

1 **THE EFFECTS OF ROBOT VOICES AND APPEARANCES ON USERS' EMOTION RECOGNITION**
2 **AND SUBJECTIVE PERCEPTION**

3
4 SANGJIN KO¹, JACLYN BARNES², JIAYUAN DONG¹, CHUNGHYUK PARK³, AYANNA HOWARD⁴ AND MYOUNGHOON
5 JEON^{1,2*}

6
7 ¹*Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA*

8 ²*Department of Computer Science, Michigan Technological University, Houghton, MI, USA*

9 ³*Department of Biomedical Engineering, George Washington University, Washington DC, USA*

10 ⁴*Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH, USA*

11 *Corresponding author: Myounghoon Jeon Tel.: +1-540-231-3510, E-mail: myounghoonjeon@vt.edu

12 As the influence of social robots in people's daily lives grows, research on understanding people's perception of robots including sociability, trust, acceptance, and preference becomes more pervasive. Research has considered visual, vocal, or tactile cues to express robots' emotions, whereas little research has provided a holistic view in examining the interactions among different factors influencing emotion perception. We investigated multiple facets of user perception on robots during a conversational task by varying the robots' voice types, appearances, and emotions. In our experiment, twenty participants interacted with two robots having four different voice types. While participants were reading fairy tales to the robot, the robot gave vocal feedback with seven emotions and the participants evaluated the robot's profiles through post surveys. The results indicate that 1) the accuracy of emotion perception differed depending on presented emotions, 2) a regular human voice showed higher user preferences and naturalness, 3) but a characterized voice was more appropriate for expressing emotions with significantly higher accuracy in emotion perception, and 4) participants showed significantly higher emotion recognition accuracy with the animal robot than the humanoid robot. A follow-up study ($N=10$) with voice-only conditions confirmed that the importance of embodiment. The results from this study could provide the guidelines needed to design social robots that consider emotional aspects in conversations between robots and users.

13
14 Keywords: Social Robots; Conversational Agent; Emotive Voices; User Perception; User Preference

15
16
17
18
19
20
21
22
23
24
25
26
27
28

29 **1. Introduction**

30 As robots have become prevalent in people's daily lives, expectations for social robots have increased,
31 which has brought numerous studies regarding Human-Robot Interaction (HRI). Robots are expected to play
32 social roles such as a caregiver or companion that might serve as a friend or family member. In this regard, many
33 studies have been conducted to facilitate richer and more natural interaction following human social norms. One
34 of the ways of making the interaction more natural is attributing human characteristics to robots, called
35 anthropomorphism (Schilhab, 2002). It can be humanlike appearance (i.e., superficial human characteristics) or
36 humanlike mind (i.e., essential human characteristics) (Waytz, Heafner, & Epley, 2014). Some researchers have
37 focused more on external design aspects (e.g., DiSalvo, Gemperle, Forlizzi & Kiesler, 2002), whereas others have
38 investigated more on human mind (e.g., Epley, Waytz, & Cacioppo, 2007; Waytz et al., 2014).

39 Focusing on the appearance and behavior, research has been conducted on interactions between robots
40 and users via multiple modalities incorporating variations in appearances, facial expressions, gestures, verbal
41 communications, non-verbal sounds, and movements (Fong, Nourbakhsh, & Dautenhahn, 2003; Nabe et al., 2006;
42 Nonaka, Inoue, Arai, & Mae, 2004). These modalities convey a wealth of information, influence user perception,
43 and engage in establishing unique relationships between robots and users.

44 Focusing on the mental state, specifically on emotions, research has been conducted to see which factors
45 influence user perception of robots' emotions. Although these studies have considered robots' facial expressions,
46 voice (speech), body language, and posture as critical factors, the majority of emotion recognition research in HRI
47 has focused on facial expressions (Calvo & D'Mello, 2010; Schirmer & Adolphs, 2017). Consequently, there has
48 been little research on integrating both superficial and essential characteristics in one study to see interactions
49 among the factors. A few exploratory studies have shown mixed results (Eyssel, De Ruiter, Kuchenbrandt,
50 Bobinger, & Hegel, 2012; Eyssel, Kuchenbrandt, Hegel, & de Ruiter, 2012; McGinn & Torre, 2019; Nass, Foehr,
51 Brave, & Somoza, 2001). As such, to fill this research gap, we investigated the effects of various factors—robots'
52 appearances (robot types), voice types, and emotions on users' perception—clarity, characteristics, naturalness,
53 and preference, as well as emotion recognition accuracy.

54 **2. Related Work**

55 **2.1 Emotion Taxonomy, Expression, and Perception**

56 There have been different theories proposed and studies conducted about (1) emotion classification, (2)
57 emotion expression and (3) emotion perception in multiple domains, including psychology, psychiatry,
58 neuroscience, and HRI research.

59 Largely, there are two types of emotion classification, including a dimensional approach and a
60 categorical approach. In the dimensional approach, the circumplex model has been widely used with arousal and
61 valence dimensions (Russell, 1980; Russell, 2017). An individual emotional state can be positioned on the
62 Cartesian coordinate depending on the levels of arousal and valence. In the categorical approach, researchers often
63 assume that people have basic emotions. Ekman's six basic emotions (Ekman and Cordaro, 2011) (happiness,
64 sadness, fear, anger, surprise, and disgust) have been one of the most widely mentioned emotion sets in emotion-
65 related research in Psychology, Human Factors, Affective Computing, and HRI (Cakmak, Hoffman, & Thomaz,
66 2016; Calvo & D'Mello, 2010; Reisenzein et al., 2013). Basic emotions (Ekman and Cordaro, 2011) are known
67 to have unique features such as signal, physiology, and antecedent events, and common characteristics with other
68 emotions such as rapid onset, short duration, unbidden occurrence, automatic appraisal, and coherence among
69 responses. Ekman (1992) argued that these basic emotions are expressed and recognized cross-culturally.
70 However, there has been still much criticism about the basic emotion theories (Ortony, 2021). See (Jeon, 2017)
71 for more discussions on generic taxonomy and theories about emotions in the context of Human Factors and
72 Human-Computer Interaction. In our everyday lives, we typically describe our emotional states using categorical
73 terms, rather than dimensional terms; for example, during a conversation, people usually express happy feelings
74 as "happiness" (categorical) but not "an emotion that is high arousal with positive valence" (dimensional).
75 Therefore, we provided the emotional states using the categorical approach in the present study. Research also
76 shows that these basic emotions are pervasive over the world (Ekman & Cordaro, 2011). In addition to Ekman's
77 six emotions, we added 'anticipation', one of the Plutchik's basic emotions (1980) because the passage of our
78 stories included anticipation. With the addition of anticipation, we were able to have the second positive emotional
79 state in our study in addition to happiness.

80 In terms of emotion expression, Darwin and Prodg (1998) proposed three causal origins of expressions;
81 immediate benefits (e.g., increasing one's body size to intimidate an opponent), effective communications (e.g.,
82 lowering one's body to signal submission), and vestigial byproducts that may not serve a useful role (e.g.,
83 trembling in fear). Previous studies also showed that emotion expressions exhibited useful functions (e.g.,
84 widening eyes to maximize the visual field during fear) and emotional vocal expressions effectively manipulated

87 the behavior of perceivers (Bachorowski & Owren, 2003; Susskind et al., 2008). Among these, the current study
88 focuses more on the effective communications and vocal expressions of emotion.

89 Emotion perception is the identification of emotionally salient information in the environment,
90 including verbal (lexico-semantic) and nonverbal (intonational, facial, visual, and body movement) cues to the
91 emotions of other people (Phillips, 2003). Emotion is one of the perceptual representations of social cues along
92 with intentionality and eye direction (Decety, 2010; Mitchell & Phillips, 2015). In line with this, human social
93 and emotional behaviors are highly intertwined (Beer & Ochsner, 2006). Emotion perception is an important
94 source of information about the theory of mind and emotions can be perceived from facial expressions, voices,
95 and whole-body movements (Frith & Frith, 2006).

96 As provided from previous theories, emotion expression and emotion perception play a critical role in
97 human-robot interactions and are widely studied in a range of disciplines. Researchers commonly argue that these
98 emotion-related expressions and perceptions can be achieved through both visual and auditory stimuli. However,
99 previous studies have been dominated by facial emotions and other modalities such as vocal and tactile processing
100 have been less frequently considered (Calvo & D'Mello, 2010; Schirmer & Adolphs, 2017). In this regard, in our
101 work, we focused more on auditory stimuli by including various emotive voices, representing seven different
102 emotions and investigated the differences in users' emotion perception.

103 2.2 User Perception on Robots from Embodiment, Appearance, and Sounds

104 There have been studies focused on examining the impact of robots' embodiment, appearance, and
105 auditory displays on HRI.

106 The physical embodiment of robots could impact user perception positively and promote HRI in many
107 social situations. With the embodiment, social robots brought many benefits to user experience. For example,
108 participants reported higher satisfaction in the shopping mall (Sakai et al., 2021) and higher enjoyment while
109 playing a chess game (Pereira et al., 2008) with the physical embodied robots than the disembodied ones. Many
110 research studies also suggested that the embodiment of social robot engaged longer interaction duration
111 (Rodriguez-Lizundia et al., 2015), increased human empathy towards the robots (Kwak et al., 2013; Seo et al.,
112 2015), and enhanced compliance with robots' instruction and made the interaction more natural than the virtual
113 or simulated ones (Li, 2015). Because the presence of the social robot played an important role in HRI, we used
114 physical robots to emit sounds instead of using just a speaker in the present study.

115 The appearance of robots was considered as an important factor of user perception to support interaction
116 since anthropomorphism allows people to give robots lifelike qualities (e.g., intentions, emotions, etc.) (Seo,
117 Geiskovitch, Nakane, King, & Young, 2015; Sharma, Hildebrandt, Newman, Young, & Eskicioglu, 2013). Barnes,
118 FakhrHosseini, Jeon, Park, and Howard (2017) and FakhrHosseini, Hilliger, Barnes, Jeon, Park, and
119 Howard (2017) showed that participants preferred robots which resemble animals or humans over imaginary
120 creatures or robots highly deviating from existing creatures. Barnes et al. (2017) compared five different robots
121 (Robosapien, Pleo, Zoomer, Romo, and Mindstorm) which are humanoid, zoomorphic, fantastical, and
122 mechanistic. Participants showed different user perception across robots but similar patterns before and after
123 interacting with robots. Another study (Saint-Aimé, Le-Pevedic, Duhaut, & Shibata, 2007) suggested that a
124 companion robot requires a certain level of emotional expression for a good interaction to occur with children.
125 Also, people accept and trust robots more when the robots show some emotional activities (Lowe, Barakova,
126 Billing, & Broekens, 2016).

127 The effects of robots' voices have also been investigated in relation to user perception. These studies
128 have employed different types of sounds, such as human voices, TTS voices, and beeping sounds in conjunction
129 with various robots having different form factors. Research showed that participants assumed that a human voice
130 was more capable than a TTS voice, and they anthropomorphized robots with human voices (Sims et al., 2009;
131 Walters, Syrdal, Koay, Dautenhahn, & Te Boekhorst, 2008). Similar to the pattern in user perception on robots'
132 appearances, people showed a tendency to prefer interacting with robots similar to themselves in voice
133 characteristics, including human-like speech style and accent, and gender (Eyssel, De Ruiter, Kuchenbrandt,
134 Bobinger, & Hegel, 2012; Eyssel, Kuchenbrandt, Hegel, & de Ruiter, 2012). A recent exploratory study (McGinn
135 & Torre, 2019) showed that gender and naturalness of vocal manipulations strongly affected user perception.

136 Although various aspects of user perception from visual and auditory cues have been examined through
137 exploratory studies, many of them focused more on users' preferences based on subjective self-report measures
138 (e.g., Barnes et al., 2017; FakhrHosseini et al., 2017). To tackle these issues, in our work, we applied both
139 qualitative and quantitative measures by examining user perception from broader perspectives.

140 2.3 Emotions in HRI and Emotive Voices

141 An effective HRI could be achieved or improved by involving an appropriate emotional communication
142 from social robots (Liu et al., 2016). Regarding previous empirical studies on emotive communications in HRI,
143 diverse aspects of communication such as gesture, appearance, style of speech, prosody, and context have been

146 investigated. Implementing emotional features to social robots might enhance children's learning skills and
147 engaged the learning process. Conti et al. (2020) in their storytelling environment showed that children can
148 memorize more details of a tale if the robot narrates with an expressive social behavior, even compared to the
149 static inexpressive human storyteller. Also, the emotional appearance of robots was proposed for creating a more
150 suitably moral agent (Coeckelbergh & Technology, 2010) or providing interactive interventions for children with
151 autism spectrum disorder (ASD) (e.g., Barnes, Park, Howard, & Jeon, 2020; Bevill, Park, Kim, Lee, Rennie, Jeon,
152 & Howard, 2016). With the results from previous studies, we considered emotion as an indispensable factor in
153 HRI.

154 To investigate the impact of emotion expressions in HRI, there have been various research projects
155 regarding emotional conversations that are driven by either internal states, behaviors, or situations (Feldmaier,
156 Stimpfl, & Diepold, 2017; Jung, 2017; Song & Yamada, 2017). These studies were based on communication
157 theories about emotion expressions: 1) a robot's internal state drives expressions, 2) specific robot behaviors are
158 related to specific user reactions, and 3) the situation is an important driver of emotion expressions (Fischer, Jung,
159 & Jensen, 2019).

160 Regarding emotive voices on social robots, crucial features such as the style of speech, gender, and
161 prosody have been widely investigated through exploratory studies in HRI. FakhrHosseini et al. (2017)
162 emphasized the importance of the congruency between anthropomorphism in the appearances and the style of
163 speech. Their study showed that only when the human-like robot speaks with emotional expressions, participants
164 perceive the robot as their social companion. Kishi et al. (2013) showed that the integration of dynamic emotional
165 expressions and movements made the humanoid robot more attractive, more favorable, more useful, and less
166 mechanical-like. Gender stereotypes were also examined with the explicit gender (from name and voice) and
167 implicit gender (from personality) in a previous study (Bryant, Bornstein, & Howard, 2020; Kraus, Kraus,
168 Baumann, & Minker, 2018). For example, in Kruas et al.'s study, no gender stereotypes were found for the explicit
169 gender, but implicit gender showed a strong effect on trust and likability in the stereotypical male task. Participants
170 perceived that the male personality robot (dominant, confident and assertive utterances) is more trustable, reliable,
171 and competent than the female personality robot (agreeable and warm utterances), while the female personality
172 robot is more likable. A social robot's voice type could also play a critical role in emotive conversation. Eyssel et
173 al. (2012) examined the effects of vocal cues that reflected both the gender of robot voices (male, female) and
174 voice types (robot-like, human-like). It showed a human voice was rated more likable than the synthetic voice.
175 Jeon and Rayan (2011) examined the effects of expressing affective prosody from a zoomorphic robot (Pleo) and
176 showed a higher accuracy of emotion perception in a physical one than a virtual one. Half of the participants
177 mentioned that the human voice generated from the zoomorphic robot was awkward and a characterized or a
178 cartoon-like voice might be more appropriate. Recently, Ko, Liu, Mamros, Lawson, Swaim, Yao, and Jeon (2020)
179 have investigated the effects of different voice types with two types of robots (same as in the present study) on
180 robot emotion perception. Text-to-speech (TTS) condition showed significantly lower emotion recognition
181 accuracy than other human voices, but the robot type (humanoid vs. animal) did not influence emotion recognition
182 accuracy or other robot perceptions. However, in their study the voice was recorded by *female* students, not voice
183 experts, which might have led to different results from the present study.

184 Overall, emotive voice associated with social robots is still veiled in various aspects such as acoustic
185 characteristics, voice types, gender, and prosody. Since previous studies found contrasting results toward voice
186 types in social robots, we narrowed down the scope and focused on the differences in emotion recognition
187 accuracy and user perception on four different voice types in the present study.

188 2.4 Research Questions and Hypotheses

189 From this background, we tried to attain a deeper understanding of the effects of robot types, voice types, and
190 emotion types on users' perception towards robots and their emotions. Especially, we aimed to answer the research
191 questions as follows:

- 192 • RQ1: How do robot types, voices, emotions, and their interactions have impacts on participants'
193 recognition of different robots' emotional states?
 - 194 ○ H1a: There will be no effects of robot types on emotion recognition accuracy (Ko et al., 2020).
 - 195 ○ H1b: Participants will show higher emotion recognition accuracy in the human voice over TTS
196 voice (Ko et al., 2020).
 - 197 ○ H1c: There will be no emotion recognition accuracy difference between regular human and
198 characterized human voices (Ko et al., 2020).
 - 199 ○ H1d: Different emotions will show different emotion recognition accuracy (Jeon & Rayan,
200 2011; Ko et al., 2020).
- 201 • RQ2: How do robot types, voices, and their interactions have impacts on participants' perception of
202 robots' warmth, honesty, and trustworthiness?

- 204 ○ H2a: Participants will show higher ratings on the humanoid robot than the animal robot in
205 warmth, honesty, and trustworthiness ratings (Barnes et al., 2017; Hosseini et al., 2017).
- 206 ○ H2b: There will be differences in warmth, honesty, and trustworthiness ratings among the
207 different voice conditions (Ko et al., 2020).
- 208 ● RQ3: How do robot types, voices, and their interactions have impacts on participants' preference of
209 robots?
 - 210 ○ H3a: Participants will prefer the humanoid robot over the animal robot (Ko et al., 2020).
 - 211 ○ H3b: Participants will prefer the human voice over TTS (Eyssel, De Ruiter, Kuchenbrandt,
212 Bobinger, & Hegel, 2012; Eyssel, Kuchenbrandt, Hegel, & de Ruiter, 2012).
 - 213 ○ H3c: There will be no preference difference between regular human and characterized human
214 voices (Ko et al., 2020).

215
216 To address these research questions, we conducted an experimental study with young adults. Our
217 participants read the two fairy tales to two types of robots each (human-like and animal-like). The robots made
218 emotional comments using four different voices (regular human, characterized human-like, characterized animal-
219 like, and TTS) with seven emotions (six basic emotions + anticipation).

220 3. Method

221 3.1 Experimental Design

222 Twenty university students participated in the study (Age: $M = 22.1$, $SD = 2.97$). Twelve participants
223 identified as male and the other eight participants identified as female. Participants were ethnically diverse (6
224 Asians, 1 Hispanic, 11 Caucasian, and 2 Multiracial). Participants participated in the experiment for at most 2
225 hours and participants were compensated with \$20 (\$10 per hour). All participants agreed to participate after
226 reviewing the consent form approved by the university Institutional Review Board (IRB).

227 A 2 (robots) \times 4 (voice types) \times 7 (emotions) within-subjects design was applied. Therefore, 8
228 different combinations of robots and voice types were provided to each participant with all 7 emotions. Two
229 social robots, NAO and Pleo, were used in the experiment. Four voice types were referred to two Characterized
230 voices (NAO and Pleo), a Regular voice, and a TTS voice. There were two human voices and two TTS engines
231 (Group A and Group B in Table 2) used. They were alternatively mapped to both robots and both stories across
232 participants. More details were explained in the Procedure section.

233 3.2 Robotic Systems and Stimuli

234 Two robots, NAO and Pleo, having different appearances and features were employed in the experiment
235 (Figure 1). We used these two robots, which represent a humanoid robot and zoomorphic robot each, to contrast
236 the effects that robotic appearance has on people's emotion perception. NAO is a small-size humanoid robot
237 (Height: 57.4 cm, Length: 27.4 cm, Width 31 cm) having similarity to human and Pleo is a zoomorphic robot
238 (Height: 20.3 cm, Length: 38.1 cm, Width 10.2 cm) which looks like a little dinosaur. Both robots played recorded
239 auditory feedback, which were emotive utterances, to participants following the storylines. The task selected to
240 provide structure to the interaction and a more realistic context for conversational emotions was to read fairy tales
241 to the robots. Two different stories ("The three little pigs" and "The boy who cried wolf") were used in this
242 experiment. These two stories are simple narratives with easy vocabulary and globally well-known so that
243 participants can easily read to the robots even if they are not native speakers. Crucially, we could include all of
244 the emotions we wished to study within the framework of each story. Fairy tales seemed fitting given the childlike
245 appearances of both robots and are suitable for use with a broad range of other populations for replication of the
246 present study.

247 Four voice types were created for seven emotional expressions. We first categorized different voice
248 types as a TTS voice and a recorded human voice. The human voices were provided by two male voice actors and
249 all the voices were speaking American English with American accents. Next, the recorded human voice was
250 subdivided into three categories that included a regular voice and a characterized voice for each robot (i.e.,
251 characterized NAO voice and characterized Pleo voice). The TTS voices were generated using text-to-speech
252 (Williams, Watts, MacLeod, & Mathews, 1988) engines. Microsoft's David voice and the iOS Alex voice were
253 used, which were provided by default with the respective operating systems. These TTS voices included no
254 emotional information beyond the words themselves. Characterized voices for each NAO and Pleo were designed
255 to exaggerate emotional expressions with the robots' characters. These characterized voices were provided by
256 voice actors who majored in performing arts while envisioning the characteristics of robots from their
257 appearances. Direction for the characterization process, vocal performances, and recording was provided by a
258 professional voice actor and professor of theatre who teaches voice and acting in the Department of Visual and
259 Performing Arts. To control for gender effects, only characteristically male voices were used. While the same
260 control effect could have been achieved using female voices, male voices were chosen based on the availability

263 of the actors while designing the study. The example recordings of each voice type are provided on the web for
264 other researchers and educators to get an idea of what participants heard during evaluation: <https://osf.io/m8h64/>.

265 Seven different emotions were presented throughout each story including Ekman's six basic emotions.
266 The six basic emotions (anger, disgust, fear, happiness, sadness, and surprise) were chosen for their prevalence in
267 psychology. Ekman's basic emotions have four negative emotions (anger, disgust, fear, and sadness), but have
268 only one positive emotion (happiness); surprise can be either. A previous study showed that valence might
269 influence people's emotion recognition accuracy (Ko et al., 2020). In Bänziger, Grandjean, and Scherer's study
270 (2009), participants were examined to recognize emotions, and the emotion recognition results showed a higher
271 emotion recognition accuracy score on positive emotions, such as happiness, than the negative emotions, such as
272 anxiety, sadness, and disgust. To make a balance between positive and negative emotions, the seventh emotion,
273 anticipation, was chosen from Plutchik's eight basic emotions (1980). Its inclusion allowed us to add one more
274 positive emotion in addition to happiness. The seven emotions fit into both stories ("The three little pigs" and
275 "The boy who cried wolf") as depicted in Table 1. The content of these emotional phrases was not considered as
276 an experimental factor in the present study because all participants received the same treatments (eight
277 combinations of robots and voice types) during the study.

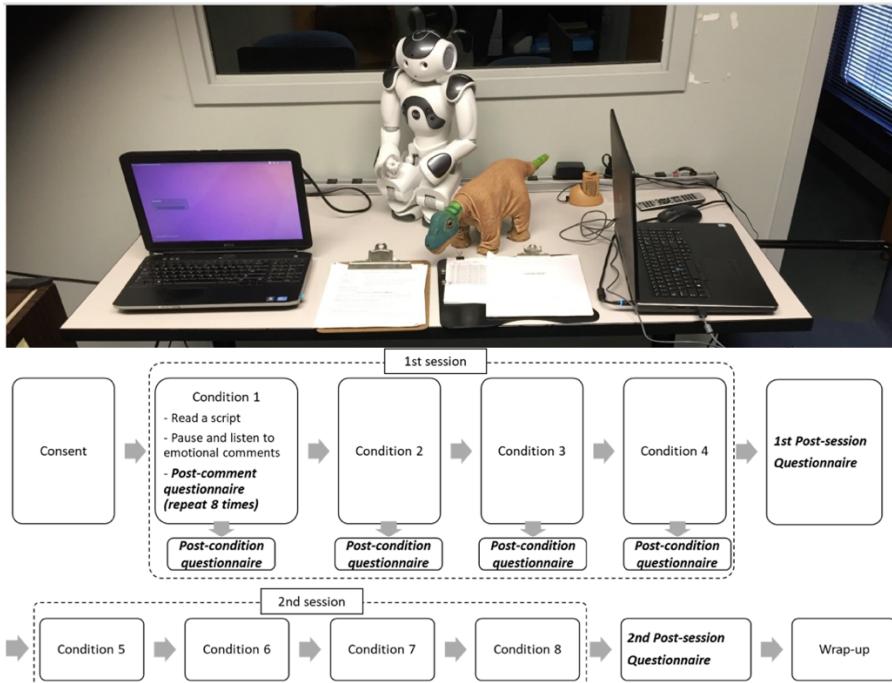
278
279 **Table 1.** Dialogues in stories for presenting different emotions.

Presented emotions	Robots' utterance in a story	
	The Boy Who Cried Wolf	The Three Little Pigs
Anger	That's not nice!	They shouldn't tease him like that
Anticipation	This should be good.	I wonder what's going to happen!
Disgust	Gross!	He can't want to EAT them!
Fear	He's going to eat the sheep!	Oh no!
Happiness	That sounds nice!	Good!
Sadness	All his sheep are gone	He destroyed their homes
Surprise	Why didn't they help?	Woah, that's fast!

280
281 **3.3 Procedure**

282 A single participant participated in each session. Note that this study was completed before the COVID
283 pandemic. Thus, there was no COVID-relevant procedure. After the consent form procedure, each participant
284 interacted with all 8 conditions of robots and voice types and all 7 presented emotions. The 8 conditions were
285 separated into two sessions to help participants recall and compare four different conditions each. The presented
286 order of each condition was counterbalanced. In each condition, the participant was instructed to read the script
287 aloud in front of a robot and wait for and listen to the robots' emotional comments at various points in the story,
288 which were marked down in the given script. Before reading the script and listen to the robots, participants were
289 explained about all possible voice types they would interact with during the experiment. All voice clips were
290 embedded in each robot and the voice was triggered by a remote controller which was controlled by an
291 experimenter. Participants were aware that the robots were not acting autonomously. Other than vocal
292 communication, the participants did not do any physical interaction with the robot.

293 The experimental environment (upper) and the whole procedure including each step (lower) are depicted
294 in Figure 1.



295
296 **Figure 1.** Experiment settings with NAO (left) and Pleo (right) (upper) and experimental procedure including
297 each step (lower).
298

299 The participants were asked to fill out several questionnaires after listening to each comment generated
300 from the robots, after finishing reading each full story, and after experiencing four conditions. Specifically, after
301 each response to seven emotions, each condition, and each session, the surveys were conducted for measuring the
302 accuracy of emotion perception and characteristics (Warmth, Honesty, Trustworthiness), naturalness and
303 preferences (Likability, Attractiveness) of presented emotions. The questionnaire consisted of open questions,
304 seven-point Likert scales, and single-choice questions. Related questions were asked and each category was rated
305 using a 1 to 7 Likert-scale (1: Lowest, 7: Highest) (Appendix A).
306

307 Presented orders for emotions in the two stories were different but the order in each story was fixed to
308 maintain the storylines. Two different stories having the same 7 emotions presented and two different voice groups
309 having the same characteristics but recorded by different voice actors and two different TTS engines were
310 employed to generalize the results. Each participant experienced both human voice actors and both TTS sounds.
311 The examples of the presented order are depicted in Table 2. To validate the equivalence in emotion recognition
312 accuracy, clarity, suitability, and preference, after the experiment, the results were analyzed (Table 3) showing
313 similar results in all categories. The experiment took 2 hours at most as approved by IRB. Most participants
314 completed it within 1.5 to 2 hours.
315

316 **Table 2.** Examples of the presented order

PID	Start	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	Trial 7	Trial 8
	Robot	NAO	Pleo	NAO	Pleo	NAO	Pleo	NAO	Pleo
	Voice Type	Regular	Characterized NAO	TTS	Characterized Pleo	Characterized Pleo	TTS	Characterized NAO	Regular
	Story*	Pigs	Wolf	Pigs	Wolf	Pigs	Wolf	Pigs	Wolf
1	Voice Group*	Group A	Group A	Group A	Group A	Group B	Group B	Group B	Group B
	Robot	Pleo	NAO	Pleo	NAO	Pleo	NAO	Pleo	NAO
	Voice Type	Characterized NAO	Characterized Pleo	Regular	TTS	Characterized Pleo	TTS	Characterized NAO	Regular
2	Story*	Pigs	Wolf	Pigs	Wolf	Pigs	Wolf	Pigs	Wolf

Voice Group	Group B	Group B	Group B	Group B	Group A	Group A	Group A	Group A
-------------	---------	---------	---------	---------	---------	---------	---------	---------

317 **Pigs: The three little pigs, Wolf: The boy who cried wolf*

318 ***Group A and Group B had the same characteristics but were recorded by different voice actors and TTS engines*

319
320 **Table 3.** Accuracy, clarity, suitability, and preference over stories and voice groups.

		Accuracy	Clarity	Suitability	Preference
Story	The Boy Who Cried Wolf	57.0%	5.13	4.64	4.10
	The Three Little Pigs	56.1%	5.25	4.78	4.38
Voice Group	Group A	58.6%	5.05	4.53	4.16
	Group B	53.0%	5.11	4.68	4.33

321

322 **4. Results**

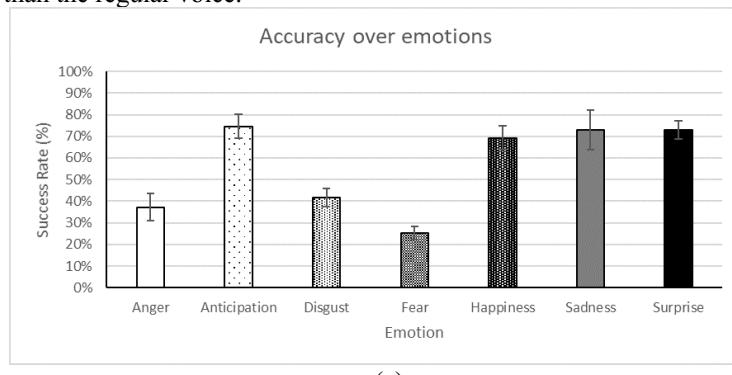
323 **4.1 Data Collection**

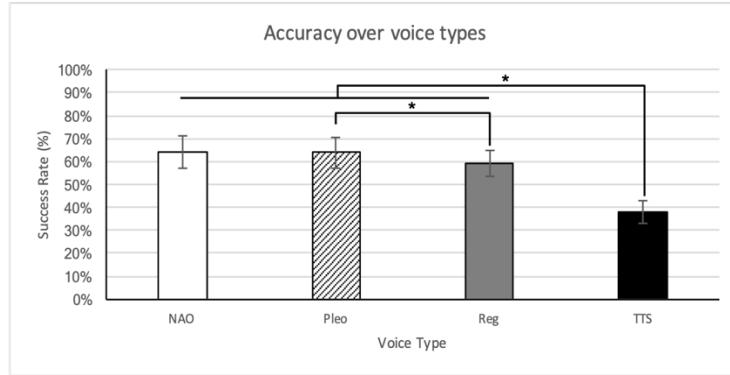
324 The answer to open questions regarding emotions was interpreted by two examiners. Each examiner
325 categorized all the answers into seven pre-defined emotions or marked as ‘indistinguishable’ if the answers do not
326 fall into any categories. Two examiners worked independently, and the inter-rater reliability test showed the high
327 coefficient value of Cronbach Alpha using variance (=0.86). If interpretations from examiners were different, a
328 third examiner reviewed the answers and decided which emotion the answer fell into.

329

330 **4.2 Emotion Perception: Accuracy, Clarity, Suitability, and Features**

331 First, the emotion recognition accuracy, defined as the proportion of correct emotion answers, was
332 analyzed. Figure 2 and Table 4 show the descriptive statistics of emotion recognition accuracy across presented
333 emotions, voice types, and robots. Regarding presented emotions, anger, disgust, and fear showed lower
334 accuracies than positive emotions, such as anticipation and happiness. The accuracies for anger, disgust, and fear
335 were 37.5%, 41.9%, and 25.6%, which were all lower than 50%. These three extreme conditions were excluded
336 in statistical analysis to minimize the effects of biased data sets. Results were analyzed with the aligned rank
337 transform (ART) (Wobbrock, Findlater, Gergle, & Higgins, 2011) for factorial analyses since there are 3 factors
338 (Robots, Voice Types, and Emotions) and dependent variable (1: correct, 0: wrong) is not normally distributed.
339 To apply ART, we first computed residuals and estimated effects for all main and interaction effects. After
340 computing aligned response, we assigned averaged ranks. With this data, we could perform a full-factorial
341 repeated measures analysis of variance (ANOVA) following the guidelines of Wobbrock et al. (2011). The ART
342 allowed analyzing the aligned-ranked data with a 2 (Robots) x 4 (Voice Types) x 4 (Emotions) repeated measures
343 ANOVA and testing all main effects and interaction effects. The result revealed a statistically significant
344 difference across robots and voice types. However, there was no significant interaction effect between robots and
345 voice types. For the multiple comparisons among voice types, paired-samples t-tests were conducted. All pairwise
346 comparisons applied a Bonferroni adjustment to control for Type-I error in this study, which meant that we used
347 more conservative alpha levels (critical alpha level = .0083 (0.05/6)). Participants recognized emotions more
348 accurately with Pleo than NAO. Participants showed significantly lower emotion recognition accuracy in the TTS
349 voice than all other three voice types. Moreover, the characterized Pleo voice showed significantly higher emotion
350 recognition accuracy than the regular voice.





(b)

Figure 2. Accuracy of perceiving emotions over emotions (a) and voice types (b) (*: $p < 0.0083$)**Table 4.** Statistics for emotion recognition (accuracy).

Measures	Conditions	Statistics
	Main Effect for Robots	$F(1, 607) = 4.27, p = .0393$
	NAO Robot $M = 0.68, SD = 0.47$	Pleo Robot $M = 0.76, SD = 0.43$
Accuracy (%)	Main Effect for Voice Types	$F(3, 607) = 16.07, p < .0001$
	Characterized NAO $M = 0.64, SD = 0.48$	$t(19) = 5.78, p < .0001$
	Characterized Pleo $M = 0.64, SD = 0.48$	TTS $M = 0.38, SD = 0.49$ $t(19) = 6.15, p < .0001$
	Regular $M = 0.59, SD = 0.49$	$t(19) = 3.34, p = .0009$
	Characterized Pleo $M = 0.64, SD = 0.48$	Regular $M = 0.59, SD = 0.49$ $t(19) = 2.80, p = .0053$

Table 5 shows the confusion matrix between presented and perceived emotions. Anger was mostly misclassified as sadness (32.50%), disgust was mostly misclassified as surprise (18.75%) or undistinguished (14.38%), and fear was mostly misclassified as anticipation (28.75%). Interestingly, 21.25% of happiness was also undistinguished even though it showed higher emotion recognition accuracy than anger, disgust, and fear did.

Table 5. The confusion matrix between presented and perceived emotions (grey: most misclassified)

Presented		Perceived						
		anger	anticipation	disgust	fear	happiness	sadness	surprise
anger	Count	60	1	7	6	0	7	5
	Col %	37.50	0.63	4.38	3.75	0.00	4.38	3.13
anticipation	Count	15	120	14	46	13	2	11
	Col %	9.38	75.00	8.75	28.75	8.13	1.25	6.88
disgust	Count	8	1	67	0	2	0	0
	Col %	5.00	0.63	41.88	0.00	1.25	0.00	0.00
fear	Count	0	0	14	41	0	0	1
	Col %	0.00	0.00	8.75	25.63	0.00	0.00	0.63
happiness	Count	1	9	1	0	111	1	3
	Col %	0.63	5.63	0.63	0.00	69.38	0.63	1.88
sadness	Count	52	1	4	27	0	118	9
	Col %	32.50	0.63	2.50	16.88	0.00	73.75	5.63
surprise	Count	5	2	30	10	0	7	117
	Col %	3.13	1.25	18.75	6.25	0.00	4.38	73.13
undistinguished	Count	19	26	23	30	34	25	14
	Col %	11.88	16.25	14.38	18.75	21.25	15.63	8.75

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

Second, clarity and suitability of perceived emotions over robots, voice types, and presented emotions were computed with the results as shown in Figure 3 and Table 6. Clarity and suitability were rated using a 1 to 7 Likert-scale (1: Lowest, 7: Highest). We considered only responses with correctly recognized emotions. The clarity and suitability scores were measured for the present emotions; therefore, participants had to first recognize the emotions correctly to have their rating scores to be considered for the clarity and suitability measurements without bias. Overall, there were differences found in clarity over emotions and voice types and suitability over voice types. For robots, there were no significant differences found in both categories. Results were analyzed with a 2 (Robot) x 4 (Voice Type) x 7 (Emotions) repeated measures analysis of variance (ANOVA). The result revealed a statistically significant difference in clarity ratings among voice types and presented emotions. For the multiple comparisons among voice types, paired-samples t-tests were conducted. The TTS voice had a significantly lower clarity rating than the characterized and regular voices. In addition, the characterized Pleo voice had a significantly lower clarity rating than the characterized NAO and regular voices. Participants reported Sadness as having a significantly higher clarity rating than Happiness. There was also a significant interaction effect between voice types and presented emotions. It is assumed that the relatively too low rating score of TTS voice compared to the other three voices caused the interaction effects. In suitability ratings, the result revealed a statistically significant difference among voice types. There were no significant interaction effects between emotions and voice types. For the multiple comparisons among voice types, paired-samples t-tests were conducted. Participants showed significantly lower rating scores in the TTS voice than all other three voice types.

386
387
388

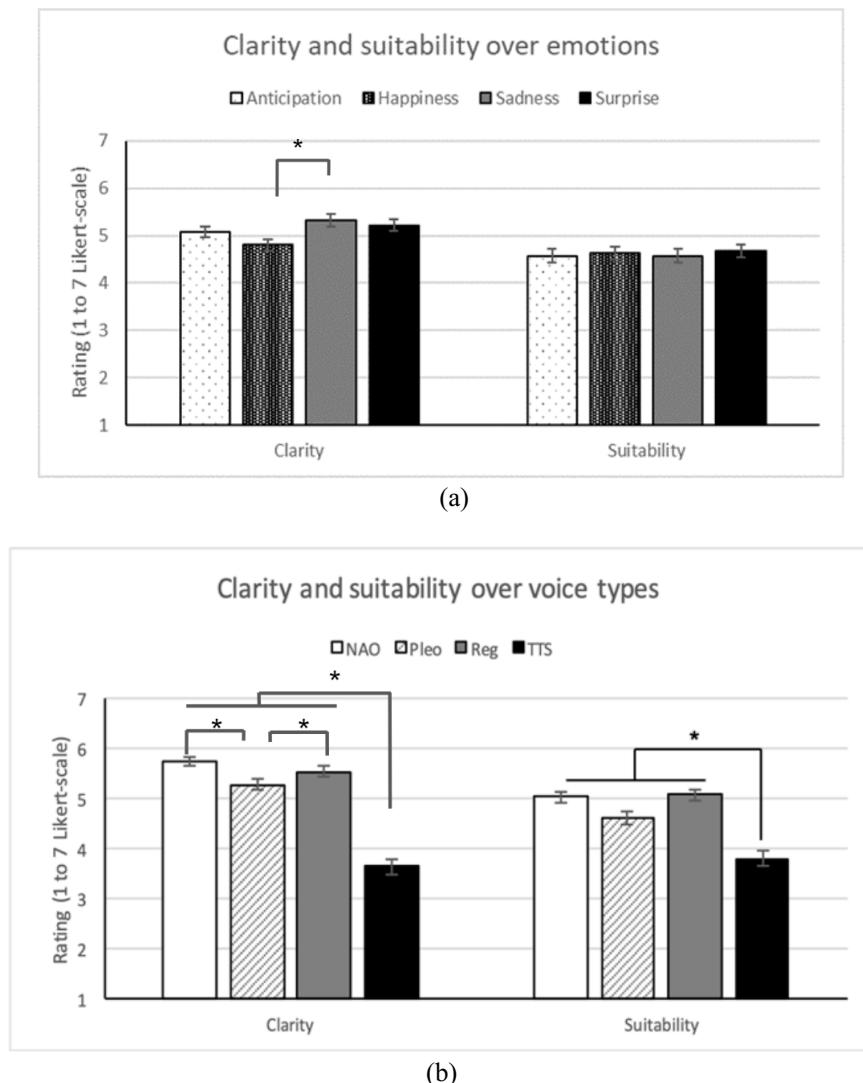


Figure 3. The rating scores of clarity and suitability over emotions (a) and voice types (b) (*: $p < 0.05$).

389
390
391
392
393
394
395

Table 6. Statistics for clarity and suitability.

Measures	Conditions	Statistics
Clarity	Main Effect for Voice Types	$F(3, 52.86) = 18.32, p < .0001$
	Characterized NAO $M = 5.61, SD = 1.05$	$t(19) = 9.89, p < .0001$
	Characterized Pleo $M = 5.10, SD = 1.38$	$t(19) = 6.52, p < .0001$
	Regular $M = 5.76, SD = 1.22$	$t(19) = 11.36, p < .0001$
	Characterized NAO $M = 5.61, SD = 1.05$	$t(19) = 3.39, p = .0010$
	Characterized Pleo $M = 5.10, SD = 1.38$	$t(19) = 3.82, p = .0002$
	Main Effect for Emotions	$F(6, 115.1) = 3.25, p = .0055$
	Sadness $M = 5.41, SD = 1.47$	$t(19) = 2.02, p = .0456$
	Happiness $M = 5.00, SD = 1.45$	$F(18, 312.3) = 2.77, p = .0002$
	Interaction between Voice Types and Emotions	
Suitability	Main Effect for Voice Types	$F(3, 57.58) = 6.59, p = .0007$
	Characterized NAO $M = 5.02, SD = 1.59$	$t(19) = 3.96, p = .0002$
	Characterized Pleo $M = 4.61, SD = 1.77$	$t(19) = 3.07, p = .0032$
	Regular $M = 5.07, SD = 1.47$	$t(19) = 3.86, p = .0003$

Finally, the features by which to perceive emotions were analyzed with the results as shown in Table 7. The answers were collected from an open question ("What characteristics of the voice brought to mind that emotion?") and the number of occurrences of words was counted. Each participant was allowed to provide multiple answers for each comment. After reading through each participant's answer, we categorized their comments into different feature groups. Terms used in the participant's answers that fell into specific features were counted. Most of the emotions were perceived from tone by 29.53%, words by 19.29%, and pitch by 17.72%. For each emotion, speech tone highly influenced perceiving anger (29.58%), anticipation (32.12%), happiness (32.56%), sadness (32.89%), and surprise (27.97%). Different from these emotions, disgust was mostly perceived by words (26.19%). Fear was perceived by different features such as pitch (24.49%), words (22.45%), and tone (20.41%).

Table 7. The result of surveys on features that used to perceive emotions. (grey: most used)

Anticipatio									
Feature	Anger	n	Disgust	Fear	Happiness	Sadness	Surprise	Total	
Context	Count*	2	9	1	3	6	8	7	36
	Col %**	2.82%	6.57%	1.19%	6.12%	4.65%	5.37%	4.90%	4.72%
Familiarity	Count	3	7	5	7	5	9	6	42
	Col %	4.23%	5.11%	5.95%	14.29%	3.88%	6.04%	4.20%	5.51%
Length	Count			7		2	4	4	17
	Col %	0.00%	0.00%	8.33%	0.00%	1.55%	2.68%	2.80%	2.23%
Loudness	Count	8	5	4	2	3	3	5	30
	Col %	11.27%	3.65%	4.76%	4.08%	2.33%	2.01%	3.50%	3.94%
Mood	Count	3	5	5	1	8	6	6	34
	Col %	4.23%	3.65%	5.95%	2.04%	6.20%	4.03%	4.20%	4.46%
Pitch	Count	12	26	10	12	26	31	18	135
	Col %	16.90%	18.98%	11.90%	24.49%	20.16%	20.81%	12.59%	17.72%
Pronunciati on	Count	4	1	3	2	1	4	8	23
	Col %	5.63%	0.73%	3.57%	4.08%	0.78%	2.68%	5.59%	3.02%
Speed	Count	2	5	4	1	2	15	9	38
	Col %	2.82%	3.65%	4.76%	2.04%	1.55%	10.07%	6.29%	4.99%

Tone	Count	21	44	19	10	42	49	40	225
	Col %	29.58%	32.12%	22.62%	20.41%	32.56%	32.89%	27.97%	29.53%
Words	Count	9	28	22	11	27	14	36	147
	Col %	12.68%	20.44%	26.19%	22.45%	20.93%	9.40%	25.17%	19.29%
Vague	Count	7	7	4		7	6	4	35
	Col %	9.86%	5.11%	4.76%	0.00%	5.43%	4.03%	2.80%	4.59%
Total	Count	71	137	84	49	129	149	143	762
				100.00			100.00		
	Col %	100.00%	100.00%	%	100.00%	100.00%	%	100.00%	100.00%

* The total number of answers

** The proportion of the count in each column

4.3 Characteristics: Warmth, Honesty, and Trustworthiness

Figure 4 and Table 8 showed the rating scores in warmth, honesty, and trustworthiness over voice types and robots. For robots, there were no significant differences found in three categories. Because by definition, emotions are short-lasting “states”, not long-lasting “traits”, the factor emotion was not analyzed in the following perception sections. Results were analyzed with a 2 (Robot) x 4 (Voice Type) repeated measures analysis of variance (ANOVA). First, the result revealed a statistically significant difference in warmth among voice types. There was no interaction effect between robots and voice types. For the multiple comparisons among voice types, paired-samples t-tests were conducted. In all three categories, the results commonly showed the lowest score in a TTS voice. Also, there were no significant differences among the characterized NAO, Pleo, and regular voices.

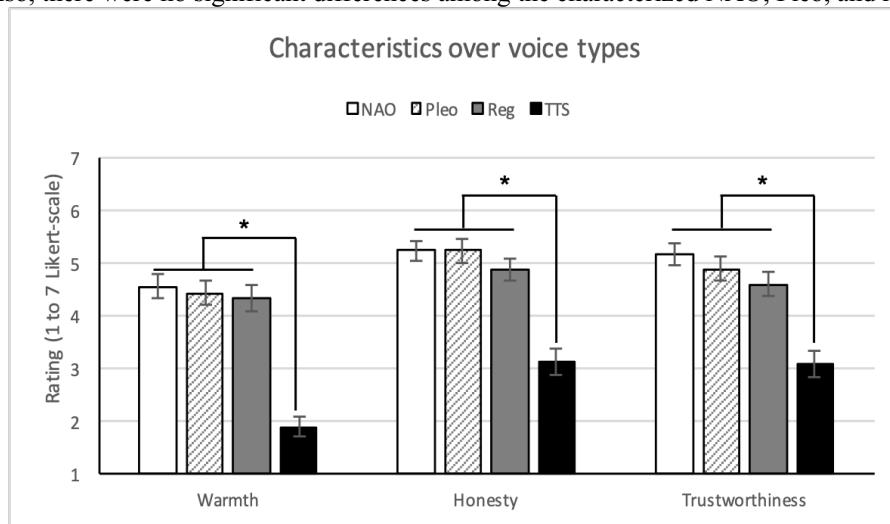


Figure 4. The rating scores of characteristics (*: $p < 0.05$).

Table 8. Statistics for characteristics (warmth, honesty, trustworthiness).

Measures	Conditions	Statistics
Warmth	Main Effect for Voice Types	$F(3, 57) = 33.84, p < .0001, \eta_p^2 = .640$
	Characterized NAO $M = 4.55, SD = 1.52$	$t(19) = 7.48, p < .0001$
	Characterized Pleo $M = 4.32, SD = 1.55$	$t(19) = 7.14, p < .0001$
	Regular $M = 4.33, SD = 1.49$	$t(19) = 7.14, p < .0001$
	Main Effect for Voice Types	$F(3, 57) = 32.24, p = < .0001, \eta_p^2 = .630$
	Characterized NAO $M = 5.23, SD = 1.19$	$t(19) = 6.67, p < .0001$
Honesty	Characterized Pleo $M = 5.23, SD = 1.40$	$t(19) = 6.87, p < .0001$
	Regular $M = 4.88, SD = 1.34$	$t(19) = 5.70, p < .0001$

	Main Effect for Voice Types	$F(3, 57) = 20.19, p < .0001, \eta_p^2 = .515$
Trustworthiness	Characterized NAO $M = 5.15, SD = 1.33$	$t(19) = 5.61, p < .0001$
	Characterized Pleo $M = 4.88, SD = 1.44$	$M = 3.08, SD = 1.54$
	Regular $M = 4.58, SD = 1.45$	$t(19) = 4.17, p < .0001$

426

427

4.4 Naturalness

428

429

430

431

432

433

434

435

436

437

438

Figure 5 and Table 9 showed the rating scores in naturalness over voice types and robots. For voice types, the regular voice showed the highest scores in naturalness. For robots, there were no significant differences found in both categories.

Results were analyzed with a 2 (Robot) x 4 (Voice Type) repeated measures analysis of variance (ANOVA). Since there was no interaction effect between robots and voice types, paired-samples t-tests were conducted for the multiple comparisons among voice types. First, the result revealed a statistically significant difference in the rating scores in naturalness among voice types. Participants showed significantly lower rating scores in the TTS voice than all other three voice types. The regular voice showed significantly higher rating scores than the characterized Pleo voice.

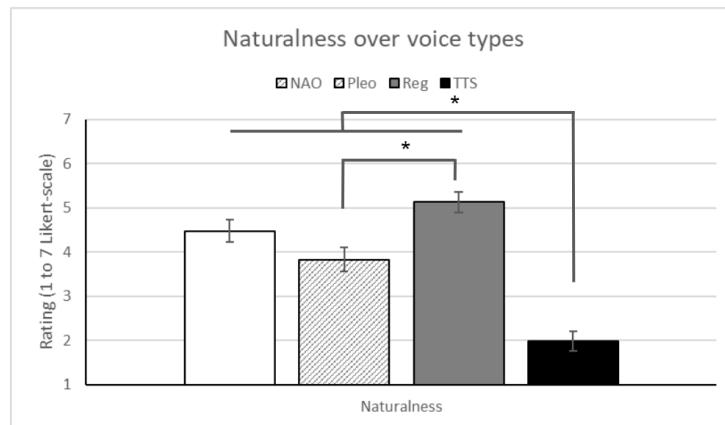


Figure 5. The rating scores of naturalness (*: $p < 0.05$).

439

440

441

442

Table 9. Statistics for naturalness.

Measures	Conditions	Statistics
Naturalness	Main Effect for Voice Types	$F(3, 57) = 37.67, p < .0001, \eta_p^2 = .665$
	Characterized NAO $M = 4.48, SD = 1.58$	$t(19) = 6.75, p < .0001$
	Characterized Pleo $M = 3.83, SD = 1.71$	$M = 1.98, SD = 1.40$
	Regular $M = 5.13, SD = 1.42$	$t(19) = 8.49 p < .0001$
	Characterized Pleo $M = 3.83, SD = 1.71$	$M = 5.13, SD = 1.42$
		$t(19) = 3.45, p = .0011$

443

444

4.5 Preferences: Likability and Attractiveness

445

446

447

448

449

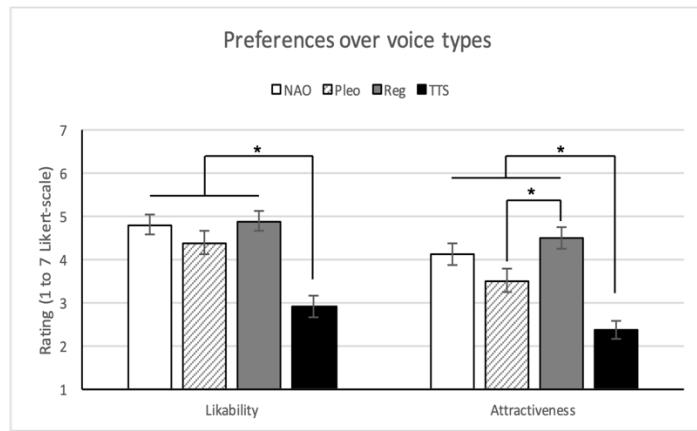
450

451

Figure 6 and Table 10 showed the rating scores in likability and attractiveness over voice types and robots. Among voice types, the TTS voice commonly showed the lowest rating scores in both categories. For robots, there were no significant differences found in both categories.

Results were analyzed with a 2 (Robot) x 4 (Voice Type) repeated measures analysis of variance (ANOVA). First, the result revealed a statistically significant difference in likability among voice types. There was no interaction effect between robots and voice types. For the multiple comparisons among voice types, paired-samples t-tests were conducted. Participants showed significantly lower rating scores in the TTS voice than all

452 other three voice types. Next, the result revealed a statistically significant difference in attractiveness among voice
 453 types. There was no interaction effect between robots and voice types. For the multiple comparisons among voice
 454 types, paired-samples t-tests were conducted. Same as shown in a likability category, participants showed
 455 significantly lower rating scores in the TTS voice than all other three voice types. The regular voice showed
 456 significantly higher rating scores than the characterized Pleo voice.
 457



458
 459 **Figure 6.** The rating scores of preferences (*: $p < 0.05$).
 460
 461

Table 10. Statistics for preferences (likability, attractiveness).

Measures	Conditions	Statistics
Likability	Main Effect for Voice Types	$F(3, 57) = 18.91, p < .0001, \eta_p^2 = .499$
	Characterized NAO $M = 4.80, SD = 1.44$	$t(19) = 4.84, p < .0001$
	Characterized Pleo $M = 4.38, SD = 1.64$	$t(19) = 3.90, p = .0003$
	Regular $M = 4.88, SD = 1.42$	$t(19) = 5.19, p < .0001$
	Main Effect for Voice Types	$F(3, 57) = 18.65, p = < .0001, \eta_p^2 = .495$
	Characterized NAO $M = 4.10, SD = 1.53$	$t(19) = 4.85, p < .0001$
Attractiveness	Characterized Pleo $M = 3.50, SD = 1.63$	$t(19) = 3.18, p = .0025$
	Regular $M = 4.50, SD = 1.53$	$t(19) = 6.14, p < .0001$
	Characterized Pleo $M = 3.50, SD = 1.63$	$t(19) = 2.97, p = .0045$
	Regular $M = 4.50, SD = 1.53$	

462 5. Discussions

463 In the experiment, 20 participants experienced verbal interactions with robots while reading scripts of
 464 fairy tales to robots. Humanoid and zoomorphic robots used four different voice types and seven emotions were
 465 presented to participants through robots' verbal comments. Each participant interacted with all 8 conditions of
 466 robots and voice types and all 7 presented emotions. The participant was instructed to read the script in front of a
 467 robot and listen to the emotional comment from the robot at various points in the story. The participant filled out
 468 the questionnaire after listening to each emotional comment, completing each condition and completing 4
 469 conditions. The emotion recognition accuracy and subjective ratings such as characteristics, naturalness, and user
 470 preferences were measured.
 471

472 Referring to the research questions and hypotheses in Section 2.4, the results are listed as follows:

473 • RQ1:

- 474 ○ H1a (rejected): A significantly higher emotion recognition accuracy was reported from Pleo robot
 475 than NAO robot.

476 ○ H1b (supported): The TTS voice showed significantly lower emotion recognition accuracy than the
 477 characterized NAO, characterized Pleo, and regular voices.
 478 ○ H1c (rejected): The characterized Pleo voice showed significantly higher emotion recognition
 479 accuracy than the regular voice.
 480 ○ H1d (supported): Anger, disgust, and fear had significantly lower emotion recognition accuracy with
 481 lower rating scores in clarity and suitability than other emotions.

482 • RQ2:
 483 ○ H2a (rejected): No significant difference was found among robot types for different characteristics
 484 ratings.
 485 ○ H2b (supported): The TTS voice showed significantly lower rating scores in warmth, honesty and
 486 trustworthiness than the characterized NAO, characterized Pleo, and regular voices; and the regular
 487 voice showed significantly higher rating scores in naturalness than the characterized Pleo and TTS
 488 voices.

489 • RQ3:
 490 ○ H3a (rejected): There were no significant differences found in both likeability and attractiveness
 491 ratings for robot types.
 492 ○ H3b (supported): The regular voice showed significantly higher rating scores in attractiveness than
 493 the TTS voice.
 494 ○ H3c (rejected): The regular voice also showed significantly higher rating scores in attractiveness
 495 than the characterized Pleo voice.

496
 497 The critical points and explanations in each category are described below by dependent variables.
 498

499 **5.1 Accuracy, Clarity, and Suitability**

500 The result showed that the emotion recognition accuracy significantly differed depending on presented
 501 emotions (H1d). As shown in Table 5, overall, unpleasant emotions with high arousal levels such as anger, disgust
 502 and fear showed significantly lower emotion recognition accuracy than other emotions such as anticipation,
 503 happiness, surprise and sadness did. There might be possible explanations about why some emotions were not
 504 accurately perceived. First, the emotion recognition accuracy results aligned with our previous study (Ko et al.,
 505 2020) that negative emotions received lower emotion recognition accuracy than positive emotions. Those two
 506 fairy tales used in the experiments were well-known for children and thus, participants might expect pleasant
 507 emotions more than unpleasant emotions. The most misclassified three emotions were all unpleasant emotions
 508 with high arousal levels (Russell, 1980). Next, the intensity of emotions might be different, which causes
 509 inequivalence among emotions. For example, among auditory stimuli used in the experiment, the intensity of
 510 unpleasant emotions might be lower than the one of positive emotions. Lastly, the mixed result was possible
 511 because there were many emotions presented through auditory cues. As shown in (Birkholz, Martin, Willmes,
 512 Kröger, & Neuschaefer-Rube, 2015), although emotion recognition can be fairly accurate when listeners choose
 513 from a limited set of emotion categories, agreement drops significantly as more categories of emotion become
 514 available. Note that in our experiment, the participants freely guessed each emotion without preset options. Also,
 515 fewer emotions can be perceived from voice (Cordaro, Keltner, Tshering, Wangchuk, & Flynn, 2016) compared
 516 to facial expressions.

517 For voice types (H1b & H1c), as expected, the TTS voice showed significantly lower emotion
 518 recognition accuracy than all other human voice types—characterized NAO, characterized Pleo, and regular
 519 voices—did. Furthermore, the TTS voice also showed significantly lower rating scores in clarity and suitability.
 520 It suggests that these TTS voices are inappropriate for emotive expressions since the intended emotions might not
 521 be delivered correctly to listeners even though they have the same semantic content. Instead, recorded human
 522 voices such as characterized NAO, characterized Pleo, and regular voices are more suitable for robots to express
 523 emotive voices and deliver emotions correctly. Most interestingly, the characterized Pleo voice showed
 524 significantly higher emotion recognition accuracy than the regular voices did. There was a possibility that these
 525 results suggest that a characterized voice might be more appropriate for emotive expressions delivering intended
 526 emotions more accurately and facilitating the interactions than just a regular voice. However, because only
 527 characterized Pleo voice showed a higher emotion recognition accuracy in the present study, more research should
 528 be conducted to determine if characterized voice types are more effective than the regular voice in expressing the
 529 emotions more accurately. It also suggests that there may be value in creating TTS engines that exaggerate
 530 emotional characterization for use in contexts where highly recognizable emotional signals are desired. Mimicking
 531 a natural speaking style may not be the optimal approach for delivering emotional information via synthetic speech
 532 from a robot. The results provide additional guidance on designing robot speech to deliver different emotions
 533 more effectively. As shown, other emotions can be sufficiently conveyed by affective tones, but disgust and fear
 534 require more semantic contents.

535 For robot types (H1a), NAO showed significantly lower emotion recognition accuracy than Pleo for
536 happiness (NAO: $M = 0.61$, $SD = 0.49$; Pleo $M = 0.76$, $SD = 0.43$, $p < .05$). However, there was no difference
537 between voice types of the two robots. We can cautiously infer that the participants might expect happy
538 expressions from Pleo more than Nao and it caused higher emotion recognition accuracy in happiness. According
539 to the previous findings (Díaz, Nuño, Saez-Pons, Pardo, & Angulo, 2011; Fraune, Sherrin, Sabanović, & Smith,
540 2015; Haring, Watanabe, & Mougenot, 2013), people perceive that Pleo manifested positive emotions (e.g., Love,
541 Grateful) more than NAO (e.g., Uneasy, Fear). However, to the best of our knowledge, the relationships between
542 perceived emotions (e.g., Happiness) and robots' appearances have not been comprehensively studied. The overall
543 underlying cognitive process of recognizing emotions from form factors should be investigated in the future.

544 545 **5.2 Characteristics, Naturalness, and Preferences**

546 Surprisingly, no significant difference was found on participants' perception of robot's characteristics
547 and preferences (H2a & H3a). This result might suggest that participants perceived both robots as similar, or they
548 evaluated the auditory portion of the social robots more than the embodiment and appearance regarding the ratings
549 for each category. Because participants reported a significantly higher emotion recognition accuracy in Pleo than
550 NAO robot, this might imply that performance and perception might not always be congruent. In the results, the
551 TTS voice showed the significantly lowest rating scores across all characteristics and preferences including
552 likability, attractiveness, warmth, honesty, and trustworthiness (H2b & H3b). The TTS voice showed a
553 significantly lower rating score in the naturalness feature and the result might be because it had basically a flat
554 voice without variations in pitch and speed. Other recorded voices such as characterized and regular voices having
555 intonations and variations in speech showed significantly higher scores in the naturalness rating than the TTS
556 voice.

557 A regular voice showed significantly higher rating scores in naturalness and attractiveness than a
558 characterized Pleo voice (H3c). The results indicate that a regular voice might be more suitable for general use
559 with higher user preferences and naturalness than characterized or TTS voices.

560 Overall, these results indicate that the characterized voice might lead to the highest emotion recognition
561 accuracy, but the regular voice is the most preferred. It is assumed that characterized voices might be appropriate
562 for emotional expressions. On the other hand, regular voices which show the highest attractiveness and naturalness
563 might be suitable for general use. For example, for the first stage of human-robot interaction, regular voices might
564 be appropriate to facilitate the interaction. However, for the next step for in-depth and emotion-related
565 interactions, a characterized voice might be helpful to express emotional states and establish a unique relationship
566 between users and robots since this stage involves personal familiarity with the other person and strong emotional
567 commitment to the relationship (Lewis & Weigert, 1985). To further generalize our results, more experiments are
568 required to consider possible other variables.

569 570 **5.3 Anecdotal Findings**

571 Interestingly, there were no significant effects of the appearance of robots on all dependent variables
572 except for emotion recognition accuracy. This might be because the given tasks were mostly focused on
573 conversation which requires reading aloud and listening to verbal feedback but were not relevant to visual cues
574 as much as auditory cues. According to (Frith & Frith, 2006), emotions are perceived by facial expressions and
575 whole body movements instead of fixed features such as appearances, but these dynamic visual cues were not
576 applied in this experiment.

577 There were interesting comments on auditory feedback from participants. A participant said, "*(P2) The*
578 *final robot seemed to be happy at the start of the wolf story. My brain was saying it shouldn't be that but that's all*
579 *my emotions were getting*", which indicates the individual differences in expectation. Other comments such as
580 "*(P15) The robots sounded more surprised/happier than showing signs of any other emotion*" and "*(P18) When*
581 *Pleo would say "What!" in a shocked tone, it was easy to recognize his surprise in both the natural sounding voice*
582 *and robotic sounding voice*," which showed that the intensity of emotions could vary for different participants.

583 584 **5.4 Limitations**

585 There are limitations and improvements that need to be considered in the next experiment to broaden this
586 study and draw more reliable results. First, twenty participants may not be enough to generalize the results of the
587 present study. We plan to replicate the study with more participants and expand it to other populations (e.g.,
588 children and older adults). Because the present study includes multiple factors (robot types, emotions, and voice
589 types), a different approach of statistical tests could be used (e.g., a linear mixed effect model), to investigate the
590 effects of multiple factors on one measurement. In the future study, we will explore more appropriate statistical
591 tests for further analysis.

592 The equivalence among the intensity of emotions should be secured. We used one of the most widely
593 used emotion sets, Ekman's basic emotions, but the result showed that some of them were not clearly distinguished

594 by participants. The present study excluded the selected negative emotions with poor emotion recognition
595 accuracy due to potential biases, but again using a different statistical model or analysis will help us understand
596 the deviation. Using the only two phrases for each emotion might have provided biases to the participants' emotion
597 recognition. Also, it may not be sufficient to ensure the generalizability of the finding. Depending on the content
598 of the phrase, emotional semantics or strength might have been changed. However, as our results indicated, even
599 with those same phrases, the participants showed significantly different emotion recognition accuracy depending
600 on the robot type and voice type. In future research, we will diversify the phrases more with the similar length.
601 The order of presentation might also have influenced the participants' responses. However, it is an intrinsic
602 limitation because we were not able to change the storyline every time. If we randomly change the order of
603 emotions without the context of the story, the experiment might lack external validity. We believe that people
604 perceive emotions in the context.

605 Next, the characteristics of voice types should be more specifically studied to figure out which factors
606 cause differences. In this study, characterized NAO and Pleo voices were generated by voice actors to exploit
607 their expertise. It was a first attempt to produce the voice that well expresses the characteristics of NAO and Pleo.
608 Regarding the emotion recognition accuracy results, participants reported a significantly higher emotion
609 recognition accuracy in the characterized Pleo voice (but not in the characterized Nao voice) than the regular
610 voice. The reason for this result might be that different appearances of the robots (animal versus humanoid)
611 impacted participants' emotion recognition, because participants recognized emotions significantly more
612 accurately in the Pleo robot than the NAO robot. In the follow-up study (Appendix B), participants reported a
613 higher emotion recognition accuracy in both characterized voices (NAO and Pleo) than the regular voice. In the
614 next experiment, the acoustic characteristics with specific physical properties (e.g., frequency range, speed,
615 intensity) will also be considered when the representative voice types were designed so that the influential factors
616 for different voice types will be investigated in depth. This approach will enable us to quantify the relationship
617 between voice parameters and perception effects and model the robot voices. The gender effects will also be
618 investigated. In this experiment, only male voices were used to control the gender effect and female voices were
619 not included. We will design female voices for all four voice types and compare the gender differences in the
620 following experiment.

621 There might have been some novelty effects. The participants did not have any previous opportunity to
622 interact with or see the robots used in the present study. To minimize any novelty effects, the orders of the robots
623 and voice types were counterbalanced across participants. Therefore, while interacting with the robots, the
624 plausible novelty effects might have been reduced. We also had a standardized introductory section and minimized
625 features used in the experiment (i.e., we used only the "speech" function and did not use other features, such as
626 moving robot arms or its head). We are conducting separate experiments to see the effects of robot gestures and
627 facial expressions. Taking all together of these experiments, we will be able to see the separate and overall effects.
628

629 **6. Future Work**

630 Throughout this study, various aspects of social robots such as appearances, emotive expressions, and
631 voice types were investigated. Based on the results and experimental settings, follow-up studies will be conducted
632 with two complementary approaches. First, the research scope will be narrowed down to focus more on the
633 acoustic characteristics of voice types having distinct features. This approach will help in-depth understanding in
634 emotive and interactive robotic systems and developing computational models for emotional and conversational
635 human-robot interactions. Gender-specific factors such as the user's gender and the gender of robot voice will
636 also be considered based on the previous result (Eyssel, Kuchenbrandt, et al., 2012). Meanwhile, other factors
637 such as ages and modalities will be included to widen the research scope to investigate the multiple influential
638 factors. As provided from previous studies (Fong et al., 2003; Nabe et al., 2006; Nonaka et al., 2004), considering
639 that the interactions take place via various modalities, facial expressions, gaze and gestures (Ham, Cuijpers, &
640 Cabibihan, 2015), and even non-verbal sounds can be included as independent variables. The results will provide
641 a design guideline for emotional and trustworthy robots, especially employing emotive expressions and facilitate
642 the relationship between people and social robots such as assistive robots, voice assistants, and any other
643 conversational agents.

644 **Acknowledgements**

645 This work was partly supported by National Institutes of Health (US) (No.1 R01 HD082914-01).

646 **647 References**

648 Bachorowski, J. A., & Owren, M. J. (2003). Sounds of emotion: Production and perception of affect-related vocal
649 acoustics. *Annals of the New York Academy of Sciences*, 1000(1), 244-265.
650 Bänziger, T., Grandjean, D., & Scherer, K. R. (2009). Emotion recognition from expressions in face, voice, and
651 body: the Multimodal Emotion Recognition Test (MERT). *Emotion*, 9(5), 691
652

653 Barnes, J., Hosseini, S. M. F., Jeon, M., Park, C. H., & Howard, A. M. (2017). *The influence of robot design on*
654 *acceptance of social robots*. Paper presented at the 2017 14th International Conference on Ubiquitous
655 Robots and Ambient Intelligence (URAI).

656 Barnes, J. A., Park, C. H., Howard, A., & Jeon, M. (2020). Child-Robot Interaction in a Musical Dance Game:
657 An Exploratory Comparison Study between Typically Developing Children and Children with
658 Autism. *International Journal of Human-Computer Interaction*, 1-18.

659 Barnes, J., Richie, E., Lin, Q., Jeon, M., & Park, C. H. (2018). *Emotive Voice Acceptance in Human-Robot*
660 *Interaction*. Paper presented at the Proceedings of the 24th International Conference on Auditory Display.

661 Beer, J. S., & Ochsner, K. N. (2006). Social cognition: a multi level analysis. *Brain research*, 1079(1), 98-105.

662 Bevill, R., Park, C. H., Kim, H. J., Lee, J. W., Rennie, A., Jeon, M., and Howard, A. M. (2016) Interactive robotic
663 framework for multi-sensory therapy for children with autism spectrum disorder. In 2016 11th
664 ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 421-422). IEEE.

665 Birkholz, P., Martin, L., Willmes, K., Kröger, B. J., & Neuschaefer-Rube, C. (2015). The contribution of
666 phonation type to the perception of vocal emotions in German: an articulatory synthesis study. *The*
667 *Journal of the Acoustical Society of America*, 137(3), 1503-1512.

668 Bryant, D., Bornstein, J., & Howard, A. (2020). *Why Should We Gender? The Effect of Robot Gendering and*
669 *Occupational Stereotypes on Human Trust and Perceived Competency*. Paper presented at the
670 ACM/IEEE International Conference on Human-Robot Interaction (HRI), Cambridge, UK.

671 Cakmak, M., Hoffman, G., & Thomaz, A. (2016). Computational Human-Robot Interaction. *Foundations and*
672 *Trends in Robotics*, 4(2-3), 104-223. doi:10.1561/2300000049

673 Calvo, R. A., & D'Mello, S. (2010). Affect Detection: An Interdisciplinary Review of Models, Methods, and Their
674 Applications. *IEEE Transactions on Affective Computing*, 1(1), 18-37. doi:10.1109/t-affc.2010.1

675 Coeckelbergh, M. J. E., & Technology, I. (2010). Moral appearances: emotions, robots, and human morality.
676 12(3), 235-241.

677 Conti, D., Cirasa, C., Di Nuovo, S., & Di Nuovo, A. (2020). "Robot, tell me a tale!": A social robot as tool for
678 teachers in kindergarten. *Interaction Studies*, 21(2), 220-242.

679 Cordaro, D. T., Keltner, D., Tshering, S., Wangchuk, D., & Flynn, L. M. (2016). The voice conveys emotion in
680 ten globalized cultures and one remote village in Bhutan. *Emotion*, 16(1), 117.

681 Darwin, C., & Prodgger, P. (1998). *The expression of the emotions in man and animals*: Oxford University Press,
682 USA.

683 Decety, J. (2010). The neurodevelopment of empathy in humans. *Developmental neuroscience*, 32(4), 257-267.

684 Díaz, M., Nuño, N., Saez-Pons, J., Pardo, D. E., & Angulo, C. (2011). Building up child-robot relationship for
685 therapeutic purposes: From initial attraction towards long-term social engagement. In Face and Gesture
686 2011 (pp. 927-932). IEEE.

687 DiSalvo, C.F., Gemperle, F., Forlizzi, J., & Kiesler, S.B. (2002). All robots are not created equal: the design and
688 perception of humanoid robot heads. In *Proceedings of the Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques*, DIS, 321– 326.

689 Ekman, P. (1992). An argument for basic emotions. *Cognition & Emotion*, 6(3-4), 169-200.

690 Ekman, P., & Cordaro, D. (2011). What is meant by calling emotions basic. *Emotion review*, 3(4), 364-370

691 Epley, N., Waytz, A., & Cacioppo, J. T. (2007). On Seeing Human: A Three-Factor Theory of Anthropomorphism.
692 *Psychological Review*, 114(4), 864-886.

693 Eyssel, F., De Ruiter, L., Kuchenbrandt, D., Bobinger, S., & Hegel, F. (2012). 'If you sound like me, you must be
694 more human': *On the interplay of robot and user features on human-robot acceptance and*
695 *anthropomorphism*. Paper presented at the 2012 7th ACM/IEEE International Conference on Human-
696 Robot Interaction (HRI).

697 Eyssel, F., Kuchenbrandt, D., Hegel, F., & de Ruiter, L. (2012). *Activating elicited agent knowledge: How robot*
698 *and user features shape the perception of social robots*. Paper presented at the 2012 IEEE RO-MAN:
699 The 21st IEEE International Symposium on Robot and Human Interactive Communication.

700 FakhrHosseini, S. M., Hilliger, S., Barnes, J., Jeon, M., Park, C. H., & Howard, A. M. (2017). *Love at first sight:*
701 *Mere exposure to robot appearance leaves impressions similar to interactions with physical robots*.
702 Paper presented at the 2017 26th IEEE International Symposium on Robot and Human Interactive
703 Communication (RO-MAN).

704 FakhrHosseini, S. M., Lettinga, D., Vasey, E., Zheng, Z., Jeon, M., Park, C. H., & Howard, A. M. (2017). *Both*
705 *"look and feel" matter: Essential factors for robotic companionship*. Paper presented at the 2017 26th
706 IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN).

707 Feldmaier, J., Stimpfl, M., & Diepold, K. (2017). *Development of an Emotion-Competent SLAM Agent*. Paper
708 presented at the Proceedings of the Companion of the 2017 ACM/IEEE International Conference on
709 Human-Robot Interaction.

710

711 Fischer, K., Jung, M., & Jensen, L. C. (2019). *Emotion Expression in HRI – When and Why*. Paper presented at
712 the 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

713 Fong, T., Nourbakhsh, I., & Dautenhahn, K. (2003). A survey of socially interactive robots. *Robotics and*
714 *autonomous systems*, 42(3-4), 143-166.

715 Fraune, M. R., Sherrin, S., Sabanović, S., & Smith, E. R. (2015). Rabble of robots effects: Number and type of
716 robots modulates attitudes, emotions, and stereotypes. In Proceedings of the Tenth Annual ACM/IEEE
717 International Conference on Human-Robot Interaction (pp. 109-116).

718 Frith, C. D., & Frith, U. (2006). The neural basis of mentalizing. *Neuron*, 50(4), 531-534.

719 Ham, J., Cuijpers, R. H., & Cabibihan, J. J. (2015). Combining robotic persuasive strategies: the persuasive power
720 of a storytelling robot that uses gazing and gestures. *International Journal of Social Robotics*, 7(4), 479-
721 487.

722 Haring, K. S., Watanabe, K., & Mougenot, C. (2013). The influence of robot appearance on assessment. In 2013
723 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 131-132). IEEE.

724 Jeon, M., & Rayan, I. A. (2011). *The effect of physical embodiment of an animal robot on affective prosody*
725 *recognition*. Paper presented at the International Conference on Human-Computer Interaction.

726 Jung, M. F. (2017). *Affective grounding in human-robot interaction*. Paper presented at the 2017 12th ACM/IEEE
727 International Conference on Human-Robot Interaction (HRI).

728 Kishi, T., Kojima, T., Endo, N., Destephe, M., Otani, T., Jamone, L., . . . Cosentino, S. (2013). *Impression survey*
729 *of the emotion expression humanoid robot with mental model based dynamic emotions*. Paper presented
730 at the 2013 IEEE International Conference on Robotics and Automation.

731 Ko, S., Liu, X., Mamros, J., Lawson, E., Swaim, H., Yao, C., & Jeon, M. (2020, July). The Effects of Robot
732 Appearances, Voice Types, and Emotions on Emotion Perception Accuracy and Subjective Perception
733 on Robots. In *International Conference on Human-Computer Interaction* (pp. 174-193). Springer, Cham.

734 Kraus, M., Kraus, J., Baumann, M., & Minker, W. (2018). *Effects of Gender Stereotypes on Trust and Likability*
735 *in Spoken Human-Robot Interaction*. Paper presented at the Proceedings of the Eleventh International
736 Conference on Language Resources and Evaluation (LREC-2018).

737 Kwak, S. S., Kim, Y., Kim, E., Shin, C., & Cho, K. (2013, August). What makes people empathize with an
738 emotional robot?: The impact of agency and physical embodiment on human empathy for a robot.
739 In *2013 IEEE RO-MAN* (pp. 180-185). IEEE.

740 Lewis, J. D., & Weigert, A. (1985). Trust as a social reality. *Social forces*, 63(4), 967-985.

741 Li, J. (2015). The benefit of being physically present: A survey of experimental works comparing copresent robots,
742 telepresent robots and virtual agents. *International Journal of Human-Computer Studies*, 77, 23-37.

743 Liu, Z. T., Pan, F. F., Wu, M., Cao, W. H., Chen, L. F., Xu, J. P., . . . Zhou, M. T. (2016, July). A multimodal
744 emotional communication based humans-robots interaction system. In *2016 35th Chinese Control*
745 *Conference (CCC)* (pp. 6363-6368). IEEE.

746 Lowe, R., Barakova, E., Billing, E., & Broekens, J. (2016). Grounding emotions in robots—An introduction to the
747 special issue: Sage Publications Sage UK: London, England.

748 McGinn, C., & Torre, I. (2019). *Can you Tell the Robot by the Voice? An Exploratory Study on the Role of Voice*
749 *in the Perception of Robots*. Paper presented at the 2019 14th ACM/IEEE International Conference on
750 Human-Robot Interaction (HRI).

751 Mitchell, R. L., & Phillips, L. H. (2015). The overlapping relationship between emotion perception and theory of
752 mind. *Neuropsychologia*, 70, 1-10.

753 Nabe, S., Cowley, S. J., Kanda, T., Hiraki, K., Ishiguro, H., & Hagita, N. (2006). *Robots as social mediators:*
754 *coding for engineers*. Paper presented at the ROMAN 2006-The 15th IEEE International Symposium on
755 Robot and Human Interactive Communication.

756 Nass, C., Foehr, U., Brave, S., & Somoza, M. (2001). *The effects of emotion of voice in synthesized and recorded*
757 *speech*. Paper presented at the Proceedings of the AAAI symposium emotional and intelligent II: The
758 tangled knot of social cognition.

759 Nonaka, S., Inoue, K., Arai, T., & Mae, Y. (2004). *Evaluation of human sense of security for coexisting robots*
760 *using virtual reality. 1st report: evaluation of pick and place motion of humanoid robots*. Paper presented
761 at the IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004.

762 Ortony, A. (2021). Are All “Basic Emotions” Emotions? A Problem for the (Basic) Emotions
763 Construct. *Perspectives on Psychological Science*, 1745691620985415. <https://doi.org/10.1177/1745691620985415>

765 Pereira, A., Martinho, C., Leite, I., & Paiva, A. (2008, May). iCat, the chess player: the influence of embodiment
766 in the enjoyment of a game. In *Proceedings of the 7th international joint conference on Autonomous*
767 *agents and multiagent systems-Volume 3* (pp. 1253-1256).

768 Phillips, M. L. (2003). Understanding the neurobiology of emotion perception: implications for psychiatry. *The*
769 *British Journal of Psychiatry*, 182(3), 190-192.

770 Plutchik, R. (1980). A general psychoevolutionary theory of emotion. In *Theories of emotion* (pp. 3-33).
771 Academic press.

772 Reisenzein, R., Hudlicka, E., Dastani, M., Gratch, J., Hindriks, K., Lorini, E., & Meyer, J.-J. C. (2013).
773 Computational Modeling of Emotion: Toward Improving the Inter- and Intradisciplinary Exchange.
774 *IEEE Transactions on Affective Computing*, 4(3), 246-266. doi:10.1109/t-affc.2013.14

775 Rodriguez-Lizundia, E., Marcos, S., Zalama, E., Gómez-García-Bermejo, J., & Gordaliza, A. (2015). A bellboy
776 robot: Study of the effects of robot behaviour on user engagement and comfort. *International Journal of
777 Human-Computer Studies*, 82, 83-95.

778 Russel, J. (1980). A circumplex model of emotions. *Journal of Personality and Social Psychology*, 39, 1161-1178.

779 Russell, J. A. (2017). Cross-cultural similarities and differences in affective processing and expression. In M. Jeon
780 (Ed.), *Emotions and affect in human factors and human-computer interaction* (pp. 123-141). Academic
781 Press.

782 Saint-Aimé, S., Le-Pevedic, B., Duhaut, D., & Shibata, T. (2007). *EmotiRob: companion robot project*. Paper
783 presented at the RO-MAN 2007-The 16th IEEE International Symposium on Robot and Human
784 Interactive Communication.

785 Sakai, K., Nakamura, Y., Yoshikawa, Y., & Ishiguro, H. (2021). Effect of robot embodiment on satisfaction with
786 recommendations in shopping malls. *IEEE Robotics and Automation Letters*, 7(1), 366-372.

787 Schilhab, T. S. S. (2002). Anthropomorphism and mental state attribution. *Animal Behavior*. Academic Press.

788 Schirmer, A., & Adolphs, R. (2017). Emotion Perception from Face, Voice, and Touch: Comparisons and
789 Convergence. *Trends Cogn Sci*, 21(3), 216-228. doi:10.1016/j.tics.2017.01.001

790 Seo, S. H., Geiskovitch, D., Nakane, M., King, C., & Young, J. E. (2015). *Poor thing! Would you feel sorry for
791 a simulated robot? A comparison of empathy toward a physical and a simulated robot*. Paper presented
792 at the 2015 10th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

793 Sharma, M., Hildebrandt, D., Newman, G., Young, J. E., & Eskicioglu, R. (2013). *Communicating affect via flight
794 path: exploring use of the laban effort system for designing affective locomotion paths*. Paper presented
795 at the Proceedings of the 8th ACM/IEEE international conference on Human-robot interaction.

796 Sims, V. K., Chin, M. G., Lum, H. C., Upham-Ellis, L., Ballion, T., & Lagattuta, N. C. (2009). *Robots' auditory
797 cues are subject to anthropomorphism*. Paper presented at the Proceedings of the Human Factors and
798 Ergonomics Society Annual Meeting.

799 Song, S., & Yamada, S. (2017). *Expressing emotions through color, sound, and vibration with an appearance-
800 constrained social robot*. Paper presented at the Proceedings of the 2017 ACM/IEEE International
801 Conference on Human-Robot Interaction.

802 Susskind, J. M., Lee, D. H., Cusi, A., Feiman, R., Grabski, W., & Anderson, A. K. (2008). Expressing fear
803 enhances sensory acquisition. *Nature neuroscience*, 11(7), 843.

804 Walters, M. L., Syrdal, D. S., Koay, K. L., Dautenhahn, K., & Te Boekhorst, R. (2008). *Human approach
805 distances to a mechanical-looking robot with different robot voice styles*. Paper presented at the RO-
806 MAN 2008-The 17th IEEE International Symposium on Robot and Human Interactive Communication.

807 Waytz, A., Heafner, J., & Epley, N. (2014). The mind in the machine: Anthropomorphism increases trust in an
808 autonomous vehicle. *Journal of Experimental Social Psychology*, 52, 113-117.

809 Williams, J. M. G., Watts, F. N., MacLeod, C., & Mathews, A. (1988). *Cognitive psychology and emotional
810 disorders*: John Wiley & Sons.

811 Wobbrock, J. O., Findlater, L., Gergle, D., & Higgins, J. J. (2011). *The aligned rank transform for nonparametric
812 factorial analyses using only anova procedures*. Paper presented at the Proceedings of the SIGCHI
813 conference on human factors in computing systems.

814

815

816 **Appendix A. Questionnaires**

817

- 818 • Post-comment questionnaire
 - 819 ○ What emotion do you feel the robot expressed? (Open question)
 - 820 ○ What characteristics of the voice brought to mind that emotion? (Open question)
 - 821 ○ How clearly did the robot express this emotion? (1-7 Likert scale)
 - 822 ○ How suitable was this emotion coming from the robot? (1-7 Likert scale)

823

- 824 • Post-condition questionnaire
 - 825 ○ How likable is the voice? (1-7 Likert scale)
 - 826 ○ How attractive is the voice? (1-7 Likert scale)
 - 827 ○ How warm is the voice? (1-7 Likert scale)
 - 828 ○ How honest is the voice? (1-7 Likert scale)
 - 829 ○ How trustworthy is the voice? (1-7 Likert scale)
 - 830 ○ How natural does the voice sound? (1-7 Likert scale)

831

- 832 • Post-session questionnaire
 - 833 ○ Thoughts about 1st, 2nd, 3rd, and 4th voices (Open question)
 - 834 ○ Which story was your favorite? (Open question)
 - 835 ○ What is your sex? (Open question)
 - 836 ○ What is your age? (Open question)
 - 837 ○ What is your race and/or ethnicity? (Multiple-choice, Open question)

838

839 **Appendix B. Voice Types Validation Study**

840 To further investigate the impact of robot embodiment on participants' perception towards different
841 voice types, we conducted a follow-up validation study for voice types only. Based on the results of the main
842 study, TTS voice showed significantly lower score on the most subjective ratings. Therefore, this validation
843 study used only human voices, which made a 3 (Voice Types) by 7 (Emotions) within-subjects design. Ten new
844 participants (Age: $M = 22.5$, $SD = 4.12$) were recruited for the follow-up study. Six participants identified as
845 male and four participants identified as female with 5 Asians, 4 Caucasian, and 1 Hispanic. They listened to all
846 recordings and evaluated three voice types: Characterized NAO voice, Characterized Pleo voice, and Regular
847 human voice. Because the suitability rating subjectively determined how suitable the voice types were on a
848 certain robot, we excluded the scale in the validation study because there was no robot or physical embodiment
849 involved with this follow-up study.

850 **B1. Accuracy**

851 Following the main study, the emotion recognition accuracy data were transformed with the aligned
852 rank transform (ART) (Wobbrock, Findlater, Gergle, & Higgins, 2011). Then, the aligned-ranked data were
853 analyzed with a 3 (Voice Types) x 7 (Emotions) repeated measures ANOVA, followed by paired samples t-tests
854 with a Bonferroni correction for pairwise comparisons. A significant difference was found in the main effects of
855 voice types, $F(2, 18) = 11.68, p < .001, \eta_p^2 = .567$ emotions, $F(6, 54) = 4.61, p < .001, \eta_p^2 = .339$ and the
856 interaction effect between voice types and emotions, $F(12, 108) = 4.48, p < .001, \eta_p^2 = .342$. The average
857 accuracy of emotion recognition in both characterized voices (NAO and Pleo) were significantly higher than the
858 regular voice. The average accuracy was significantly higher in happiness (65.7%), sadness (77.6%), and
859 surprise (67.6%) than anger (41.6%), disgust (37.6%), and fear (37.1%), which is similar to the main study.
860 However, the average accuracy of anticipation (58.9%) was much lower compared to the percentage of the main
861 study (75%). It might not be appropriate to compare the absolute percentage between the main study and the
862 follow-up study because of different population and different number of participants. However, the average
863 emotion recognition accuracy of the main study (56.61%) is numerically higher than that of the follow-up study
864 (55.16%). The emotion recognition accuracy of the four emotions (happiness, anticipation, surprise, and
865 disgust) was numerically higher in the main study than in the follow-up study. This might imply that when the
866 voice is presented with embodied robots, emotion recognition accuracy might increase depending on different
867 emotions. Further analysis of the interaction effects showed that the accuracy of emotion recognition was higher
868 when characterized voices were paired with emotions that are positive and high arousal, such as happiness and
869 surprise, or negative and low arousal, such as sadness than the regular voices paired with the emotions with
870 opposite valence and arousal, such as anger, disgust, and fear. These results might suggest that the characterized
871 voices improve participants' emotion recognition capabilities for certain emotions compared to regular human
872 voices when there was no physical embodiment.

873 **B2. Other Subjective Ratings**

874 The results from other subjective ratings of this validation study were similar to the results in the main
875 study. The main effect of voice types was found significant in the scale of warmth, $F(2, 832) = 3.65, p = .0466$; ,
876 $\eta_p^2 = .297$; trustworthiness, $F(2, 832) = 5.38, p = .0147, \eta_p^2 = .375$; naturalness, $F(2, 832) = 17.57, p < .0001, \eta_p^2$
877 = .664; likeability, $F(2, 832) = 10.20, p = .0011, \eta_p^2 = .532$; and attractiveness, $F(2, 832) = 12.42, p = .0004, \eta_p^2$
878 = .586.

879 Participants rated higher scores of warmth, and trustworthiness in regular voices than just the
880 characterized Pleo voice. However, participants reported higher scores of naturalness, likeability, and
881 attractiveness in regular voices than both characterized NAO and characterized Pleo voices. Note that in the
882 main study, regular voice did not show higher scores of warmth and trustworthiness than the characterized
883 voices. This might suggest that the appearance and embodiment of the robots can improve participants'
884 perception toward the characterized voice positively such as increasing the warmth and trustworthiness of the
885 robot. It is interesting to see that the validation study results of naturalness aligned with the results in the main
886 study because it might imply that naturalness did not necessarily influence warmth and trustworthiness of the
887 robot.

888 In sum, when there is embodiment of the robots, overall, people may recognize the same voice's
889 emotions better. Also, they may perceive the characterized voice more positively (e.g., warm and trustworthy).
890 The results of the validation study once again revealed the importance of the robot appearance and embodiment
891 in HRI.

892

893

894

895

896