynomials P ′, Q′ still satisfy
conditions (1-3) (and vacuously 4) from the statement of Theorem 2.3. Moreover, if
Conjecture 2.1 holds, then this unitary must itself satisfy the inductive hypothesis, and
the same process can be repeated to successively lower the degree in either a or b until
the base case is satisfied and the result is shown. Note that it is sufficient to be able to
lower the degree in a or b, as as soon as one is reduced to the single-variable setting, the
standard QSP theorems kick in, satisfying the conjecture vacuously.

Remark A.1. Note that this argument leads easily to a proof of Corollary 2.4.1, namely
that any P,Q arising from a unitary matrix built according to Definition 2.1 can be
used, without explicit information about their constitutive s,Φ, to efficiently determine
an equivalent s′,Φ′ by the classical method given above. To show this one needs to prove
that the cases in which sn = 0 and sn = 1 are both possible (namely when both pairs of
equations in Equations 47 and 48 are satisfied) correspond only to φn−1 ∈ {−π, 0, π} for
φn restricted to [−π, π].

To show this we assume access to a description of the polynomials constituting an
M-QSP protocol which takes the form

UΦ,s = UΦ′,sA(a)eiφσzB(b), (49)
without loss of generality choosing the B(b) iterate to have been applied last, and for the
final M-QSP phase to have been identically zero implicitly. If we show that the only case
in which the degree of the polynomials embedded in UΦ,s can be lowered in either the
variable a or b is when φ ∈ {−π, 0, π} (and thus one can commute A(a) and B(b)), then
one can use the phase read-off procedure discussed in the main proof of Theorem 2.3.

Proving this is easy; we simply write out the relevant matrix elements of Eq. 49

P = 1
4P
′
[
eiφ
( 1
ab

+ a

b
+ b

a
+ ab

)
+ e−iφ

( 1
ab
− a

b
− b

a
+ ab

)]
+ 1

4Q
′
[
eiφ
(
− 1
ab

+ a

b
− b

a
+ ab

)
+ e−iφ

(
− 1
ab
− a

b
+ b

a
+ ab

)]
(50)

Q = 1
4P
′
[
eiφ
(
− 1
ab
− a

b
+ b

a
+ ab

)
+ e−iφ

(
− 1
ab

+ a

b
− b

a
+ ab

)]
+ 1

4Q
′
[
eiφ
( 1
ab
− a

b
− b

a
+ ab

)
+ e−iφ

( 1
ab

+ a

b
+ b

a
+ ab

)]
. (51)

One can then look at the conditions under which the leading order single-variable coeffi-
cients of these two polynomials are identical up to an overall phase, in which case one can
pull off an M-QSP iterate. For peeling a B(b) or A(a) iterate from this circuit we require
that both pairs of leading coefficients differ by an overall phase: we write out these two
pairs of equations:

1
4 P̃

[1
b

(
eiφ − e−iφ

)
+ b

(
eiφ + e−iφ

)]
+ 1

4Q̃
[1
b

(
eiφ − e−iφ

)
+ b

(
eiφ + e−iφ

)]
, (52)

1
4 P̃

[
−1
b

(
eiφ − e−iφ

)
+ b

(
eiφ + e−iφ

)]
+ 1

4Q̃
[
−1
b

(
eiφ − e−iφ

)
+ b

(
eiφ + e−iφ

)]
, (53)

for peeling off an A(b) iterate (where P̃ , Q̃ are the single-variable, in b, coefficients of the
maximal degree terms of P,Q in a), and likewise for peeling off a B(b) iterate

1
4 P̃

[1
a

(
eiφ − e−iφ

)
+ a

(
eiφ + e−iφ

)]
+ 1

4Q̃
[
−1
a

(
eiφ − e−iφ

)
+ a

(
eiφ + e−iφ

)]
, (54)

1
4 P̃

[1
a

(
eiφ − e−iφ

)
+ a

(
eiφ + e−iφ

)]
+ 1

4Q̃
[
−1
a

(
eiφ − e−iφ

)
+ a

(
eiφ + e−iφ

)]
. (55)
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In the case we’re interested in, both of these pairs of polynomials need to differ by only an
overall phase. Evidently this holds for Equations 54 and 55 because they are identical. For
Equations 52 and 53, the positive and negative powers of b between the pair of equations
now have a relative minus sign; equating these requires only the simple condition

eiφ − e−iφ = 2i sinφ = 0, (56)

which in turn means that φ ∈ {−π, 0, π} as was desired. Note that the solution seemingly
implied by taking eiφ + e−iφ = 0 is not valid, as we assume the rightmost implicit QSP
phase is zero, and thus the phase relation between the pairs of equations must be trivial.
This completes the proof of Corollary 2.4.1, and indicates that there is no ambiguity in
reading off s from Definition 2.1 if the corresponding unitary was required to come from
a product of iterates.

This completes the proof of Theorem 2.3 under the assumption of Conjecture 2.1. Note
that resolution of this conjecture, or any additional possibly non-necessary conditions
under which the property defined in Conjecture 2.1 holds across the inductive step, will
allow the same proof as above to proceed. Moreover, we are able to show, as stated
in Corollary 2.4.1, that there is no fundamental difficulty in reading off M-QSP phases
under the assurance that the corresponding unitary was built according to the definition
of M-QSP; this corollary even extends to an arbitrary number of variables, though the
corresponding Conjecture 2.1 would be even more difficult to show. Nevertheless, the
proof of this theorem presents the succinctly stated, minimal gauntlets that any attempt
at a theory of M-QSP must address.

A.2.3 Proof of Theorem 2.4

Theorem A.1. The multivariable Fejér-Riesz theorem (Theorem 1.1.3, equivalently gen-
eralized in Theorem 3.3.1, of [29]). Let that the multivariable trigonometric Laurent
polynomial

f(z, w) =
n∑

k=−n

m∑
l=−m

fklz
kwl (57)

is strictly positive for all |z| = |w| = 1. Then there exists a stable (Def. 2.3) multivariable
polynomial p(z, w) such that f(z, w) = |p(z, w)|2 with the following form:

p(z, w) =
n∑
k=0

m∑
l=0

pklz
kwl, (58)

where stability means p(z, w) 6= 0 for |z|, |w| ≤ 1, if and only if Γ built from Fourier
coefficients ckl = (1̂/f)(k, l) of the reciprocal of f (i.e., the matrix in Eq. 12, which is a
doubly-indexed Toeplitz matrix as defined in Eq. 39) satisfies the following condition: the
(n+ 1)m× (m+ 1)n submatrix of Γ obtained by removing scalar (i.e., among the overall)
rows 1 + j(m+ 1) for j ∈ {0, · · · , n} and scalar columns 1, 2, · · · ,m+ 1 has rank mn. For
ease of reference we note that this low-rank condition is the same as Eq. 12, namely[

(cu−v)u,v∈Λ\{0,0}
]−1
{1,2,··· ,m}×{0}
{0}×{1,2,··· ,n−m}

= 0, (59)

where we note that u, v don’t run over the entirety of Λ = {0, 1, · · · , n} × {0, 1, · · · ,m}
for this matrix, and thus the resultant matrix is of dimension [(n+ 1)(m+ 1)− 1]× [(n+
1)(m+ 1)− 1]. Additionally note that up to p being stable, the determined p is unique up
to an overall phase. For concrete computations of this matrix, see examples in [29].
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The proof of Theorem 2.4 proceeds similarly to its corresponding single-variable ver-
sion, save the addition of a much stronger condition on a particular matrix relating to the
specified strictly positive real-valued trigonometric polynomial one wishes to embed using
M-QSP. We simply define the additional objects necessary and reduce the statement of
Theorem 2.4 to a theorem in algebraic geometry: Theorem A.1. Additionally we supply
a brief interpretation of the methods used to prove Theorem A.1 (the full exposition of
which runs about thirty pages in [29]).

We begin by stating the desired result of the theorem, introducing relevant variable
names. Consider a unitary matrix of the following form(

P + iR Q+ iS
−Q+ iS P − iR

)
, (60)

where P,Q,R, S, polynomials in a, b take real values on T2. Note that that the P,Q
here are distinct from those defined in Theorem 2.3, but that all unitaries defined in
Theorem 2.3 may be suitably decomposed into a unitary of the form given in Eq. 60 by
splitting the real and imaginary parts of the embeded polynomials on T2. The remaining
work is to note that the unitarity of the matrix in Eq. 60 requires that the following
relation holds

1− (P 2 +Q2) = (R+ iS)(R− iS). (61)
Consequently, as it was in the single variable case in Theorem 2.2, the existence of a matrix
completion (i.e., a corresponding R,S) for a choice of P,Q depends on the ability to factor
1 − (P 2 + Q2) into a single square. In the single variable case the Fejér-Riesz theorem
permitted this whenever 1 − (P 2 + Q2) was non-negative. In the multivariable case we
require that this quantity is positive, plus an additional series of constraints discussed
below.

The application of the multivariable Fejér-Riesz theorem (Theorem A.1) is clear; if the
Γ matrix corresponding to the Fourier coefficients of the inverse of F = 1 − (P 2 + Q2)
satisfy the desired low-rank condition, then the multivariable single-variable polynomial
function T such that F = |T |2 can be split into its real-valued (R) and imaginary-valued
(S) components on T2. Note that because these Fourier components are real, and P,Q
have definite parity, then the Fourier components of the inverse are real as well, and thus
R and iS have, as coefficients, purely real values. This means that the parity of R and S
(the latter of which has purely imaginary coefficients) must be definite and opposite under
inversion symmetry. All that is left is to ensure that these polynomials have the proper
parity under negation symmetry (a, b) 7→ (−a,−b). But this is true obviously because
1 − (P 2 + Q2) consists of powers of a, b which are either 0 or 2 modulo 4, corresponding
uniquely to definite parity (odd, even under negation of both variables) for T . The final
condition of Theorem 2.4 (unitarity) is trivially satisfied by our satisfaction of Eq 61.

Finally note that while the Fejér-Riesz theorem specifies decomposition into polyno-
mials (i.e., sums of monomials with non-negative degrees, not Laurent polynomials), the
same shifting argument can be used as in the single-variable case, namely noting that the
following two products are equivalent, and thus we can make the substitution T 7→ T ′

without worry.

TT ∗ =

2(n−s)∑
j=0

2s∑
k=0

tjka
jbk

2(n−s)∑
j=0

2s∑
k=0

t∗jka
−jb−k

 , (62)

T ′T ′∗ =

 (n−s)∑
j=−(n−s)

s∑
k=−s

tjka
jbk

 (n−s)∑
j=−(n−s)

s∑
k=−s

t∗jka
−jb−k

 . (63)
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This completes the proof of Theorem 2.4, which at its core is far simpler than the proof of
Theorem 2.3 beyond its reliance on the powerful albeit specific Theorem A.1. Moreover, it
does not depend on Conjecture 2.1. It is purely a theorem about matrix completions (or
positive extensions), where the ability to determine M-QSP phases for such a completion
depends on either the validity of Conjecture 2.1, or that one’s choice of P,Q such that
1 − (P 2 + Q2) > 0 is judicious and happens to have a stable factorization, which this
theorem will efficiently verify the existence of and compute. If such a factorization exists,
then Corollary 2.4.1 permits easy read-off of the M-QSP phases.
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