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Abstract—Our recently developed synchronized low-
energy electronically chopped passive infrared (SLEEPIR)
sensor node enables the stationary occupancy detection
capability of traditional passive infrared (PIR) sensors. A
machine learning (ML) algorithm reports occupancy based
on a locally collected dataset from the sensor node. Though
promising, the ML algorithm’s detection accuracy depends
on the diversity of the collected dataset—provided that the
dataset contains a wide variety of infrared (IR) noise and
occupancy patterns. Thus, it is challenging to train a univer-
sal ML model that contains all possible patterns. We propose
an efficient K-nearest neighbor (KNN) occupancy classifier
that incrementally adapts to the novel data from the sensor.
The proposed algorithm ensures that only the relevant noise
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and occupancy patterns are learned. The fact that training

observations are gathered on the same sensor node where the inference is made keeps the proposed classifier accurate
even with the bounded size of the dataset. A small dataset and an architecture like KNN both enable the training and
inference to be executed on a resource-constrained Internet of Things (loT) device. Thus, the proposed on-device lifelong
learning (ODLL) approach eliminates the need for over-the-cloud ML model updates. The dataset was collected for two
distinct floorplans over two months. Results indicate an average occupancy accuracy improvement of 20.8% compared
to a statically trained long short-term memory (LSTM) model. The proposed KNN model delivers comparable detection
accuracy while remaining orders of magnitude faster in terms of computational performance when compared to the

LSTM-based occupancy detection algorithm.

Index Terms— K-nearest neighbor (KNN), neural networks,

sensor, smart devices.

on-device lifelong learning (ODLL), passive infrared (PIR)

[. INTRODUCTION
N THIS article, we propose an on-device lifelong learning

(ODLL) approach [1] to improve the node-level detection
accuracy of synchronized low-energy electronically chopped
passive infrared (SLEEPIR) occupancy sensors. The SLEEPIR
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sensor recently developed by our team addresses a long-lasting
issue of passive infrared (PIR) sensors—incapable of detecting
stationary occupants [2], [3]. The SLEEPIR node consists of
a single traditional PIR sensor and polymer-dispersed liquid
crystal (PDLC) infrared (IR) shutters, each mounted in front
of 2x PIR sensors. The PDLC shutter enables traditional PIR
sensors to detect stationary occupancy by intelligently chop-
ping the long-wave (8—12 um) IR radiation. While the formed
SLEEPIR sensor has an advantage in detecting stationary and
near-stationary occupants, its performance is limited when it
comes to detection range and field of view (FoV) when com-
pared to traditional PIR sensors. To resolve this issue, a long
short-term memory (LSTM) classifier has beendeployed [4] in
the past to make the occupancy inference more reliable within
the range and FoV of the sensor. Attempts have also been
made using Bayesian techniques for improving occupancy
estimation, yet considerable accuracy deterioration is noted in
certain fields [5], [6] due to ever-changing environmental and
occupancy scenarios. The problem with such implementations
is that they lack a comprehensive training dataset that contains
patterns encompassing anticipated occupancy scenarios. Such
a dataset, while challenging to collect, would consequently
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require significant computational power to train and yet may
still fail to adapt to novel occupancy patterns detected by
the sensor. For the same reason, the machine learning (ML)
models are typically trained off-site and model updates require
over-the-cloud transfer. Any occupancy pattern that was not
part of the off-site training dataset will likely cause degradation
in accuracy.

To overcome this challenge, we propose a K-nearest-
neighbor (KNN) classifier-based ODLL algorithm that can be
trained “near” the SLEEPIR sensor node using an Internet of
Things (IoT) device and the training dataset from the same
sensor node where the occupancy inference is needed. In any
classification problem, an ML model, which is tasked with pre-
dicting the class of a sample, is expected to correctly classify
any input samples that may deviate by a small margin from the
target [7]. However, in the case of occupancy detection, the
input samples can vary from the target class, i.e., “occupied” or
“unoccupied,” by a large margin, depending on the occupancy
or the unoccupancy scenario. In other words, for example, the
“occupied” class contains several subclasses, which deviates
from each other by a large margin as different occupancy
scenarios can produce varying IR radiation patterns. Thus,
adding more occupancy scenarios adds more subclasses to
the classification problem, which impacts the accuracy of the
classifier adversely [8].

Traditionally, any ML model that could not be trained at
the end-user premises where the sensor node is present needs
to be updated via over-the-cloud transfer. Although cloud-
based training has fewer challenges in terms of application
design, it comes at the cost of latency in data transfer, added
connectivity and equipment overheads, and a host of security
issues, such as data privacy and network attacks. Our proposed
ODLL algorithm ensures that the ML training phase happens
locally and that no over-the-cloud transfer is required.

There are multiple factors contributing to rendering any ML
model trainable locally. First and foremost is the availability
of labeled data. Since most occupancy detection systems
deployed at the user premises need the capability of auto-
matically collecting the ground truth via labeling the data,
it becomes essential to collect data and train models off-site.
Second, even if the ground truth can be collected, expensive
computational and memory resources in the form of expensive
IoT devices must be deployed for local training due to the
large memory requirements to process the collected dataset.
The cost of expensive IoT devices can, in turn, drive up
the cost of the overall solution. The use of high-end IoT
devices is feasible for some applications where accuracy is
critical, as training observations are gathered from the same
sensor node where the inference is made, but, in our case,
where SLEEPIR sensors are applied for occupancy status
detection in residential and commercial buildings, the cost
and device power consumption are critical factors. This is
because competing traditional PIR sensor-based solutions are
extremely low-cost and power-efficient. Thus, we propose a
unique observation labeling technique that combines temporal
constraints on human walking velocity, time-elapsed between
two consecutive PIR sensor observations, and observation
distribution. This technique allows us to gather ground truth

for on-site stationary occupancy without additional equipment
or computing power.

For dataset collection, we deployed a total of nine SLEEPIR
sensor nodes at two different floorplans. Four nodes were
deployed at the floorplan labeled FP1, which resided three
subjects (one adult male and two children under the age of 11).
Five nodes were deployed on the floorplan labeled FP2, which
resided two subjects (both adult males). Both floorplans are
shown in Fig. 1. The variety in floorplans and subject profiles
was deemed necessary to evaluate the proposed method under
a wider variety of occupancy scenarios. The expanse for FP1
is 10 x 14 m, while for FP2, it is 9.1 x 11.6 m. As shown
in Fig. 1, each node is installed at a height of 2.8 m. Each
node is embedded with a traditional PIR sensor that can
detect human motion in a circular area of radius 2.4 m. Each
node also contains 2x SLEEPIR sensor modules, each of
which can detect stationary and moving occupants in a circular
area of radius of 1.2 m. Each node collects one observation
every 30 s.

In this article, our focus is on node-level occupancy detec-
tion performance improvement. Once completed, we will
construct a networked multiple SLEEPIR node system that
utilizes the node-level occupancy and reports the accuracy of
the network-level occupancy system. We aim to demonstrate
network-level accuracy that ensures less than 5% chance of
encountering false positives (FPs) or false negatives (FNs)
in any given week. The U.S. Department of Energy lists
this occupancy sensor performance standard in their Saving
Energy Nationwide in Structures with Occupancy Recognition
(SENSOR) Program overview [9].

Our effort aims to make the following key contributions:
1) we achieve node-level reliable occupancy detection for
SLEEPIR sensors by ensuring that training observations are
gathered from the same sensor node on which the inference is
made, thus limiting the number of occupancy scenarios in the
dataset; 2) we use an efficient technique such as KNN-based
ODLL that eliminates the need for costly IoT devices; and
3) we eliminate the need for periodic over-the-cloud ML model
updates, traditionally needed to address constantly changing
occupancy scenarios.

We present a literature review in Section II that outlines
the present state of occupancy estimation methods for human
occupancy detection. In Section III, we describe the method
and provide a brief overview of the SLEEPIR sensor system
we use for occupancy estimation. Section IV introduces the
dataset collection strategy and method of performance eval-
uation. Section V presents a brief discussion on addressing
the issues encountered during the system design and exper-
imentation phase. We also discuss the impact of various
parameters on system accuracy. Finally, Section VII gives a
brief conclusion of the presented work.

Il. LITERATURE REVIEW
Although recursive neural networks (RNNs) such as LSTM
have proven to be superior in accuracy for time-series data
when compared to simpler algorithms such as decision trees
and KNN, ML algorithms such as KNN are superior in
terms of efficiency as these do not require training [10].
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Fig. 1. We use datasets collected at two different two-bed two-bath
apartments. We use four SLEEPIR sensor nodes for the floorplan
labeled FP1 and five nodes for the floorplan labeled FP2 for dataset
collection. Sensor node locations for both apartments are shown in the
figure as well. Sensor node installation height, orientation, and footprint
are shown in the middle figure. SLEEPIR sensor node is shown in the
bottom figure.

The KNN classifier is a conventional nonparametric classifier
that provides effective performance for optimal values of
the positive integer k. In the KNN rule, a test observation

(or sample) is assigned the class most frequently represented
among the k nearest training samples. If two or more such
classes exist, then the test sample is assigned the class with a
minimum average distance. Although the KNN model is not
“aware” of the temporal dynamics of the gathered observations
such as the RNN model, in case when KNN is provided with
a near-identical training and test dataset distribution that are
collected using a specific sensor node, the performance of
KNN surpasses that of a more sophisticated RNN, which is
provided with a nonspecific sensor dataset. This is because
every sensor has a limited number of local occupancy sce-
narios for which training an ML model is comparatively less
challenging. We discuss this finding in Section VI. RNN
models, such as continuous-time RNN (CTRNN) and LSTM,
use backpropagation through time (BPTT) as the training
algorithm. The computational complexity of BPTT is of order
O (n?), where n is the number of noninput neurons [11]. The
storage complexity of BPTT is potentially unlimited and is
proportional to the number of folds in the network [11]. Thus,
the computational and storage resource requirements for an
unoptimized BPTT algorithm dictate off-site training for RNN
models, as most IoT devices cannot perform on-site RNN
training [1], [12]. Due to expensive training algorithms such
as BPTT, several attempts in the literature, e.g., parameter
pruning [13], quantization [14], and gradient compression [15],
have been made to reduce the training algorithm complexity
to perform RNN learning.

Despite these attempts to optimize on-device RNN learn-
ing, only marginal success has been achieved in terms of
reducing the RNN training complexity [16]. Most IoT devices
are energy constrained. Dynamic random access memory
(DRAM) access consumes two orders of magnitude more
energy than ON-chip static random access memory (SRAM)
access [17]. Compared to other deep neural networks, typical
RNNs have orders of magnitude larger memory footprint of
activations, which cannot reside over ON-chip SRAM for most
IoT devices; thus, DRAM access is needed during training.
The training memory for an RNN should strictly fit ON-chip
SRAM to achieve on-device training. This is certainly not
the case given the large occupancy datasets that usually span
from a few days to several months [18]. It can be argued
that an already proposed version of transfer learning for the
on-device learning [19] (termed TinyTL) has been employed.
Since the PIR signal used by our system has unique noise and
occupancy scenarios, our initial foray into the transfer learning
approach yielded few encouraging results. Instead of focusing
on reducing RNN training complexity, we propose to use a
less expensive KNN algorithm but with an added ability to
automatically label the dataset.

Apart from expensive resource usage, models suggested
in our previous works [20], [21], when put to the test,
produced a significant number of FPs due to environmental
IR noise [20], [22]. We further investigate this finding in
Section VI. We propose an automated ground-truth labeling
technique that exploits the fact that if the traditional PIR
sensor triggers intermittently and frequently, due to nonsta-
tionary human presence, there must be a stationary human
presence even during the periods when the PIR is briefly in an

Authorized licensed use limited to: Texas A M University. Downloaded on May 18,2023 at 19:10:52 UTC from IEEE Xplore. Restrictions apply.



9598

IEEE SENSORS JOURNAL, VOL. 23, NO. 9, 1 MAY 2023

untriggered state. This novel ground-truth labeling technique
ensures that the human presence IR radiation pattern unique
to each sensor gets labeled correctly as true positive. It must
be highlighted that in the proposed work, the local ML
training dataset is only made possible due to the availability
of this labeling scheme that automates the occupancy ground-
truth collection. This scheme will be explained further in
Section III-C.

One of the attempts made in the literature, to avoid col-
lecting training data altogether, was to determine a general
occupancy model via a semi-Markov model [23]. This attempt
hinged on the notion that there exist unique Markov chains
indicating occupancy in a Markov model, provided that each
Markov chain embeds in it, the detection episodes of variance
in light, CO,, humidity, temperature, motion, and acoustic
sensor outputs. However, the success in occupancy detec-
tion for this work was limited as the work only proposes
low-resolution occupancy-centered heating, ventilation, and
cooling (HVAC) control schedules generated by the semi-
Markov model. Among the works that label the node-level
ground truth, one of the most comprehensive publicly available
labeled datasets [24] only has 14 days of labeled data. Here,
labeling was done via still images captured at 1-min resolution.
Another work [25] compares the performance of KNN, support
vector machine (SVM), and artificial neural network (ANN)
for occupancy prediction. Interestingly, while several statistical
ML algorithms were compared, the dataset spanned no more
than three days. In [25], the labeling was done manually via
monitoring a video feed. The limited availability of labeled
datasets for occupancy detection indicates a roadblock in terms
of training accurate deep learning-based occupancy classifiers.
Alternate established options for ground-truth collection, such
as camera or thermopile array-based [26] occupancy tracking,
are not feasible because of privacy concerns, high cost, and
computation penalty involved. Apart from cameras, sensors,
such as inertial measurement unit (IMU), visible light sensors
(VLSs) [27], and Wi-Fi sensors, are either too noisy or
require expensive prerequisites such and radio signal finger
printing [28] in order to be part of a scalable occupancy
solution.

Regarding the duration of the occupancy detection
dataset, certain guidelines are presented in the Advanced
Research Projects Agency—Energy (ARPA-E) SENSOR pro-
gram overview [29] under the occupancy sensor testing and
evaluation section. The program states that for a sensor to be
widely adopted by the industry, an occupancy sensor should
have a 95% probability of having no more than two failures
per year. The program suggests that given a sensor produces
one observation every 30 min, over a year 8760 observations
will be required to establish the accuracy of the sensor.
In our case, we infer occupancy once every minute instead
of 30 min. A 30-min window is set to accommodate slow
response occupancy sensors such as CO, where the sensor is
not expected to respond to human presence in a shorter than
30-min span of time. Since our proposed SLEEPIR sensor
and estimation algorithm can infer occupancy once every
minute, it would take over six days for our system to collect
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Fig. 2.  SLEEPIR node generates voltage, ambient temperature, and
PIR signal. The voltage data are converted to binary occupancy infer-
ence via a KNN binary classifier. Selected observations from a transient
dataset are then used to periodically adapt the KNN classifier through
an on-site loT device.

8760 observations. We have thus collected a dataset spanning
over 60 days and evaluated the performance of our algorithm
over a 14-day period.

Thus, after a careful review of relevant literature, it can
be concluded that a constrained dataset-based classifier, such
as KNN, is presently the only viable alternative to expensive
RNN models, for on-device training and inference. Moreover,
the proposed automated labeling scheme addresses the gap of
collecting ground truth locally via utilizing the onboard PIR
Sensor.

[1l. SYSTEM DESIGN
The overall occupancy detection system flowchart is pre-
sented in Fig. 2. We present a brief algorithm flow below to
summarize Fig. 2.

1) The raw sensor node inputs, which include SLEEPIR
sensor module voltage, PIR sensor binary output, and
ambient temperature, are collected from each sensor
node via Bluetooth low-energy (BLE) communica-
tion protocol. The sensor and communication platform
details are presented in Section III-A.

2) An observation consisting of raw voltage values from
the SLEEPIR sensors, ambient temperature value, and
traditional PIR sensor value is normalized and zero-
centered. A window of [ observations is forwarded to
the KNN binary classifier. The binary classifier then
interprets the window of SLEEPIR sensor observations
and outputs in binary whether the sensor has detected
human occupancy or not. This step is explained in
Section III-B.

3) As and when novel labeled observations are received
from the automated labeling algorithm, the KNN classi-
fier training dataset is updated. The automated labeling
algorithm is detailed in Section IV-B. The primary
function of the labeling algorithm is to accept or reject
incoming observations from the sensor node into a
transient training dataset. This is based on predetermined
criteria.
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A. Working Principle of SLEEPIR Sensor Node

As shown in Fig. 1, each SLEEPIR sensor node includes
two SLEEPIR sensor modules. Each sensor module consists
of an analog PIR sensors (EKMC2691111K, Panasonic Inc.)
mounted behind a PDLC shutter with two germanium win-
dows that can significantly reduce the power consumption,
weight, volume, and noise level, compared to mechanical
choppers [30], [31], [32]. Optimal design parameters of such
a sensor are provided in our previous work [22]. Onboard
Silicon Labs microcontroller unit (MCU) with model no.
EFR32BG13 reads the analog signals from both the SLEEPIR
and the PIR sensors via analog-to-digital converter (ADC)
at a sampling frequency of 20 Hz. These observations are
later downsampled to 1 Hz for efficiency purposes. Afterward,
the collected values are sent out as observations to a server
IoT device (Raspberry Pi) via BLE connection for permanent
memory storage. The FoV of the SLEEPIR sensor and the PIR
are 100° (horizontal) x 100° (vertical) and 110° (horizontal)
93° (vertical), respectively.

Alongside SLEEPIR sensor modules and MCU, a traditional
PIR sensor (EKMB1391111K, Panasonic Inc.), a PDLC driv-
ing circuit, and two AA batteries (3-V dc voltage supply) are
present onboard.

Within the analog PIR sensor, a pyroelectric sensing ele-
ment, which is made up of pyroelectric material, converts
the change of heat flux to current. If the radiation power
received by the pyroelectric material is W (r) = Wpe!®, which
is modulated at frequency w, then the voltage response Vo ()
for the preamplifier stage is in the following form:

Rppnp' Aw

Vou (1) = TW@. (1)

Gr(1+ wzr%)% (1+ a)zré)j

Here, p’ is the perpendicular component of the pyroelec-
tric coefficient p, A is the area of the sensing element,
n represents the emissivity of sensing element, and tr =
H/Gt and g = RpCpy represent the thermal and electri-
cal constant, respectively. Here, Gr, Ry, and Cy, stand for
thermal capacity, thermal conductance, feedback resistance,
and capacitance, respectively. Commercial-of-the-shelf PIR
sensors usually consist of two or four sensing elements placed
in series with opposite polarizations. By covering the sensing
elements with the same polarization, the transmission change
of the PDLC shutter would introduce noticeable voltage sig-
nals from the PIR sensor. When the PDLC shutter, which is
mounted in front of the PIR sensor, changes its transmission
periodically, the received radiation W (¢) changes in synchro-
nization as well. This in turn causes the change of the output
voltage Vou(2).

B. Data Preprocessing of Sensor Signals

The SLEEPIR sensor node generates time-series obser-
vations consisting of SLEEPIR sensor module raw voltage
outputs Voue(t) (see Section III-A) and off-the-shelf digital PIR
sensor output. To process these observations and infer whether
the observed area is occupied or not, RNNs are an obvious
choice, but these are expensive to train and usually require

a significantly large dataset as they must be trained over a
large number of time-series observations spanning days, if not
weeks, for better accuracy. To realize the ideal scenario of local
training and inference using an IoT device such as Raspberry
Pi that has constrained computational power and memory,
a computationally inexpensive algorithm is needed. A potential
candidate is KNN that is trained over a bounded dataset.
We present a detailed computational comparison among KNN
and RNN algorithms in Section I'V-C.

In general, KNN-based classifiers assume that the set of
labeled training data is already provided and contains enough
training samples to describe the class distributions in the
feature space. In our case, the KNN classification is effective
as the extracted features form discernable clusters in feature
space. In other words, observations gathered for the cases
where there is occupancy, in the feature space, should not be
in proximity to the observations that are gathered, while there
is no occupancy. This places emphasis on the feature determi-
nation process, which we discuss in Sections III-B.1-III-B.3.

1) Time-Series Selection and Formatting: The goal of hand-
tuned ML features used widely in the literature is to produce
easily distinguishable values for various data classes. A good
feature remains invariant to the slight changes in the input
pattern for a particular class and tends to produce roughly
similar values for patterns belonging to the same class. The
elements of the observation obs(#) collected at time ¢ from
the sensor node include raw voltage signals from two ADC
channels of SLEEPIR sensor, i.e., [Vout1(?), Vourz(¢)] and a
binary traditional PIR signal PIR(#). Notice that we do not
collect ambient temperature as part of our dataset. The reasons
for not doing so are discussed in detail in Section VI-C.
We then initialize the training dataset by normalizing and zero-
centering all obst present in the training dataset so that it has
a zero mean and a standard deviation of 1.

2) Sliding Window Input Approach: Following the normal-
ization, the observation time series obsy, which consists of the
following elements [Voye1 (1), Voura (f), PIR(#)], is divided into
nonoverlapping windows winy. Here, each element winr is
created by sliding a fixed-horizon window of length equaling
8 s over the 3-D obs time series. Here, subscript T is the
timestamp at which the PDLC shutter permits increased IR
radiation to reach the sensor. The shutter remains in this state
for 4 s. We term the PDLC shutter to be in the open state for
4 s. The remaining time the shutter is termed to be in the closed
state. Thus, our window duration corresponds to 8 s where
the sensor completes its response to the 4-s PDLC shutter
modulation. Fig. 3 shows the SLEEPIR sensor response to the
PDLC shutter where IR radiation that reaches the PIR sensor
changes every 4 s.

3) Feature Extraction: For each winr, we computed six ML
features. These features are handcrafted and were tested to
perform better in terms of KNN classification compared to a
host of other features that were considered during the feature
selection effort. Fig. 3 describes the measures used in the
feature evaluation, Fig. 4 shows the features in the time-series
format and Table I provides a description for each feature.
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window and are plotted over 24 h to illustrate the portions where
occupancy was observed, i.e., 12 AM—6 AM. and 6 PM.—12 AM. These
features are used for training/indexing the proposed KNN algorithm.

TABLE |
FEATURE DESCRIPTION
SLEEPIR Description
Features
Max Vp Maximum V,,,; computed over win,
Min Vy Minimum V,,,,; computed over winp
Half-Power thp+ — L2
Bandwidth for +ve where tp,;, is timestamp when ( Vo, ==
peak (HPB+) (Max V)/N2))
Half-Power thp- — 11
Bandwidth for -ve where tp,;,_ is timestamp when ( Vo, ==
peak (HPB-) MinV)/N?2))
mear’(ﬁiz:;i) Mean V,,,; computed over wing
Windowed Std. Standard Deviation for V,,; computed
Dev (std V) over Winr

IV. KNN-BASED LOCALLY TRAINED
OcCCUPANCY CLASSIFIER

A. KNN Network Architecture

KNN is a nonlinear, distance-based method, supervised
classification technique. It is a direct classification method that
does not require a learning process. Instead, it requires the
indexed storage of the whole data. Given a training dataset
(xt,yr), where T = [t;, 4 + 30,7 + 60,...,] and a

test sample xs, the distance, dy,, between xeg and x7 can
be calculated as in the following equation:

dm = |Xtest — x|l 2

where ||-|| is the distance. One of the most widely applied
distance calculations is Euclidean distance. After obtaining
the distance d,,, the labels of k training samples with the
smallest distance can be used. Then, majority voting will be
performed to determine the label of the testing sample. It must
be highlighted here that as a new sample is assigned to a class,
the computation time increases as a function of the existing
samples in the dataset [33].

Our implementation, however, keeps the training dataset
bounded via a cap on the total number of observations. This is
done by periodically eliminating observations that are farthest
(in terms of Euclidean distance) from the respective cluster
center. We use the Elbow method search [34] to determine the
optimal number of neighbors k, which is a crucial parameter
for KNN inference. This search is performed periodically
rather than at every inference. This method calculates the
within-cluster sum of squared errors (WSS) for different values
of k neighbors using which WSS is evaluated. We then choose
k for which WSS starts to diminish for the first time. In the
plot of WSS-versus-k, this is visible as an elbow.

B. Automated Labeling Algorithm

For the initial training of the KNN classifier, we train
the model with observations that are labeled via calibration
data collected by the end user. We then initialize labels
y; where each element corresponds to each observation

= [MaxVr, MinV7, HPB+4, HPB—, meanVr, std Vr]. The
calibration labels are collected via a smartphone app where
the end user labels 20 observation windows. Ten windows are
labeled as “occupied” while the end-user ensures that there is
human presence within the FoV of the SLEEPIR sensor node
while ten windows are labeled as “unoccupied” while there is
no human presence within the FoV of the SLEEPIR sensor.

For automatic labeling, the range and FoV of traditional
PIR sensor embedded within the SLEEPIR node are critical.
Experiments conducted in our earlier works [2], [3] discuss
in detail the sensor installation height and orientation choices.
As a result of experimentation in [2], we found that for sensor
installed at a height of 2.8 m, the radius of the SLEEPIR sensor
node footprint is 1.2 m, while the radius of concentric PIR
sensor footprint is 2.4 m. Each sensor generates a timestamped
log of occupancy status for traditional PIR sensor as follows:

D™ ={(i,T):i e N,T e R"}. 3)

In (3) (i, ) denotes that the PIR sensor at location X’ was
triggered at time 7. Fig. 1 shows the set of locations denoted
by index i, i.e., X!, X2, x3, and X*. The labeling algorithm
exploits the time difference between two consecutive PIR acti-
vations for a sensor. We assume that a human subject is present
within the sensor range and FoV if Drr = D’TPE — DIPIR
is <60 s. In other words, we assume that the human subject
did not leave the sensor footprint area if two consecutive
PIR activations for the same node are <60 s apart in time.
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The assumption that there certainly would be a stationary
occupant in the FoV of sensor if two consecutive PIR triggers
are <60 s is evaluated to be generally true as the training
datasets labeled based on this assumption provide us with high
occupancy detection accuracy. The labeling algorithm is better
explained via the algorithm steps mentioned in Algorithm 1.
The input includes all xy g feature observations that were
recorded between 7 and T + 1 whenever Dy < 60 s.

Algorithm 1 KNN Training Set Label Generator

Input: x;e5:, X7, y1, thresh_occ, thresh_unocc
Output:Updated Training set x;, y; for KNN classifier

I kop: = Elbow_search(x;, y;);

2 for all i in x;wherey; == occupied

3 [clust_cents_occ,loc_occ] = KMeans(x;, kopt)

4 for all i in x;wherey; == unoccupied

5 [clust_cents_unocc, loc_unocc] = KMeans(x;, kop)
6 [distoce, idx,cc]=Ffarthest_occ_sample(x;, y;);

7 [distunoce> 1dxynocc|=farthest_unocc_sample(x;, y;);
8 for all x;.;

9 for all k in clusters

10 if dist(x;esr, clust_cents_occ) <thresh_occ

11 Ytest = occupied,;

12 if dist(x;es;, clust_cents_occ) < distyee

13 if (size(x;) > 1000)

14 [x;, yi1 = replace_in_dataset(x;cs;, Viest, IdXocc)
15 else

16 [x;, yi] = add_to_dataset(x;s:, Yrest)

17 if dist(x;es;, clust_cents_unocc) <thresh_unocc
18 yi = unoccupied;

19 if dist(x;, clust_cents_unocc) < disty poce

20 if(size(x;) > 1000)

21 [x:, yi]=replace_in_dataset(x;css, Yrests idXunocc)
22 else

23 [x;, yi] = add_to_dataset(x;es:, Vrest)

There exists another criterion that needs to be satisfied
by the feature observation xi g to qualify as an input to
Algorithm 1. This criterion ensures that the voltage difference
MaxVy — MinVy calculated over the observation window
winy must be greater than an empirically set voltage threshold
termed “zero-presence voltage difference” or AVrhresh. This
qualifier is important as we can observe in Fig. 3 that the
difference between Min Vy, and Max Vy, is maximum
over the duration of time window when the PDLC shutter
is opened and then closed. In case our assumption that a
human subject is present within the sensor range and FoV
while Dry = DiTPJIr‘} — DIPR is <60 s is wrong, this
secondary check will ensure that the sensor is exposed to a
minimal level of IR, which is expected to be radiated by a
human subject. It must be mentioned here that the value of
A Vrhresh Will need to be minimal as, under certain scenarios,
stationary human subjects are known to produce a minimal
change in Vyy [4].

Algorithm 1 starts by extracting the cluster centers for mul-
tiple clusters formed in feature space via a typical K-means
algorithm. Each of these clusters can belong to either an

60 [ Occupied
m;'. Il Unoccupied

” m.ﬂ‘ - Xtest

R

-
20 g !S.!.*- = R

chdd g ’*—
-

/ ‘}¥ *
0 “a "’3. ? f’ -}' -

AN v 4

. -
Caa T \‘. Q 1
20 M NJ.
> P

"
£ 59

-40 F Y

%0 L L L s L L s s L 5
-50 40 -30 -20 -10 0 10 20 30 40 50

Fig. 5.  T-SNE feature space plot for training dataset Xx;, y; for kitchen
sensor Xy. Xiest represents the labels that are yet to be labeled.

occupied or unoccupied class. The data being clustered belong
to the initial training dataset x;, y; recorded via user cal-
ibration. The job of Algorithm 1 is to update the initial
training dataset to a more comprehensive training dataset that
includes occupancy (and unoccupancy) patterns that were not
captured during the calibration time period. An unclassified
observation is evaluated for proximity to the clusters in the
initial training dataset. If the observation is within a threshold
distance from the center of a certain class, the observation is
assigned the corresponding class to which the cluster belongs.
Algorithm 1 bounds the size of the dataset to a limit value
of 1000. An example of an updated training dataset divided
into “occupied” and “unoccupied” clusters is shown in Fig. 5.
This figure plots the distributed stochastic neighbor embedding
(t-SNE) projection [35] of the observations. t-SNE gives us an
intuition of how the data are arranged in a high-dimensional
space.

C. Performance Evaluation Comparison Between KNN
and Other RNNs

To evaluate a performance gain for using dataset bound
KNN classifier when compared to an RNN, we performed
a comprehensive comparison of the KNN classifier and RNN
classifier performance. Our analysis included testing the col-
lected dataset over LSTM, CTRNN, and proposed KNN archi-
tectures. We also varied the observation window length / over
a reasonable range to see whether certain networks performed
better than others. We found that for / = 60 s, the accuracy was
highest across all architectures. This indicates that the most
effective discriminating features exist over a period of 60 s.
It is important to mention here that SLEEPIR collects two
consecutive observations over a span of 60 s. Table II outlines
the performance evaluation results for comparison. Although
for an unbounded dataset, KNN is not as effective in terms of
accuracy as LSTM or CTRNN, it does not require expensive
BPTT training as is the case with its RNN counterparts.
Training durations for each of the tested algorithms are also
provided in Table II. The training durations were measured on
Raspberry Pi 4 using a 64-quad-core Cortex-A72 (ARM v8)
processor. Table III lists the power consumed by the Raspberry
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TABLE II
AVERAGE ACCURACY AND TRAINING DURATION FOR 16 NEURONS
HIDDEN LAYERRNN MODELS (LSTM, CTRNN) AND FOR
FIVE-NEAREST NEIGHBOR MODEL FORA TOTAL
OF 1000 OBSERVATIONS

LSTM CTRNN Proposed KNN

ngl()ii)w acc traini.ng acc traini.ng acc index.ing

length (%) | duration | (%) |duration| (%) | duration

(sec) (sec) (sec)
30 sec 96.4 5314 92.3 | 4109 | 917 19
60 sec 97.1 8722 95.5 | 8264 | 94.8 23
90 sec 91.3 9945 88.0 | 10427 | 87.3 24
120 sec 82.8 | 16618 7.1 | 15730 | 78.7 28
TABLE Il

AVERAGE POWER CONSUMPTION FOR TRAINING 16 NEURONS HIDDEN
LAYER RNNMoODELS (LSTM, CTRNN) AND FOR FIVE-NEAREST
NEIGHBOR MODEL FOR ATOTAL OF 1000 OBSERVATIONS

Obs LSTM CTRNN Proposed KNN

Window |avg consumption | avg consumption |avg consumption
length (mAh) (mAh) (mAh)
30 sec 1.03 0.96 0.0049
60 sec 2.13 1.71 0.0045
90 sec 2.25 1.98 0.0050
120 sec 3.74 3.06 0.0052

Pi 4 platform during the duration of training for LSTM,
CTRNN, and KNN algorithms for a training dataset consisting
of 1000 observations. Raspberry pi consumed between 3.8 and
5.5 W depending on the number of processing cores used
during the training process. It may be highlighted here that the
accuracy and power consumption values in Tables II and III
are an average for all four nodes deployed in the system.

V. DISCUSSION

We must mention certain facts about the training set accu-
mulated by the automatic labeling algorithm. We exclude the
input observations xg Where traditional PIR is triggered. This
is because the observations captured while the occupant in the
sensor FoV is moving belong to a very different distribution
compared to the ones where the subject is stationary. Since
the embedded traditional PIR can determine occupancy when
the occupant is moving, the KNN does not need to classify
observations under such a scenario. Moreover, the observations
that are obvious outliers are not included in the training
dataset. Comparisons at lines 10 and 17 of Algorithm 1 ensure
that whenever the incoming feature observation has a large
Euclidean distance from the centers of class clusters, such an
observation is discarded. By doing this, we only keep training
data points in the dataset that have less than a threshold
distance (thresh_occ or thresh_unocc) to the center of class
clusters. It is useful to highlight here that multiple clusters can
belong to a single class. Multiple clusters belonging to a single
class in feature space exist because SLEEPIR voltage response
is not the same to occupancy in varying circumstances, e.g.,
varying ambient temperature or varying environmental IR
noise.

Stove Element

Heater

Heater Reflection

Fig. 6. Common sources of IR noise include kitchen stove, warm
tap water, space heater, and electronic devices such as laptops and
chargers.

We observe that multiple sources of IR noise contribute
toward the FPs. We found that sources, such as tap running
with warm water and warm laptop, present us with challenges
in terms of false detections. Essentially, the introduction of IR
noise in sensor FoV will add another cluster in the feature
space that is more than likely to be adjacent to the occupancy
cluster. The intercluster distance between a cluster formed by
the IR noise and a cluster formed by human presence is crucial
for KNN to avoid FPs. Most of our research effort was spent
toward feature engineering effort that increases this intercluster
distance. Fig. 6 presents us with examples of multiple IR
sources within sensor FoV responsible for false detections.

VI. RESULTS

A. Dataset

We used two datasets that employ nine SLEEPIR sensor
nodes, as shown in Fig. 1. Certain thresholds were used to
remove noisy observations as per the literature presented
in [2]. A single surveillance camera for each dataset was used
to label the ground truth for all rooms as entrances of all rooms
and the apartment are visible in the camera FoV. Data for
60 days were collected (30 days for each floorplan). We used
23 days of data for training and the remaining seven days of
data for testing for each floorplan. We downsampled the 20-Hz
raw observations to 1 Hz to optimize the processing time.
Thus, 864 000 observations for each sensor node are retained
in the dataset. It is also helpful to mention that the proposed
algorithm makes an occupancy inference every minute. The
accuracy results are reported for the kitchen sensor (X*) and
the living room (X 1) sensors. The kitchen sensor has the
highest incidence of IR noise in the collected observations,
i.e., frequent usage of stove, tap water, and the presence
of appliances that produce IR radiation. On the other hand,
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TABLE IV

ACCURACY COMPARISON BETWEEN THE PROPOSED KNN
MoDEL (FP1) AND THESTATIC LSTM MODEL

Static LSTM Prg%ffd Static LSTM |  Proposed
Date Classification | Classification Classification K_NN )
A x1 | Classification
Accuracy X* | Accuracy X* ceuracy 1
y Accuracy X
15 April 76.1% 89.9% 81.0% 95.5%
16 April 83.4% 94.8% 86.8% 94.9%
17 April 69.3% 97.6% 75.3% 97.6%
18 April 62.5% 98.0% 70.9% 88.4%
19 April 56.9% 97.2% 71.6% 93.8%
20 April 74.2% 87.5% 79.2% 96.8%
21 April 82.1% 92.6% 83.5% 97.1%
TABLE V

ACCURACY COMPARISON BETWEEN THE PROPOSED KNN
MoDEL (FP2) AND THESTATIC LSTM MODEL

Static LSTM Proposed Statig LSTM Proposed
Date : ; KNN Classification KNN
Classification . . . .
4 | Classification | Accuracy X! | Classification
Accuracy X y
Accuracy X* Accuracy X!
18 June 70.9% 92.5% 83.6% 95.3%
19 June 67.4% 93.1% 76.0% 87.7%
20 June 69.4% 91.5% 72.3% 84.1%
21 June 61.6% 85.5% 77.0% 95.8%
22 June 63.1% 83.8% 75.1% 94.2%
23 June 83.6% 95.1% 90.8% 96.3%
24 June 81.3% 94.5% 92.2% 96.8%

the living room sensor only has a relatively limited number
of appliances within its FoV that produces IR noise such
as laptops, certain appliances, and step-down transformers in
device chargers. A comparative accuracy analysis between the
two rooms with different IR radiation profiles is expected
to bring further insights into the impact of IR noise on the
occupancy detection performance.

B. Accuracy Analysis

This work has a unique claim to train the model locally
and eliminate the need for periodic over the cloud ML model
updates. The work also claims to minimize the computational
resource usage by the ML model while delivering comparable
human occupancy accuracy when compared to a traditional
RNN method. For this purpose, we used a previously deployed
static LSTM model [20] trained at the laboratory for human
occupancy. We compared it to the proposed KNN model,
which is dynamically updated every 24 h. It must be high-
lighted here that the laboratory environment and IR noises
were different in many respects from the local environment
of the apartment. The results of this comparative study are
listed in Tables IV and V. As mentioned earlier, this study
only involves a kitchen sensor (X*) and a living room sensor

Sunsetangle Sunrise angle Sun atnoon @ Apt loc HR
00

04 127

08 6.5

26
. 12

O 255
16

25

2 245

Lr | Brl | Kch | Br2
April 15, 2022

Fig. 7. (Left) Apartment location depicted along sunrise and sunset
angles on April 15, 2022. (Right) Temperature profile recorded by each
node for the same day. Living room exposed to sunlight IR via large glass
sliding door thus warmer. Kitchen was used for cooking primarily during
the day. Alternating periods of blue indicate HVAC setpoint triggers
through noon until evening.

(both of which capture very different occupancy scenarios
within the target apartments. The data from the remaining
sensors contained infrequent IR noise sources and would
have skewed the detection accuracy to be high. The accuracy
analysis presented in this work is based on a sensor placed in
an environment where IR noise is encountered frequently, thus
representing the model performance in challenging environ-
ments. Although the IR noise encountered by the living room
sensor is relatively low, it is useful to evaluate this sensor as
it provides a baseline for the accuracy analysis for nodes that
encounter high IR noise.

C. Results Discussion and Future Work

Despite locally collected training set, we still observe more
than 10% inaccurate classifications for April 15 and 20, for
the kitchen node (X4) for the dataset FP1. We investigated
the reasons and found that both for April 15 and 20, we had
unusually busy days in terms of cooking and dishwashing.
The extracted features from observations for both these days
rendered observations far away from occupied/unoccupied
cluster centers present in the training data. The maximum
ambient temperature for the kitchen sensor for both these
days was over 82 °F when the misclassifications occurred.
We noticed that the static dataset was collected, while the
average ambient temperature was 75.1 °F. Although ambi-
ent temperature significantly impacts the total IR radiation
reaching the SLEEPIR sensor [20], it is not strictly correlated
with occupancy. Ambient room temperature in our dataset has
a constantly changing profile caused due to weather, HVAC
setpoints, the difference in daytime and nighttime outdoor
temperatures, and seasonal shifts in sunrise and sunset angles.
Fig. 7 shows this profile for a specific day within our dataset.
Moreover, IR noise sources also tend to change ambient
temperature. We thus conclude that ambient temperature must
be excluded from the input features for the proposed method
as it has no obvious correlation to occupancy.

We also observe that on April 18 for the living room
node (X') for the dataset FP1. On June 19 and 20 for the
living room node (X") for dataset FP2, there are more than
10% misclassifications. If we look at Figs. 8 and 9, we observe
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Fig. 8. Confusion matrices showing the performance for the proposed KNN classification method for kitchen node (X*) and living room node (X')

for dataset FP1.

that for all these days, an unusually large number of FNs are
reported. The KNN was unable to recover from these FNs as
these are caused due to the subjects’ IR being blocked by an
occlusion caused by temporary move of furniture in one case
and by subject being near the edge of the detection range in
the second case.

We will now explain in detail the reasons for misclassi-
fication due to sudden changes in ambient temperature and
introduction of IR shielding [36] effect on the output of the
proposed algorithm. The training set update via Algorithm 1
slowly modifies the calibration data clusters and may even
form new clusters. Since KNN allows more visibility into the
classification process, we found that IR noise in combination
with high ambient temperature caused the new feature points
closer to the cluster center of the false class. The local
occupancy patterns observed over time manage to modify
the calibration dataset clusters in the long term. Still, sudden
unusual shifts in the occupancy patterns and IR noise cause
FPs or FNs in the short time. The confusion matrices in
Figs. 8 and 9, belonging to each test day within the dataset,
provide an insight into the FPs caused by IR noise and FNs
caused primarily by the IR shielding effect. Certain IR noises,
such as warm water from a tap in the kitchen sink, may

produce near identical features to that of the human subject.
Such features need to be clarified for the classifier to produce
FPs. As a future work, new features must be formulated to
distinguish certain IR noises from human subjects using only
a privacy-aware and cost-effective sensor such as an SLEEPIR.

It must be mentioned here that IR noise in the environment
gets labeled as “occupied” in the training dataset, if it coexists
with a human subject within sensor FoV. Thus, periodic
training ultimately resolves FPs or FNs over time. The problem
occurs when the IR noise is transient and short-term. The
training dataset cannot cope with such in-consistent noise,
as an example. The IR noise caused by a permanent space
heater placement in the sensor FoV can be handled. In case
the space heater is frequently moved in and out of the sensor
FoV, Algorithm 1 cannot correctly integrate the IR noise
into the dataset. This happens because a temporary IR noise
observation will be included in the dataset if the value for
thresh_occ is set with a higher allowance. This inclusion
will render clust_cents_occ to move drastically toward the
included noise point. In case the IR noise is removed from
FoV and the dataset cannot update itself in case, N0 Xies
feature observations are recorded between T and 7 + 1 as
D77 > 60 s. Thus, the classifier is expected to perform
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Fig. 9. Confusion matrices showing the performance for the proposed KNN classification method for kitchen node (X*) and living room node (X')

for dataset FP2.

inaccurate classifications until valid updated observations are
integrated into the dataset.

VIl. CONCLUSION

The proposed ODLL KNN-based occupancy classification
method claims to provide superior accuracy and training
efficiency compared to static RNN models. The higher accu-
racy and significantly efficient training hinges on the KNN
model being adapted to the novel observations representing
new occupancy scenarios. This is only made possible as the
training dataset is labeled locally with the help of the proposed
automated labeling algorithm and an initial calibration dataset.
The resultant occupancy classification can deal with a host of
IR noises and occupancy patterns as the training observations
are gathered from the same sensor node where the inference
is made. A 20.8% average improvement in accuracy was
achieved over the most noise-prone sensor, while a 14.2%
average improvement was achieved over the slightest noise-
prone sensor. This was achieved due to the ability to train the
model locally under local occupancy scenarios. The training
duration for a limited training set of 1000 records was cut
short by the orders of magnitude compared to traditional

RNN methods. Apart from accuracy and efficiency gains, the
proposed method eliminates the need for over the cloud ML
model updates that are usually carried out to update the model
to classify newer occupancy patterns.
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