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Abstract: Generative models, such as Variational Autoencoders (VAEs), are increasingly employed for 1

atypical pattern detection in brain imaging. During training, these models learn to capture the under- 2

lying patterns within "normal" brain images and generate new samples from those patterns. Neurodi- 3

vergent states can be observed by measuring the dissimilarity between the generated/reconstructed 4

images and the input images. This paper leverages VAEs to conduct Functional Connectivity (FC) 5

analysis from functional Magnetic Resonance Imaging (fMRI) scans of individuals with Autism 6

Spectrum Disorder (ASD), aiming to uncover atypical interconnectivity between brain regions. In the 7

first part of our study, we compare multiple VAE architectures–Conditional VAE, Recurrent VAE, a 8

hybrid of CNN parallel with RNN VAE—aiming to establish the effectiveness of VAEs in application 9

FC analysis. Given the nature of the disorder, ASD exhibits a higher prevalence among males than 10

females. Therefore, in the second part of this paper, we investigate if introducing phenotypical data 11

could improve the performance of VAEs and, consequently, FC analysis. We compare our results 12

with findings from the previous literature. The results showed that CNN-based VAE architecture is 13

more effective for this application than the other models. 14

Keywords: fMRI; Functional Connectivity; Autism Spectrum Disorder; Autoencoders; Conditional 15

Variational Autoencoders 16

1. Introduction 17

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder/condition in 18

which individuals experience difficulties in social communication and interaction and 19

exhibit limited or repetitive behaviors and interests. Additionally, autistic individuals may 20

have alternative learning styles, movements, and attention patterns [1]. Several studies 21

have consistently shown that ASD is more commonly found in males than females, with an 22

approximate ratio of 3 to 1 [2]. One of the approaches used to investigate neurodivergence 23

associated with ASD is Functional Connectivity (FC) analysis of functional Magnetic 24

Resonance Imaging (fMRI) data. FC analysis helps to examine statistical dependence 25

between the activity of different brain regions based on their blood oxygenation levels 26

measured by fMRI [3]. Hence, FC represents the extent to which various brain regions 27

exhibit synchronized activity over a period of time, which is commonly believed to be 28

representative of the structural and functional organization of the brain [3]. 29

Functional connectivity (FC) studies in ASD have led to the development of two 30

main theories about the connectivity of the brains of individuals with ASD: the under- 31

connectivity and over-connectivity [4]. Under-connectivity is defined as a decrease in brain 32

activity between brain regions compared to a neurotypical population [5]. Conversely, 33

over-connectivity is understood as higher statistical correlations between different areas of 34

the brain appearing in affected individuals compared to unaffected individuals [6]. Finally, 35

as more recent studies indicate, it is more likely that both over- and under-connectivity 36
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patterns are present in the brains of individuals with ASD [4]. Traditional methods for FC 37

analysis include seed-based correlation analysis (SCA) [7], independent component analy- 38

sis (ICA) [8], graph theory-based analysis [9], clustering-based approaches [10], dynamic 39

connectivity analysis [11], Granger causality analysis [12] and dynamic causal modeling 40

[13]. While these approaches have helped uncover neurodivergent patterns in fMRI data, 41

they entail certain limitations, such as inherent biases or limited interpretability. Several 42

inconsistencies have been reported in studies using these methods when examining func- 43

tional connectivity patterns in fMRI in ASD. The discrepancies are mainly attributed to the 44

varied age and sex compositions within the study samples and the diverse nature of ASD 45

[4]. Notably, an apparent trend of under-representation of females with ASD in FC studies 46

of fMRI can be seen[4]. 47

To address the issues of limited interpretability and underrepresentation, we propose a 48

novel approach to FC analysis of fMRI data using Variational Autoencoders and Conditional 49

Variational Autoencoders. Variational autoencoder (VAE) is a deep generative model 50

that learns to encode data into a low-dimensional latent space and then decodes low- 51

dimensional features back to the original data[14]. Conditional Variational Autoencoder 52

(CVAE) is an extension of the standard VAE, which incorporates conditional information, 53

such as additional class features or attributes, into the generative model to enable targeted 54

data synthesis [15]. This study examines the application of three different VAE architectures 55

for FC analysis for individuals with ASD. We then apply phenotypical data to VAEs in an 56

attempt to reduce sex-related bias. For a more quantitative and structured analysis, we have 57

employed three commonly used VAE architectures in the fMRI domain: Convolutional 58

Neural Network (CNN), Recurrent Neural Network (RNN), and a hybrid model combining 59

CNN and RNN in parallel. Our evaluation of VAE and CVAE includes comparing the 60

performance in the reconstruction of neurotypical samples and the efficacy in conducting 61

FC analysis for fMRI samples of individuals with ASD. Our evaluation compares the 62

identified FC divergences between female and male populations for both VAE and CVAE. 63

We aim to provide a structural and systemic investigation with diverse AE architecture 64

variations in the fMRI domain, specifically addressing the issues of dynamic processing of 65

highly complex brain imaging data and sex under-representation with statistical modeling. 66

This paper is structured as follows: we first discuss the pertinent literature on tradi- 67

tional FC methods and the utilization of VAEs and CVAEs in the fMRI domain. Additionally, 68

we provide a concise overview of previously investigated FC divergencies in ASD. Subse- 69

quently, in Section 3, we introduce the dataset, explain the data preprocessing techniques 70

employed, elaborate on the VAE and CVAE architectures utilized, and detail our FC analy- 71

sis approach. In Section 4, we present our findings and the results of our experiments, and 72

in Section 5, we draw comparisons between our findings and those of previous studies. In 73

Section 6, we summarize our findings and discuss possible future directions. 74

2. Related Works 75

2.1. Traditional Approaches to FC Analysis 76

Various methods have been developed to examine brain functional connectivity using 77

fMRI data [16], which includes seed-based correlation analysis (SCA) [7], independent 78

component analysis (ICA) [8], and graph-theory based analysis[9]. SCA involves selecting 79

a region of interest (ROI) and computing its correlations with other brain regions over time 80

series. High correlations indicate over-connectivity, and low correlation under-connectivity. 81

However, SCA can potentially introduce bias due to ROI selection, overlooking impor- 82

tant connectivity patterns outside the chosen regions [17]. On the other hand, ICA is a 83

data-driven, multivariate method that decomposes fMRI data into spatially independent 84

components, each representing a unique spatial pattern associated with a distinct time 85

course [8,18]. ICA has been applicable in revealing lower-level spatial and temporal pat- 86

terns in brain connectivity. Nevertheless, the drawback of ICA analysis is that the signal 87

from a single brain region may appear in multiple components within lower-dimensional 88

space, complicating the identification of high-level correlations[4]. Graph theory provides 89
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a framework for investigating local and global connectivity patterns. However, effectively 90

capturing the temporal dynamics inherent in fMRI data presents a significant challenge. 91

More advanced traditional approaches to functional connectivity analysis (FC) include 92

clustering-based approaches [10], dynamic connectivity analysis [11], Granger causality 93

analysis [12], and Dynamic Causal Modeling [13]. Most studies using traditional methods 94

have focused on male fMRI data with ASD, and there has been a lack of research specifically 95

exploring females with ASD. When the dataset is imbalanced, SCA, ICA, and graph-based 96

analyses face several challenges. For example, SCA is often used to compare connectivity 97

patterns between different subgroups; thus, an imbalance in the studied data can influence 98

the statistical power and robustness of the comparisons. In ICA, while the analysis is not 99

inherently affected by class imbalance, subsequent classifiers that use ICA-derived features 100

may favor the majority class, affecting classification performance. In graph-based methods, 101

graph construction could also be hindered by the greater presence of certain populations. 102

Therefore, there is a need for an approach that encompasses both the spatial and temporal 103

distribution of the data and is robust to under-representations in the dataset. 104

2.2. Application of VAEs in fMRI domain 105

To address some of the challenges mentioned in Section 2.1, recently, there has been 106

a surge in the utilization of VAEs to identify brain connectivity patterns within affected 107

populations or fMRI signal patterns related to specific tasks. VAEs offer the advantage 108

of allowing for the studying of both low- and high-level features of fMRI data, setting 109

them apart from techniques such as ICA and SCA. Several papers used VAEs to extract 110

meaningful features to classify the data [19–21]; some studies also researched the abilities 111

VAEs to identify task-related activities[22,23], and finally, some utilized VAEs for FC 112

analysis of the fMRI data[24,25]. 113

The most closely related to our works is the paper by Zuo et al., in which the re- 114

searchers utilized disentangled VAE to identify structural and functional connectivity 115

differences between control, individuals with early mild cognitive impairment (MCI), 116

and individuals with late mild cognitive impairment [24]. Using graph convolutional 117

VAE, researchers have identified under- and over-connectivity patterns associated with 118

the progression of MCI. Likewise, another study by Choi et al. applied deep neural net- 119

work (DNN)-based VAE to analyze connectivity patterns in ASD [25]. The study has also 120

presented under- and over-connectivity patterns correlated with the full-scale IQ scores. 121

A considerable number of encoder and decoder architectures have been studied in 122

the application of fMRIs, which vary depending on the main objective of the application. 123

However, the most common architectures include convolutional layers (CNN), recurrent 124

layers (RNN), and a combination of the two in sequence and parallel. CNN layers have 125

proven to be helpful in identifying spatial correlations; however, the temporal patterns of 126

the decoded data are not meaningful since the convolution is not capable of capturing the 127

temporal dynamics. And visa versa, recurrent layers have shown to have better temporal 128

feature extraction, but spatial patterns could not be well preserved. Therefore, we believe 129

that there is a need to evaluate different model architectures. 130

2.3. Application of CVAEs in fMRI domain 131

Conditional Variational Autoencoders (CVAEs) are an extension of the VAEs that 132

incorporate additional information into the generative model [15]. The generative pro- 133

cess in a CVAE is improved by considering additional information, such as class labels, 134

attributes, or any other relevant data. Conditional variables are then passed into both 135

the encoder and decoder parts of the VAE (Figure 1). Therefore, the encoder takes the 136

input data and associated conditional variables and maps them to a distribution in the 137

latent space. The decoder then uses the sampled latent distribution from the encoder along 138

with the conditional variables to reconstruct the input data point. By adding additional 139

information to the generation process, CVAEs allow for more targeted and controlled data 140

generation. In the context of fMRI imaging, CVAEs have been used for image synthesis and 141
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Figure 1. Summary of the difference between VAE and CVAE. In CVAE both the encoder and decoder
part receive conditional attributes; in our study, it is an embedding consisting of age, sex, and group
label.

data augmentation[26], brain image segmentation[27], classification[28], and connectivity 142

network detection[29]. The most closely related to our study is the study by Wang et al., 143

which used adverse CVAE to identify high-level neurodivergent patterns associated with 144

Alzheimer’s disease (AD) in fMRI data[30]. Researchers have demonstrated that applying 145

conditions to the network helps reduce the effect of age- and sex bias in the latent vectors. 146

Another paper that used CVAE is the study by Gao et al., where researchers integrate age 147

and sex attributes through an attention mechanism that optimizes VAE for the classification 148

of brain connectivity from fMRI data of individuals with Attention-Deficit / Hyperactivity 149

Disorder from multiple sites [31]. The study showed that phenotypic information has 150

improved learning discriminative embedding and helped identify affected brain regions 151

functionally by reconstructing the latent features. 152

2.4. Functional Connectivity in ASD 153

The most commonly studied brain networks in ASD include Default Mode Network 154

(DMN), limbic, visual, somatomotor, and salience networks. The regional components of 155

each of these networks have a tendency to slightly change study by study. The DMN is 156

a large-scale brain network that is most active during rest periods or when the mind is 157

wandering[32]. It is involved in various cognitive processes such as self-thinking, episodic 158

memory recovery, and social cognition[32]. In most studies, the DMN includes regions such 159

as the medial prefrontal cortex, the posterior cingulate cortex, and the medial temporal 160

lobes [4]. The limbic network is a group of interconnected structures that play a critical role in 161

emotion, motivation, and memory processing [33]. The limbic network is closely associated 162

with the management of emotional responses, the processing of reward and punishment, 163

and the formation and recovery of memories. Key structures in the limbic system include 164

the amygdala, hippocampus, and cingulate gyrus[34]. The visual network is responsible for 165

processing visual stimuli, and its nodes are located primarily in the occipital lobe [35]. The 166

somatomotor network is involved in the planning, enactment, and management of voluntary 167

movements [3]. It includes the primary motor cortex, the supplementary motor area, and 168

the primary somatosensory cortex, all located in the frontal and parietal lobes. Finally, the 169

salience network is a large-scale brain network that is involved in catching and focusing 170
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attention to relevant internal and external stimuli [36]. Key regions within the salience 171

network include the anterior insula and the dorsal anterior cingulate cortex[37]. 172

Previous findings suggest that underconnectivity between various brain networks is 173

associated with social impairments and deficits observed in ASD. Most underconnectivity 174

patterns were associated with DMN, including decreased interconnectivity between DMN- 175

limbic, DMN-visual, and DMN-somatomotor. For example, in the study by Abrams et al., 176

researchers reported underconnectivity between DMN (pSTS with orbitofrontal, temporal 177

lobe) and limbic networks (amygdala), suggesting that ASD individuals experience a less 178

pleasant response to human voice processing [38]. Underconnectivity between the DMN 179

(precuneus (PrC)) and the visual cortex has also been previously reported [39]. However, 180

the study reported that this underconnectivity pattern was not found to be related to 181

socio-behavior deficits. Finally, under-connectivity between DMN and several regions in 182

somatomotor has also been reported in multiple studies [40], [41]. 183

Overconnectivity patterns are primarily associated with salience networks. For exam- 184

ple, a study by Green et al. has demonstrated the over-connectivity of the salience network 185

with sensory processing areas, such as the visual and limbic networks, in individuals with 186

ASD. It is believed that this overconnectivity may contribute to heightened responsiveness 187

to irrelevant stimuli and deficits in social interactions [42]. DMN-salience network was 188

shown to have higher interconnectivity in ASD subjects compared to TD in work by Yerys 189

et al.[40], which has been hypothesized to be attributed to the ability to switch between 190

intra-person and extra-person processing. 191

A handful number of studies specifically looked into the difference between female and 192

male functional connectivity. One of the few studies of specifically sex-related differences 193

revealed that commonly associated DMN hypoconnectivities are primarily present in male 194

populations[43]. Increased connectivity in female population compared to male has also 195

been supported by the studies by Lawerence et al.[44] and Smith et al.[45]. 196

Figure 2. Details on different structures of the model architecture for our FC analysis with fMRI data.
A). The overall signal processing framework. B). CNN CVAE. C). RNN CVAE. D). Hydrid CVAE
with CNN and RNN in parallel.

3. Materials and Methods 197

3.1. Dataset 198

The ABIDE-I (Autism Brain Imaging Data Exchange) dataset is a publicly available, 199

large-scale collection of resting-state fMRI data of individuals with ASD [46]. The ABIDE- 200

I dataset consists of 1, 035 rs-fMRI scans, including 505 individuals with ASD and 530 201

neurotypical control subjects. The data were collected from 17 different imaging sites, each 202
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Figure 3. Summary of phenotypical data is presented. In particular, the number of male samples is
higher than that of females in both subjects with typically developing ASD and subjects with ASD.

with its own scanning protocol. The dataset has undergone various preprocessing steps, 203

including motion correction, spatial normalization, and noise reduction, to ensure uniform 204

data quality and comparability across different sites. However, different imaging sites had 205

different default fMRI scanners; therefore, repetition time (TR), echo time (TE), and flip 206

angle degree are varied across sites. The subset of scans with TR of 2000 (ms) from the 207

ABIDE-I dataset has been extracted. Thus, for this study, we have only used data samples 208

collected from 9 out of 17 sites, resulting in 236 ASD samples, 276 typically developing 209

samples. The subjects were then randomly split into training and testing sets. The training 210

and testing sets consisted of 231 control and 235 neurodivergent samples and 35 and 41 211

samples, respectively. In Figure 3, phenotypical data distributions for the studied data 212

could be found. It could be noted that there are a higher number of male samples than 213

females in both typically developing and neurodivergent subgroups. 214

3.2. Data Preprocessing 215

Schaefer’s 200-parcel functional deterministic atlas has been used for brain parcel- 216

lation of the original fMRI scans, which divided the cerebral cortex into 200 distinct, 217

non-overlapping regions based on the derived functional connectivity patterns (Figure 2A) 218

[47]. The resulting 200 parcels are distributed across both hemispheres and cover the entire 219

cortex. Time series data have been extracted from each of the 200 parcels, resulting in a 220

2D matrix consisting of signals from 200 parcels with 200 time steps (TR = 2000ms). As 221

the length of scans varied across imaging sights, each scan was augmented into multiple 222

samples using a sliding window of 200 time steps with a step size of 10 applied to each 223

voxel per time matrix. The sliding window was then applied to each sample in training and 224

testing subsets, resulting in disjoint 3472 neurotypical and 2973 neurodivergent samples 225

for the training set and 364 and 364 samples for the testing set. The testing and training 226

fMRI splitting, described in Section 3.1, have not been mixed during data augmentation to 227

ensure fairness. Finally, the parcel versus time matrices were normalized to the range of 0 228

to 1. 229

3.3. Variational Autoencoder (VAE) 230

Autoencoder (AE) is a type of neural network architecture commonly employed for 231

capturing low-dimensional representations of fMRI data. AE is compromised of an encoder 232

and a decoder [48]. The encoder part of the AE transforms the input data into a set of 233

low-dimensional latent variables, and the decoder part subsequently reconstructs those 234

latent variables into the original data space[48]. During training, the encoder and decoder 235

aim to minimize the reconstruction error between the input data and the reconstructed 236

output [48]. A unique subtype of AEs is the Variational Autoencoder (VAE). Similar to AE, 237

VAE also consists of an encoder and a decoder, but the encoder maps the input data to a set 238

of latent variables that are assumed to be drawn from a prior distribution. The decoder 239

randomly samples from the latent distribution and learns to map these latent variables back 240

to the original data space to reconstruct the sample. Sampling from a learned latent space 241

and decoding these latent features into the original data space allows for the generation of 242

new data samples. 243
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In our study, VAE is deployed as a deep generative model using different architec- 244

tures of the encoder g(x; ϕ) and the decoder f (z; θ). The encoder learns to compress the 245

high-dimensional input (parcels versus time matrix) x into lower-dimensional latent repre- 246

sentations z, and ϕ and θ are both hyperparameters of the networks. The VAE aims to learn 247

a model for the true data distribution, denoted by p(z, x). The latent space dimensionality 248

is denoted as d (i.e., z ∈ Rd). The variational posterior distribution is denoted by q(z, x), 249

which is an approximation of the true posterior. The network is trained using the Evidence 250

Lower Bound (ELBO) loss, consisting of the reconstruction and KL divergence terms. The 251

reconstruction term aims to ensure that the VAE can accurately reconstruct the input data, 252

which is represented as the expected negative log-likelihood log p(x|z), where p(x|z) is 253

modeled by the decoder part of the VAE. The KL divergence term is used to make the 254

variational posterior distribution, q(z|x), as close to the prior distribution, p(z), as possible. 255

The ELBO loss, denoted as LELBO(x), can be written as: 256

LELBO(x) = Eq(x,z)

[
log

p(z, x)
q(z|x)

]
= Eq(z,x)[log p(x|z) + log p(z)− log q(z|x)]
= Eq(z,x)[log p(x|z)]− DKL[q(z|x)|p(z)],

(1)

During training, the encoder network g(x; ϕ) models the variational posterior distri- 257

bution q(z|x). The encoder outputs the parameters of a Gaussian distribution, µ̃ and log σ̃2, 258

which represent the mean and log-variance of the latent space distribution, respectively. 259

Sampling from q(z|x) allows us to generate new data samples similar to those present in 260

the training data distribution. 261

3.4. Conditional VAE 262

We propose using a CVAE for a more controlled fMRI sample reconstruction. CVAE 263

is an extension of the VAE that allows the generation of data samples conditioned on 264

certain attributes or labels [15]. In our CVAE design, both the encoder and decoder receive 265

additional input variables, which is an embedding (denoted as y) containing age, sex (M or 266

F), and subgroup (TD or ASD) labels, with the assumption that all conditions are statistically 267

independent of each other. This can be viewed as concatenating the embedding to the input 268

of the encoder x and the input of the decoder z. The changes made in comparison to the 269

generative process of a VAE can be understood as introducing an identity function with 270

respect to y into the model. In CVAE, the encoder learns to extract hidden representations of 271

an image x while taking into account conditional variables y (represented by the distribution 272

q(z|x, y)). The decoder then translates this data representation in the form of (z, y) to the 273

input space (i.e., p(x|z, y)). 274

Specifically, the generative process of CVAE takes the form 275(
µ̃xy, log ˜σxy

2
)
= g(z, y; ϕ),

q(z|x, y) = N
(

x; µxy, diag
(

σ2
xy

)) (2)

And the ELBO loss can then be written as: 276

LELBO(x|y) = Eq(z,x,y)

[
log

p(z, x|y)
q(z|x, y))

]
= Eq(z,x,y)[log p(x|z, y) + log p(z|y)− log q(z|x, y)],

(3)

In the CVAE model, the reconstruction of a sample is dependent on the given set of 277

input conditions. To generate a TD-like output for an atypical sample, the conditional 278

variable must be adjusted to a control condition while retaining the remaining conditions 279
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unchanged. Consequently, when calculating the discrepancy between the atypical input 280

and the reconstructed output, the difference is assumed to be solely attributed to the 281

modified conditions. This ensures that the identified divergence depends exclusively on 282

the altered conditional variable. 283

3.5. Experimental Setup 284

Three commonly used VAE architectures in the fMRI domain were trained to learn 285

a compact representation of the data from neurotypical control fMRI samples. A convo- 286

lutional neural network (CNN) variational autoencoder, recurrent neural network (RNN) 287

variational autoencoder, and hybrid of CNN and RNN VAEs in parallel (Figure 2). For all 288

CNN VAEs in this study, the CNN encoder consisted of three convolution layers with 32, 289

64, and 128 filters, respectively, followed by a fully-connected layer. Subsequently, the CNN 290

decoder is comprised of transposed convolution layers with 128, 64, and 32 filters, followed 291

by a fully connected layer. Batch normalization and the leaky ReLU activation functions 292

were utilized. The RNN encoder contained three unidirectional Long-Short Term Memory 293

(LSTM) layers followed by a fully connected layer. Decoder, respectively, consisted of a 294

fully-connected layer followed by three LSTM layers as well. Finally, the parallel structure 295

model was built as a combination of those CNN and RNN structures in parallel. Latent 296

features are fused using element-by-element multiplication. A more detailed summary of 297

the structures of VAEs can be found in Figure 2. All three VAEs have 2000 latent features 298

extracted by the encoding part (d = 2000), and the latent space was modeled using a 299

Mixture of Gaussian assumption. Furthermore, all VAEs were optimized using the Adam 300

algorithm with a learning rate of 0.0001. In the context of CVAE, all the architectures of 301

the models remain the same; however, the phenotypical data embedding is incorporated 302

by concatenating it with both the input of the encoder and the input of the decoder. The 303

embedding dimensionality is specifically set to 200, allowing for concatenation as another 304

parcel feature to the input matrix resulting in a total dimensionality of 201x200. Concatena- 305

tion to the latent vector z resulted in the dimensionality of 2200. It is important to note that 306

for the training of VAEs, only a neurotypical sample has been used; however, due to the 307

conditional embedding, CVAE allows for training on both neurotypical and neurodivergent 308

samples. All of the experiments that are reported in this paper have been performed on 309

the server that contains an NVIDIA RTX 3090 running CUDA version 10.2 and PyTorch 310

1.13.1 + cu117 [49]. We believe that this is the first study in the fMRI domain comparing 311

different encoding and decoding architectures. 312

3.6. VAE Performance Evaluations 313

Evaluation of VAE performance consisted of analysis of the reconstruction of the 314

neurotypical samples, analysis of latent space features, and analysis of the regeneration 315

abilities of the decoder. 316

Figure 4. Summary of Functional Connectivity Analysis steps. A) Process neurodivergent samples
from the validation subset through VAE or CVAE. Adjust the condition to the target in CVAE. B)
Compute pairwise connectivity between networks. C) Perform a two-sided Welch t-test and visualize
statistically significant results using a chord diagram.



Version August 17, 2023 submitted to Journal Not Specified 9 of 18

Upon completion of the training, assessment of VAEs and CVAEs reconstruction 317

abilities involved three evaluation methods. The cosine similarity score was computed to 318

capture the overall resemblance between the input and the reconstructed output. However, 319

cosine similarity does not explicitly account for positional information. Thus, Pearson’s 320

correlation coefficient (R, PCC) was additionally calculated for the validation subsets of 321

the data. Finally, the difference between the input and decoded output was evaluated 322

through L1 (Mean Absolute Error, MAE). L1 quantified the average absolute difference 323

between the reconstructed BOLD signal intensity and the intensity of the original signal. To 324

compute the L1 error, we leveraged the validation samples of the subgroup present during 325

the training phase. We believe that a combination of these metrics will help us quantify the 326

ability of VAEs and CVAEs to reconstruct samples from lower-dimensional data within the 327

validation dataset. 328

To assess the encoding abilities of each model, we encode both populations and 329

conduct a comparative analysis of their latent representations. To determine the statistical 330

significance of the differences in the encoding feature, a two-sided t-test is employed 331

(p < 0.05). The null hypothesis is that the mean of the neurotypical subgroup is equal 332

to the mean of the neurodivergent. It is believed that the optimal encoder architecture 333

will have a pronounced distinction in the latent space, meaning that the encoder learned 334

to extract meaningful features from the input samples. Consequently, our objective is to 335

reject the null hypothesis in favor of the alternative hypothesis, which is the mean latent 336

representations of TD and ASD groups are different. 337

Evaluating the performance of accuracy of synthetic data outputted by VAEs poses a 338

significant challenge, especially when the ground truth effects are unknown in real data. 339

Therefore, to provide an initial assessment of atypical pattern detection, we calculate L1 340

of synthetic samples. In the context of VAE experiments, where the model is trained on 341

TD samples only, we formulate a hypothesis that the L1 error would be more pronounced 342

when reconstructing ASD validation samples in comparison to the TD validation samples. 343

For the CVAE experiments, where model architecture accommodates training on both TD 344

and ASD samples, synthetic outputs were generated for the ASD validation dataset with 345

target conditional embedding of TD samples. Consequently, the L1 error is computed 346

between the input ASD samples and the synthetically generated outputs. 347

3.7. Functional Connectivity Analysis 348

In this study, we conducted FC analysis of the ASD subgroup alongside FC analysis 349

for female and male populations within the ASD group. The FC analysis was performed 350

using trained VAEs and CVAEs in three steps. 351

Figure 5. Sample reconstruction of parcels vs. time matrix for a neurotypical control sample from
validation subset. LH: Left Hemisphere, RH: Right Hemisphere, Vis: Visual, SM: Somatomotor, Lim:
Limbic, Sal: Salience, Def: Default.
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In VAE experiments, we first processed each neurodivergent sample from the valida- 352

tion subset through all three architectures. We hypothesized that since VAEs were trained 353

to reconstruct neurotypical samples only, the output of the neurodivergent sample from the 354

decoding process would resemble the features of the training data (Figure 3.7-A). Next, we 355

grouped the brain parcels into five prominent brain networks - the Default Mode Network 356

(DMN), Limbic, Visual, Somatomotor, and Salience. Due to limitations in Schaefer’s atlas, 357

we could only analyze connectivity within these five networks. We then calculated pairwise 358

connectivity using Pearson correlation coefficients between these networks (Figure 3.7-B). 359

The resulting averaged correlation matrices were then subjected to a two-sided Welch t-test 360

to compare interconnectivity within networks between the two subgroups. Statistically 361

significant results (p < 0.05) were then visualized using chord diagrams. A negative Welch 362

t-value indicated that the mean of the neurodivergent input was lower than that of the 363

neurotypical-like synthetically-generated group, while a positive Welch t-value suggested 364

that the mean of the input group was higher than the generated group. As depicted in 365

Figure 4-C, the color of the connecting line between the outer circles of the chord diagram 366

corresponds to the Welch t-value. In this representation, blue shades indicate negative 367

t-values (lower connectivity), while yellow hues correspond to positive t-values (higher 368

connectivity). 369

For the CVAEs, the training data included both neurodivergent and neurotypical data, 370

which allows for a more targeted generation of the synthetic output. The overall steps for 371

FC with CVAEs were similar to those with VAEs, but the input embedding of the condition 372

was adjusted to the desired output. For instance, if the input sample was a female with 373

ASD, 12 years old, the embedding was adjusted to generate a neurotypical-like female, 12 374

years old sample. The remaining FC analysis steps – grouping parcels, calculating pairwise 375

connectivity, conducting two-sided Welch t-tests, and visualizing chord diagrams –are the 376

same as with VAEs. 377

To explore sex-related neurodivergence, we performed separate analyses for female 378

and male samples from the validation dataset. To access the influence of the conditions on 379

the FC results, we calculate cosine similarity between VAE and CVAE pair-wise correlation 380

matrix between networks (Figure 4-B). We believe that the cosine similarity score should be 381

higher for CVAE than VAE, indicating reduced sex-related bias. 382

4. Results 383

4.1. VAE Performance Evaluations 384

As detailed in Section 3.6, we begin by evaluating the reconstruction performance 385

of all VAEs and CVAEs. Upon visual inspection of Figure 5, we observe that all models 386

have adeptly learned to reconstruct the data from the low-dimensional representation. In 387

Figure 6, one can observe the decoded signal from one parcel of the validation sample, 388

and the decoded signal is closely following the input signal, demonstrating a high level 389

of reconstruction. Additional quantitative results are summarized in Table 1 and Table 2. 390

It’s worth highlighting that integrating conditional variables into the models has increased 391

the accuracy in reconstructing latent features, as indicated by both the cosine similarity 392

and PCC metrics. Moreover, the Convolutional Neural Network (CNN) architecture has 393

outperformed other architectures in terms of reconstruction across both the VAE and CVAE 394

experiments. To evaluate the encoding capabilities of each model, a comprehensive analysis 395

was conducted on both neurotypical and neurodivergent samples from the validation 396

dataset. Figure 7 depicts the resulting means of latent distribution. Notably, among 397

the VAE models, the CNN architecture and the hybrid CNN with RNN models exhibit 398

statistically significant differences in their latent features between affected and unaffected 399

samples. Therefore, the models have successfully learned to extract meaningful features 400

from the input data. As anticipated, adding conditional embedding to the models resulted 401

in a higher degree of separation within the latent space than unconditional models. All the 402

CVAE models display statistically significant differences in latent space between the two 403

subgroups. 404
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Figure 6. Sample reconstruction of one parcel for the neurotypical control sample from validation
subset. PCC and MSE are also stated for the displayed parcel reconstruction.

To further assess the performance of VAEs, we conducted a preliminary evaluation 405

of atypical pattern detection by calculating the reconstruction error on both neurotypical 406

and neurodivergent samples from our validation datasets, summarized in Table 1. The 407

reconstruction L1 error for the ASD validation set is higher than that of the TD set. This 408

difference implies that VAEs can reconstruct ASD samples in a manner that makes them 409

resemble TD samples. For the CVAEs, we conducted a similar analysis. Given that 410

CVAE was trained on both ASD and TD samples, our approach involved computing the 411

reconstruction L1 error for the ASD samples first. Subsequently, we compared this with 412

the synthetically generated outputs, employing a target conditional embedding based on 413

a TD sample. The results, presented in Table 2, show that the construction error for the 414

synthetic samples exceeds that of the reconstructed ASD samples. This disparity serves as 415

Figure 7. Summary of mean distribution of the latent space for validation subsets for each model.
T-test significance is also reported on each of the subplots.



Version August 17, 2023 submitted to Journal Not Specified 12 of 18

Table 1. Summary of reconstruction performance of VAE experiments: cosine similarity scores and
PCC for the neurotypical samples in the validation dataset. The average L1 reconstruction error for
both neurotypical and neurodivergent samples within the validation dataset is presented.

Model Cosine
Similarity PCC L1 TD L1 ASD

CNN 0.9930 0.6551 0.0693 0.0781
RNN 0.9817 0.6105 0.0728 0.0819

CNN and RNN 0.9820 0.6356 0.0717 0.0803

Table 2. Summary of reconstruction performance of CVAE experiments: cosine similarity scores
and PCC for the neurotypical samples in the validation dataset. Additionally, the average L1
reconstruction error for validation neurodivergent samples and synthetically generated neurotypical-
like samples.

Model Cosine
Similarity PCC L1 ASD L1 TDsynthetic

Conditional
CNN 0.9961 0.7165 0.0643 0.0733

Conditional
RNN 0.9818 0.6382 0.0681 0.077

Conditional
CNN and RNN 0.9825 0.6558 0.0687 0.0778

an indication that the conditioning mechanism is effective in detecting certain divergencies 416

within the data. 417

4.2. Functional Connectivity Analysis 418

Figure 8 and Figure 9 present the results of the FC analysis, following the steps outlined 419

in Section 3.7. In the VAE experiments (Figure 8), a consistent trend of underconnectivity 420

between the Limbic and DMN networks emerges across all models. This pattern remains 421

evident in both the female and male subpopulations. Similarly, multiple models identified 422

underconnectivity between the salience and visual networks, which has remained similarly 423

apparent in both male and female populations. Finally, the trend that is found to be 424

common across both males and females is the under-connectivity between limbic and 425

somatomotor networks. Conversely, the trend of overconnectivity between the salience and 426

limbic networks, identified by RNN and hybrid model, is present in the male population 427

but is reversed in females for all of the models. Furthermore, a noteworthy difference 428

between males and females lies in the connectivity between the somatomotor and DMN 429

networks. In males, the somatomotor-DMN connection tends to be under-connected, while 430

in females, it is over-connected. 431

In the CVAE experiments, some trends are similar to those identified with VAE models. 432

For example, a trend of underconnectivity between limbic and DMN is apparent for both 433

the male and female populations. The trend of under-connectivity between limbic and 434

DMN in males and over-connectivity between limbic and DMN in females remains true for 435

CVAE experiments. The trend of overconnectivity between visual and limbic became more 436

pronounced for both males and females in CVAE experiments compared to VAE. 437

Table 3. Similarity between male and female FC pairwise correlations for VAE and CVAE experiments.

Model Architecture Uncoditional FC Similarity Conditional FC Similarity

CNN 0.35 0.70
RNN 0.66 0.80

CNN parallel with RNN 0.78 0.85
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Figure 8. Statistically significant results of FC analysis presented as the chord diagram from VAE
experiments (two-sided Welch’s, p < 0.05). The bluish color of the lines indicates lower connectivity,
while yellowish colors represent higher connectivity of ASD samples compared to neurotypical-like
synthetic samples. The top row displays combined results for both female and male populations, the
middle row focuses on the male population only, and the bottom row pertains to female samples.

Interpreting the chord plots and discerning the extent to which the CVAE mitigated 438

sex-related influences presents a challenge. To address this, we quantitatively assess the 439

similarity between the pairwise correlations underpinning these chord plots (Table 3). This 440

similarity score revealed that all the conditional models have a higher overlap between 441

male and female neurodivergence compared to the unconditional models. 442

5. Discussion 443

In this study, we have investigated the application of generative models to FC analysis 444

in the context of ASD with fMRI data. Our exploration began with a comprehensive 445

assessment of the reconstructive abilities of various VAE architectures, using neurotypical 446

samples as the input data. Our analysis, which included an array of evaluation metrics, 447

established the CNN VAE model’s superiority over the RNN model. We interpret this as it 448

is more effective for VAE to model spatial patterns rather than temporal ones. 449

Furthermore, our investigation extended to comparing each encoder architecture’s 450

latent space and discriminative capabilities. The hybrid model exhibited the highest degree 451

of separation compared to other VAE architectures, based on the measured p-value between 452

two subgroups. This observation bears significant potential for future studies, considering 453

the increasing prevalence of VAEs in classification-oriented research studies. As anticipated, 454

incorporating conditional variables into the model also led to a predictable increase in the 455

separation of latent features. 456

To provide initial validation for the decoder architectures, we calculated Mean Ab- 457

solute Error for the reconstruction of the subgroup that was present during the training 458

and the new sample subgroup. VAEs had higher reconstruction errors for ASD samples 459

compared to TD samples, indicating their ability to model ASD samples resemble TD ones. 460

For CVAEs, which were trained on both ASD and TD samples, we computed reconstruction 461
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Figure 9. Statistically significant results of FC analysis presented as the chord diagram from VAE
experiments (two-sided Welch’s, p < 0.05). The bluish color of the lines indicates lower connectivity,
while yellowish colors represent higher connectivity of ASD samples compared to neurotypical-like
synthetic samples. The top row displays combined results for both female and male populations, the
middle row focuses on the male population only, and the bottom row pertains to female samples.

loss for ASD samples. Comparing this loss of synthetically generated outputs using a 462

TD-based target conditional embedding, we found higher reconstruction errors for syn- 463

thetic samples. This finding also suggests the conditioning mechanism effectively detects 464

neurodivergence and can make the generation process more targeted. 465

Overall, we believe that CNN-based VAE and CVAE are more effective in recon- 466

struction and generation. However, CNN in parallel with RNN is better for classification 467

applications. Finally, introducing phenotype data has improved both reconstruction in 468

higher dimensional space and discrimination in lower dimensional space. 469

Next, we proceeded further to FC analysis with trained VAEs and CVAEs. We con- 470

sistently identified under-connectivity between the limbic and DMN networks across all 471

VAE experiments, consistent with previous findings in the literature [38]. The trend of 472

over-connectivity between salience and limbic networks has been identified in the male 473

population by all VAEs and CVAEs. Which also well supported by the study by Green et al. 474

[42], where the studied group also consisted primarily of the male population. However, 475

our findings show this trend is reversed in the female population. One of the findings in 476

the previous literature is that male tend to have decrease underconnectivity with DMN 477

network compared to female[44]. Based on our analysis both VAE and CVAE has revealed 478

this pattern as well, specifically between DMN and somatomotor networks. 479

It was hypothesized that adjusting conditional embedding would reduce sex-related 480

bias in the models and potentially result in sex-independent FC. By evaluating the pairwise 481

connectivity matrix overlap between female and male subgroups, it is concluded that 482

patterns discerned through CVAE have reduced correlation with sex labels. We believe 483

the remaining difference shown in the chord plot between male and females in CVAE 484

experiments are primarily due to the age difference and diverse nature of the disorder. 485

However, CNN model once again appeared to be more effective at reducing sex-related 486
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bias since the increase in similarity of male and female pair-wise connectivity matrices was 487

shown to be the highest. 488

6. Conclusions 489

This paper presents a novel approach to FC analysis of fMRI data using a generative 490

model such as VAE. We also attempted to study if introducing additional phenotype data 491

to the model would reduce bias and increase the generalizability of the FC analysis. Our 492

main finding includes that the CNN-based model has been shown to be the most effective 493

architecture for the FC analysis. Moreover, we show that introducing phenotypic data 494

generally improves reconstruction performance and reduce bias in FC analysis. 495

In recent years, many studies have explored the capabilities of generative models 496

(GANs, Diffusion flow models, and VAEs) in the medical domain. However, many models 497

are found to struggle with at least one of the followings: high-quality outputs, mode 498

coverage and sample diversity, and computational costs [50]. VAEs are probabilistic 499

models, which makes them well-suited for modeling and generating complex distributions. 500

As shown in this paper, VAEs can learn the underlying probability distribution of the input 501

data, allowing for probabilistic sampling and interpolation. However, VAEs, compared to 502

GANs or Diffusion flow models, suffer from comparatively low quality in generation [50]. 503

Therefore, our future work will investigate different generative frameworks to improve the 504

quality of generated samples and develop methods for assessing them. 505
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