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Abstract

We define the quantum p-divergence and introduce Beckner’s inequalities for primitive quan-
tum Markov semigroups on a finite-dimensional matrix algebra satisfying the detailed balance
condition. Such inequalities quantify the convergence rate of the quantum dynamics in the
noncommutative L ,-norm. We obtain a number of implications between Beckner’s inequali-
ties and other quantum functional inequalities, as well as the hypercontractivity. In particular,
we show that quantum Beckner’s inequalities interpolate between Sobolev-type inequalities
and Poincaré inequality in a sharp way. We provide a uniform lower bound for the Beckner
constant &, in terms of the spectral gap and establish the stability of ), with respect to
the invariant state. As applications, we compute the Beckner constant for the depolarizing
semigroup and discuss the mixing time. For symmetric quantum Markov semigroups, we
derive the moment estimate, which further implies a concentration inequality. We introduce
a new class of quantum transport distances W , interpolating the quantum 2-Wasserstein
distance by Carlen and Maas (J Funct Anal 273(5):1810-1869, 2017) and a noncommutative
H~" Sobolev distance. We show that the quantum Markov semigroup with o-GNS detailed
balance is the gradient flow of a quantum p-divergence with respect to the metric W5 ,,. We
prove that the set of quantum states equipped with W5 , is a complete geodesic space. We
then consider the associated entropic Ricci curvature lower bound via the geodesic convexity
of p-divergence, and obtain an HWI-type interpolation inequality. This enables us to prove
that the positive Ricci curvature implies the quantum Beckner’s inequality, from which a
transport cost and Poincaré inequalities can follow.
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1 Introduction

Realistic quantum systems inherently interact with their surroundings and can be generally
modeled by open quantum dynamics. In the weak coupling limit between the system and
the environment, the dynamics would be Markovian and described by the so-called quan-
tum Markov semigroup (QMS) or the Lindblad equation, which is a natural analog of the
Fokker—Planck equation in the quantum setting [28]. Similarly to the theory of Markov semi-
groups, the analysis of the mixing time is of central importance for a QMS, and is closely
related to functional inequalities. In this work, we are interested in a class of convex Sobolev
inequalities, referred to as quantum Beckner’s inequalities. We will investigate their main
properties and relations with other known quantum functional inequalities, such as Poincaré
and modified log-Sobolev inequalities, via both algebraic and geometric approaches.

1.1 Classical Convex Sobolev Inequality

To motivate this work, we first review the results of the convex Sobolev inequalities in
the classical setting. Let (P;);>0 be the symmetric diffusion semigroup associated with a
Markov process (X;);>0 on a Riemannian manifold M with metric g(-, -) that has a unique
invariant measure . We denote by L the generator of P, and define the Dirichlet form
E(f,g) := —m[fLg]for functions f and g, where 7 [-] denotes the expectation with respect
to the measure 7. Bakry and Emery in their seminal work [10] showed that if there exists
k > 0 such that for f > 0,

Daf, 1) = «U(f, 1), (1.1)
then the convex Sobolev inequality holds:
2 Entd (/) < £@'(f), ), (1.2)

whichis equivalent to the exponential decay of the ¢-entropy Entﬁ (f) =alo(H)]—p [ f]
and characterizes the convergence rate of the Markov process towards its invariant measure.
Here ¢ : [0, 00) — R is assumed to be a smooth convex function such that ¢ (1) = ¢'(1) =
0 and 1/¢” is concave. I" and I'; are carré du champ operators defined as follows [11,
Section 1.16.1]: for suitable functions f and g,

1
L(f.g = E(L(fg) — fL(®) —L(f)g),

1
Pa(f.8) = S (LT(f.8) = T'(f. Lg) —~T'(Lf.8).

In the cases: ¢1(s) = s(logs — 1) + 1 and ¢ (s) = s2—2s+1, up to some constant, (1.2)
gives the well-known modified log-Sobolev inequality (MLSI) and the Poincaré inequality,
respectively,

a(nlflog f1—xlfllogx[f1) < Edog £, f). (1.3)

and

AR =l f1P) < €L 1) (1.4)

If we consider the interpolating family ¢,(s) = (s —s)/(p —1) =s+ 1,1 < p < 2,
between ¢ and ¢;, we obtain the Beckner’s inequality:

ap(TlfP1—mlf17) < pE(FP1, ). (1.5)
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Moreover, note from the diffusion property: Ly (f) = ¥/ (f)Lf + ¥"(f)T f for suitably
smooth functions ¥ and f, that £(log f, f) = 4E(fV2, 12y and E(f9, f279) = 2q —
g*)E(f, f). By substituting f = g2 and f = g7 with ¢ = 2/p into (1.3) and (1.5),
respectively, up to constants, we have the usual log-Sobolev inequality (LSI):

B(mlg*log g®] — mlg?llog w[g?]) < E(g. &), (1.6)

and the original Beckner’s inequality first introduced in [15] for the Gaussian measure on
RY:

By (8] — 7[g11%) < 2 — @)E(g, 9)- (1.7)

The condition (1.1) admits a deep geometric interpretation, and it is called the Bakry-Emery
(curvature-dimension) condition or I'>-criterion. To make this point clearer, let L = Ag —
VW -V be the generator associated with the Ornstein-Uhlenbeck process on the manifold
M that admits an invariant measure dr = ¢~V dvoly, where W is the potential and voly,
is the volume form on M. With the help of Bochner’s formula, we can compute I'(f, f) =
IVfI?and Ta(f, f) = V2 f 1?2 +Ric(L)(V f, V f), where Ric(L) is the Ricci tensor for the
generator L, defined by Ric(L) := Ric, +V2W with Ric ¢ being the standard Ricci curvature
of M. It is easy to prove that the condition (1.1) holds if and only if the Ricci curvature of
L is bounded below: Ric(L)(-, -) > kg(-, -). Otto-Villani [94] and von Renesse-Sturm [109]
further observed that (1.1) is also equivalent to that the relative entropy with respect to dx is
displacement x-convex on the Wasserstein space of probability measures on M. Inspired by
this characterization, Sturm [ 103] and Lott-Villani [80] extended the notion of Ricci curvature
to metric measure spaces by exploiting the convexity properties of entropy functionals. See
[11, 108] for more details.

The above framework establishes a beautiful connection between various subjects such
as partial differential equations (PDE), probability, and geometry, and has led to important
research progress in these fields. The key step in the Bakry-Emery arguments [10] is to
estimate the second derivative of the relative entropy along the Markov semigroup, where the
calculation depends on Bochner’s formula or, more abstractly, the diffusion property. Arnold
et al. [7-9] revisited the Bakry-Emery method in the PDE framework and characterized
the long-time asymptotics for various classes of Fokker—Planck type equations based on
the convex Sobolev inequalities; see also [37, 48, 83, 93] for the applications of functional
inequalities in nonlinear Fokker-Planck type equations. Among the general convex Sobolev
inequalities, Beckner’s inequality is of particular interest, since it provides an interpolating
family between MLSI and Poincaré inequalities and can estimate the tail behavior of a given
distribution (see also the discussion near (5.2) in Sect. 5). The recent work [64] proved a class
of weighted Beckner’s inequalities and the refined ones based on the Bakry-Emery method
and the curvature-dimension conditions. We also mention that [6] proved the inequality
(1.7) by the hypercontractivity and spectral estimates. In particular, Dolbeault et al. [50,
51] explored the gradient flow structure of the Fokker—Planck equation for general entropy
functionals and proved the contraction of the associated transport distance along the Fokker—
Planck flow, which gave a unified gradient flow framework for investigating the convex
Sobolev inequalities (1.2).

It is also desirable to extend the theory of convex Sobolev inequalities to the setting of
finite Markov chains. In this case, due to the lack of chain rule, the inequalities (1.3) and (1.6),
also, (1.5) and (1.7) are not equivalent (one is stronger than the other) [24]. For instance, Dai
Pra et al. [41] provided an example where the MLSI (1.3) holds while the LSI (1.6) fails. In
what follows, to avoid confusion between (1.5) and (1.7), following [1] and [38] we call the
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inequality of the form (1.7) the dual Beckner’s inequality. Similarly to the diffusion case, the
Bakry-Emery method and gradient flow techniques are two main approaches for the validity
of (1.2). Jiingel and Yue [72] followed Bakry-Emery’s ideas and gave the conditions of ¢
under which (1.2) holds. The proof relies on a discrete Bochner-type identity that was first
introduced in [25, 33]. Recently, Weber and Zacher [110] proposed discrete analogs of the
condition (1.1) such that the MLSI (1.3) and Beckner’s inequality (1.5) hold. Their argument,
different from [72], is based on the modified I" and I'; operators that satisfy some kind of
discrete diffusion property. We point out that a probabilistic approach, based on the Bakry-
Emery method and the coupling arguments, for the discrete convex Sobolev inequalities can
be found in [39] by Conforti.

The starting point of the gradient flow approach for discrete functional inequalities is
[81] where Maas defined a discrete transport distance such that the continuous time finite
Markov chains can be identified as the gradient flow of the relative entropy. Following the
ideas of [80, 103], Erbar and Maas [53] introduced the discrete Ricci curvature based on
this discrete Wasserstein metric, and derived a number of functional inequalities including
the discrete MLSI and the transport cost inequalities; see also [52]. Later, Fathi and Maas
[55] generalized the discrete Bochner formula [33] and developed a systematic approach
for estimating the discrete Ricci curvature lower bounds. It is worth mentioning that both
the discrete Bakry-Emery condition in [110] and the discrete Ricci curvature in [53] enjoy
the tensorization properties, and the aforementioned general results can be applied to several
interesting models such as birth-death processes, random transposition models and Bernoulli-
Laplace models (see related papers for details). We refer the readers to the review [82] and
the references therein for other notions of the Ricci curvature in the discrete setting and their
implications on functional inequalities.

1.2 Quantum Functional Inequalities

In analogy with the classical case, quantum functional inequalities play a fundamental role in
understanding the asymptotic behavior of a QMS. The study of LSI in the noncommutative
setting may date back to [65], and its connections with hypercontractivity were fully discussed
in the seminal work by Olkiewicz and Zegarlinski [92]. The quantum MLSI was initially
introduced by Kastoryano and Temme [73] to derive improved bounds on the mixing time of
primitive quantum Markov processes, surpassing those obtained via the Poincaré inequality
in [104]. The investigation of the quantum MLSI constant has been carried out in detail for
specific models using various techniques: the depolarizing semigroup by explicit computation
[90], the doubly stochastic qubit Lindbladian by a comparison method [89], and quantum spin
lattice systems by quasi-factorization for the entropy [13, 32, 40], to name a few. Regarding the
general validity of MLSI in the quantum setting, the notion of Ricci curvature lower bounds
(geodesic convexity), pioneered by Carlen and Maas [34, 35], has shown its utility in proving
the quantum MLSI and related functional inequalities with numerous applications in concrete
physical models. We briefly outline the main progress in this direction below. Carlen and Maas
[35] introduced a quantum analog of 2-Wasserstein distance such that the primitive QMS
satisfying o -GNS detailed balance condition (cf. Definition 2.1) can be written as the gradient
flow of the relative entropy and showed that the relative entropy is geodesically convex for
the Fermi and Bose Ornstein-Uhlenbeck semigroups, which extended their previous work
[34]. Based on Carlen and Maas’s results, Datta and Rouzé [44, 102] considered the Ricci
curvature of a QMS, and obtained some quantum Sobolev and concentration inequalities,
generalizing the results in the classical regime [52, 53, 93]. Wirth and Zhang [116] further
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introduced noncommutative curvature-dimension conditions and derived some dimension-
dependent quantum functional inequalities. In addition, the Bakry-Emery method, which
has been successfully adapted to the discrete case, has also been explored for the quantum
semigroups recently with fruitful applications [26, 27, 59, 77, 78, 115], where the crucial
monotonicity of Fisher information was derived from different starting points: the gradient
condition [59], the geometric Ricci curvature condition [27, 78], and the gradient estimate
[115]. The relations between these conditions, as well as the entropic Ricci curvature bound
[36, 44], can be found in [27, 78, 115, 116].

One of the favorable features of the classical LSI is the tensorization property, which
enables obtaining the functional inequalities for the tensor product systems from those for
the subsystems. However, this property is known to fail for the quantum MLSI (cf. [27,
Proposition 4.21]). To circumvent such difficulty, Gao et al. [59] introduced the complete
modified log-Sobolev inequality (CMLSI), which is a stronger notion than the MLSI, and
showed that it satisfies the desired tensorization properties. In [63], Gao and Rouzé proved, by
atwo-sided estimate for the relative entropy, that the CMLSI holds for any finite-dimensional
non-primitive QMS with o-GNS detailed balance. The very recent work [60] provided a
generic lower bound for the CMLSI constant by the inverse of completely bounded mixing
time and an improved data processing inequality, which improves the results in [63]. See also
[26, 27, 61, 78] for the geometrical approaches for studying the CMLSI.

1.3 Main Results

Although there has been much progress on Beckner’s inequalities in both diffusion and
discrete cases as reviewed above, the results for quantum Beckner’s inequalities are quite
limited. We only note the recent work by Li [77] where the author investigated the matrix-
valued Beckner’s inequalities, in terms of the Bregman relative entropy [86], for symmetric
semigroups on a finite von Neumann algebra. This work is devoted to further investigation on
this topic. We consider the primitive QMS satisfying certain detailed balance conditions, and
define the family of quantum p-Beckner’s inequalities and their dual version, by extending the
definitions in [1, 38, 75] for classical Markov semigroups; see Definition 3.5 for the functional
inequalities that we will mainly focus on. It turns out that the p-Beckner’s inequality (Bec-p)
describes the rate at which the quantum p-divergence F), » (3.1) tends to zero along the QMS.
Note that ), , can be viewed as the normalized noncommutative L ,-norm. The diagram in
Fig. 1 below summarizes part of the main results of Sects.3.2 and 3.3.

The relations between (PI), (mLSI), and (LSI) have been well investigated. [105, Corollary
6] provided a two-sided bound for the LSI constant by Poincaré constant; [73] showed that the
MLSI constant is bounded below by the LSI constant and above by Poincaré constant. This
also allows us to conclude that the MLSI constant and Poincaré constant can be compared
with each other; see also [31, Proposition 1.7] and [63, Theorem 3.3]. In Sect. 3.2, we prove
that the dual g-Beckner’s inequalities (Bec’-¢), as an interpolating family between (LSI)
and (PI), is comparable to (LSI) in the sense of Proposition 3.10; see Remark 3.11 for the
tightness of the comparison. We also show in Proposition 3.14 that (Bec’-¢) is stronger than
(Bec-p). Propositions 3.12 and 3.13 discuss the monotonicity of the dual Beckner constant
B4 (L) and the Beckner constant «, (L), respectively.

In Sect. 3.3, we investigate the quantum p-Beckner’s inequalities in detail. We first discuss
in Proposition 3.15 the connection between p-Beckner’s inequality (Bec-p) and the sand-
wiched Rényi entropic inequality (3.28) defined in [88]. In brief, the Rényi entropic inequality
(3.28) implies (Bec-p), while (Bec-p) only implies a restricted (3.28). Then, we consider
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Proposition 3.14

(Bec-p) (Bec™-q)
Lemma 3.18, Theorems 3.20,C.1
(PI) Proposition 3.10
[31,60,63]
[105, Corollary 6]

(mLST) (LSI)

[73, Proposition 13]

Fig. 1 Chain of quantum convex Sobolev inequalities. We remark that the implications from (PI) to other
inequalities (Bec-p), (mLSI), and (LSI) would generally involve a constant depending on the properties of
invariant states

the relations between (Bec- p) and quantum p-log-Sobolev inequalities (LSIp) (equivalently,
the hypercontractivity) in Proposition 3.17, where we find (LSIp) is stronger (resp.,weaker)
than (Bec-p) for p > 1 (resp., 0 < p < 1). A two-sided estimate for the Beckner constant
ap(L) in terms of the Poincaré constant A(£) is given in Lemma 3.18 and Theorem 3.20.
We prove, by contradiction, in Theorem 3.25 that &, (£) — «1(£) holds as p — 1*, where
o1 (L) is the MLSI constant. This extends the result [1, Theorem 1.1] in the classical set-
ting. We also extend the main result in [69] and provide a stability estimate for the Beckner
constant &, (£) with respect to the invariant state o'; see Theorem 3.27. In Sect. 3.4, we first
compute the quantum Beckner constant for the depolarizing semigroup with asymptotically
tight lower and upper bounds; see Propositions 3.29 and 3.30. We then derive a mixing time
bound for the QMS from the p-Beckner’s inequality (Bec- p) in Proposition 3.33. Moreover,
in Proposition 3.35, we extend [1, Proposition 3.3] for the classical case and obtain moment
estimates under (Bec-p). As a complementary result, we also provide a generic lower bound
for the Beckner constant for non-primitive QMS in Appendix C based on the key Lemma
3.3, following the work [63].

Another motivation for the current work is [50, 51], where the authors provided a gradient
flow approach for the classical Beckner’s inequalities. To be precise, Dolbeault et al. [50]
defined the following class of transport distances W, 4, with & € [0, 1] a la Benamou-
Brenier: for probability measures o and 11 on R¢,

1
W o,y =it | [ [ pretun ayar;
0 JRd
3:Mt+v'vt=07,uvt:,0tl/+ﬂ;l,szwt)/<<7/}, (1.8)

where y is a reference Radon measure and M;l is the singular part of u; in its Radon-Nikodym
decomposition with respect to y. In the case o = 1, W, o, (00, t1) gives the 2-Wasserstein
distance [19], while when o = 0, it is equivalent to the weighted homogeneous Hy’ I'Sobolev
distance [96, 107]:

o = pall -1 = sup{/ Ed(po— 1) & € CLRY, / VePay <1}
Y R4 Rd
Thus W 4,,, can be viewed as a natural interpolating family between them. Moreover, let the

reference measure be y := e~V 27 with the potential V being smooth and convex, where
2% is the Lebesgue measure on R¢. With such choice of y, they showed that the gradient
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flow of the (Tsallis) functional, for o € [0, 1),

1

Fo (1) 3=m deQ_ad)/, n=py, (1.9)

is the Fokker—Planck equation:
o —Ap—V-(uvVv)=0.

In the subsequent work [51], they further proved that F, is geodesically A-convex under the
assumption: V2V > A[ for A > 0, which implies the classical Beckner’s inequality.

It is easy to note that in the commutative setting, up to some constant, our quantum p-
divergence F),  (3.1) is nothing else but the functional .%, in (1.9) with p = 2 —a. In Sect. 4,
we extend the results in [50, 51] to the quantum regime and provide a geometric character-
ization for the quantum p-Beckner’s inequality. To do so, we first construct a Riemannian
metric g, , on the quantum states in Sect.4.1, so that the o0-GNS symmetric QMS is the
gradient flow of p-divergence F, , withrespectto g, ,. Thenin Sect.4.2, we investigate the
properties of the associated Riemannian distance, denoted by W5 ;, (cf.(4.20)), which can
be regarded as a quantum analog of W5 4 ;, in (1.8). The main result in this section is Theo-
rem 4.11, where we show that (D(H), W, ) is a complete geodesic metric space. We also
prove in Proposition 4.14 that similarly to the classical case, the new class of distances W3 ;,
is an interpolating family between the quantum 2-Wasserstein distance defined by Carlen
and Maas [35] and a noncommutative H~! Sobolev distance (4.41). With these results, it
is straightforward to define the entropic Ricci curvature associated with the functional 7,
in the spirit of [44, 80, 103]. We then derive an HWI-type interpolation inequality from the
Ricci curvature lower bound and show that the positive Ricci curvature can imply Beckner’s
inequality (Bec- p). Further, we prove the following chain of quantum functional inequalities:

Proposition 4.20 Proposition 4.21

(Bec-p)

where (TCp) is a transport cost inequality associated with W5, ,,. These results are presented
in Sect.4.3.

(TCp) (PIp), (1.10)

1.4 Layout and Notation

The rest of this work is organized as follows. We will restrict our discussion to a finite-
dimensional matrix algebra. In Sect.2, we give preliminary definitions and results used
throughout this work. Some additional preliminaries are included in Appendix A. In Sect. 3,
we define the family of quantum Beckner’s inequalities and investigate its properties and
relations with other known functional inequalities. Section4 is devoted to a gradient flow
framework for Beckner’s inequality. In Sect.5, we conclude this work with a discussion
of some open questions. Moreover, Appendix B includes a comparison of detailed balance
conditions, while in Appendix C we give a brief introduction to the non-primitive Beckner’s
inequality.
We fix notations that will be used in this work.

e Let B(H) denote the space of bounded operators on a finite-dimensional Hilbert space
‘H of dimension d < co. We use By (H) for the set of full-rank (invertible) operators in
B(H). Bsq (H) is the subspace of self-adjoint operators on H, while B, (H) is the cone of
positive semidefinite operators. For simplicity, in what follows, by A > 0 (resp., A > 0)
we mean a positive semidefinite (resp., definite) operator.
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The identity operator on H is written as 144 (or 1, if there is no confusion). Similarly, the

identity superoperator on B(H) is denoted by ids, or simply id.

e We denote by D(H) := {p € B;,(H); Trp = 1} the set of density operators (quantum
states), and by D (H) the full-rank density operators.

e We denote by (-, -) the Hilbert-Schmidt inner product on B(H), i.e., (X, Y) = Tr(X*Y),
where X* is the adjoint operator of X. Moreover, we write ®' for the adjoint of a
superoperator @ : B(H) — B(H) with respect to the inner product (-, -). The modulus
of X € B(H) is defined by | X| := vV X*X.

e We define the Schatten p-norm by || X[, = Tr(|X|?)!"/? for X € B(H) if p > 0;
X € Bx(H) if p < 0, where |||, is the operator norm. For a superoperator on B(H),
we simply use ||-|| for its operator norm.

e Let M be a subset of B(H). We denote by M/ the set of vector fields over M, i.e.,
A= (Aq,...,Ay) e M/ for Aj e M, 1 < j < J. The Hilbert-Schmidt inner product
naturally extends to M? as (A, B) = Z,J‘=1<Ajv Bj).

e For p € R\{0, 1}, we define its Holder conjugate p := p/(p—1) satisfying 1/p+1/p =

1.

We end the introduction with some remarks. For ease of exposition, in many statements
below, we only consider invertible X € By (H) (so that | X|* for any o € R is well-defined).
Most of them still hold for non-invertible matrices by an approximation argument, which can
be easily checked. For example, the first statement in Lemma 2.7 clearly holds for0 < p < ¢
and X € B(H). Moreover, to make the presentation cleaner, many results below are only
stated for p # 1, while the case p = 1 can be easily obtained by taking a limit; see Remark
3.4 for example.

2 Preliminaries
2.1 Quantum Markov Semigroup

Letus first recall preliminaries about the finite-dimensional Markovian open quantum dynam-
ics. We say that (P;);>0 : B(H) — B(H) is a quantum Markov semigroup (QMS) if P; is a
Cop-semigroup of completely positive, unital maps, whose generator L is called the Lindbla-
dian, defined by £(X) := lim;_,¢ =P X)) - X). A quantum channel ® : B(H) — B(H)
is a completely positive trace preserving (CPTP) map. Then, the dual QMS P,T is a semigroup
of quantum channels, and the associated equation %p = LT p is referred to as the Lindblad
equation. It is easy to check that X > 0 implies P;(X) > O for any t > 0. A QMS P; is
said to be primitive if it admits a unique full-rank invariant state o such that 73: (o) = o for
t > 0. In this case, there holds [58]

tl_i)ngOP,(X) =Tr(eX)1l, VX e B(H). (2.1)

For A € B(H) we define the left and right multiplication operator on B(H) by L4 = AX
and Ry = XA, respectively. Itis easy to see that L r(4) = f(L4) and Ry4) = f(R4a) holds
for A > 0 and functions f : (0, 00) — R. We also define the relative modular operator
Apos = LoR;! : B(H) — B(H) for p, o € D1 (H), and simply write it as A, if o = p.
We next introduce the quantum detailed balance condition (DBC). For this, we define a family
of inner products on B(H): for a given 0 € Dy (H) and s € R,

(X,Y)os :=Tr(c*X*a'7°Y) = (X, Al*(Y)o), VX.Y € B(H), (2.2)
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where (-, -)5,1 and (-, -)s,1/2 are GNS and KMS inner products, respectively. In particu-
lar, when o is the maximally mixed state 1/d, all the inner products (-, -)5 s reduce to the
normalized Hilbert-Schmidt inner product:

1

= —(X,Y). (2.3)

(X,Y)% =

Definition 2.1 We say that a QMS 7P, satisfies the 0-GNS DBC (resp., 0-KMS DBC) for
some o € D, (H) if its generator L is self-adjoint with respect to the inner product (-, -)4,1
(resp., -, )a,1/2)-

One canreadily see thatif 7, satisfies the o -GNS DBC or 0 -KMS DBC for some o € D4 (H),
then o is an invariant state of Py, and that P, is symmetric (i.e., Py = P,T ) if and only if
it satisfies the GNS DBC or KMS DBC for the maximally mixed state ¢ = 1/d. For any
f :(0,00) = (0,00) and 0 € D4 (H), we can define the operator:

I = Ro f(Ao) 1 B(H) — B(H), 2.4)

and the associated inner product:
(X, Y)o r = (X, TS (V). 2.5)
It is clear that (X, Y)s, r with f = x!7% gives the inner product (2.2); and the adjoint of a
linear operator K on B(H) with respect to (-, -)4, s is given by (J(f )_IICTJJ . The following

result from [35, Theorem 2.9] relates the self-adjointness of £ with respect to different inner
products.

Lemma 2.2 Ifa QMS P; satisfies the o -GNS DBC for some o € D1 (H), then its generator
L commutes with the modular operator A, and it is self-adjoint with respect to (-, -)s, f for
any f : (0, 00) — (0, 00), i.e.,

LAy = Ao L, JIL=1rTT].
In consequence, Py also satisfies o-KMS DBC and there holds
oL=LT,.

The next lemma, due to Alicki [2], characterizes the generator £ of a QMS that satisfies
the 0-GNS DBC.

Lemma 2.3 For a Lindbladian L satisfying o -GNS DBC for some o € D4 (H), it holds that

J
LX) = Y (e PVIX, Vil 4 e PV, XIVY) 2.6)
j=1

withwj € Rand J < d? — 1. Here, Vi € B(H), 1 < j < J, are trace zero and orthogonal
eigenvectors of Ay :

Ao(Vj) =€ Vi, (Vi Vi) =c¢;8jx. Te(Vj) =0, @.7)

where c¢; > 0 are normalization constants. Moreover, for each 1 < j < J, there exists
1 < j' < J such that
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The real numbers w; € R are called Bohr frequencies of the Lindbladian £, which
are uniquely determined by the invariant state o, while the operators V; are only unique
up to unitary transformations. Indeed, let {v;} be orthonormal eigenvectors of o such that
ovr = oyvg. Then, |vg) (vy| are eigenvectors of A, with As |vk) (vi| = (ok/o7) |vk) (vil,
which implies that for each 1 < j < J, there exists 1 < k, [ < d such that

wj =logo; — logoy . 2.9)

In what follows, we will fix a set of V; for the representation (2.6) with the properties in
Lemma 2.3.

Remark 2.4 When the invariant state o is the maximally mixed state 1/d, A, becomes the
identity operator and hence w; = 0 by (2.7), and we can take the operators V; to be self-
adjoint. In this symmetric case, the QMS P; may be regarded as a noncommutative heat
semigroup, and its generator has the form:

LX) ==Y [V, [V, X]1. (2.10)
J

Example 2.5 An important example of QMS is the generalized depolarizing semigroup:
PX)=eVX+A—-e")Tr(cX)1, X eB(H), 2.11)
for 0 € D4y (H) and y > 0, which is generated by
Ldepol (X) =y (Tr(c X)1 — X) . (2.12)
It is easy to see that P; is primitive and satisfies 0-GNS DBC.

Lemma 2.3 actually gives a very useful first-order differential structure for a QMS with
o -GNS DBC. We introduce the weighting operator for a full-rank quantum state 0 € D (H):

FeX =02Xo? : B(H) — B(H),
and the noncommutative analog of partial derivatives (associated with o € D4 (H)):
;X =1[V;,X]: B(H) — B(H).

Then the noncommutative gradient V : B(H) — B(H)’ and divergence div : BR)! —
B(H) can be defined by

VX =@X,...,0;X) for X € B(H), (2.13)
and
J .
divkK =—) 37X, forX e B(H)’,
j=1

respectively. By definition and (2.7), it follows that the adjoint of 9; with respect to (-, -)5,1/2
is

8;UB - r;laJTFUB = e /2VIB — BV} . (2.14)

With the help of 8;0 (2.14), we can rewrite (2.6) as

J
Lx)y=-Y" a(','fﬁ X, (2.15)
j=1
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and a noncommutative integration by parts formula holds:

J
— (Y, L(X))o1/2 =Y (3;Y,0jX)g1/2 for X, Y € B(H). (2.16)
j=1
The following lemma will be useful below, which generalizes [36, Proposition 4.12].

Lemma 2.6 Suppose that P, satisfies 0-GNS DBC. For any continuous function f :
(0, 00) = (0, 00), there holds

J
-1
(Y LX)op = Y (0¥ Ry £ (L oy R ) 01X), X, Y € BOH).
j=1
Proof By Stone-Weierstrass theorem, it suffices to consider f = x*. For this, we have

J . J
(V. R, ALLX) = Y (Y. Ay 79I, 8;X) = Y U7 (3,7, Ry AL 3, X)
1 =1

~.
Il

I
M~

s
(07, Ry, (Lo R ) 95X,
1

Q=
I

by noting A} 9; X = e™*“/9; A X from (2.7). ]

2.2 Quantum Entropy and Dirichlet Form

This section will introduce quantum relative entropies and Dirichlet forms and discuss their
basic properties.

Noncommutative L space. We start with the noncommutative weighted L, space. For p €
R\{0} and o € D4 (H), we define the o-weighted p-functional [73, 92]:

1/p
1Xlp.0 = Te (ITa/7CO1)
for X € B(H) if p > 0; X € By« (H) if p < 0, which is a norm when p > 1. In particular, if

o= %, then ||-||p% = dﬁ [I-1l , is the normalized Schatten p-norm. We also need the power
operator I, p, for p, g € R\{0}:

Iy p(X) = F;l/q (|ré/ﬂ(x)|l’/q) ,
for X € B(H)if p/q > 0; X € B« (H) if p/q < 0. Some important properties of ||, , and
I, 4 are summarized in the following lemma; see [73, Lemmas 1,2] and [17, Corollary 5].
Lemma 2.7 For p, q,r € R\{0}, it holds that
LA Xllpo < I1Xllgo for p < qand X € Bx(H).
2. |1y, p(X) ”Zﬁ =1XI10.6 and Iy » o I, ,(X) = I p(X) for X € By (H).
3. Iy p(X) =X for X > 0.

Dirichlet form. We define the p-Dirichlet form (p € R\{0}) for a QMS P; with generator
L (our definition differs from the one in [73] by a factor of p/2): for any full-rank invariant
state o = P;(o),
Ep,c(X) = —ﬁl(l~ (X), LX) (2.17)
p.L =Ty Vb ) 0,1/2 5 .
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for X e B(H)if p > 1; X € Bx(H) if p < 1. In particular, for p = 2, we have
E,c(X) =—(X, L(X))s,12, X=0.

The case p = 1 is defined by the limit p — 1 [73, Proposition 8]:
. 1
£1,6(X) 1= lim £, £(X) = =1 logTo (X) —logo, LX o2, (2.18)

Lemma 2.8 Let L be a Lindbladian satisfying o -GNS DBC for some o € D4 (H). Then, we
have, for p € R\{0} and X > 0,

2 J
£9.000 = L3P (3,%), g1 (020000, PP O0) TP (0,X) )

Jj=1
(2.19)

where f]p] (-, -) is the double sum operator (A.5S) associated with the divided difference (A.6)
of the function:

(2.20)

STl ifp £ 1,
log x ifp=1.

Proof 1t is sufficient to show (2.19) for p € R\{0, 1}, since the case p = 1 can be obtained
by taking the limit p — 1. By formula (2.16), we have

N J
Ep.c(X) = B2 30,15, 8, X012 @21)
Jj=1

Thanks to the relation (2.7), we can further compute, for p, g # 0,

0j1q,p(X) = V;Tg 1 (I0g/P (X)|P19) = T 17 (0GP CO1P79) V;
— F;l/q (V_,’|l";_/p(efw//2pX)|p/q _ |F(1,/P(ewj/zﬂx)|ﬁ/q V/) , (2.22)
and, for s # 0,
X =T, 15 (VTS (e @i/ X) — T (e1/* X) V) . (2.23)
Then, substituting the formulas (2.22) with ¢ = p and (2.23) with s = p back into (2.21),

and using Lemma A.2, we can find the desired representation (2.19) of £, . O

Corollary 2.9 Let L be a Lindbladian satisfying o -GNS DBC for some o € D4 (H). For any
X > 0and p # 0, there holds £, £(X) > 0. Moreover, the equality £, £(X) = 0 holds if
and only if VX = 0, where V is given in (2.13).

Proof It suffices to observe that f,(x) in (2.20) is increasing for x > 0, and hence the divided
difference f,ﬁ” is strictly positive on (0, co) x (0, 0o), which, by Lemma A.1, implies that
the operator f;”(e‘”i/zf’ TP (X), e=®i/2PTYP (X)) is positive definite on B(H). Then, the
representation (2.19) readily gives £, £(X) > 0,and £, £(X) = Oif and only if ;X = 0
forany 1 < j < J. O
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We derive integral representation formulas of f,gl] for later use. We recall [21, p.116]

: oo p—1
xp71251n(p71)/ S+ ds, forx>0,0<p<1,
T 0 STX

which yields, for 1 < p < 2,

1 y
e y) = f P72 dr
X =Y Jx

1 : _ y poo p—2
sin((p 1)71)/ / s dsdt
X—y T x Jo s+t

sin((p — D) /oo
4 0

sP=2gM(x, y) dsdr, (2.24)

whe[rle] gs(x) =log(x + s) and ggl] is the associated divided difference. By the integral form

of gy
o 1
gl (x,y) :/ ——dt,
o (t+x0)C+y)

we further have, from the formula (2.24),

0] _ sin((p — Dm) foo H/OO 1 -
fpiny) = ——" AR A rareprany s dids . (2.25)

We next recall the comparison result for Dirichlet forms £, -, known as the quantum
Stroock-Varopoulos inequality, which was proved in [17, Theorem 14].

Lemma 2.10 Let L be the generator of a QMS Py satisfying o-GNS DBC for some invariant
state 0 € D1 (H), and &, . be defined in (2.17). Then, for X > 0, we have

Epcpa(X)) = &g, Ug2(X)), 0<p=gqg=2 (2.26)

In the special case p > 1 and ¢ = 2, Lemma 2.10 gives the strong L, regularity of the
Dirichlet form [12, 73], which we slightly generalize as follows. The proof follows from the
basic inequality: for p € (1,2],a,b > 0,

2
- - 2 p -1 -1
(@—b)a’™ = b7 < (a?* —pP?)" < ————(a - D)@’ = b7,
( ) 4p-1
and similar arguments in [12, Theorem 4.1]. Hence we omit it here.

Corollary 2.11 Under the same assumptions as in Lemma 2.10, it holds that, for p € (1, 2]
and X > 0,

2

p
&2, p(X)) = Ep £(X) = -0

-7 &,c(I2,p(X)) . 2.27)

In particular, the lower inequality in (2.27) holds for all p > 0.

Relative entropy. We now introduce the entropy function Ent, , (X), for p € R\{0} and
o € D4 (H), as follows [17] (our definition differs from the one in [73, 92] by a factor of p):

Ent, ,(X) i=Tr ((r;/P(X))” (log (rV/r(x))’ - loga>> — X5 log Xy . X >0,
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and Umegaki’s relative entropy:
D(pllo) =Tr(plogp — plogo), p € D(H). (2.28)
We recall from [17, Proposition 3] that for p # 0 and invertible ¥ € By, (H),

1 1
% ”Y“p,(r = ? ”Y”p,(rp Entp,o(lp,p(Y)) P (229)
which, by chain rule, implies [92, Theorem 2.7]
d e 1P (yy\P 1/p 1
a5 1lhe =T ((rg )P og TP (1) = 1oga)), Y > 0. (2.30)

The above formulas relate the differential of L ,-norm ||| , , and the entropy function Ent, ;.
The following lemma provides some basic properties of Ent,, ,; see [17, 73].

Lemma2.12 For all X > 0 and p # O, we have Ent), ;(X) > 0. Moreover, for a state
p € D(H), it holds that

Ento, (052 (\/p)) = D(pllo) and Enti s (T;'(p)) = D(pllo).

We also recall the sandwiched Rényi relative entropy introduced in [91, 111]: for p €
0, H U (1, o0),

Dy(pllo) := plog (|5 0, ). peDH), 231)
and
D(pllo) = lim Dy(pllo) . Doc(pllo) :=loginfle > 0: p < co} = lim Dy(pllo).
(2.32)

where D(pllo) is given in (2.28), and D (p|lo) is the max-relative entropy [43, 91]. [88,
Lemma 2.1] shows that for 0 € D (H) and p € [1, oo], the sandwiched Rényi entropy D,
satisfies

sup Dp(pllo) = log U[;ih . (2.33)
peD(H)

Here and throughout this work, we denote by oy, the minimal eigenvalue of a state o €
D4+ (H).

We finally recall the Araki-Lieb-Thirring (ALT) inequality [5, 79], which is also useful in
the sequel.

Lemma 2.13 Forany A >0, B > 0, and q > 0, it holds that

Tr((B"A’B")1) < Tr((BAB)'?), 0<r<1. (2.34)

3 Quantum Interpolation Functional Inequalities
In this section, we shall introduce and investigate two new families of quantum functional

inequalities: quantum p-Beckner’s inequality and quantum dual g-Beckner’s inequality,
which interpolate quantum Sobolev-type inequalities and Poincaré inequality.
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3.1 Quantum Divergence

For our purpose, we need a modified sandwiched Rényi entropy, called quantum p-
divergence, defined by, for ¢ € Dy (H) and p € R\{0, 1},

1 p
Frap) = o= (I @, = 1). 3.1

p(p
where p € D(H) if p > 0; p € D4+ (H) if p < 0. By definition (2.31), it follows that

Fpo(p) = (exp((p = DDy (pllo)) — 1), (3.2)

1
pip—1
and then, by (2.32), we have

Flo(p) = Illlinl Fpo(p) = D(pllo).

The operator I'; ! (p) can be viewed as the relative density of p € D(H) with respect to the
reference state 0 € D (H). For convenience, we refer to operators X > Owith || X||; , = 1as
relative densities with respect to o in what follows. We recall that the variance of X € By, (H)
is defined by

Varg (X) = |X = Tr(0 X)I3, = IXI3, — IXI}, -

Clearly, when p = 2, F), 5 (p) reduces to the variance of the relative density of p, up to a
constant factor,

1 _
Fro(p) =5 Vare(X), X =T;'(p).
Thanks to (3.2), many properties of D, (pllo’) can be directly translated to ), 5 (p).

Lemma 3.1 Forany p,o € D (H), we have

1. Fpo(p) =0, and F) 5(p) = 0ifand only if p = o, for p € R\{0}.
2. Fp,o(p) is jointly convex with respect to (p, o), for p € R\(—1, 1/2).
3. The data processing inequality holds for F, s (p) with p € R\(—1, 1/2),

Fp.o@)(@(p) < Fpos(o), (3.3)
where ® is a quantum channel such that Fp, ¢ ()(®(p)) is well-defined.

Proof 1t was proved in [16, Theorem 5] that ||F;1(,0)”p0 > 1 for p > 1, and

|| r;y 1(,o) ”17,0 < 1 for p < 1, with the equality condition p = o. Hence, the first state-
ment follows. For the second and third statements, the case p > 1/2 has been discussed
in [57, Theorems 1,2]. We now consider the case p < —1, where the joint convexity of
Fp,o(p) is a special case of the general result [117, Theorem 1.1]. Then, the data processing
inequality (3.3) can be derived by the standard argument; see [57]. O

We next extend the key estimates in [63, Lemmas 2.1, 2.2] for the relative entropy D(p||o)
to our p-divergence (3.1), which are new and will be useful in the sequel.

Lemma 3.2 Let operators X;,Y; > 0,1 = 1,2, satisfy X; < cY; for some ¢ > 0. It holds
that, for p € (1,2),

(A, 171, ) A) < TP(A, (X, X2)A), VA € B(H), (34)

where f,[,” is the divided difference of the function f), defined in (2.20).
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Proof The proof follows from the integral form (2.25) of flgl]:

A, (X1, X)A)

_ sm((p — Dn) / - 2/’ Te A 1 dtds
t+s+X1 t+s+ X2
| s bm [ [ A duds
= = 0 0 t+s+CY1 t+s+clhh
Sln((p _ 1)7'[) e ¢} 2 1 1 1
_ sin((p — D7) P = Tr A>|<m % Aﬂ v dtds
T 0 ¢ Jo c Th —+h

= M/ (cs)p_zf Tr (A* A )d’ds
= 0 o t+s+Y t+s+Y

= "4, (N, 1) A), (3.5)

where in the first inequality we have used the fact that r~! is operator monotone decreasing;
in the third line we have used the change of variable r — r/s and t — t/s. O

Before we proceed, several interesting and helpful observations are in order. First, we
define the function

x —xl/p

(p[?(x): —lxl/p—l’

for x > 0 and p € R\{0, 1}. Then the kernel J((f” = ¢p(As)R; for the inner product
(-, '><Wp (cf.(2.4) and (2.5)) can be reformulated as follows, in terms of the double sum

operator associated with f, (1

1 A, — AP

p—=1 AP 1
1 Lgp—l)/p i R(p—l)/p

©p(As)Rs =

o

— o 1/p pl/p

= L/PR
p— 1 L(I;/p _ R;/p o o
F;/pr[ll(ol/l),al/ﬁ)p;/ﬂ. (3.6)

Second, the inner product (-, -)¢,¢, with p € R\{0, 1} also relates to the x2-divergence (A.3)
corresponding to the power difference k, (A.4) with « € R\{0, 1}. Indeed, for p € D(H)
with the relative density X =T' L(p), we can directly compute

-1
IX =113, = (0= 0. T 0p(A)Re T (0 — 0)) = (p — 0, (0 —0)),
by noting
-1
T op(Aa)Re Ty = A0y (AR =25 7 (3.7)
—1
where the operator Q, “r is defined as in (A.1). Then we find, by letting « = 1/p and
(A4),
1 1—x{=pn/p a x4l -1

-1
X (Pl/a(x) p—l Xl/p—l (X—l xa_l KO! ( )
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With the notation defined above, we conclude

IX —112, = xZ(p.0). 3.9)

o,9p

Third, by Lemma 2.6 with f = ¢, and the same calculation as in (3.6), it holds that, for
p € R\{0, 1} and X € B(H),

J
— (X, [:X)(wp — Z(Ff/”(an), f,LIJ (ewj/QPUI/P, e—wj/Zpal/p) p(lr/P(an)>. (3.10)
j=1

We are ready to give the following lemma, which shows that the p-divergence 7 (o) can
be bounded from above and below by the x 2-divergence associated with the power difference

K]/p.

Lemma3.3 For p,o € Dy (H) satisfying p < co for some ¢ > 0, it holds that, for p €
1,2),

kp(x2,,,(0,0) < Fpo(p) < p~' %3, (0, 0), 3.11)
where the constant ky(c) is given by
P —1—=p-1
ple—DXp-1 "

In particular, the upper bound estimate in (3.11) holds for any p € Dy (H).

kp(c) =

Proof Recalling the relation (3.9), we will prove the inequality (3.11) in the Heisenberg
picture:

1
2 P -1 2
kp) I1X =15 4, < P (IIXhe =1) < p~"I1X — 15, (3.12)
for X > O satistfying Tr(c X) = 1 and X < c1. We define X; = (1 — )1 +1tX,t € [0, 1],
and consider the function:

- 1 p_
Q1) = p(p—1) (”Xt”p,a 1)~

It is easy to compute the derivatives:

@'(1) =

! CTr ((ry/7x)”™'rir x = v)
and
0" (1) = <r),/P(X — 1), F (VP X, TYP (X)) TP (X — 1)>. (3.13)
By assumption X < c1, we have
1-n1<X, <+ (c—Dnl, (3.14)

and hence (1 — 1)o'/? < To/?(X,) < (1 + (c — 1)t)o'/P. Then applying Lemma 3.2 to
(3.13) gives

(=02 (X = LI X = D) <¢"(0) = (1 =072 (X = 1, I (X = 1),
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where we have used (3.14) and the observation (3.6). Note from Tr(o X) = 1 that ¢’(0) = 0.
It follows that

1 X 1 X

o(1) — ¢(0) :/ / o (1)dtdx < (/ / (1= 1)P~2 dtdx)(X — 1,787 (X — 1)
0 0 0 0

<p X -1z, .

Similarly, for the lower bound, we have

1 px
p(1) —90) = (/0 /0 (1+ (c— DHnP~? dtdx)(X -1L,J"(X - 1)

¢’ —1—=plc-1)
2 X~ 1, -
plc—=D>(p—1D r
The proof is completed by noting ¢(0) = 0. O

Remark 3.4 Lemmas 3.2 and 3.3 above rely on the integral formula (2.25) of f,g”, which
limit the range of p to (1, 2). The cases p = 1 and p = 2 can be easily obtained by taking the
limit. In particular, when p = 1, we recover the the results in [63, Lemmas 2.1,2.2], while,
when p = 2, the estimates in (3.4) and (3.11) are trivial.

3.2 Interpolation Between Sobolev and Poincaré Inequalities

To motivate the quantum Beckner’s inequalities, we consider a primitive QMS P, satisfying
o-KMS DBC for some ¢ € Dy (H). By the limit (2.1) and the data processing inequality
(3.3), Fp,o decreases along the dynamic p, = P;'(p) and there holds ), 5(0;) — 0 as
t — oo. We will see that the quantum Beckner’s inequality characterizes the convergence
rate of 7, 5 (). Itis convenient to consider the evolution of the relative density X = '] L,
i.e., the QMS in the Heisenberg picture. By KMS DBC and Lemma 2.2, we have

X, =T, p) =T e C' Ty (X) = P(X). (3.15)

Then we compute the time derivative of F, 5 (0;) as follows, for p € R\(—1, 1/2),

d 1 .
T Fpo (o) = ﬁ«r;‘/”(p,))"—‘), L (po)

= ﬁwa‘ VPP (X)), T L(X)

4
= —?5,&(?{:) <0, (3.16)

where p; = 73:(,0) > 0 for any ¢t > 0 with p € Dy (H), and last inequality is by (3.3).
If P, satisfies the 0-GNS DBC, by the positivity of £, » in Corollary 2.9, the calculation
(3.16) implies the contractivity of 7, , along the dynamic for all p € R\{0, 1}. In view of
(3.16), we can call —4 5,,,L(F;1(/o))/p2 the entropy production of the QMS P; = 'L for
the p-divergence 7 . A simple use of Gronwall’s inequality gives the equivalence between
the exponential decay of F), ;: for some o, > 0,

Fpo(p) < e " Fpolp), Vo eDi(H), 3.17)
and the functional inequality:

apFpo(p) < p2Ep (T (p)), Vp € Dy(H), (3.18)
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which we call the quantum Beckner’s inequality. By analogy with the classical case (1.7),
we can also easily define the quantum dual Beckner’s inequality; see (Bec’-q) below.

Let us now formally define the quantum functional inequalities in the Heisenberg picture,
which will be the main focus in the following sections.

Definition 3.5 For a primitive QMS P; with generator £ satisfying o-KMS DBC for some
o € Dy (H),letE, - be the associated p-Dirichlet form (2.17). Then we say that P satisfies:

1. the Poincaré inequality if there exists a constant A > 0 such that for all X € B(H),
A Varg (X) < &, 2(X). (PD)
2. the modified log-Sobolev inequality (MLSI) if there exists a; > 0 such that for all X > 0,
a1 Ent) o (X) < &1.0(X). (mLST)

3. the p-Beckner’s inequality with p € R\{0, 1} if there exists &, > 0 such that for all
X >0,

ap p(IXlIpo — IXI1] o) < Epc(X). (Bec-p)
4. the log-Sobolev inequality (LSI) if there exists 8 > O such that forall Y > 0,
BEnty 5 (Y) < & £(Y). (LSD)

5. the dual g-Beckner’s inequality with g € (0, 2) if there exists 8, > 0 such that for all
Y >0,

Bq Varg o (Y) = 2 —q)&2,(Y), (Bec’-q)
where Varg , (Y) is the g-variance: Varg o (Y) := Y3, — V|7 .

Remark 3.6 Note that inequalities in Definition 3.5 can be easily reformulated in the
Schrodinger picture by inserting X = I' ! (p). For instance, by definition (3.1) of ), 5 (p),
(Bec-p) is clearly equivalent to (3.18), while, by Lemma 2.12, (mLSI) with X = F;l(p)
gives the familiar one in terms of quantum states [102]:

1 .
1 D(pllo) < =1 Tr (£ (p)(log p — logo)) . Vp € D(H).

Remark 3.7 Recalling the classical cases (1.5) and (1.7), the most interesting regimes for
(Bec-p) and (Bec’-q) are p € (1,2] and g € [1, 2), respectively. Since many arguments in
the following discussions can work beyond these ranges, here we choose to define (Bec-p)
and (Bec’-¢) for general p and q.

We call the optimal constant in (Bec- p) the quantum Beckner constant, denoted by «, (£).
Similar notions apply to other functional inequalities defined above. In particular, the Poincaré
constant A (L) is nothing but the spectral gap of £. Indeed, since L is self-adjoint with respect
to (-, -)o,1/2 and ker(£) = span{l1¢} holds for a primitive QMS, by the min-max theorem,
the Poincaré constant

inf —(X, LX),1/2
XeB(H).X#1 | X — Tr(o X)1]13,

AL) = (3.19)

characterizes the smallest non-zero eigenvalue of —L (i.e., the spectral gap). It is worth
pointing out that as £ is Hermitian-preserving, the infimum in (3.19) can be taken over X in
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Bsq (H). Moreover, by Lemma 2.2, for a primitive QMS satisfying o-GNS DBC, the Poincaré
inequality can be equivalently defined by, for any X € B(H),

MX =Tr@X)17 ; < —(X, LX)o. . (PIy)

where f : (0, 00) — (0, 00) and the norm |||, ; is defined by the inner product (2.5). It is
clear from Lemma 2.2 that under o-GNS DBC, the optimal constant A (L) is independent of
the choice of f.

In the rest of this section, we will derive some properties of the optimal constants for
functional inequalities in Definition 3.5 and the relations among them. We summarize some
known relations between (mLSI), (LSI), and (PI) from [73, 92, 105] in the following lemma
for completeness and future use.

Lemma 3.8 For a primitive QMS P; satisfying o -KMS DBC, it holds that

201(£) < ML) and Mo <2B(L) = A(L).
2 — log(omin)

Moreover, if Py satisfies 0 -GNS DBC, we also have B(L) < a1(L).

We first consider the properties of quantum dual g-Beckner’s inequalities (Bec’-g). It
is clear from definition that when ¢ = 1, the inequality (Bec’-¢) reduces to the Poincaré
inequality (PI). On the other hand, it is easy to see that in the limit ¢ — 2, (Bec’-¢q) gives
(LSI). In this sense, (Bec’-g) can be considered as an interpolating family between the
quantum LSI and the Poincaré inequality. Indeed, we have Proposition 3.10 below. The
proof is based on the following monotonicity lemma.

Var, - (Y)

Lemma 3.9 The function T7g=1/2

is monotone increasing for g € (0, 00)\{2}.

Proof We recall the interpolation of the noncommutative L, space [16, 66]: for 0 < pg <
p1 <ooandf € [0, 1], letting 1/ps = (1 —6)/po + 0/ p1 with 6 € [0, 1], there holds

1Yl pyo < IYN0, 6 1YL S VY € BH).

P00 p1,0°
We immediately see that the function log || Y [|1/; - is a convex function for ¢ € [0, 00), which
implies that
() = explog 1Y ll1/1,0) = 1Y I1}1

is also convex. Therefore, we have that the function

Varg o (Y)  ¢(1/2) —o(1/q)

1/g —1/2 1/qg—1)2
is increasing in q. O

Proposition 3.10 Let P; be a primitive QMS with o-KMS DBC. If (Bec’-g) holds with
limsup,_,,- B4 > O, then (LSI) holds with f > limsup,_,,- f/2. Conversely, if (LSI)
holds with B > 0, then (Bec’-q) holds for any q € (0, 2) with constant 8; > qB.

Proof Suppose that (Bec’-g) holds with limsup,_,,- B; > 0. By the formula (2.29), we
have

1 Y135 = 1Y1I5
EEntg,U (Y) = lim ko 40 g any Y > 0. (3.20)

q—>2~ 2— q
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Then taking the upper limit as ¢ — 27 in (Bec’-q), we find
1
5 (lim sup ﬂq) Enty 5(Y) <& (Y).
q—>2~

Thus, by definition, (LSI) holds with 8 > lim SUp,_,o- By/2. For the reverse direction, by
Lemma 3.9, it follows, from (3.20) and the assumption (LSI), that

Var, o (¥ Var, o (Y
Varg.o ) _ i sup ~220 W) o o (v) < 287165 £(Y),
l/g—=1/2 7 , - 1/q—1/2
that is, (Bec’-¢) holds with 8, > gp. O

Remark 3.11 Note from [|Y[|; , < IYlly,o forg € [1,2) that
Vary o (Y) < Varg (Y) < 27 '&,2(Y),
which gives B, > (2 — g)A. It follows that for g € [1, 2), the lower bound B, > g above

can be improved:

Bq (L) = max{(2 — q)A(L), gB(L)}, (3.21)
which is tight when ¢ — 17 and ¢ — 2. Indeed, for ¢ = 1, we have 8;(£) = A(L) =
max{A(L), B(L)} by Lemma 3.8. When p — 27, by Proposition 3.10, there holds,

liminf f,(£) = lim max{(2 = )(0). ¢B(L)) = 2p(0) = Hq”l up fy (). (3:22)
that is, lim, _,»- B, (L) = lim,_,»- max{(2 — ¢)A(L), g B(L)} = 2B(L).

The quantum dual Beckner constant S, (£) has the following monotonicity property, which
implies that if (Bec’-¢) holds for some g € (0, 2), then it holds for all ¢ € (0, 2).

Proposition 3.12 Let P, = ¢!~ be a primitive QMS with -KMS DBC. For the optimal dual
Beckner constant B4 (L) in (Bec’-q), it holds that B;(L)/(2 — q) is increasing and B4(L)/q
is decreasing for q € (0, 2).

Proof For the first claim, by the ordering of ||-|| P inLemma2.7, wehave,for0 < ¢ < ¢’ <2
and Y > 0,

q
BaIY 15, = IY17 ) < Be(IY 15, = IYI; ) < yeprich q)E.c(Y),

thatis, B,//(2 —q") > B4/(2 — q). The second claim is a direct consequence of Lemma 3.9.
Indeed, due to the monotonicity, we have

Var, - (Y) Var, (YY)
2qBy —L—= <2¢'By—— < 24’6 £(Y),
aby g = q' By 1oy M 2,£(Y)
which clearly shows 8,/q > B, /q’. o

We next prove an analog result for the quantum Beckner constant o, (£).

Proposition 3.13 Let P; = ¢'“ be a primitive QMS with o-GNS DBC. If the Beckner’s
inequality (Bec-p) holds for some p' € (1,2] with a)y > 0, then for any 1 < p < p/, the
inequality (Bec-p) holds with constant ap, satisfying

pap>pay. (3.23)

Equivalently, p o, (L), as a function of p € (1, 2], is nonincreasing.
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Proof Tt suffices to prove the inequality (3.23). For this, by the quantum Stroock-Varopoulos
inequality in (2.26) and (Bec-p) for p’, we have

Ep,e () 2 Ey.e Uy p00) Z ! (17,0

Ip;’,a - H Ip’,p(X)“f,a) . (3.24)

Note from Lemma 2.7 that || 1,y ,(X)

5; . = X1} 5. By ALT inequality (2.34), we find

Lo NS L L
1y X, , =Tr (aw (UZI’XO'ZI’>I 021”) <Ixl% ,
V4
since
1 p 1
p 2pp  2p 2p
Therefore, by (3.24) and Lemma 2.7, it follows that

/

Epe(X) Z app! (nxnﬁ,g — IX1%, ) = app (IX15.0 — 1XI7,).

The proof is complete by definition (Bec-p). O

We finally relate the p-Beckner’s inequality and the dual g-Beckner’s inequality with
q=2/p.
Proposition 3.14 Let P; = '~ be a primitive QMS with o-GNS DBC. Let p € (1,2] and
q =2/p € [1,2). If (Bec’-q) holds with B, then (Bec-p) holds with ap, > B, /2.

Proof We substitute Y = I ,(X) for X > 0 in (Bec’-¢) and find

12,015 = 12,03, 0 = 1X150 = 203, , < B C = 0)E,£(1,,(X)).

(3.25)
By ALT inequality (2.34) and Lemma 2.7, we have
1 1. P 2
|2p G0, =Tr (o4 (077 X0 ) o 8 0)
Py 2
<Tr((To(X)2)? < X0 - (3.26)
Then, by L, regularity in Corollary 2.11, it follows from (3.25) and (3.26) that
X150 = IXI{ 5 < B, @ = a)Ep (X)),
which gives a, > B,/2. m}

3.3 Quantum Beckner Constant

In this section, we focus on quantum Beckner’s inequalities (Bec-p) and investigate the
properties of o, (£). We will first exploit the connections between (Bec- p) and the functional
inequality related to sandwiched Rényi entropy, as well as the hypercontractivity. We then
provide a two-sided bound for o, (£) in terms of the Poincaré constant A(L£) for a certain
range of p. The relations between (Bec-p) and (mLSI) will also be discussed. Moreover, we
extend the quantum Holley-Stroock’s argument from [69] and give a stability estimate for the
Beckner constant a, (£) with respect to the invariant state o. In the remaining of this work,
we mainly consider the range p € (1, 2] for (Bec- p) for ease of exposition, unless otherwise
specified.
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Connection with Sandwiched Rényi Entropic Inequality

In [88, Definition 3.1], a functional inequality very similar to Beckner’s inequality (3.18)
above was introduced for quantifying the convergence of sandwiched Rényi entropy (2.31)
with p > 1 along the QMS: for some &, > 0,

4€p,c(T5 " (p)

2, Dy(plle) = —LE 0
')
p,o

, YpeDH). 3.27)

d

Note from [88, Corollary 3.1] that the right-hand side of (3.27) is the entropy production of
D, (pllo). Since the sandwiched Rényi entropy D, (p|lo) is the logarithm of p-divergence
in some sense, we may expect that its exponential convergence is a stronger notion than
the one of 7, ;. Indeed, we show in the following proposition that the inequality (3.27) for
D, (pllo) can imply the one (3.18) for F, , while (3.18) can only guarantee (3.27) for o in
a neighborhood of o (in other words, the exponential convergence of D, (p;|lo) if a warm
start is given).

Proposition 3.15 Let P, = ¢'~ be a primitive OQMS with o-KMS DBC and p > 1. If the
inequality (3.27) for sandwiched Rényi entropy holds, then Beckner’s inequality (3.18) holds
with o, > &, /2. Conversely, if (3.18) holds, then (3.27) holds in a neighborhood of the
invariant state o : for any a > Q withc, = (1 —e™%)/a,

a
_ deqapDp(pllo)  if Dp(pllo) < ,
485, (T5 " (0)) e g p—1
I Tl (328)
—1 ap —a . a
p|rs' o] (—e™) if Dylpllo) = ——.
p.c p—1 p—1
Proof We start with the easy direction (3.27) = (3.18). We reformulate (3.27) as:
ap . -1 p -1 p -1
Fprog (|0 D, )T @)}, = Epc Ty 0)). (3.29)
Then, by the elementary inequality xlogx > x — 1 with x = [T '(p) ||Z ,» Beckner’s

inequality (3.18) with &), > a p/2 follows from (3.29) immediately. Now, assuming (3.18)
holds, we rewrite it as

4 RN 48, £ (T ()
%(1 — et wl,h ) = M. (3.30)

Note that for any a > 0, there holds, with ¢, = (1 — e™%)/a,
l—e ™ >cux, Vxel0,al. (3.31)

Letting e* = H F;l(p) ||1[j , in (3.31), we readily have the restricted inequality (3.28) from
(3.30). ’ O

Connection with Hypercontractivity

In view of existing works [6, 15] and the direct relations between (Bec-p) and the noncom-
mutative p-norm, one may expect that there also exist natural connections between Beckner’s
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inequalities and the hypercontractivity of QMS, which we will elaborate below. We first recall
the p-log-Sobolev inequality (p € R\{0}): for some 8, > 0,

BpEnt, o (X) <&, (X)), VX >0, (LSIp)

which reduces to (mLSI) and (LSI) when p = 1 and p = 2, respectively. (LSIp) is known
to be equivalent to the hypercontractivity (p > 1) and the reverse hypercontractivity (p < 1)
[17,92]. To be specific, we have the following result from [17, Theorem 11 and Corollary 17].

Lemma 3.16 Let P; be a primitive QMS satisfying o -KMS DBC for some o € Dy (H). It
holds that

o Iffor1 < p<q(t) =1+ (p— De*t" with fixed p and B, > 0, there holds
1P (Xl gy, = 1Xllpe ., V120, X >0, (3.32)

then the p-log-Sobolev inequality (LSIp) holds with B p = Be. Conversely, suppose that
P; satisfies o -GNS DBC and (LSI) holds with optimal constant B(L). Then (3.32) holds
with B. = B(L).

o Iffor1>p>q(t) =1+ (p— De*P! with p, q # 0 and B, > 0, there holds

1P Xlgr),0 = 1XNps» V220, X >0, (3.33)

then the p-log-Sobolev inequality (LSIp) holds with E p = Bc. Conversely, suppose that
P; satisfies 0-GNS DBC and (mLSI) holds with optimal constant a1 (L). Then (3.33)
holds with B, = a1(L).

It is straightforward to derive the next proposition, which, along with Lemma 3.16, relates
(Bec-p), (LSIp), and the hypercontractivity of P;.

Flroposition 3.17 Let L be the generator of a primitive QMS with o -KMS DBC and o), (L) and
Bp(L) be the optimal constants for (Bec-p) and (LSIp), respectively, for p € (0, 1) U(1, 00).
Then, we have pa, (L) > B, (L) for p > 1 and pay(L) < Bp(L) for0 < p < 1.

Proof We recall that log ||X||‘Z,(r for X = F;l(p) with p € D4 (H) is increasing in p > 0,
by the monotonicity of sandwiched Rényi entropy D, (pl|o) in p. Then, a direct computation
gives

d ~
——loglIXllpo = —

dp IX1,% Entp o (X) >0,

1 1

— loglXllp o+ —
(r—1? "7 pp =D
which implies, by again x logx > x — 1 withx = H I (p) Hiﬂ,

A

p p
— X170 log X156 = F(IIXIIQG -D.

p
Ent, o (X) >
p—1 77 (p

— 1)2
The proof is complete by the definition of (Bec-p) and (LSIp). O

Two-Sided Estimates of @, (L)

We next consider the estimation of the Beckner constant «, (£) in terms of A(L£). We first
show that (Bec-p) implies (PI;) with f = ¢, by the standard linearization argument.
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Lemma 3.18 Let P; = '~ be a primitive QMS satisfying o-GNS DBC. Then we have, for
p € R\{0, 1},

20p(L) = ML)

Proof We consider Z =1+ ¢X fora X € By, (H) with Tr(o X) = 0, where ¢ > 0 is small
enough such that Z > 0. By a direct expansion with respect to ¢, we find

g2

1ZlIpe =1+epTr(aX) + *p(p — DX, + 0, (3.34)

,¢p

and
p P &2 2 3
||Z||]Y(7=(1+8TI’(O'X)) =l—i—apTr(oX)—l—?p(p—l)Tr(aX) + 0(7).

We also compute
Tols p(Z) =0 +&(p— Dgp(Ag)Rs (X) + O(%), (3.35)
and £(Z) = eL£(X), which yields

Epc(Z) = —&2(p — 1) (X LX), + 0(s%). (3.36)
Hence, applying (Bec-p) to Z with above expansions, we have

e 2 (1x T X)) 1 0@ < -2 (x. £x 0 337
Oép2 Il IIM,I,—r(U) + (8)__87<’ Yo.p, + O(&7). (3.37)
Due to Tr(o X) = 0, by dividing both sides of (3.37) by &% and letting ¢ — 0, it readily
follows that

20, 1X13,, < =(X, £X)o.g,,
which gives the desired estimate: 20, < A. a

We next generalize [1, Proposition 2.8] in the classical setting to the quantum regime,
which shows that the quantum Poincaré inequality (PI) implies p-Beckner’s inequality
(Bec-p) for p € (1, 2].

Proposition 3.19 Let P; = ¢' be a primitive QMS with o-GNS DBC. If the Poincaré
inequality (P1) holds with constant X, then, for p € (1, 2], the Beckner’s inequality (Bec-p)
holds with constant a;, satisfying

-1
a, > L0 (3.38)
p
Proof We first claim that there holds
IX11po = IXI] 4 < (Ipp(X), X =Tr(0 X)1)o,1/2, VX > 0. (3.39)
Indeed, a direct computation gives
(I, (0. X =Te(@X)1), |, = I XIlpo = 1XIl1, Te(@/P(T/PX)P™H . (3.40)

Then, by ALT inequality (2.34) and the ordering of |||, ; in Lemma 2.7, we have

Tr(DY/P(CY/PX)P=") < Te((0 Y/ =D x)7=h = X157, < IXI9,"
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which, along with (3.40), implies the desired inequality (3.39). One can readily note that up
to some constant, the right-hand term in (3.39) is the p-Dirichlet form &), Laepol defined by
(2.17) associated with the generator Lgepol With y = 1; see Example 2.5. We proceed by
using Corollary 2.11 and find

2

P
& X) < —— Vary (I ,(X
P»L"depo]( )— 4(p_1) ary, (2,17( ))

N A o P
= ad(p 1) BENEP = 2d(p—1)

where we have also used the assumption that (PI) holds, and the observation:

Epc(X), (3.41)

Var 5 (X) = (X = Tr(c X)1, X — Tr(c X)1)5,12 = 52,£d6p01 (X).
Then it follows from (3.39) and (3.41) that
AIXNpo = I1X1] 5) < Ep.c(X),
that is, pa, > A holds. O
Note that the lower bound for Beckner constant o, (£) in (3.38) vanishes as p — 1.

Thanks to Proposition 3.17, it is easy to establish a uniform lower bound for o, (£), which
improves the estimate in (3.38).

Theorem 3.20 Let P, = '~ be a primitive QMS satisfying o-GNS DBC. Then we have, for
pe(1,2],

1
2p(2 — log(omin))’
Proof Recall from [17, Corollary 16] that E p (L) is decreasing in p € (0, 2] for a QMS with
o-GNS DBC. Then, we obtain, by Lemma 3.8 and Proposition 3.17,

1 AL
(L) > L GO .

2p 2 —log(omin)

The proof is complete by Proposition 3.19. O

(L) > max{ p; ! }x(c). (3.42)

1~ 1~
ap(L) = ;ﬂp(ﬁ) > ;,32 (3.43)

Remark 3.21 The estimate (3.43) holds for any p > 1 by using ,(£) = (L) in [17,
Proposition 10].

Remark 3.22 The minimal eigenvalue o, for the invariant state ¢ has been estimated in
several interesting cases; see [73, Remark 1] and [88, Section 7]. Note that a crude estimate
Omin < 1/2 gives 2(2 — log(omin)) > co := 2(2 + log2). It follows that if p > 1 + cal ~
1.186, the estimate (3.42) reduces to the one (3.38), which is clearly tight when p — 27.
However, when p — 1%, by 2a; < A in Lemma 3.8, we only have

a@

pQ2 —log(omin)) ~ logd

if omin 1s of the same order as 1/d, which is far from tight, given (3.45) below. For the
symmetric QMS with invariant state ¢ = 1/d, one can extend the results in the classical
case [1, Proposition 2.9 and Theorem 2.1] to have a tighter lower bound for «,, which goes
to Cay(L) as p — 17T, with constant C independent of the dimension d of . However, the
argument involved in [1, Proposition 2.9] seems hard to be generalized to general invariant
states 0 € Dy (H).

ap(L) =
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Remark 3.23 In Appendix C, we will briefly discuss Beckner’s inequalities in the non-
primitive setting. In particular, we adopt the analysis framework recently proposed in [63]
for CMLSI with some tools developed above to give a lower bound for the non-primitive
Beckner constant, which is asymptotically worse than the one in (3.42) but can apply to more
general Lindbladian £.

Relation Between a1 (L) and @, (L)

Recall from Remark 3.11 that lim,,_,»- 8,(£) = 28(L). Next, we give a similar result for
Beckner constant «, (£), which is more technical; see Theorem 3.25 below. First, by taking
the right limit p — 17 in (Bec-p) and using formulas (2.18) and (2.30), we obtain the
following lemma.

Lemma3.24 Let P, be a primitive QMS with o-KMS DBC. If (Bec-p) holds with
limsup,,_, |+ «p > 0, then (mLSI) holds with constant

) > limsupoy,. (3.44)
p—1t

Theorem 3.25 Let P, = ¢!~ be a primitive QMS with o-GNS DBC. Then we have
aj(£) = lim a,(L). (3.45)
p—1t

The proof of (3.45) needs the following lemma that extends [24, Theorem 6.5] for the
discrete MLSI.

Lemma3.26 LetP; = '~ be a primitive QMS with o -GNS DBC. If a,(£) < A(L)/2 holds,
then the following infimum is attained:
Ep,£(X)

x=tk 15X, — 1)
1X1l,o=1

ap(L) = (3.46)

Proof By definition, there exists a sequence of X, € {X > 0; [|X]|;, =1, X # 1} such
that

5p,£(Xn)
ﬁ(“Xn “5,0 - 1)
Since the set {X > 0; [|X|l;, = 1} is compact, without loss of generality, we assume
X, — X asn — oo for some X > 0 with || X||; , = 1. Suppose that X = 1. Then we can

write X, = 14 Y, with ¥;, — 0 and Tr(cY,,) = 0. Recalling the asymptotic expansions
(3.34) and (3.36), we obtain, by (PIy),

Vp(Xp) = — ap(L), asn— 00. (3.47)

1 (Ya, LYn)og, + OUIYall} o) 1
liminf V,(X,,) = lim inf — = ——— 27 T > (L) > ap(L),
1n—>00 =0 2 | Yally,y, + OUIYally »)

which contradicts (3.47). Thus, the limiting operator X is in the desired set {X >
0; Xl =1, X # 1} and the infimum in (3.46) is attained. ]

Proof of Theorem 3.25 To show (3.45), by Lemma 3.24, it suffices to prove
lim 1lrif ap(L) = ai(L). (3.48)
p—)

@ Springer



161 Page280f70 B.Li, J. Lu

We shall prove it by contradiction. If (3.48) does not hold, there is a sequence p, — 17 as
n — oo such that

lim o), (£) <aj(£) —¢,
n—00
for some small enough ¢ > 0, that is, for any k > 0, there exists N such that forn > N,

ap, (L) <ai(L) —e+ % . (3.49)

Suppose that ), (£) = A(L)/2 holds for infinitely many n. It follows from (3.49) that
AL)/2 < a1(L) — &, which is a contradiction with Lemma 3.8. Thus, without loss of
generality, we assume o, (£) < A(L)/2 for all n. Then, Lemma 3.26 gives the existence
of the minimizer X,, associated with «,, (£). By compactness, we further assume that X,
converges to some X > 0 with || X||; , = 1. To proceed, we consider two cases. If X =1,
similarly to the proof of Lemma 3.26 above, we write X,, = 1+ Y, and find

1 1 (Y, LYa)og,, + OUYalll o) 1
a1(£) — e+ — > liminf &y, (€) = lim inf — > ———— =" T = M),
k= n=oo n=oo 2 Yallg,, + OUYAlly o) 2

which, by letting k — 00, again contradicts with Lemma 3.8. If X # 1, by definition (Bec-p)

and (3.49), we have

Pl Xnllpho = 1)
Pn — 1

for large enough n. It implies that, by letting n — oo and k — oo and using (2.30) with

elementary analysis,

9,00 = (w1 (0)— e+ )

)

E1,.(X) < (@1(£) — &) Enty 5 (X),

which contradicts the optimality of «¢; (£). The proof is complete. O
Stability of a, (L)

We proceed to investigate the stability of the quantum Beckner constant «, (£) with respect
to the invariant state. We will compare the constants c , (£) for the following two generators
Ly and L, that satisfy the detailed balance conditions with respect to two different but
commuting full-rank states o and o”:

J
Lo(X) = (e VX, Vj]+ e[V}, XIVF), (3.50)
j=1
and
J
Lo(X) =Y (e7PVIX, Vil+ €21V, XIV), (3.51)
j=1

where e~/ and e~/ are the eigenvalues of A, and A/, respectively. For ease of exposition,
we assume that the states o and o’ admit the spectral decompositions:

d d
o= oplv)(wl. o =) oflu)(wl, (3.52)
k=1 k=1
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respectively. The following result is extended from [69, Theorem 3.1].

Theorem 3.27 Let L, and L, be the generators of two primitive QMS satisfying o-GNS
DBC and o’-GNS DBC, given in (3.50) and (3.51), respectively. Then it holds that, for
pe(,2]

Amin _wj—v;lC-p)

min e 2p ap(Ly) < ap(Ly), (3.53)

max J

where constants Amin and Amax are defined as

. Ok Ok
Amin =min —  and Apax = max — . (3.54)
k (o k Oy

Remark 3.28 The most useful case of the above result might be ¢’ = 1/d, which allows us
to reduce the estimate of «;, (L) for a 0-GNS symmetric QMS to o, (L£1) for a symmetric

QMS. In this case, the estimate (3.53) can be simplified as follows, by the relation (2.9),

l@j12=p) 2+p
. O] . . O] 2p
ap(Ly) = min —mine” ozp(ﬁl)— min — ap(L1).
kl o j k.l og d

It is also worth mentioning that the assumption (o and ¢’ commute) is restrictive in the sense
that the jump operators {V;} in (3.50) and (3.51) are the same. A very recent work [70] by
Junge and Wu gives a general stability (continuity) result for two non-primitive generators
L and £’ that satisfy -GNS DBC for the same o € D4 (H) and have the same fixed point
algebra. They showed that for ||L - L || < 8, the MLSI constant satisfies (1 — &) (£) <
a1 (L"), where the dependence of ¢ on § is implicit. It would be interesting to generalize the
results in [70] to Beckner constant o, (£) for a more general class of generators £, which is
beyond the scope of this work.

Proof We first establish a comparison result for the p—divergence ), ;(p). We define the
map

(AL (A) 0 .
d(A) = [ 0 Tr(A) — maxTr(r F (A))] : B(H) - B(H® C).

It is easy to check from (3.54) that Tr( m;XF r. (A)) < Tr(A) for any A € B (H).
Then, & 1s completely positive and trace-preserving by Kraus representation theorem Let

X =T, (p) > 0 for p € D(H). By the data processing inequality (3.3), we have

1
I awn (D)) < Fp o :7(Xp,—l). 3.55

p. @) (P(P)) < Fpo (p) (= 1) X1, - (3.55)

We now compute, by definition,

1 —1\1-pr

Fpo@) (P(p) = ) ( max 1 X156 + (1= Apt 11X, a) (1-Ana) ~ — 1) .
(3.56)
Note from (3.54) that Apax > 1 > Apin and Amax IX|l;., < 1. Then the convexity of x”,

1l < p <2, gives

— 1 — ||X||la’ 1 max ”‘(”la
(11— A 1 ) L + A o= 7
max 1-— Amax max mellx
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_ _ 1— _
= (1= Apax X116 )" (1 = Apa) 7+ A IX1IT 5 = 1,
which, by (3.56), implies

1
Py @) 2 s (A IXIo = A IXIE, ) - 357)

Combining (3.55) and (3.57), we can find

ﬁ(llxnﬁ,a—nxnfﬂ) (A 1)(|IXIIPU,—). (3.58)

We next give the comparison result for £, ». We recall (2.19), and, by Lemma 3.2, obtain

Ep.Ly(X) > (inf e—‘wj—vjl(2—p)/2p)
J

2 J
% Z<Fé/1)(3jx), flgl] (evf/zPF(IT/P(X), e*”./‘/zpré/P(X)) r(lr/P(an)> ;
j=1
(3.59)

since

eiw_f/2pr(1I/P(X) < (max e\‘”j_‘)j|/2P)eivj/2171“(17/P (X).
J

By the integral representation (2.25) of f; “J, we can estimate
F,',/Pf},” (evj/Zpl—‘(ly/P(X)’ e—vI/ZpF(ly/p(X)) rl/p
_ sin((p = D) /O"" sp_znlr/pgél] (S 4oVl (x) s 4 efv,-/zpptlr/p(x)) rl/ras >
sin((p — 1)) /00 sl’_zFCl,/p
0
g([)l] (sA;iln/pal/p(a/)_l/p + eV//ZPFLIT/p(X),SA;]iln/pal/p(U/)_l/p +e7vf/2pF;/p(X)) F(I,/‘D ds,
(3.60)

where we used the following observation from (3.52) and (3.54):
AmatPa P ()P <1 < ALPG NP (o)1, (3.61)

and the operator monotonicity of t~1. The inequality (3.61) also implies that Arln/lﬁ Ty p F(IT{ Pis completely
positive and trace non-increasing. Then, by [69, Proposition 3.6], it follows that

ro/” ! (SA;ilr{pal/p(G/)fl/p + " I2PTy /P (x), sA PP (o)) P +67”f/2pF(1r/p(X)) ro'”

>A2/PF1/17 l”( +Al/p V]/Zprl/p(x) S+A1/PK*VI/2PF1/17(X)> 1/1’

min" ¢’/

Therefore, by (2.25) and (3.60), we have
F;/P f][yl] (evj/Zpr(lr/P (X), e—v_i/2pl—~(1r/P (X)) Fl/p

_ sin((p = D) /OO P2 A2Pp1/p I
0

min- o

(S + Atln/iﬁevj/zprl{p(x), s+ Al/-pefvjﬂp]"l{p(x)) FI{P ds

= Aminl}? £ (43220 P (), i 2re P o) P
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Combining the above estimate with (3.59) and recalling (2.19), we readily have

£y, (X) = (infeaw,-fu,-uzfp)/zp) Aminép.z,, (X). (3.62)
J
The proof is completed by the following simple estimate, with the help of (3.58) and (3.62),
p ( p Amax

— (11X ¢ < X
o7 (X = 1X0e) < 0 2, 0

Amax (3¢ o—loj=vj1C=p)/2p - AL E, £, (X

- ap(ca/) j min®p, Lo .

3.4 Applications and Examples

This section is devoted to the applications of p-Beckner’s inequalities. We first analyze
the Beckner constant «, (£) for the depolarizing semigroup. We then derive a bound on the
mixing time of quantum Markov dynamics in terms of &, (£). For the symmetric semigroups,
by borrowing the techniques from [1, 71], we obtain the moment estimates from Beckner’s
inequalities (Bec-p), which further allows us to derive a concentration inequality.

Beckner Constant for Depolarizing Semigroups

In general, it is challenging to explicitly compute or estimate the optimal constant for the
functional inequalities, even in the classical setting. We will consider the quantum Beckner
constant o, for the simplest QMS: the depolarizing semigroup (2.11) with y = 1 and
o = 1/d, and show that in this case, the computation of o), is equivalent to the classical
one for a Markov chain on the two-point space. We mention that the explicit values of LSI
constant 8 and MLSI constant aj for Lgepol With a general invariant state o € D4 (H) have
been obtained in [17] and [90], respectively.

Proposition 3.29 Let Lgepol(X) = Tr(X/d)1 — X be the Lindbladian of the depolarizing
semigroup. Then we have

- P (6xP + (1 =0)y?) — x4+ (1 = 0)yP™ )
mn —
Ox+(1-0)y=1 4 OxP + (1 —-0)yr)—1

x,y>0, 0e(F,...1- 3}

op (L:depol) =

)

(3.63)
for p € (1,2], where d is the dimension of the underlying Hilbert space H.
Proof We first compute from definition (Bec- p) that
A~ r r—1
T Ep e () . IIXllpql IIXIIP_I% X1 1
op(Laepol) = inf ——————— =~ in 7 7 . (3.64)
X0 X117, =Xy, 4 X0 X ¢ = 1XI7
P.q La Pq La

We only consider p € (1,2), since the case p = 2, corresponding to the spectral gap, is
trivial. Let u; > 0, 1 <i < d, be the eigenvalues of X > 0. It is easy to reformulate (3.64)
as

P Sl —d T (ST (X m)
4wzo 3l —d= PO (Y )"

Ap ([:depol) =

)
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which is equivalent to, for any u; > 0,

F(ut, ..., ka) IZZMf —dfl(zl*}”il)(zﬂi)

—W@Hf - d’(P’”(ZI:/M)P) >0, (3.65)

Suppose that (r,-)l.d=1 achieves the equality in (3.65). We claim that all r; are strictly positive.

If not, without loss of generality, we assume r; = 0, rp > 0, and Zﬁlzz r; = 1. Then, from
(3.65), for small enough ¢ > 0, we have

d d
F(e,ro—&,1r3,...,19) = Zrip _d*I(ZriI’fl) _ CP(Zrip _ df(p71)>
i=3 i=3 i=3

—d Ny — )P + &™) = (Cp — D((r2 — &) +&P)
=—d e’ '+ 0(@) <0,

where C), := 4a,/p. This fact contradicts the assumption that (r;); saturates the equality,
so the claim holds. Now, by r; > 0 for all i, we have VF (ry, ..., rqg) = 0, which, by direct
computation, gives the following equations in the variables r;:
p p—1 P~ 1 p—2 1
——ap)r;  ——— Xy, T =—

(5~ o X = =
When || X||; and || X||,—; are fixed, the above equation clearly has at most two solutions,
denoted by a and b, which means that r; takes the value either a or b. Let n be the number
of r; equal to a. Then, it follows that

-1 - -1
IXIP7) —apd P IXIT . (3.66)

) (na? + d — n)b?) —d~'(na?=' + (d — )b~
dp (ﬁdepol) = inf

14
na+(d—-mb=1 4 (na? + (d — n)b?) —d—»-D
a,b>0, nefl,....d—1}

P OxP + (1 =6)yP) — (BxP~' + (1 —6)yP™h)

= i f ’
9X+({Ile)y=1 4 @xP +(1—-0)yr)—1
x,y20, fe( L, 1-1)
by setting @ = n/d, x = da, and y = db. O

To connect the expression (3.63) with the classical Beckner constant, we consider a Markov
chain on {0, 1} with the transition matrix: for 8 > 0,

o1-0
P_[GI—G]’

which has the invariant measure 7(0) = 6, w(1) = 1 — 6. The Beckner constant for this
chain is give by [24, (4.1)]

e PPN = D)
PO R02 a(fr) —w(f)r
L PO A —8)yh) — @xP (1 =0)yP Y
= ex+dlle(>)y:1 2 OxP + (1 —6)yP) —1 :
xX,y=>

(3.67)
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Then we can see

1 12 1
op(Laepol) = 5 inf {ap; 0 € (= 1= E}}' (3.68)

d d’
However, although the representation (3.67) is simple, numerical techniques are still nec-
essary to find the explicit values of c ) g and &, (Lgepo1). We next derive upper and lower
bounds for & (Lgepol)-

Proposition 3.30 For Lepol given in Proposition 3.29 and p € (1, 2], there holds

pd?~! |.

)4 1
1 < ap(Ldepol) < min {2 m (3.69)
Proof The lower bound follows from (3.64) and ”X”p—l 1 < IXI, 1,
—1
X0, —1x1e— ||X||p
2y Lapo) = inf Pd L s B
e = RO (N X171 X20,IXI, o IX17, -1
'

For the upper bound, again by (3.64), we have

Ix1?
pd
X=0, IIXH o 11D, 1
l

4
; op (ﬁdepol) =

Note that xff—]:] is decreasing in x > 1 for p € (1, 2], and that, by (2.33) and definition of
Dp(pllo),

sup ||X|| pl —d l’ .
X20.1X1, 1,

It follows that ap(Ldepol) =< % e P : . The proof is completed by Lemma 3.18 and

207 (ﬁdepol) = )\(ﬁdepol) =1 ]

Remark 3.31 When p — 1, the estimate (3.69) gives 1/4 < a(Ldepol) < 1/2, which
recovers the known bound for MLSI constant for the depolarizing semigroup [90, Figure 1].
It is also easy to see that (3.69) is asymptotically tight for any fixed p € (1, 2] whend — oo.
Indeed, we have o), (Lgepol) — p/4 as d — oo. Another special case is d = 2, where we
directly have &, (Lgepol) = 1/2 from (3.69), which can also be implied by the relation (3.68):
ap(Laepol) = ozp’%/Z, and ocpy% = 1 in [24, Proposition 4.3].

Mixing Time

We shall analyze the mixing time of a primitive QMS P, = ¢’ from quantum p-Beckner’s
inequalities. We define the /; mixing time for ¢ > 0 by

f1(e) = inf{t > 0; | P (p) — o], < e forall p € D(H)}. (3.70)

To bound 71 (¢), we need the following lemma extending [77, Theorem 4.1] for the symmetric
QMS, which characterizes the convergence of QMS in terms of o -weighted p-norm.
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Lemma 3.32 Let P; be a primitive QMS satisfying o-KMS DBC. Then it holds that, for
pe(,2]

. 2
IPi(X) = Tr(@ X)L, o < e 22O x|, P2 \/p(p_l) (llelZ,g - IIXIIf,[,), X >0,

where a, (L) > 0 is the quantum Beckner constant for P;.

Proof We define, for X, Y € By, (H),

PO x 4 srip 2 v,

Similarly to [77, Theorem 4.1], by results in [101], it is easy to prove that G’)’(’ y©) >0
for any self-adjoint X, Y, which implies that Gx y(s) is a convex function on R. We now
consider A := Tr(o X)1 and B := X; — Tr(c X)1 with X, = P;(X) for X > 0. Then, by
Lemma 2.7, we have, for any s € R,

Gxy(s):=[X+sY|ho—

IA+sBlpo = 1A+ sBIf, = Tr(@ (A +5B)’ =Tr(0X)? = | Al -

It then follows from definition that G’A’ 5(0) > 0, which, along with the convexity of G 4 g (s),
yields G’AB(s) > 0 for any s > 0. Hence, we have G4 g(1) > G4 p(0), that is (recalling
the definitions of A, B),

X0 — PP 21X o0, 2 X, G
By (Bec-p) and Gronwall’s inequality, it holds that
1Xlp.o = 1017, < et (1X156 = 1XI7,) . X =0,
which, along with (3.71), implies
X, ~ T XN, , <~ e X3 (IX U0 — IXI7,) -
p(p—1D°

The proof is complete by taking the square root of the above inequality. O

Proposition 3.33 Under the same assumption as in Lemma 3.32, it holds that for p € (1, 2],

11(¢) < h(p, Omin, €) (3.72)

h( ) 1 ) _1 2 22 p+2-
, Omin, €) := ——— log [ ¢ — |’ —0o.. .
p min 2ap (l:) g p(p _ 1) min min

Proof Let X, be the relative density of p; = oL (p); see (3.15). We write
|7/ (0) = o], = [T (0 P (o) = D], = 1X, = 115 -

where

By Lemma 3.32, we have

2
¥ —2a, (L)t 2 2—p
sup [P (p) —o|, < e % sup (||X|| = 1X1I, )
peD(H “ I x>0, TrcX)=1 | P(p — 1) pe ne
(3.73)
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Recalling the formula (2.33), there holds
1
sup 1XNp.o = Omin
X>1,Tr(o X)=1
Also note that the function x> — x>~7 with p € (1, 2] is increasing for x > 1. It follows
from (3.73) that

2 22 pt+i-3
T —2a,(L p
IRl ol zertmen |2 (a7 ol

sup
p€D(H)
By definition (3.70) and a direct computation, we obtain the estimate (3.72) for ¢ (¢). O

By elementary calculus, we find

1 _ _
h(2, omin, €) = D) log <8 1 Umih — 1) ,

and,as p — 17,

1 _
h(p, omin, &) —> m log (‘9_1 2log (Umiil)> ’

which are nothing else but the mixing time bounds obtained from the decays of the variance
and the relative entropy, respectively [73, 104]. If the QMS satisfies the o-GNS DBC, then
(Bec-p) holds for all p € (1, 2] by Theorem 3.20. In principle, we can take the infimum in
(3.72) over p € (1, 2] and obtain #1(¢) < inf ye(1,2] 7 (P, Omin, &). However, this observation
might be not that useful in practice, since it is hard to have a good estimate of «, (£) for a
general £ and answer when the infimum is attained in the interior of [1, 2]. If the constants
ap (L) are of the same order, it is easy to see that when opip < 1/d is small enough, we have
infpe(l,Z] h(p, omin, &) = h(1, Omin, &).

Moment Estimates and Concentration Inequalities

In this section, we consider the primitive symmetric QMS P; = 79,T (see Remark 2.4). We
will derive a moment estimate from p-Beckner’s inequalities, by extending the arguments of
[1, Proposition 3.3] for classical Markov semigroups. This helps us to obtain concentration
inequalities in a similar manner as [71], which could find applications in quantum parameter
estimation problems [102, Section V]. We first recall the carré du champ operator (gradient
form) associated with P, = ¢'£ [71, 116]:

1
rx,y)= E(ll(X*Y) — X*(LY) — (LX)*Y) for X,Y € B(H). (3.74)
As usual, we write I'(X) for I' (X, X). By the self-adjointness L5 = £and £(1) = 0, adirect

computation gives the relation between the I' operator and the Dirichlet form & (X, Y) =
—(X, LY)d; (see (2.3) for the notation (-, -)%):

1
£..(X.Y) = (5. T(X, 7). (3.75)

Before we state our main result on moment estimates, we need the following useful lemma.
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Lemma 3.34 LetI'(-) be given in (3.74) for a symmetric Lindbladian L. For any differentiable
convex and increasing function ¢ : [0, 00) — R and c € R, it holds that
E2.(IX +cl), 1X +c) = 201X+, T(X)) 1 = 2[¢/(X +eD], 1 IFX
(3.76)

for X € By, (H), where p > 1.

Proof Assume that X € By, (H) has the spectral decomposition X = Y A; E;, where E; are
the eigen-projections associated with the eigenvalues A;. Note from the convexity of ¢ that
for any x, y > 0,

o(x) —p(y)

X=Yy

<max{¢'(x),¢'(M} < ') +¢'(y), (3.77)

since ¢’ (x) > 0 holds by the monotonicity of ¢. Recalling the formula (2.16), by the eigen-
decomposition of X and the inequality (3.77), we have

E,c(@(X 4D, 1X +ch)

=Y (890X +c). 31X +cl)

1
d

(p(xi +cD) — @Ak +cD)(Ai +c| = Ak +c]) Tr(ExVEi V)

Il
IS
M-
M= 7=

(@' (12 + D) + @' (ra + D)k + | = [hx + c))* Tr(EL VS EiV)) . (3.78)

IA
S
M-

1i,

»
Il
-

J

Similarly, by definition (3.74) of I'(X), we compute

J d
=3 > @ U + e — ¢ (i +c)DAF = 2D

j=1lik=1
(hi@' (1M +cl) = 2 (I + D)) (ki — i)} Te(Ex VS Ei V)

Q_
Sn\h-

20" (1X + ), T(X))s

I

J
Z D@ Wi +cl) + ¢ (i + D) i = M)* Te(ER VS E V)
j=lik=1
3.79)

Since there holds ||A; + ¢| — [Ax 4 ¢|| < |A; — Axl, by (3.78) and (3.79), and using Holder’s
inequality, we obtain the desired estimate (3.76). O

Proposition 3.35 Let £ be a primitive symmetric Lindbladian and T'(-) be defined in (3.74).
Suppose that the quantum p-Beckner’s inequality (Bec-p) holds for all p € (1, 2] with
ap > a(p — 1)’ for some a > 0 and s > 0. Then we have, for X € By,(H) andr > 2,

2 s+1
r K(S
PRAI0)

<— (3.80)

)

IO

1
d

(1]

1
HX—EH@)

1
r.g

where k(s) 1= (1 — e~ 6tD/2)=1,
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Proof We shall prove by induction that for all positive integers k and r € (k, k + 1], there
holds

1 2
HX - ETF(X) ,Sor IT O N maxgz 1,1+ ¥X € Bsa(H), (3.81)
ra
where
e (s) r =1 s+1r2\ 7!
o= S k() = (1 _(T)(H )’/) . (3.82)

The desired estimate (3.80) is a direct consequence of (3.81), since k, increases in r and
kr(s) — k(s) as r — o0o. We first note that by Lemma 3.18, (PI) holds with A(£) > 2a. For
k=1andr € (1, 2], by (PI) and (3.75), we have

2 2

1
= o m&cX) =Tl 1,

Hx_lﬁ“) L = A(D)

d

1
<|X—--=-Tr(X
-l

1
r,g

since ¢, is increasing in r, which gives ¢, > ¢; = 1/2a > 1/A(L). Suppose that (3.81)
holds for all integers smaller than some k > 1. Now we consider r € (k, k + 1]. We define
Y=|X- 5 Tr(X)|, and then estimate by using (Bec-p),

ras(

By Lemma 3.34 with ¢(x) = x"~!, ¢ = =X Tr(X), and p = r/(r — 2), we have

e L TR (3.83)

Fr r—1 Fr r—2
E.c(V) ==Ly = S =D ¥, IPCO
2
=S I ITOl, - (3.84)
We write [, = ||Y]l, 1 and note ap > a(f — 1) = a(r — 1)~*. Then combining estimates
(3.83) and (3.84) gives
-1
por <N e, < Dol , . G89)
2a 2°d 2°d
Applying the assumption (3.81) to bound /,_; and by (3.85), we obtain
= (o IO ezt )+ ﬂ%mmuﬁ (3.86)
Note from (3.82) that
ot T et 1,4 et = D™ i s) 3.8
cr ||F(X)||%% oo T st (s) ' ’

By dividing both sides of (3.86) by (¢, IT'(X)|| %%)r/z and using (3.87), it follows that

) =()

To complete the proof, we need the fact from [1, Proposition 3.1] that the function A (x) =
(1—1/r)+9r/2 4 /cr_lxl_2/’ — x is strictly concave on [0, co) and satisfies #(0) > 0 and

7

(Cr ITCOI

(J‘-El)r 12

1
<Cr ITCOIl:

)r;f . (3.88)

I~
&h—

1
d

SR
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h(1) = 0, which means that 4(x) > 0 implies x < 1. This fact, along with (3.88), readily
implies
2

< ITX)

r 1
24

Hx-éﬂa)

1
r,a

[}

Remark 3.36 In the case of s = 0, Proposition 3.35 shows that if (Bec-p) holds with
infpg(lqzj op = a, then

1 2 rK
HX—fTr(X) < —IIFX e » VX € Bsa(H),
d rd 2a
by IIF(X)II% 1 < IT(X)|loo>» where « = (1 — e~ 1/2)=1 A similar result was given in

[71, Theorem 4.4] for non-primitive symmetric QMS under the Bakry—Emery curvature-
dimension condition (I";-criterion):

(X, X) > al'(X, X), VX € B(H), (BE(a, 00))

for some o« > 0, where I'; is the iterated carré du champ operator: ['2(X,Y) :=
—%(F(X, LY)+T'(LX,Y) — LI'(X, Y)). To be precise, they used the noncommutative
martingale methods and proved that under some necessary regularity condition, if BE(«, 00)
holds, then we have

8r
IX — EX))? < —ITMlso VX € Boa(H)

where E is the conditional expectation to the fixed point algebra {X ; P;(X) = X forz > 0}
and |||, is the Schatten norm with respect to a normal faithful tracial state. It is currently
unknown whether or not Beckner’s inequality can be implied from I';-criterion BE(«, 00).
Hence, our result is complementary to theirs.

Similarly to [71, Corollary 4.13], we next show that the moment estimate (3.80) with
s = 0 implies a noncommutative exponential integrability and a Gaussian concentration
inequality. The idea of the proof is standard and borrowed from the commutative case [18]
by Efraim and Lust-Piquard.

Corollary 3.37 Let L be a primitive symmetric Lindbladian and T (-) be defined in (3.74).
Suppose that p-Beckner’s inequality (Bec-p) holds with inf ,e(1 21 ), > a for some a > 0.
Then it holds that, for X € By, (H),

1 rx
exp (’X — fTr(X)D < 2exp M , (3.89)
d 1,1 da
and, for any t > 0,
1 1 ar®
—Tr(1 X - —-Tr(X <2 -, 3.90
T (10w ([X = 5 TrC0)])) < exp( — ”F(X)”o() (3.90)

where k = (1 — e~1/2)~1,
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Proof Note that T'(X) = I'(X — 5 Tr(X)). Without loss of generality, we assume % Tr(X) =
0. By functional calculus and Proposition 3.35, we obtain

Tf(fflxl) <- Tr(coshX) =1+ Z m X ||2J
R (Zj)JKJ ;
. — 2! (2a)] IFCON;

Y- .JJ <K IIF(X)IIJ»,}])J
= j1ej - 2a

N .
| ex ITCON 1y
<1 - L), 3.91
3 (I aon

where in the last inequality we have used ﬁjw, < (%)/ for all j € N from Stirling’s
formula. Then the inequality (3.89) follows from (3.91) and again ||T"(X) “j,% < IT(X) |l -
For the concentration inequality (3.90), by (3.89) and Chebyshev inequality, we have, for
any A > 0,

1 1 r(x
ST (Lo (1XD) = €7 = Tr (¢2Y1) < 2exp <””4sz - m) .
a

Then, choosing XA to minimize the right-hand side of the above estimate gives the desired
(3.90). ]

Remark 3.38 The classical Gaussian-type concentration inequalities can be derived by vari-
ous approaches; see [99] for a review. In particular, Marton [84, 85] showed that Gaussian
concentration can be implied from a transportation cost inequality (TC;) associated with
Wasserstein distance of order one Wj. Later, Bobkov and Gotze [23] proved the exponential
integrability (EI) by a log-Sobolev inequality and established the equivalence between EI and
TC| (note that Gaussian concentration is an easy consequence of EI). Such an approach turns
out to be very useful for noncommutative concentration inequalities and has been exploited
in different settings. We refer the interested readers to [71, Theorem 4.18], [59, Proposition
6.13], [46, Theorem 3], and [102, Theorem 8] for recent results, all of which involve a quan-
tum version of Lipschitz constant || O ||Lip for observables O and an associated 1-Wasserstein
distance defined by W1 (p, o) = sup{| Tr(0O) — Tr(c O)[; O self-adjoint, O, < 1}.
In our case (3.90), the Lipschitz constant is defined by [| X [ILip,1 = IT'(X) o 12 , which is
a natural generalization from the classical case [11, Definition 3.3.24]. Such a deﬁnition has
been used to define a quantum W distance [71, Definition 4.15] and derive concentration
inequalities [71, Corollary 4.13]; see also [59] for similar results for non-ergodic semigroups.
An alternative definition of the Lipschitz constant associated with 0 -GNS symmetric QMS is
given by Rouzé and Datta [102, Section E.2]: | X | ip 2 := (3_;(e™“7/>+e®i/?) | 9; X ||§o)1/2,
using the differential structure in Lemma 2.3. It is clear that both || X|| i, 1 in [59, 71] and
| Xl ip,> in [102] depend on the generator £ of a QMS. In [46], De Palma et al. suggested
another way to define the Lipschitz constant (denoted by || X ||Lip’3) and W, distance, which
is based on the notion of neighboring states instead of the QMS. However, there is no
consensus on the definition of ||| ;p, and each one has its own interest and advantage.
In certain scenarios, they can be compared with each other. For instance, for a symmetric
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Lindbladian £, by (2.15) and the Leibniz rule for 9;, we have I'(X) = Zj (3; X)*(9;X),
which gives

1
X0 = | 22007 0,0] =D [0:X ]2 = 5 1XIRg -
J J

Moreover, [47, Proposition 10] compares || X || ip > and || Xl ;p 3 in the case of o being the
Gibbs state of a local commuting Hamiltonian.

Remark 3.39 The concentration inequality (3.90) above is derived from (Bec-p), thanks to
the moment estimate (3.80). Due to some technical issues, we are not able to extend (3.80)
to general QMS satisfying 0 -GNS DBC, which is more desirable. Nevertheless, similarly to
[102], we can bypass the moment estimate to obtain a Gaussian concentration, by a geometric
characterization of (Bec-p) that will be explored in Sect. 4. To be precise, in Proposition 4.20
below, we imply from (Bec-p) a transport cost inequality associated with the distance W»
in (4.20). Asin [102, Lemma 6], we can also show that Wi £ (p, o) < CW; ,(p, o) for some
constant C > 0, where W . is 1-Wasserstein distance defined in [102]. Then a concentration
inequality can follow in the same way as [102, Theorems 3, §].

4 Generalized Quantum Optimal Transport

In this section, we limit our discussion to the primitive QMS satisfying o-GNS DBC for
some o € Dy (H) and only consider F, , with p € (1, 2] for clarity.

4.1 Gradient Flow of Quantum p-Divergence

This subsection aims to identify the QMS 73; = '~ with o-GNS DBC as the gradient flow
of quantum p-divergence F, , with respect to some Riemannian metric g, » constructed
below. The argument follows closely with those in [35] (see also [93] for the classical case).
The necessary and sufficient conditions for the existence of such a Riemannian metric will
also be discussed.

For our purpose, we first compute the functional derivative 8, s (p) of F », which is
defined by

E t:()}—p,(r(pt) = (5,0-7:]),(7 (p)v p) s

where p; : (—¢, &) — D1 (H) with ¢ > 0 is any smooth curve satisfying pgp = p. Similarly
to (3.16), we find

lrgl/ﬁ((]‘;l/ﬁ(p))p_l), Vp € Dy (H). 4.1

1
80 Fpo(p) = —
I po p—
Then, defining Y := F;l/ﬁ (p), by (2.23) and Lemma A.2, we derive, for 1 < j < J,

1 —1/5 _
3j8pFp.o(p) = ﬁaﬂ‘a Yyt

— %I‘;l/ﬁ (Vj (e—wj/zpy)pfl _ (ewj/sz)P*1 Vj)
p—
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;b ( FI(e@i2Py eIy ) (V) (e7@i?PY) — (e21/2PY) Vj)) 7
4.2)
with f, given in (2.20). Again by (2.23) and 9; o = I'59; F;l in (2.14), it follows that
Vi (e7i2PY) — (e”2PY) V; = T,/ (8,1, /7 (1))
=TYP (3,0 () =T, @ 0p).  (43)
Combining (4.2) and (4.3) readily gives
3;8,Fp.o(p) = F(:]/ﬁ (f,E” (ewj/zl’r;]/ﬁ(p), e‘%ﬂPr;Vﬁ(m) (F;]/ﬁ(aj,gp))) )
4.4)

We next define the Riemannian structure, associated with 7, (), on the matrix manifold
D1 (H), that is, a family of inner products on the tangent space 7, = B?a H) =1{X €
Bsq(H); Tr(X) = 0} that depends smoothly on p. Motivated by (4.4), we first define the
operator [p]p o : B(H) — B(H) for p € Dy (H) and w € R by

[0lpo = T3/7 06, (22T 717 (p), =T P (p)) 0 TP, (4.5)
where

(P =Dyt ¥ # 7,

(4.6)
x>7P, x=y.

Oy, y) = (S ) = {

It is clear that when 0 = 1/d and @ = 0, we have [plpnA = d!7Pp*PA =
Io((T;1(0))>7P)A for any A that commutes with p. Thus, [p], ., can be regarded as a
noncommutative analog of the multiplication by the relative density (I';” 19)2=P with respect

to the reference state 0. Noting ', 1/p (p) > 0,by Lemma A.1 the operator [p] ., is evidently
invertible. Then, we immediately obtain from (4.4) that

0j8pFp.a(0) = [P1p ks, 0j.c - 4.7)

With the help of [p] .., we now introduce the operator:

J
Dy p(A) = Z 3} ([pp,w;8jA) : B(H) — B(H), 4.8)
j=1

which is crucial for defining the desired Riemannian metric on Dy (H); see Definition 4.2.
The next lemma gives the main properties of [o] .., and ® ), , and can be proved in the same
manner as [35, Lemma 5.8] and [36, Lemma 7.3]. Hence we omit its proof.

Lemma4.1 Let p € Dy (H), € R. It holds that

1. (-, [plp,w(")) gives an inner product on B(H). Moreover, both [p], » and [p];}w are C*®
on D1 (H).

2. ®, , is a positive semidefinite operator on B(H) and preserves self-adjointness.
Moreover, we have

Ran(®, ,) = Ran(LT) = Ran(div), ker(D, ;) =ker(L) =ker(V).
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Recalling ker(£) = span{l4} for a primitive QMS P, = ¢'~, a direct consequence of the
above lemma is that ©, , for p € D, (H) is a positive definite operator on B?a H) =
(ker (D, p))J- that depends C® on p. These facts allow us to define the following class of
Riemannian metrics on D4 (H).

Definition 4.2 For each p € D, (H), we define the metric tensor g, , on the tangent space
T, = BY,(H) by

o1, 1) i= (D, ), v), v, meT,. (4.9)

We introduce U; := @;ylp(vi) € BY (H) and define the inner product on B(H)”:

J
(A.B),, = (Aj.[plpw;Bj) forA,BeB(H)’ .

j=1
Then, by (4.8), the metric tensor g, , can be rewritten as

J
oo (i, v2) = Y (U1, [p)p.w;0;Us) = (VUI, VU2)p . (4.10)
j=1
We are now ready to conclude Proposition 4.3 below. We first recall that the Riemannian

gradient of 7, , with respect to the metric g, ,, denoted by grad F, s (p), is determined by
the relation:

gp,p(grad]:p,a (,0), V) = <8,0-7:p,0(p)» U) , Yve Tp .
Then, by Definition 4.2 and formulas (4.7) and (4.8), it follows that

gradfp,a (p) = gp,p(apfp,p(p)) = _£+(P)s 4.11)

and the following result holds.

Proposition 4.3 The dual primitive QMS, p; = P (p) for p € D4+ (H), satisfying o-GNS
DBC is the gradient flow of p—divergence F),  for p € (1, 2] with respect to the Riemannian
metric gp p in (4.9):

dpr = —gradF, o (pr) = LT (pr) .

A direct consequence of Proposition 4.3 above is the decrease of F) ;(po) along the
quantum dynamic p; = 73; (p) (also recall (3.16)):

d

77 Fpo (00 = 8p.p (@adF 0 (P1), 1) = =8p.p, (L (o), LT (o)) < 0. (4.12)

We shall see in Sect.4.3 that the decay rate of F, ,(p;), characterized by the quantum
Beckner’s inequality (cf.(3.17) and (3.18)), naturally connects with the geodesic convexity
of the functional ), ;.

It was proved by Dietert [49] that if a Markov chain with finite states can be formulated
as the gradient flow of the relative entropy, then it must be time-reversible. This result, along
with [81], implies that the reversible Markov chains are exactly those that can be characterized
by the gradient flows. We next give the necessary condition for P,T being the gradient flow
of ¥ - for some Riemannian metric, which extends the previous results [31, 36]. Before we
proceed, we give the following lemma that will be useful in the sequel.
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Lemma4.4 Foro € Dy (H), let [0]p,0 and [0]), o be defined as in (4.5) with p € R\{0, 1}.
Then there holds

—1
[01p.0 = Js"" = Roki b (Ao), (4.13)
’ p

where the function ik, is the power difference (A.4). In addition, for L satisfying o-GNS
DBC, we have

J
—~(X, LX)5g, = D (T3, X, [0],}, Tod;X), (4.14)
j=1
and

[0]pw; 09j0lo], g =Ts00;0T,". (4.15)

We also have

P e

Ep.eC7 (00 = T3 (0100 01, 0100) . peDiCD. @16)

Jj=1

Proof The first identity (4.13) follows from (3.6), (3.7), (3.8), and definition (4.5). The
representation (4.14) is a reformulation of (3.10) by [0] .. Note from formulas (2.15) and
(4.13) that

J
—(X. LX)g.p, = ZFX[O'] ‘arax>
j=1

which, along with (4.14), gives the identity (4.15). The last one (4.16) is reformulated from
(2.19) by using operators 9; , in (2.14) and [p], ., in (4.5). O

Proposition 4.5 If a primitive QMS 73: = o'£' is the gradient flow of F), - (p) for p € (1,2]
with respect to some smooth Riemannian metric g,, then L is self-adjoint with respect to the
inner product:

(X, Yo, = (X, [0]p0Y), X,Y € B(H). “4.17)
Proof Note that any Riemannian metric g, on D4 (H) can be written as
gp(‘)ly‘)Z):(@;lUl,W), VlsUZET ’

where D, is a positive definite operator from the cotangent space T; to the tangent space T,

at p (both 7, and T/;k can be identified with B?a (H)). The dual QMS 73: is the gradient flow
of Fp 5 (p) with respect to g, means that

Lo =—D,0pFp.sp)). (4.18)

Substituting p = o +¢eX for X € Bga (H) into (4.18) above and differentiating it with respect
to € gives

,CTX — _z)prgl/ﬁfp[l](0.1/[77 O']/p)F(:l/ﬁ(X) — _Qp[g];’lox, 4.19)
by (4.1) and (A.8). Hence, it follows from (4.19) that, for X, Y € B?a (H),
<£Y7 X>[JJ,,,0 = _<Y7©,0X) = _<©st X) = <Ys ['X)[UJ,,_O s
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which implies that £ is self-adjoint on B(H) with respect to (-, -)(s], > since £ and [o]p0
are Hermitian-preserving and satisfy £(1) =0 and [0], 01 =0. O

In the limiting case p — 17, which corresponds to the relative entropy D(p||o), the inner
product (-, -)(5],, in (4.17) reduces to the BKM inner product:

1
(X, Y)BkMm ;:/ Tr(c' ' X*6'Y) dt,
0

hence our result generalizes [36, Theorem 2.9] by Carlen and Maas. In the case of p = 2,
where 7, 5 is the variance (up to a constant factor), (-, -)[s],, becomes the familiar KMS
inner product (-, -)5,1/2. Similarly to Definition 2.1, it is convenient to say that £ satisfies
the [0]p,0-DBC if it is self-adjoint with respect to (-, MNolpo (the cases p = 1 and p = 2
are the known BKM DBC and KMS DBC, respectively). In Appendix B, we show that the
class of QMS satisfying the [0'], 0-DBC with p € (1, 2) is strictly larger than the class of
QMS with ¢-GNS DBC. Thus, in view of Propositions 4.3 and 4.5, there is a gap between
the necessary and sufficient conditions for a QMS being the gradient flow of ), ,(p). Very
recently, Brooks and Maas [29] characterizes the gradient flow for a given functional on
a general smooth manifold, and show that the BKM DBC is the necessary and sufficient
condition for a primitive QMS being the gradient flow of D(p]|o), which closes the gap in
the case p = 1. We next further exploit the arguments in [29] for our p-divergence F) 5,
which complements the discussion in Proposition 4.5.

Proposition 4.6 Let L be the generator of a primitive QMS with invariant state o € D4 (H)
and p € (1, 2]. Suppose that L satisfies the [0'], 0-DBC and £, 1 (I‘_1 (p)) is strictly positive
forpeDy (H) except at p = o. Then there exists a Riemannian metric on D4 (H) such that
the OMS ’Pt = ' is the gradient flow of F), o (p).

Proof This result is a simple consequence of [29, Corollary 2.5], which shows that for a
smooth function f on the manifold M, a vector field ¢“, and a co-vector field ¢pg = Vg f
with some mild assumptions, there exists a Riemannian metric gog such that ¢g = goge® if
i) the field ¢ has a unique zero m € M, where f takes its minimum value and there holds
¢*|;m = 05 1ii) Vge fl < 0 holds for all m # m; iii) the map Va(pﬂ cTiM — T;M s
positive and symmetric with respect to the inner product on 7;; M induced by the Hessian
hag = Va Vg fli-

For our case, we consider the manifold M = D (H), the vector field ¢ = L7, and the
functional f = F, ,. Note from Lemma 3.1 that 7, (o) is strictly positive except at its
global minimum p = o. By definition (4.1), we have (6,7, (0), A) = 0,VA € T, =
B?a (H), if and only if p = o. Moreover, in our case, ¢®|;z = 0 simply means £ (o) = 0.
Thus, the condition i) holds. Since Ve f is nothing than the entropy production of ), ; (i.e.,
the minus Dirichlet form £,, ) by (3.16), the condition ii) is guaranteed by the assumption. It
suffices to verify the condition iii). For this, note that V,¢f = £%, as ¢ is linear, and that the
Hessian can be computed as follows: for X, Y € By, (H) and A = I'x(X) and B = ', (Y),

h(Av B) = a€|€=087}|7]=0]:p,a(0 + SA + ﬂB)

1 . .
= ele=0 (P P (0 + AP, B)

1
= Bele—o——7 (Uj,p(1+X). T (1)) = (4. [0, 0B)
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where the second identity follows from (3.16) and the last identity is by (3.7) and (3.35).
Recall that the Lindbladian £ is assumed to satisfy the [o], o-DBC, which is equivalent to
the fact that £7 is self-adjoint with respect to the inner product (-, [a];lo-). The proof is
complete. O

Remark 4.7 Compared to [29, Theorem 1.2], here we have an additional assumption of the
strict positivity of the p-Dirichlet form, so there is still a small gap between the necessary and
sufficient conditions in our case. When p = 2, it is easy to show that such an assumption can
be removed by the KMS DBC of the Lindbladian. Indeed, by (3.16) and the detailed balance
condition, we have that & (I"; 1(p)) is convex and attains its minimum at p = . Then, the
invertibility of £T on the tangent space readily implies the strict convexity of &, (T ()
at p = o, which further gives its strict positivity for any p # o. However, for a general p,
it seems not a very easy task to remove this assumption. A potential barrier may be the lack
of the characterization of the QMS satisfying the [o'],,0-DBC; see [2, 4, 54, 106] for related
results.

4.2 Generalized Quantum Transport Distances

The Riemannian distance W, , induced by the metric g, , in (4.9) can be defined as: for
00, p1 € Dy (H),

1
W2, (0o, p1)* = inf {/0 &pys) (), y(s)ds; y(0)=po,y(l) = ,01} (4.20)

1
4.10) . . .
=Y inf {/0 IVUGI 0 ds 7(5) =Dp,pUs) with y(0) = po. v (1) = pl} ,
421

where the infimum is taken over the smooth (C°°) curves y (s) : [0, 1] — D4 (H). In this
section, we will investigate the basic properties of the distance function W ;. By the standard
reparameterization techniques (cf. [3, Lemma 1.1.4] or [50, Theorem 5.4]), we have that W5 ,,
equals to the minimum arc length:

1
Wz,p(po,m):inf{/o o) ), v )P ds; y<0)=po,y(1>=m}, (4.22)

where the infimum is taken over smooth curves of constant speed (i.e., g, (s) (Y (5), ¥ (5)) 172
is constant). Then it follows from (4.22) that the Riemannian manifold D, (H) equipped
with the distance W>, ,, is a metric space. Moreover, it turns out that W , can be extended
continuously to the boundary of D (p).

Lemma 4.8 The metric W5 ), for p € (1, 2] on D1 (H) extends continuously to D(H).

Proof As the proof is similar to that of [36, Proposition 9.2], we only sketch its main steps
below. Consider po, p1 € D(H) and let {pg}, {o]} be any sequences in D, (H) such that
||pl” — pi Hz — 0asn — oofori =0, 1. It suffices to show that W> (o, p7) is a Cauchy
sequence. For this, by the triangle inequality, we only need to show W» , (o}, p/*) — 0 as
n,m — oo fori = 0,1. For ¢ € (0, 1), we define pp = (1 — &)py + €1, and the linear
interpolation y,,(s) := (1 — s)p{j 4 5o which satisfies ¥, (s) > sel. Then it is easy to see

ei“’-f/zl’l";l/ﬁ(yn(s)) > in.f{e_“"’-/'Vz‘”}sscf_l/’3 ,
J
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by which, Lemma 3.2 implies that [y, (s)];’lw < C(se)P~%idy holds for some constant
C > 0, and hence that

D! o S Cee)P 2 [ (=divo V() [idy .
Recalling the expression (4.22), we obtain

~ b _ . 12
W0l 7o) < /O (300, 0,}, in®) s

< C(se)P 2 | (—divo V()| fo l 172 ()12 ds . (4.23)
Note the estimate:
17n()l2 = [P0 — pi ], <€lleo— Lo+ |0 — o, -
which, by (4.23), gives
lim sup W2, (o5, o) < C(se)?~" [ (=divo V()™ lloo = 1l -

n—oo
Since p € (1, 2] and ¢ is arbitrary, it follows that lim, 0 W2, 5(0g, 04') = 0, by triangle
inequality. O

In analogy with the classical 2-Wasserstein distance, it is helpful to introduce the quantum
moment variable B = ([p]p v, 01U, ..., [plpw,0;U) for U € B?a and reformulate (4.21)
as a convex optimization problem:

1
W2, (00, p1)? =inf{/0 IBIZ, ) ds: 7(s) +divB(s) = 0 with ¥ (0) = po., ¥ (1) = p1,

y(s) € C (10, 11; D(H)) , and B(s) € L' (10,15 BH)’) |, (424)
where the continuity equation y (s) +divB(s) = 0 is understood in the sense of distributions,
and |-y, ,,, is the norm from the inner product (-, -) 1 p,» On B(H)” defined by

J
(A B)_1p,p = ) (Aj.lpl,., B) .
j=1

Indeed, by approximation techniques in [114, Proposition 1] and a mollification argument
from [53, Lemma 2.9], we can show that the infimum in the above representation (4.24)
of W, can be equivalently taken over smooth curves y € C*°([0, 1]; D4 (H)). Then, the
equivalence between formulations (4.21) and (4.24) follows from the same arguments as
in [36, Lemma 9.1], while the convexity of the optimization problem (4.24) is a simple
consequence of the following lemma and [36, Theorem 9.7].

Lemma4.9 (X, [p];gle) with p € (1, 2] is jointly convex in (p, X) € Dy (H) x B(H).
Proof Note from (4.5) that
(X, [pI, LX) = (07 VP(X), f3 22T 1P (p), e=2PT 1P (o)) (T, P (X)),

Then the statement follows from [118, Lemma 2.3], which shows the joint convexity of
(v, (A, B)Y) for Y € B(H) and full-rank A, B € BY, (H). a]

We summarize the above discussion in the following proposition.
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Proposition 4.10 W22’ » has an equivalent convex optimization formulation (4.24). More pre-
cisely, let,oé, pi € D(H) fori =0, 1, andset pj) := (1 —s),og—i-s,o(% and py = (l—s),o?—i-s,ol1
fors € [0, 1]. Then there holds

Wa.p (05, P17 < (1 =)W 5 (00, p1)* + W2 (pg, p1).
The main result of this section is Theorem 4.11 below.

Theorem 4.11 (D(H), W»,,,) for p € (1,2] is a complete geodesic space. In particular,
for any po, p1 € D(H), the minimizer to (4.24) exists and gives the minimizing geodesic
(7% (8))sef0,1] connecting po and py and satisfying

W2 p (s (s), v4 (1)) = |s — 1|W2,p(p0, p1), Vs,1 € [0, 1]. (4.25)

The completeness of the metric space (D(H), W», ) needs the following lemma, which is of
interest itself.

Lemma 4.12 There exists a constant C > 0, independent of p € (1, 2], such that for any
po, p1 € D(H),

lo1 — polly < CWa p(p0, 1) -
We now give the proofs of Theorem 4.11 and Lemma 4.12.

Proof of Theorem 4.11 We will first show the existence of the minimizer of (4.24)
by direct method. Let {(y("),B(”))} be the minimizing sequence such that

sup,, fol HB(n) Hil oy ds < +00. We claim that there exists constant C;, depending on
o € Dy(H) and w; € R, such that

(X, [plp.w;X) < Cj XI5, V¥peDH). (4.26)

To show this, by the representation (4.39) of [p], . with notations from Proposition 4.14
below, we first have

/2 ) 1/p 2
(X, [plpoX) < (p— 1><sukpep (ki poe Pxi,p)) [rieeol.
L,

We also note that there exists a closed interval / containing et@/2p Ak,p Tor all p € D(H),
and that the function 8, (x, y) is bounded for x, y € I. Then the claim (4.26) readily follows.
Since B™ ¢ L1 ([0, 1], B(H)J), we can consider the B(H)” -valued measure B™ (ds) :=
B(”)(s)ds. Then, for every Borel set E C [0, 1], we estimate

B®I(E) < fE <XJ: |5 ) Hz ) s
j=1

J 172
—1/2 1
N /E (ZW") Tt B 1y oy Tt Bﬁ")>> ds

=1
d (n) (n) V2
1/2 n (n)1—1 n
j=1
1 ) 1/2
< CX(E)I/Z(/O HB(H) H—I,P»V(")ds> < 400, 4.27)
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for C := max j{le./ 2}, where .Z is the Lebesgue measure on R and the third line is from
Holder’s inequality and the estimate (4.26). It follows that the total variations of the measures
B™ are uniformly bounded in n. Hence there exists a subsequence, still denoted by B™,
converging weakly* to a B(H)’-valued measure B,. Then, by (4.27), we can obtain

B.I(E) < liminf [B™|(E) < CL(E)"/?,
n—oo

for some constant C, which implies that B, < . and hence the R-N derivative B, := j?}
exists. We next prove that y ™ (s) converges pointwise to some ¥ (s) : [0, 1] — D(H). For

this, we note

t
y® ) —y™©0) = — f divB™ (s) ds.
0

Then by the weak* convergence of B™ and y™(0) = po, we have the pointwise con-
vergence of ™ (s) with the limit denoted by y.(s). Moreover, it is easy to check that
v:(s) € C([0, 11, D(H)) and B, € L'([0, 11, B(H)’) satisfy the continuity equation. By
dominated convergence theorem, we also have B(B(H))-valued measure [y(") ($)]p.w;ds

weakly* converge to [y«(s)]p,;ds. Finally, noting the integral representation for [p]]‘,,lw
from (2.24) and (4.5):

(01 ()

sin((p — Dm s [ . . .
_ ((P]T ) )r;l/p/O sp—ZgEl] (ea)/2pl—-;l/p(lo)7 efw/ZpF(;l/p(p)) F;l/p(.) dS,

we have

1
.. n) |2
timinf [ B o0 ds

n—oo

. B J oo
> sinp = D) Z/ P=2lim inf
T —Jo
J
1 N . . .
/ (F;l/p(Bj(.”)(s)), g,l” (ew/ZPF;I/P(y(n)(S))’ e—w/Zpr{;l/P(y(ﬂ)(S))) r{;l/p(BJ(.n)(S)»det
0
. J
sin((p — 1)m) /"o =2
> — t
2 Y |
j=
1 . . . .
/0 (re 77 (Ba ). &' (2205 2 (1)), =205 P (1)) 15 P (B 90) ) dsd
1
2
> /0 B2, ., ds. 4.28)
where in the first inequality we have used Fatou’s lemma, and in the second inequality we
have used Theorem 3.4.3 of [30] on the lower-semicontinuity of integral functionals. Then

the estimate (4.28) directly implies that (yx, B,) is a minimizer to (4.24).
Recalling formulations (4.20) and (4.22), by Jensen’s inequality, we find

! . . 172 ! . . 1/2
WZ,p(va p1) = (/0 8p.y«(s) (P«(5), Y«(5)) ds) =/0 8p,y«(s) (P«(5), Y«(5)) / ds .

It follows that W> (0o, p1)? = &p.y(s) Px(s), 4 (s)) for s € [0, 1] a.e.. Then, by definition
of W7, and a time scaling, it is easy to check that the property (4.25) holds. Therefore, we
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have proved that (D(H), W> ) is a geodesic space. The completeness of the metric space
(D(H), W2, p) is asimple consequence of Lemma 4.12. Indeed, let { p, } be a Cauchy sequence
such that W ,, (05, om) — 0 as n, m — oo. Then, by Lemma 4.12, it is also Cauchy in the
complete metric space (D(H), ||-|l;), which implies that there exists pso € D(H) such that
lon — pooll; = 0 as n — oo. Similarly to the proof of Lemma 4.8, by |0, — poll; = O,
we can conclude W5 (05, poo) — O asn — oo. O

Proofof Lemma 4.12 For any § > 0 and pg, p1 € D+ (H), by Theorem 4.11, there exists a
curve (y(s), B(s)),s € [0, 1], satisfying y (s) +divB(s) = 0 with y (0) = pg and y (1) = py,
such that
1
fo IBO)IZ, ) ds < Wap(0, o)+
It then follows that, by Cauchy’s inequality,

1 1
Tr(X(p1 — po)) =Tr (X/ ])(s)ds) = / (VX,B(s))ds
0 0

1 1/2 1
s(/o ||VX||§,,y(s)ds) (/0 ||B<s>||2_1,,,,y(s)ds>

! 12
= </0 Z(ajx, [V(S)]p,wian)ds> (W2,p(,00,,01)2 _’_8)1/2.
J

(4.29)

1/2

To deal with the term (9; X, [y (s)]p, o ; 0;X), we next estimate the kernel operator (0],
for p € Dy and w € R. For this, recalling (4.39) below:

e®2Ppy — e~ @2P ),

ew/21zkk)p_l _ (efw/Zp)w)P_]

Plpo() = (=D ( P (B OE), (430
ik

where A; and E; are eigenvalues and the associated eigen-projections of ', 1/p (p), respec-
tively (we omit the subscript p of A; and E; for simplicity). By the integral formula (2.24),
we can estimate
1 (ew/2pkk)P71 _ (efm/Zp)\i)P*I
p—1 e@/2P )y — e~ /2P ),

_sin((p— D) [ Sp_zlog(s + e®2P 1) — log(s + e~ /2P );) s
- T 0 e?/2P ) — e~ @/2P ),

: _ 00
. sin((p — D)) / P2 2 ds
T 0 25 + e@/2P )y + e=@/2P )
i —1 -2 [ 2
_ sm((P )77) (@w/ZP)\k _i_efa)/Zp)\i)P 2/ Sp72 dS, (431)
T 0 1+ 2s
where the third line is from the elementary inequality:
Xy Sx—i—y forall x,y > 0,
logx —logy
and the last line is by change of variable. We define the constant:
sin((p — 1 e 2
p = P — D) / P2 dr. 4.32)
T 0 14 2s
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By (4.30) and (4.31), there holds
(0, X. 101p.0; X)
<C;! Z (/2P + e~ (PP 0 %), (BT (0,0 ))

<c; IZ( (e”27)* " + (e72) ") (a7, 0, (Eer i/ @, %) E: )

— [ 1b gy ey
=G, <Fa (9;X), (L(gw/zpral/p(p))zP+R(M/2prdl/ﬁ(p))2P) e (3JX)>

-1 1/p 1/p
< Cp <1"0/P(8jX), (L(ew/ngfl/ﬁ)z—p + R(efw/zpafl/ﬁ)z_,,) F(/P(a].x))

;1 <6(2—P)w/2p + 6(17—2)0)/217) Tr (0(17—2)/13) Hrllf/ﬁ(ajx) H2
o0

< 4C;l (e(Z—P)w/2P + e(P—2)w/2P> Tr (U(P—D/ﬁ) ||0||§é!3 |Vj ”io ”X”go

where the second inequality is by (x + y)? < x” 4+ y? for p € (0, 1) and x, y > O; the third
inequality is by p < 1 for all p € D(H) and the operator monotonicity of ¥ for0 < p < 1;
the fourth inequality is by Holder’s inequality. Then we arrive at, by (4.29),

— —-2)/p 2
ot = polly < (40,,‘Tr (7 277) o 27

1/2
—pw; “Dw; 2
5 (w0 2 ) W pn. 43D
J
We finally prove the uniform boundedness of the prefactor in (4.33) for p € (1,2]. It
suffices to consider the constant C,, in (4.32). By elementary calculation, we derive

2 1 1 /00 25P~2
——) < ds
3\p—-1 2-p o 1+2s

! ogp—2 20 2502 2 1
=/ dS+/ ds =< + ’
0 1+2S 1 1+2S p—l 2—])

which immediately gives the following estimates:

2
S+0(p-1)<Cp<24+0(p-1) asp— 1T,

3
and
2
§+0(p—1)scp51+0(p—2) as p — 2.
The proof is complete. O

We next derive the geodesic equations for the Riemannian manifold (D4 (H), gp,p)-
Instead of regarding the geodesic equation as the Euler-Lagrange equation for the minimiza-
tion problem (4.21) as in [36, 44], we interpret it as the Hamiltonian flow of the Hamiltonian
associated with the metric g, ,:

(U,U) = (@MU, U) forp e Di(H)and U € BY, (H),

H(p,U) = gpp
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where g;}p is the inverse of the metric tensor. Then we can write the geodesic equations:
p=3uH(p,U), U=—38,H(p,U). (4.34)

By definition, it is clear that 8y H (o, U) =D, ,U. To find 6, H, by Lemma A.3, we have

1
(8,H (p, V), A) = lim = ((@MHAU U)—(D,.,U.U))/e
_ 1
=gf}) 5((31'1]’ o+ eAlpw, 8J'U> - <3J'U’ [Plp.w, 8J'U>)/8

L& A
=3 D {ra/P @), 010,) (0. 1501 15 (0) (14, T 3,0)

j=1
1< ; 5
+ 3 (T8 @;0). 020,) (150, (5011 (o0) (T4 (30). r5(4)))
j=1
(4.35)
where for any X € B(H),
1;(X) = e®2PT7VP (X)), rj(X) = e @/2PT;VP(X).
We also note
(r},/ﬁ(a,-/U), 610,) (L (p). Lir (). 7jo(p)) (1 (A), TY ﬁ(a,-/U))>
= (r;/ﬁ«a,-U)*), 610,)((rj (). 1 (0)), 1;(0)) (r; (A), F}/ﬁ((ajw*»)
= (F},/ﬁ(a,»U), (20,)(L (p), (rj (p). (o)) (TYP(3;U), r; (A))) , (4.36)

where the first equality is from the relations /; (o) = r;(p), rj(p) = l;/(p), and (3;U)* =
—93;:U by (2.8), and the second equality is by the following formula from definitions (A.9)
and (A.10):

(X, (51 /)(A, A), B)(Y, X)) = (X, (52/)(B, (A, A (X, Y)),

for any symmetric f: f(s,t) = f(¢,5), X € B(H), Y € Bs,(H), and commuting matrices
A, B € Bs,(H). The identity (4.36) implies that the two sums in (4.35) are actually equal.
Therefore, we obtain from (4.34) and (4.35) the following proposition, where the local
existence and uniqueness of geodesics follow from the standard theory of ODE.

Proposition 4.13 On the Riemannian manifold (D4 (H), gp,p), the unique constant speed
geodesic (p(t))ie(—¢,¢), € > 0, with initial data: p(0) = pg € D4+ (H) and p(0) = vy €
B2, (H), satisfies the equation:

p=Dp,U,

J
4.37
Z(a U K o, U]> VA € B, (M), @-37)

Jj=1
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with p(0) = po and U(0) = @;’{Oovo, where i = 1 or 2, and K(pi’)/’{j is defined by, for
o € D(H) and A € BY,(H),

K 11 =TV 0 310,)(Uj (). 1(0)). (o) [L;(A), TYP ()] - BH) — zs‘mo,(4

. . . .38)
K21 =TV 0 820,) (L1 (0). (r(0). 1 (o)) [TY7 (). 7 (A)] : B(H) — B(H).

We end this section with the observation that the Riemannian metrics g, , with1 < p <2
serve as an interpolating family between the metric defined by Carlen and Mass in [35] and the
one induced from the KMS inner product (-, -),1,2. It can be easily proved by an elementary
analysis with the fact, from the analytic perturbation theory [100], that the eigenvalues and
eigenfunctions of r," ’7(p) are differentiable with respect to p.

Proposition 4.14 Suppose that F;l/ﬁ(p) has the eigen-decomposition: F;l/ﬁ(p) =
Z?:l Aj.pEj p. Then, we have

d
(plp.wA = Z Op (ew/ZP)»k,p, e_“’/z")\i,p) F},/p (Ek,pr(l,/p(A)Ei,p> , (4.39)
ik=1

for A € B(H) and p € (1, 2] with 8), given in (4.6). Moreover, [p]p,« is continuous in p,
and it holds that

[Pl2.wA =T5(A),

and when p — 171,

d
[P1p.wA = [plwA ==Y Oiog (¢ 2k, e /1) EXAE; (4.40)
ik=1

where 0y,4 is the logarithmic mean:

X—=y
Togx—logy ® * )
Olog (x, y) 1= {logxlogy =Y
X, X =Yy,

and A are eigenvalues of p with E being the associated rank-one eigen-projections: p =
S AE;
j=1%7=J"

Recalling the integral formula: gx_y = fol x179y% ds, we can write the operator [p],,

x—logy
in (4.40) as

1
[plw(A) = / U201 =5 ApSds A e B(H),
0

which is nothing but the noncommutative multiplication by p involved in the definition of
the quantum 2-Wasserstein distance W5 [34, 35]. It follows that in the limiting case p — 17T,
our transport distance W5, ,, reduces to the one W, introduced by Carlen and Maas. When
p = 2, the representation (4.24) of W ), gives

J

1

Wa(p0. p1)* = inf{/ > (B Ty Bj)ds: 7(s) + divB(s) = 0 with y(0) = po. (1) = p1 |,

0 =
j=1

(4.41)
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which has a similar form as the classical distance %5 4, in (1.8) with & = 0, and thus
can be regarded as a quantum analog of dual H~' Sobolev distance. These facts allow us
to (at least formally) conclude that our new family of quantum distances W, , interpolates
the noncommutative 2-Wasserstein and the H~! Sobolev ones. One may further expect
a stronger result that for pg, p1 € D(H), W2 ,(p0, p1) is continuous in p € (1,2] and
W2 » (00, p1) = Walpo, p1) as p — 1T, but this task seems to be challenging, and we leave
it for future investigation.

4.3 Ricci Curvature and Functional Inequalities

In this section, we will investigate the entropic Ricci curvature lower bound in terms of
p-divergence Fp ;(p) with p € (1, 2]. Thanks to the gradient flow structure obtained in
Sect. 4.1, we are allowed to derive some new functional inequalities from the Ricci curvature
lower bound: a quantum HWI-type inequality and a transportation cost inequality, and connect
them with the quantum Beckner’s inequality (Bec-p), in the spirit of Otto and Villani [94].

Let us first introduce the Ricci curvature in our setting. We follow the terminology of [44,
53], and say that a primitive QMS P; with 0-GNS DBC has the Ricci curvature lower bound
k € R associated with F), , if

2

52 o o (YD) = K8p.y© (¥ (0), 7(0)), (4.42)

where y (s),s € (—e¢, €),isageodesic satisfying y (0) = p € D (H). We compute the second
derivative of F), , along the constant-speed geodesic y (s). For this, noting the Riemannian
gradient (4.11) of F), ;, by definition, we have

d .
I 20 V() = =8y (7 (5), LT () = —(U ), LTy (5))), (4.43)
where (y, U) is the unique solution to (4.37). Then, differentiating (4.43) again with respect
to s, we obtain

d2

S| Fre o) = =06, £ @) = W), £ G6))

J

s=

(0,00, K52 oy [BU O]) = (U©), L7, U O))
1

J
(4.44)

Recall that the Riemannian Hessian of F, , at p € Dy (H) is defined by, for U € B?a M),

2

Hess F) 5 (0)[U, U] :=

= 5| _ Fretro).

where (y (s), U(s)) satisfies the geodesic equation (4.37) with initial conditions y (0) = p,
U0) =U,and y(0) =9 ,U. We readily conclude from the formula (4.44) that
J P 5
Hess Fp o, (0)[U. Ul = Y (9;U, /cjj’)zg(p) [6;U])— (U, £'(®,,0)), YU eB ™).
j=1

(4.45)
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Hence, it follows from definition that (4.42) is equivalent to
HeSS]:p,a()O)[U, Ul fo(U’@p,pU)a (Ricp(ﬁ) > K)
forp €e Dy (H)and U € B (). The next proposition provides several equivalent charac-

terizations of (Ric,(£) > /c) in terms of the k-geodesic convexity of F), s (p), the gradient
estimates, and the evolution variational inequality. In what follows, we will use the notation:

if(f) = lim sup w .

+ p (4.46)
h—0

Proposition 4.15 Let P; be a primitive QMS satisfying o-GNS DBC with o € Dy (H). For
k € R, (Ric, (L) > k) is equivalent to the following statements:

(i) Fp,o(p) is geodesically k-convex on (D(H), W2 ), that is, for any constant-speed
geodesic (y (s))sef0,11 C D(H),
K
Fpo () £ (1 =9)Fp,e(y(0) + sFpo(y(1) — Es(l — W2 p(¥(0), ¥y (1))*.
4.47)

(ii) For any po, p1 € D(H), the following evolution variational inequality (EVI) holds:
Vi > 0,

1d*
2dt 2
(iii) The following gradient estimate holds: for p € Dy (H) and U € B (H), Yt >0,

IVPW)IG, < e > IVUI2
P,

—W; p(Pt L0, pl) + = W2 p(Pt L0, pl) = }—p a(p1) — p U('Pt po). (4.48)

P»O—

(iv) The following contraction of the transport distance W5, along the gradient flow holds:
Wa,p (P} 00, P} p1) < e Wa,p(p0, p1) Voo, p1 € Dy (H).

Proof The equivalence: (Ric, (L) > k) <= (i) <= (ii) can be proved in the same manner
as [44, Theorem 3] with the gradient flow techniques from [42, 51, 95]; see also [36, Theorem
10.2]. (Ric, (L) = «) <= (iii) follows from a similar semigroup interpolation argument
as in the proof of [36, Theorem 10.4], while the proof of (Ric,(£) > k) <= (iv) can be
easily modified from those of Proposition 3.1 and (2.12) of [42]. ]

With the notion of Ricci curvature, we next prove some interesting implications between
functional inequalities, following the arguments of Otto and Villani [94] (see also [44,
53]). We start with an HWI-type inequality, which relates the generalized quantum transport
distance W, ,, the quantum p-divergence F), ,, and the entropy production (p-Dirichlet
form) £, .. The following lemma will be used later on.

Lemma4.16 Let p, p € D+ (H) and p; = P:p. Then there holds, fort > 0,

d* 2 i)
EWZ,‘D()OM p) < ;\/ Ep.c(Ta (o).

Proof By definition (4.46) and the triangle inequality, we have

+

d 1 1
— W2, p(pr, p) = limsup — (Wz p (P45, P) — Wa (o1, £)) < lim sup —Wa.p (01, Pre+s) -
dt s—>0F s—07F
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The expression (4.22) with a time scaling gives

t+s
W2,p(10ts pt+s) < f \/gp,y(r)(y(f)a )/(T)) dt,
t

for any smooth curve y in D4 (H) such that y(t) = p; and y (¢ + 5) = pr45. Note from
(3.16) and (4.12) that

4
Erym ¥ (), ¥(T) = FEp,L(F;l(V(f))%

Therefore, we can find
d+ ) 1 t+s 2 - 2 =
— W2, (01, p) < limsup — —Ep. T (v(@) dt = —/Ep £(Ls (o).
dt sot S Ji p 14
[m}

Theorem 4.17 If (Ric,(L) > «) holds for some k € R, then the following HWI-type
inequality holds:

2
Fpo(p) < ;Wz,p(,o, o)W Ep.c (s () — %sz(ﬁ)» 0)*, forall p € D(H).(4.49)

Proof 1t suffices to consider p € D, (H), since D4 (H) is dense in D(H) and the inequality
(4.49) is continuous with respect to p. Letting p;, = P, p for p € D4 (H), we derive from
Lemma 4.16 that

1d*t

1
2 s 2 2
—5 2|,y Wer(or 0 =11tr3[1)§ff2t(Wz,p(p,o) — W2, p(p1,0)°)

. 1
<limsup (W2, (p, 0% +2Wa, 5 (p, pIWa,p(pr, )

t—o+ 2t

2
s;\/sp,,c(r;‘ (P)Wa.,(p, o).

Then, by above estimate, recalling the EVI (4.48) in Proposition 4.15 with pg = p and
p1 = o, we obtain

Ldt

2_ Kk 2
fp,(r(p) = _EE IZOWZ,p(ptaO') - EWZ,p(PvO')

2 1 K 2
< ;Wz,p(p,o) Epc(Ts (p))_EWZ,p(va) .

A

m}

As a direct consequence of Theorem 4.17 above, in the case of positive Ricci curvature
lower bound, we can obtain the quantum Beckner’s inequality.

Corollary 4.18 If (Ric,(L) > k) holds for some k > 0, then the quantum p-Beckner’s
inequality (3.18) holds with constant ap > « /2.

Proof By Theorem 4.17 and Young’s inequality, we have
o) = 2 (5 Wap(0.00 + 560 05 (o)) = SWa (0. 072,
p\2C 2 2
Letting C = 2/(p«), by definition (3.18), we complete the proof. O
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Another implication of positive Ricci curvature is the finite diameter of the metric space
(D(H), W2, p), which can be viewed as a noncommutative Bonnet-Myers theorem.

Corollary 4.19 If (Ric, (L) > «) holds for some k > 0, then it holds that

8 -
sup  Wa,p(po, p1)? < ——— (o, — ), (4.50)
oo eDH) kp(p—1) ™"

where omin is the minimal eigenvalue of the invariant state o € D4 (H).

Proof Note that the geodesic convexity (4.47) gives

8W2 p(,OO /Ol) 2 po(pO)+ fpo(pl) 451
Then the estimate (4.50) follows from (3.2), (2.33), and (4.51). ]

We say that a primitive QMS with o0-GNS DBC satisfies a transport cost inequality
associated with the distance W5, with constant ¢ > 0 if for all p € D(H),

Wap(p,0) < \/cFpo(p). (TCp)
We will show the chain of quantum functional inequalities (1.10).

Proposition 4.20 Suppose that p-Beckner’s inequality (3.18) holds for some p € (1, 2]. Then
the transport cost inequality (TCp) holds with constant ¢ > 1/a.

Proof Again, it suffices to consider p € Dy (H). Let p; = ’P: p and define the function

h(t) :== Wa,p(pr, p) +/cFpo(pr), t=0.

Clearly, h(t) satisfies that 2(0) = \/cF) 5 (p) and h(t) — W3 ,(o, p) ast — oo by (2.1).
We now claim that when ¢ > 1/, %h(r) < 0 holds for ¢ > 0, which completes the proof.
By Lemma 4.16 and (3.16), when p; # o, we compute

d+ 2 ZJE _1
Eh(t) = p (s (,01)) m&,,g(rg (p,))
_ N -
Ep (T 1-— /&, (T; <0
pe(s (1 - oV e (»)))

where the last inequality follows from ¢ > 1/, and the Beckner’s inequality (3.18). If

A

hS I SRRl

n
pr, = o for some fy, then p; = o for ¢ > fy and hence ‘fl—th(t) =0fort > 1. ]

Proposition 4.21 If the transport cost inequality (TCp) holds with constant c, then the
Poincaré inequality (P1y) holds with f = ¢, and constant A > 2/c.

Proof We consider X € By, (H) with Tr(c X) = 0, and define p, = 'y (1 + £X). Recall
Theorem 4.11 and let (y,, B;) be the minimizer to (4.24) for W> ,(p¢, ). Then, note from
(3.9) that

1 L
IXIE., = (957 (e = o), [ —divB.(o1s)

1

7

, 12, (1 12
f v =l as) ([, 0d)
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1 1 k1/p 2 172
= 5( [ |vesree-o|  ds) w0, (4.52)
& 0 P,Ve(s)

by using the continuity equation in the first line, and Cauchy’s inequality in the second line.
Applying (TCp) with the expansion (3.34), by definition (3.1) of F, »(0) and the relation
(3.9), we find

1 c
“W2p(pe,0) < \/ SIXIZ,, +0). (4.53)

A direct computation with (3.7) and Lemma 4.4 gives
ok _ a1 -1
;2" (ps —0) =€0;T 0p(As)R T, T X
= eaj[a];}orax
=elol,,Tod; X (4.54)
By the proof of Lemma 4.8, || o — oll; — 0as & — 0 implies W; ,(0¢, 0) — 0, which
further yields W2 ,(y(t),0) = |1 — t|W2 p(ps,0) — 0,as & — 0, forall r € (0, 1).

Moreover, using Lemma 4.12, we have ||y:(t) —o|l; = 0,ase — 0, fort € (0,1). It
follows from the dominated convergence theorem that

1! 2
L[ oo
e~ Jo PsYe(s)

J 1
4.54 _ _
2y f (015, Tod; X, [ye(®)]pw,lo15), Tod; X)
: 0 ’
j=1

Sl
_ 4.14
-y /(rgajx,[a]p,lergan)(z)—<X,,cX>g,¢,p, ase — 0.
0
j=l1

Combining the above formula with (4.52) and (4.53), we conclude

2 ¢
X <—-=

rp <5 (X LX)y,

m}

We have seen that the entropic Ricci curvature lower bound (Ric,(£) > «) can imply a
sequence of quantum functional inequalities. A natural and important following-up question
is how to estimate the lower bound « for the Ricci curvature. Following closely the arguments
in [36, Theorem 10.6], we can explicitly estimate the Ricci curvature lower bound for the
depolarizing semigroup by definition (Ric, (L) > «).

Proposition 4.22 Let Lyepor be the generator (2.12) for the depolarizing semigroup with
y > 0and o = 1/d. Then the Ricci curvature of Lgepol is bounded below by y p /2.

Proof Note from the definition of Lepol that 9;Lgepol = —y ;. Recalling (4.45), and we
compute

J
_<£depolU» @p,o U)= yd]_p Z<8jU’ ep(p, p)ajU> '
j=1
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By definition (4.38), we can also calculate

J

J
(1. SN lep , r_ .
Z 8 U, ’Cp ‘Cdepol(p) [3/U]>— yd Z(aij (519p)(()0,/)),/))[d P,aJUD

j=1 j=1

M&

=yd'"" ) (9;U. L1_,316,)(p, p)I3;U]).

j=1

since ‘Cgepol =y (5 - p). Similarly, we have

J J
> (o, /cf)ﬁfdepm(p) [0,U]) = Z (8;U. Ry _,(3205)(p. p)I;U1).
=1 Pt

It follows that

Hess Fp o (0)[U, U]

J
1 ).j ).j t
=Y (o;u. (k KM a-U>—<U,£' o) U>
ZZ:(J p‘cdepo](p)+ )O’L(llepol(’o))[J ] depol @ p.pU)

J
1
pZ(&,U, 5010+ 35020, + 20,)(p. )[0;U)
j=1

J
p PY py
BN (00,0000, 0)10;01) = B (U.D,,0).

Jj=1

>d

where the second line is from x9,60,(x, y) + y9,0,(x,y) = (2 — p)f,(x, y); the third
inequality follows from 9,6, (x, y) + 3,0, (x, y) > 0 by the concavity of xP-1 O

However, similarly to the case of estimating the functional inequality constant, there are
very few examples where the explicit expressions of the Ricci curvature lower bounds can
be obtained. To avoid the complicated computation and estimation based on the definition
(Ric, (L) > «), Carlen and Maas [35] consider the following intertwining property of a
QMS: for some k¥ € R and all j,

AP =e P, , (4.55)

which can be verified for many interesting cases, e.g., Fermi and Bose Ornstein-Uhlenbeck
semigroups [35, Section 6]. They showed that under the condition (4.55), the Ricci curvature
of the QMS P, associated with the relative entropy D(p||o) is bounded from below by «.
The key step in their argument is the monotonicity of the action functional:

(P A, [P p1;' P A) < (A, 101" A), (4.56)

where P; is the primitive QMS satisfying o -GNS DBC. To extend their approach to our case,

we need to show a similar monotonicity result as (4.56) for (A, [p];y]wA). It is a nontrivial
task, since (A, [p];y]wA) is not 1-homogeneous so that the contractivity of (A, [p];’]wA) under
P/ can not be implied from its joint convexity [76]. For the symmetric QMS, P; = P; is the

unital quantum channel for each ¢. Note that [119, Theorem 5.1] has shown that

(@(A), [®(p)],, 0®(A) < (4, [p]po ), Vo eDy(H), A € B(H), (4.57)
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holds for any unital quantum channel ®. Thus, in this case, it is straightforward to conclude
as in [36, Theorem 10.9] that if the primitive symmetric QMS P; satisfies the property (4.55),
then its Ricci curvature associated with ), ; has alower bound « . It is known [35, 36] that the
infinite temperature Fermi Ornstein-Uhlenbeck semigroup is symmetric and satisfies (4.55)
with ¥ = 1, which readily gives that it has Ricci curvature lower bound 1 and then Beckner’s
inequality (Bec-p) holds with«, > 1/2 by Corollary 4.18. But it seems not easy to extend the
monotonicity result (4.57) beyond the symmetric regime, namely, to show the monotonicity
(A, [,o][j’lwA) under quantum channels with o-GNS DBC. We choose to investigate it in the
future.

5 Conclusions and Discussion

We have introduced the families of quantum Beckner’s inequalities (Bec-p) and (Bec’-g)
on a finite-dimensional matrix algebra that interpolate between Sobolev-type and Poincaré
inequalities. The basic properties of Beckner’s inequality, e.g., the monotonicity, the uniform
positivity, and the stability of the optimal constant, have been investigated in detail. We have
also discussed their relations with the hypercontractivity and other known quantum functional
inequalities and applied Beckner’s inequalities (Bec-p) to estimating the mixing time and
deriving moment estimates. Furthermore, we have provided a quantum optimal transport
framework for analyzing Beckner’s inequalities. In doing so, we have defined a new class
of quantum transport distances W, ,, such that the QMS with o-GNS DBC is the gradient
flow of the p-divergence F), . The main properties of the metric space (D(H), W>, ) have
been analyzed. We have then introduced the associated entropic Ricci curvature and showed
that it could yield a number of implications between (Bec-p), (PI), an HWI-type inequality,
and a transport cost inequality. This provides an interesting starting point for an optimal
transport-inspired approach to study quantum Beckner’s inequalities.

We briefly discuss below some further generalizations and applications of our results
and methods. The details and refinements of these results might be worth being reported
elsewhere.

e As mentioned in the introduction, the tensorization property for quantum functional
inequalities is much more subtle than classical ones. Some tensorization-type results have
been obtained for quantum MLSIand LSI, e.g., [73, Lemma 25], [17, Section 4] and [105,
Theorem 9]; see also [74, 87]. By comparison results in Sect. 3.3, these results can be
easily adapted to provide dimension-independent lower bounds for the quantum Beckner
constant «, (£) in certain scenarios. For instance, let ¥, (X) = e ' X+ % (1—e ") Tr(X)1
be the qubit depolarizing channel. [74, Theorem 1] shows that

[wE )], o <Xl y o forg=p>1.1=log |11,

L *2n p—1
Then, by Lemma 3.16 and Proposition 3.17, we have o), > %Ep > ﬁ for p > 1.

e Thanks to Lemma 3.3, we can estimate the strong data processing inequality constant
for the quantum p-divergence F), ; in terms of the )(,3] ,,~contraction coefficient, in the
sense of [63, Theorem 4.1]. We can also discuss the stability of the data processing
inequality for the divergence F), , similarly to [69, Proposition 5.1] and the approximate
tensorization property of 7, , similarly to [63, Theorem 5.1].

e Itis straightforward to generalize the arguments in [114] to derive the dual formulation for
the distance W», , in terms of noncommutative Hamilton-Jacobi-Bellman-type equations.
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Indeed, a formal calculation gives

1o
3 3. p(P0s P1)

. 1
= sup | Tr(A(Dp1 = A©)p0) s Tr(A)p) + 5 IVADI},, < 0. Yo € D)}

The above dual formula allows us to fit our distance W>, ,, into the general framework of
noncommutative transportation metrics recently proposed in [62], and to further discuss
the coarse Ricci curvature of quantum channels with respect to W» ,. Moreover, in view
of [116], it is also straightforward to consider the curvature-dimension conditions for
quantum systems and investigate the finite-dimensional version of quantum Beckner’s
inequalities (Bec-p).

e Note that one main ingredient for our analysis is Alicki’s theorem in Lemma 2.3, which
actually holds for the QMS with 0-GNS DBC on an arbitrary finite-dimensional unital
x-subalgebra; see [113, Corollary 5.4]. Hence, we are allowed to extend most results in
this work to the QMS not necessarily acting on B(H) but only on a x-subalgebra which
includes the finite state Markov chain as a special case; see also [36]. In particular, it
connects the classical Beckner’s inequality with a class of Wasserstein distance, which
enables us to investigate the Beckner constant for Markov chains in terms of the Ricci
curvature lower bound as in [55].

e For the numerical computation of functional inequality constants, there is a recent
research line attempting to estimate the classical log-Sobolev constant by the sum-of-
squares relaxation [56]. It is interesting to extend their method to quantum functional
inequalities.

We conclude with some interesting and important open questions.

e There are two technical questions we are unable to solve. The first one is stated in Remark
4.7: for a primitive Lindbladian £ satisfying [o'],, 0-DBC,

Ep.c(T7N(p)) >0, forp € Dy(H) with p # o. (5.1)

The case of p = 1 has been proved in [29, Proposition 6.2], from which we easily see that
the key step for (5.1) is the convexity of p-Dirichletform £, » which seems open. Another
one is mentioned at the end of Sect.4: the monotonicity (P (A), [d)(p)];}w@(A)) <
(A, [,o];,lwA) under quantum channels with 6 -GNS DBC, for which the characterization
for such channels [17, Lemma 13] might be helpful. Addressing these questions would
directly make our results more complete.

e One important feature of the classical Beckner’s inequality is its ability to capture the
tail behavior of the family of probability measures: dpuqy(x) = cae_(1+x2)a/2dx on R
with o € [1, 2], which satisfies the Poincaré inequality for all « but satisfies LSI only for
o =2[11, 14, 75]. In detail, [75] considers the following variant of (1.7): fora € [0, 1]
and some C, > 0,

2 2/q
sup ————(ulg”] — ulg?17?) < Cal(g. 8), (5.2)
qen2) 2—q)* ( ) ¢
where p is a probability measure. It can be shown that the measure pu, satisfies the
inequality (5.2) with parameter a € [0, 1] if and only if @ > ﬁ; see [11, Section 7.6]. It
would be very much desirable to find a similar example in the quantum setting. Moreover,
while we have obtained several generic results for the quantum Beckner constant, it would
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also be beneficial to establish more quantitative estimates (even numerically) for some
concrete, physically meaningful models, for instance, the quantum spin system [32]
and the quantum Markov semigroups constructed from the classical ones via the group
transference [59]. In view of these, it seems necessary to develop the theory of quantum
Beckner’s inequalities on a general von Neumann algebra to access more advanced
examples to enrich the applications; see [26, 27, 112, 115] and references therein for
recent progress on quantum MLSI in the operator algebra framework.

e We have only considered the quantum Beckner’s inequality for the primitive QMS. It
would be very useful to extend the theory to the non-primitive setting, which might be
necessary for the general tensorization results and most of the applications. The study of
non-primitive quantum functional inequalities is initiated by Bardet [12] and has become
an active research topic in recent years. Here, we have included a short discussion on the
non-primitive Beckner’s inequality in Appendix C to stimulate the further investigation
in the spirit of recent works [26, 27, 59, 63].

Funding The work is supported in part by National Science Foundation via award CCF-1910571.

Data Availibility Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Conflicts of interest The authors declare no conflict of interest.

Appendix A: Some Additional Preliminaries
A.1: Quantum y2-Divergence

In this appendix, we briefly recall the quantum x 2-divergences introduced in [104]. For any
0 € Dy (H) and k : (0, 00) — (0, 00), we define the operator:

Q =R ' (Ay) 1 B(H) — B(H). (A.1)
Recalling Jg,f in (2.4), clearly there holds
Q= =gl (A2)
The quantum X,?—divergence for p € D(H) and o € D, (H) is defined by
Xe(p.0) = {p— 0.2 (p—0). (A3)

To make the divergence X,g('» -) have nice properties, we usually consider « in the following
functional class:

K ={k :(0,00) = (0,00); « is operator convex, x«(x) = k(x™h, k() =1}

For the purposes of this work, the following family of power difference means in I is of
particular interest [67]:

71, ae[-1,2]. (A.4)
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In fact, the kernel function of the operator JJ /K in (A.2) is given by

l xO(_yOt

—1 o —
Mo =y /) = == o
which is the so-called A-L-G interpolation mean since My, fora = —1, 0 = 1/2, 0 =1,
and o = 2, gives the harmonic mean, the geometric mean, the logarithmic mean, and the
arithmetic mean, respectively.

A.2: Noncommutative Calculus

In this appendix, following [12, 36], we review some fundamentals about noncommuta-
tive calculus associated with the derivation d;. Let A, B € By,(H) admit the spectral
decompositions:

d d
A:Z)»iAi, BZZM/(B/(,
i=1 k=1

where A; and py are eigenvalues of A and B, respectively; A; and B; are the associated
rank-one spectral projections. For a function f € C(I x I) with I being a compact interval
containing the spectra of A and B, we define the Schur multiplier (double sum operator) by
[22, 45, 98]

d
fABY= )" fOui,m)La,Rs, . (A5)
i,k=1

where C (I x I) is the Banach space of complex-valued continuous functions on I x I. It was
observed in [12] that given A, B € Bs,(H), f(A, B) is x-representation between C (I x I)
and B(B(H)). Indeed, we have the following lemma from [12, Lemma 4.1] and [36, Lemma
6.6].

LemmaA.1 Let A, B € B,,(H) and the compact interval I contain the spectra of A and B.
It holds that

1. f(A, B)g(A, B) = (fg)(A, B) for f,g € C(I x I).

2. If f € C( x I) is non-negative, then f(A, B) is a positive semidefinite operator on
B(H) with respect to the inner product (-, -). It follows that if f is strictly positive, the
sequilinear form (-, f(A, B)(-)) defines an inner product on B(H).

In this work, we mainly consider the case where f is the divided difference of some
differentiable function ¢ on I:

N—
Gy = | R A E R
9'(A), A=p,

which is closely related to the chain rule for 9; (cf. [12, Lemma 4.2] and [36, Proposition
6.2]).

(A.6)

Lemma A.2 Under the same assumption as in Lemma A.1, for any f : I — C, we have, for
V e B(H),

VF(B) — f(A)V = fIN(A, BY(VB — AV). (A7)
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Then, by Lemma A.2, for a differentiable curve A(¢) : (a, b)) — B(H) and function f, we
have

d
(A0 = FHA@, A (A (1)) (A.8)

We also need a multiple operator version of (A.8). We recall that for a differentiable function
@ : R" — C, the partial divided difference §;¢ : R"™! — C with respect to the variable x;
is defined by

1
i) (X1, ..o Xjo1, (A ), X, ooy Xn) = (@Cxr, oo X1, ~,xj+1,--.,xn))[ ] (A, ).
(A.9)

Let A® k =1,...,n, be self-adjoint operators with the spectral decompositions: A; =
> )»Ek)Agk), where )»Ek) are eigenvalues and A;k) are the associated rank-one spectral pro-
Jections. For a function ¢ : I x --- x I — C with the interval I containing the spectra of
AW the multiple operator sum is defined as:
d
1 1
oAl A= Y o0 A e @A (A10)
i1, sin=1

The following chain rule from [36, Proposition 6.8] shall be useful in the expression of the
geodesic equations for the generalized quantum transport distance.

Lemma A.3 Letthe curves A;, B; : (a, b) — Bsqa(H) be differentiable, andlety : [ xI — C
be differentiable with I containing the spectra of A; and By for all t € (a, b). Then there
holds

0r0(Ar, B () = (519)((As, Ap), B)[0: Ay, -1+ (829)(As, (B, Be))[-, 0 By].

Appendix B: Note on the Detailed Balance Condition

Noting (4.13), it follows from Lemma 2.2 that the QMS satisfying o-GNS DBC is also
self-adjoint with respect to the inner product (-, -)jo],,- In this appendix, we modify the
discussions in [36, Appendix B] and [20, Appendix B] to show that the [0], 0-DBC, for
p € (1,2), and KMS DBC are not comparable, and that there exists a primitive QMS
satisfying [o], 0-DBC but not -GNS DBC.

Let {|0), |1)} be the standard basis of C2, and |v;) = %(lO) +|1)) and |vp) = %(lO) +

2 |1)) be an another basis of C2. We define the quantum channel ®(X) = K{ XK1+ K;XK>
with K; = |v1) (0] and K> = |va) (1]. It is easy to see that the associated unique invariant

state of @7 is
_ 123
T=713s5]

and the spectrum of & is given by {1, %, 0} with O of multiplicity two. We denote by
CD;((MS the adjoint of @ with respect to the KMS inner product and define ¥ = ¢EMS¢,
which is also a quantum channel with W¥(6) = o but satisfying the KMS DBC. Note
that for a linear map ® on B(H) satisfying both [o], 0-DBC and KMS DBC, there holds
g(As) o d = Dog(Ay), where g(x) = Kl/p(x)xl/2 and g(Ay) = [o];,‘Or[,. By definition
(A.4), we have g(1/x) = g(x). Then, by exactly the same argument as in [20, Appendix B],
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we can show that the operator W defined above does not commute with g(A,) and hence the
Lindbladian ¥ — id satisfies the KMS DBC but not [c'], o-DBC.

We next consider W := [a];l0 oWt oI, whichis a quantum channel, since the operator
[a]_lo is completely positive for p € (1, 2) by [68, Example 4.7]. Then we can check from

definition that U satisfies the [01p,0-DBC. Again, smce Y defined above does not commute
with g(A.), neither does 7. Hence, the Lindbladian U — id satisfies [0]1p,0-DBC but not
KMS DBC.

We conclude with an example of a primitive QMS with [o'], o-DBC but not 0-GNS DBC.
The construction is modified from [20] as well. We define, for some 1 € (0, 1/2),

k=[] =[]

and the associated quantum channel ®(X) = K f‘X K| + K;X K>, which has the unique
invariant state:
_|n 0
<10

It is direct to verify [a];’l0 odt=do [a];ylo, i.e., ® satisfies the [0], 0-DBC. However, it
was shown in [20] that o-GNS DBC does not hold for ®. It follows that the generator & —id
is the desired example.

Appendix C: Beckner’s Inequality for Non-primitive QMS

In this appendix, we introduce p-Beckner’s inequality with p € (1, 2] for the non-primitive
QMS and show that it holds for any QMS satisfying GNS DBC, which extends [63, Theorem
3.3] for MLSI.

Let P, = e¢'* be a non-primitive QMS with a full-rank invariant state o €
D4 (H), which may be non-unique. We introduce the fixed-point algebra F :=
{X € B(H); Vt > 0, P;(X) = X}, and denote the associated conditional expectation by E r.
It is known from [58, 63] that ExP; = P;Ex = Er and for X € B(H),

lim P (X — EF(X)) = lim P (X) — EF(X) = 0. (C.1

Similarly, Beckner’s inequality quantifies the convergence rate of (C.1) in terms of the p-
divergence (3.1). We consider QMS that satisfies 0-GNS DBC as in Definition 2.1, which
is well-defined since the self-adjointness of £ with respect to (-, -)4,1 is independent of the
choice of invariant state o; see [63, Lemma 2.6]. We compute the entropy production of
Fp,o(p) asin (3.16): for p; = P,T(,o) with p € Dy (H),

d

4 —1
Elzof,,,E;(p)(pt):_ﬁep,ﬁ(X), X=T, ()(p)

where &, » is given in (2.17) with o0 = E;_-(p)‘ Hence, we can define the non-primitive
Beckner’s inequality as (3.18): for some «, > 0 and any p € D4 (H),

apF, E_;:,_-(p)(’o) <p 25T (). (C.2)

P E*()

IR - . t oyt
which is equivalent to the exponential convergence: }"p’ Eb(p) (P (p)) <e ™ }' £ L) (p).
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We introduce the subalgebra index for the fixed-point algebra F by
C(EF) = inf {c >0; p< CE;_—(,O), Vp € D(H)} , (C.3)

which is finite in the finite-dimensional setting [97, Theorem 6.1]. For a primitive QMS with
the unique invariant state o € D4 (H), the index (C.3) reduces to

C(o) :=inf{c > 0; p <co forall p € D(H)}, (C4

which is closely related to the max-relative entropy Do in (2.32) and can be explicitly
represented by (2.33),

C(e)= sup exp(Doo(pllo)) = oy - (C.5)
peD(H)

We also recall the spectral gap (Poincaré constant) A(£) for a non-primitive Lindbladian £:

—(X, L(X))o.r

ML) = i _
xeBro X — Ex(X)I2

for an invariant state 0 € D4 (H) and function f : (0,00) — (0, c0), where the inner
product (-, -)o, s i given in (2.5). It was proved in [63, Lemma 3.2] that A (£) is independent
of the choice of o and f. We are now prepared to give the following result.

Theorem C.1 Let P; = ¢!~ be a QMS satisfying o-GNS DBC for some o € D, (H). Then
the Beckner’s inequality (C.2) holds for all p € (1, 2] with constant a,(L) satisfying the
estimate:

@p(0) = SCER) ML) (C.6)

Proof We consider the relative density X = I‘E o )(,o) for p € D4 (H) and then have
]:

v p.Elr (o))

71(” x| =1 <plx—1)

P El(p) <207 'p(x, LX)

EL(p).0p’
(C.7)

EL(p).0,

by using E;_-F(7 = I'y Er for any invariant state o and the upper estimate in (3.12). By
definition (C.3) and formulas (2.19) and (3.10), it follows from Lemma 3.2 that

— (X, LX),
= (r},/!’(ajx), FI (211206 I = i/2r gV Y r)/!’(a,x))

< CERP? (LU (3;X), 710 (2P0YP 060, e PP TP O0) TP (3;X)
<4pTPCEF)TEpL(X). (C8)

where o = E}(p) and X = F;l ( )(p). Therefore, by (C.7) and (C.8), we obtain
Fle

——C(Ex)* & (T (p).

4
PA(L) ET »)

The proof is complete by (C.2). O
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Remark C.2 1If P; in Theorem C.1 is primitive, then we have «, > pari;lp A/4, which is

asymptotically worse than the one in (3.43) for fixed omin < 1/2 and p close to 1 or fixed
p € (1, 2] and small enough oy;p.

Remark C.3 When p — 1T, the lower bound (C.6) reduces to the one in [63, Theorem 3.3] for
MLSI constant, which has been improved very recently in [60, Theorem 4.18] by Gao et al.
with a logarithmic dependence on the complete version of subalgebra index. One may hence
expect a similar improvement for «, (£) as well, which we leave for future investigation.
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