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Abstract
Wedefine the quantum p-divergence and introduce Beckner’s inequalities for primitive quan-
tumMarkov semigroups on afinite-dimensionalmatrix algebra satisfying the detailed balance
condition. Such inequalities quantify the convergence rate of the quantum dynamics in the
noncommutative L p-norm.We obtain a number of implications between Beckner’s inequali-
ties and other quantum functional inequalities, as well as the hypercontractivity. In particular,
we show that quantum Beckner’s inequalities interpolate between Sobolev-type inequalities
and Poincaré inequality in a sharp way. We provide a uniform lower bound for the Beckner
constant αp in terms of the spectral gap and establish the stability of αp with respect to
the invariant state. As applications, we compute the Beckner constant for the depolarizing
semigroup and discuss the mixing time. For symmetric quantum Markov semigroups, we
derive the moment estimate, which further implies a concentration inequality. We introduce
a new class of quantum transport distances W2,p interpolating the quantum 2-Wasserstein
distance by Carlen andMaas (J Funct Anal 273(5):1810–1869, 2017) and a noncommutative
Ḣ−1 Sobolev distance. We show that the quantum Markov semigroup with σ -GNS detailed
balance is the gradient flow of a quantum p-divergence with respect to the metric W2,p . We
prove that the set of quantum states equipped with W2,p is a complete geodesic space. We
then consider the associated entropic Ricci curvature lower bound via the geodesic convexity
of p-divergence, and obtain an HWI-type interpolation inequality. This enables us to prove
that the positive Ricci curvature implies the quantum Beckner’s inequality, from which a
transport cost and Poincaré inequalities can follow.
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1 Introduction

Realistic quantum systems inherently interact with their surroundings and can be generally
modeled by open quantum dynamics. In the weak coupling limit between the system and
the environment, the dynamics would be Markovian and described by the so-called quan-
tum Markov semigroup (QMS) or the Lindblad equation, which is a natural analog of the
Fokker–Planck equation in the quantum setting [28]. Similarly to the theory of Markov semi-
groups, the analysis of the mixing time is of central importance for a QMS, and is closely
related to functional inequalities. In this work, we are interested in a class of convex Sobolev
inequalities, referred to as quantum Beckner’s inequalities. We will investigate their main
properties and relations with other known quantum functional inequalities, such as Poincaré
and modified log-Sobolev inequalities, via both algebraic and geometric approaches.

1.1 Classical Convex Sobolev Inequality

To motivate this work, we first review the results of the convex Sobolev inequalities in
the classical setting. Let (Pt )t≥0 be the symmetric diffusion semigroup associated with a
Markov process (Xt )t≥0 on a Riemannian manifold M with metric g(·, ·) that has a unique
invariant measure π . We denote by L the generator of Pt and define the Dirichlet form
E( f , g) := −π[ f Lg] for functions f and g, where π [·] denotes the expectation with respect
to the measure π . Bakry and Émery in their seminal work [10] showed that if there exists
κ > 0 such that for f ≥ 0,

%2( f , f ) ≥ κ%( f , f ) , (1.1)

then the convex Sobolev inequality holds:

2κ Entφπ ( f ) ≤ E(φ′( f ), f ) , (1.2)

which is equivalent to the exponential decayof theφ-entropyEntφπ ( f ) := π[φ( f )]−φ(π [ f ])
and characterizes the convergence rate of the Markov process towards its invariant measure.
Here φ : [0,∞) → R is assumed to be a smooth convex function such that φ(1) = φ′(1) =
0 and 1/φ′′ is concave. % and %2 are carré du champ operators defined as follows [11,
Section1.16.1]: for suitable functions f and g,

%( f , g) := 1
2
(L( f g) − f L(g) − L( f )g) ,

%2( f , g) :=
1
2
(L%( f , g) − %( f , Lg) − %(L f , g)) .

In the cases: φ1(s) = s(log s − 1)+ 1 and φ2(s) = s2 − 2 s + 1, up to some constant, (1.2)
gives the well-known modified log-Sobolev inequality (MLSI) and the Poincaré inequality,
respectively,

α
(
π [ f log f ] − π[ f ] logπ [ f ]

)
≤ E(log f , f ) , (1.3)

and

λ
(
π [ f 2] − π [ f ]2

)
≤ E( f , f ) . (1.4)

If we consider the interpolating family φp(s) = (s p − s)/(p − 1) − s + 1, 1 < p ≤ 2,
between φ1 and φ2, we obtain the Beckner’s inequality:

αp
(
π[ f p] − π[ f ]p

)
≤ pE( f p−1, f ). (1.5)
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Moreover, note from the diffusion property: Lψ( f ) = ψ ′( f )L f + ψ ′′( f )% f for suitably
smooth functions ψ and f , that E(log f , f ) = 4E( f 1/2, f 1/2) and E( f q , f 2−q) = (2q −
q2)E( f , f ). By substituting f = g2 and f = gq with q = 2/p into (1.3) and (1.5),
respectively, up to constants, we have the usual log-Sobolev inequality (LSI):

β
(
π [g2 log g2] − π[g2] logπ [g2]

)
≤ E(g, g), (1.6)

and the original Beckner’s inequality first introduced in [15] for the Gaussian measure on
Rd :

βq
(
π[g2] − π[gq ]2/q

)
≤ (2 − q)E(g, g). (1.7)

The condition (1.1) admits a deep geometric interpretation, and it is called the Bakry-Émery
(curvature-dimension) condition or %2-criterion. To make this point clearer, let L = *g −
∇W · ∇ be the generator associated with the Ornstein-Uhlenbeck process on the manifold
M that admits an invariant measure dπ = e−WdvolM , where W is the potential and volM
is the volume form on M . With the help of Bochner’s formula, we can compute %( f , f ) =
|∇ f |2 and %2( f , f ) = |∇2 f |2+Ric(L)(∇ f ,∇ f ), where Ric(L) is the Ricci tensor for the
generator L , defined by Ric(L) := Ricg +∇2W with Ricg being the standard Ricci curvature
of M . It is easy to prove that the condition (1.1) holds if and only if the Ricci curvature of
L is bounded below: Ric(L)(·, ·) ≥ κg(·, ·). Otto-Villani [94] and von Renesse-Sturm [109]
further observed that (1.1) is also equivalent to that the relative entropy with respect to dπ is
displacement κ-convex on the Wasserstein space of probability measures on M . Inspired by
this characterization, Sturm [103] andLott-Villani [80] extended the notion of Ricci curvature
to metric measure spaces by exploiting the convexity properties of entropy functionals. See
[11, 108] for more details.

The above framework establishes a beautiful connection between various subjects such
as partial differential equations (PDE), probability, and geometry, and has led to important
research progress in these fields. The key step in the Bakry-Émery arguments [10] is to
estimate the second derivative of the relative entropy along theMarkov semigroup, where the
calculation depends on Bochner’s formula or, more abstractly, the diffusion property. Arnold
et al. [7–9] revisited the Bakry-Émery method in the PDE framework and characterized
the long-time asymptotics for various classes of Fokker–Planck type equations based on
the convex Sobolev inequalities; see also [37, 48, 83, 93] for the applications of functional
inequalities in nonlinear Fokker-Planck type equations. Among the general convex Sobolev
inequalities, Beckner’s inequality is of particular interest, since it provides an interpolating
family between MLSI and Poincaré inequalities and can estimate the tail behavior of a given
distribution (see also the discussion near (5.2) in Sect. 5). The recent work [64] proved a class
of weighted Beckner’s inequalities and the refined ones based on the Bakry-Émery method
and the curvature-dimension conditions. We also mention that [6] proved the inequality
(1.7) by the hypercontractivity and spectral estimates. In particular, Dolbeault et al. [50,
51] explored the gradient flow structure of the Fokker–Planck equation for general entropy
functionals and proved the contraction of the associated transport distance along the Fokker–
Planck flow, which gave a unified gradient flow framework for investigating the convex
Sobolev inequalities (1.2).

It is also desirable to extend the theory of convex Sobolev inequalities to the setting of
finiteMarkov chains. In this case, due to the lack of chain rule, the inequalities (1.3) and (1.6),
also, (1.5) and (1.7) are not equivalent (one is stronger than the other) [24]. For instance, Dai
Pra et al. [41] provided an example where the MLSI (1.3) holds while the LSI (1.6) fails. In
what follows, to avoid confusion between (1.5) and (1.7), following [1] and [38] we call the
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inequality of the form (1.7) the dual Beckner’s inequality. Similarly to the diffusion case, the
Bakry-Émery method and gradient flow techniques are two main approaches for the validity
of (1.2). Jüngel and Yue [72] followed Bakry-Émery’s ideas and gave the conditions of φ

under which (1.2) holds. The proof relies on a discrete Bochner-type identity that was first
introduced in [25, 33]. Recently, Weber and Zacher [110] proposed discrete analogs of the
condition (1.1) such that theMLSI (1.3) and Beckner’s inequality (1.5) hold. Their argument,
different from [72], is based on the modified % and %2 operators that satisfy some kind of
discrete diffusion property. We point out that a probabilistic approach, based on the Bakry-
Émery method and the coupling arguments, for the discrete convex Sobolev inequalities can
be found in [39] by Conforti.

The starting point of the gradient flow approach for discrete functional inequalities is
[81] where Maas defined a discrete transport distance such that the continuous time finite
Markov chains can be identified as the gradient flow of the relative entropy. Following the
ideas of [80, 103], Erbar and Maas [53] introduced the discrete Ricci curvature based on
this discrete Wasserstein metric, and derived a number of functional inequalities including
the discrete MLSI and the transport cost inequalities; see also [52]. Later, Fathi and Maas
[55] generalized the discrete Bochner formula [33] and developed a systematic approach
for estimating the discrete Ricci curvature lower bounds. It is worth mentioning that both
the discrete Bakry-Émery condition in [110] and the discrete Ricci curvature in [53] enjoy
the tensorization properties, and the aforementioned general results can be applied to several
interestingmodels such as birth-death processes, random transpositionmodels andBernoulli-
Laplace models (see related papers for details). We refer the readers to the review [82] and
the references therein for other notions of the Ricci curvature in the discrete setting and their
implications on functional inequalities.

1.2 Quantum Functional Inequalities

In analogy with the classical case, quantum functional inequalities play a fundamental role in
understanding the asymptotic behavior of a QMS. The study of LSI in the noncommutative
settingmay date back to [65], and its connectionswith hypercontractivitywere fully discussed
in the seminal work by Olkiewicz and Zegarlinski [92]. The quantum MLSI was initially
introduced by Kastoryano and Temme [73] to derive improved bounds on the mixing time of
primitive quantum Markov processes, surpassing those obtained via the Poincaré inequality
in [104]. The investigation of the quantum MLSI constant has been carried out in detail for
specificmodels using various techniques: the depolarizing semigroup by explicit computation
[90], the doubly stochastic qubit Lindbladian by a comparisonmethod [89], and quantum spin
lattice systemsbyquasi-factorization for the entropy [13, 32, 40], to name a few.Regarding the
general validity of MLSI in the quantum setting, the notion of Ricci curvature lower bounds
(geodesic convexity), pioneered by Carlen andMaas [34, 35], has shown its utility in proving
the quantumMLSI and related functional inequalities with numerous applications in concrete
physicalmodels.Webriefly outline themain progress in this direction below.Carlen andMaas
[35] introduced a quantum analog of 2-Wasserstein distance such that the primitive QMS
satisfying σ -GNS detailed balance condition (cf.Definition 2.1) can bewritten as the gradient
flow of the relative entropy and showed that the relative entropy is geodesically convex for
the Fermi and Bose Ornstein-Uhlenbeck semigroups, which extended their previous work
[34]. Based on Carlen and Maas’s results, Datta and Rouzé [44, 102] considered the Ricci
curvature of a QMS, and obtained some quantum Sobolev and concentration inequalities,
generalizing the results in the classical regime [52, 53, 93]. Wirth and Zhang [116] further
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introduced noncommutative curvature-dimension conditions and derived some dimension-
dependent quantum functional inequalities. In addition, the Bakry-Émery method, which
has been successfully adapted to the discrete case, has also been explored for the quantum
semigroups recently with fruitful applications [26, 27, 59, 77, 78, 115], where the crucial
monotonicity of Fisher information was derived from different starting points: the gradient
condition [59], the geometric Ricci curvature condition [27, 78], and the gradient estimate
[115]. The relations between these conditions, as well as the entropic Ricci curvature bound
[36, 44], can be found in [27, 78, 115, 116].

One of the favorable features of the classical LSI is the tensorization property, which
enables obtaining the functional inequalities for the tensor product systems from those for
the subsystems. However, this property is known to fail for the quantum MLSI (cf. [27,
Proposition 4.21]). To circumvent such difficulty, Gao et al. [59] introduced the complete
modified log-Sobolev inequality (CMLSI), which is a stronger notion than the MLSI, and
showed that it satisfies the desired tensorization properties. In [63], Gao andRouzé proved, by
a two-sided estimate for the relative entropy, that the CMLSI holds for any finite-dimensional
non-primitive QMS with σ -GNS detailed balance. The very recent work [60] provided a
generic lower bound for the CMLSI constant by the inverse of completely bounded mixing
time and an improved data processing inequality, which improves the results in [63]. See also
[26, 27, 61, 78] for the geometrical approaches for studying the CMLSI.

1.3 Main Results

Although there has been much progress on Beckner’s inequalities in both diffusion and
discrete cases as reviewed above, the results for quantum Beckner’s inequalities are quite
limited. We only note the recent work by Li [77] where the author investigated the matrix-
valued Beckner’s inequalities, in terms of the Bregman relative entropy [86], for symmetric
semigroups on a finite von Neumann algebra. This work is devoted to further investigation on
this topic. We consider the primitive QMS satisfying certain detailed balance conditions, and
define the family of quantum p-Beckner’s inequalities and their dual version, by extending the
definitions in [1, 38, 75] for classicalMarkov semigroups; seeDefinition 3.5 for the functional
inequalities that we will mainly focus on. It turns out that the p-Beckner’s inequality (Bec-p)
describes the rate at which the quantum p-divergenceFp,σ (3.1) tends to zero along theQMS.
Note that Fp,σ can be viewed as the normalized noncommutative L p-norm. The diagram in
Fig. 1 below summarizes part of the main results of Sects. 3.2 and 3.3.

The relations between (PI), (mLSI), and (LSI) have beenwell investigated. [105, Corollary
6] provided a two-sided bound for the LSI constant by Poincaré constant; [73] showed that the
MLSI constant is bounded below by the LSI constant and above by Poincaré constant. This
also allows us to conclude that the MLSI constant and Poincaré constant can be compared
with each other; see also [31, Proposition I.7] and [63, Theorem 3.3]. In Sect. 3.2, we prove
that the dual q-Beckner’s inequalities (Bec’-q), as an interpolating family between (LSI)
and (PI), is comparable to (LSI) in the sense of Proposition 3.10; see Remark 3.11 for the
tightness of the comparison. We also show in Proposition 3.14 that (Bec’-q) is stronger than
(Bec-p). Propositions 3.12 and 3.13 discuss the monotonicity of the dual Beckner constant
βq(L) and the Beckner constant αp(L), respectively.

In Sect. 3.3, we investigate the quantum p-Beckner’s inequalities in detail.We first discuss
in Proposition 3.15 the connection between p-Beckner’s inequality (Bec-p) and the sand-
wichedRényi entropic inequality (3.28) defined in [88]. In brief, theRényi entropic inequality
(3.28) implies (Bec-p), while (Bec-p) only implies a restricted (3.28). Then, we consider
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Fig. 1 Chain of quantum convex Sobolev inequalities. We remark that the implications from (PI) to other
inequalities (Bec-p), (mLSI), and (LSI) would generally involve a constant depending on the properties of
invariant states

the relations between (Bec-p) and quantum p-log-Sobolev inequalities (LSIp) (equivalently,
the hypercontractivity) in Proposition 3.17, where we find (LSIp) is stronger (resp.,weaker)
than (Bec-p) for p > 1 (resp., 0 < p < 1). A two-sided estimate for the Beckner constant
αp(L) in terms of the Poincaré constant λ(L) is given in Lemma 3.18 and Theorem 3.20.
We prove, by contradiction, in Theorem 3.25 that αp(L) → α1(L) holds as p → 1+, where
α1(L) is the MLSI constant. This extends the result [1, Theorem 1.1] in the classical set-
ting. We also extend the main result in [69] and provide a stability estimate for the Beckner
constant αp(L) with respect to the invariant state σ ; see Theorem 3.27. In Sect. 3.4, we first
compute the quantum Beckner constant for the depolarizing semigroup with asymptotically
tight lower and upper bounds; see Propositions 3.29 and 3.30. We then derive a mixing time
bound for the QMS from the p-Beckner’s inequality (Bec-p) in Proposition 3.33. Moreover,
in Proposition 3.35, we extend [1, Proposition 3.3] for the classical case and obtain moment
estimates under (Bec-p). As a complementary result, we also provide a generic lower bound
for the Beckner constant for non-primitive QMS in Appendix C based on the key Lemma
3.3, following the work [63].

Another motivation for the current work is [50, 51], where the authors provided a gradient
flow approach for the classical Beckner’s inequalities. To be precise, Dolbeault et al. [50]
defined the following class of transport distances W2,α,γ with α ∈ [0, 1] à la Benamou-
Brenier: for probability measures µ0 and µ1 on Rd ,

W2,α,γ (µ0, µ1) := inf
{ ∫ 1

0

∫

Rd
ρ−α
t |wt |2 dγ dt ;

∂tµt + ∇ · νt = 0 , µt = ρtγ + µ⊥
t , νt = wtγ ≪ γ

}
, (1.8)

where γ is a reference Radonmeasure andµ⊥
t is the singular part ofµt in its Radon-Nikodym

decomposition with respect to γ . In the case α = 1,W2,α,γ (µ0, µ1) gives the 2-Wasserstein
distance [19], while when α = 0, it is equivalent to the weighted homogeneous Ḣ−1

γ Sobolev
distance [96, 107]:

∥µ0 − µ1∥Ḣ−1
γ

= sup
{ ∫

Rd
ξ d(µ0 − µ1) ; ξ ∈ C1

c (Rd) ,

∫

Rd
|∇ξ |2 dγ ≤ 1

}
.

ThusW2,α,γ can be viewed as a natural interpolating family between them. Moreover, let the
reference measure be γ := e−VL d with the potential V being smooth and convex, where
L d is the Lebesgue measure on Rd . With such choice of γ , they showed that the gradient
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flow of the (Tsallis) functional, for α ∈ [0, 1),

Fα(µ) :=
1

(2 − α)(1 − α)

∫

Rd
ρ2−α dγ , µ = ργ , (1.9)

is the Fokker–Planck equation:

∂tµ − *µ − ∇ · (µ∇V ) = 0 .

In the subsequent work [51], they further proved that Fα is geodesically λ-convex under the
assumption: ∇2V ≥ λI for λ > 0, which implies the classical Beckner’s inequality.

It is easy to note that in the commutative setting, up to some constant, our quantum p-
divergenceFp,σ (3.1) is nothing else but the functionalFα in (1.9) with p = 2−α. In Sect. 4,
we extend the results in [50, 51] to the quantum regime and provide a geometric character-
ization for the quantum p-Beckner’s inequality. To do so, we first construct a Riemannian
metric gp,ρ on the quantum states in Sect. 4.1, so that the σ -GNS symmetric QMS is the
gradient flow of p-divergenceFp,σ with respect to gp,ρ . Then in Sect. 4.2, we investigate the
properties of the associated Riemannian distance, denoted by W2,p (cf. (4.20)), which can
be regarded as a quantum analog of W2,α,γ in (1.8). The main result in this section is Theo-
rem 4.11, where we show that (D(H),W2,p) is a complete geodesic metric space. We also
prove in Proposition 4.14 that similarly to the classical case, the new class of distancesW2,p
is an interpolating family between the quantum 2-Wasserstein distance defined by Carlen
and Maas [35] and a noncommutative Ḣ−1 Sobolev distance (4.41). With these results, it
is straightforward to define the entropic Ricci curvature associated with the functional Fp,σ
in the spirit of [44, 80, 103]. We then derive an HWI-type interpolation inequality from the
Ricci curvature lower bound and show that the positive Ricci curvature can imply Beckner’s
inequality (Bec-p). Further, we prove the following chain of quantum functional inequalities:

(Bec-p)
Proposition 4.20,,,,,,,,,,⇒ (TCp)

Proposition 4.21,,,,,,,,,,⇒ (PI f ), (1.10)

where (TCp) is a transport cost inequality associated with W2,p . These results are presented
in Sect. 4.3.

1.4 Layout and Notation

The rest of this work is organized as follows. We will restrict our discussion to a finite-
dimensional matrix algebra. In Sect. 2, we give preliminary definitions and results used
throughout this work. Some additional preliminaries are included in Appendix A. In Sect. 3,
we define the family of quantum Beckner’s inequalities and investigate its properties and
relations with other known functional inequalities. Section4 is devoted to a gradient flow
framework for Beckner’s inequality. In Sect. 5, we conclude this work with a discussion
of some open questions. Moreover, Appendix B includes a comparison of detailed balance
conditions, while in Appendix C we give a brief introduction to the non-primitive Beckner’s
inequality.

We fix notations that will be used in this work.

• Let B(H) denote the space of bounded operators on a finite-dimensional Hilbert space
H of dimension d < ∞. We use B×(H) for the set of full-rank (invertible) operators in
B(H). Bsa(H) is the subspace of self-adjoint operators onH, while B+

sa(H) is the cone of
positive semidefinite operators. For simplicity, in what follows, by A ≥ 0 (resp., A > 0)
we mean a positive semidefinite (resp., definite) operator.
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• The identity operator onH is written as 1H (or 1, if there is no confusion). Similarly, the
identity superoperator on B(H) is denoted by idH, or simply id.

• We denote by D(H) := {ρ ∈ B+
sa(H); Tr ρ = 1} the set of density operators (quantum

states), and by D+(H) the full-rank density operators.
• We denote by ⟨·, ·⟩ the Hilbert-Schmidt inner product on B(H), i.e., ⟨X , Y ⟩ = Tr(X∗Y ),

where X∗ is the adjoint operator of X . Moreover, we write 0† for the adjoint of a
superoperator 0 : B(H) → B(H) with respect to the inner product ⟨·, ·⟩. The modulus
of X ∈ B(H) is defined by |X | :=

√
X∗X .

• We define the Schatten p-norm by ∥X∥p = Tr(|X |p)1/p for X ∈ B(H) if p > 0;
X ∈ B×(H) if p < 0, where ∥·∥∞ is the operator norm. For a superoperator on B(H),
we simply use ∥·∥ for its operator norm.

• Let M be a subset of B(H). We denote by MJ the set of vector fields over M, i.e.,
A = (A1, . . . , AJ ) ∈ MJ for A j ∈ M, 1 ≤ j ≤ J . The Hilbert-Schmidt inner product
naturally extends to MJ as ⟨A,B⟩ =∑J

j=1⟨A j , Bj ⟩.
• For p ∈ R\{0, 1}, we define its Hölder conjugate p̂ := p/(p−1) satisfying 1/p+1/ p̂ =

1.

We end the introduction with some remarks. For ease of exposition, in many statements
below, we only consider invertible X ∈ B×(H) (so that |X |α for any α ∈ R is well-defined).
Most of them still hold for non-invertible matrices by an approximation argument, which can
be easily checked. For example, the first statement in Lemma 2.7 clearly holds for 0 < p ≤ q
and X ∈ B(H). Moreover, to make the presentation cleaner, many results below are only
stated for p ̸= 1, while the case p = 1 can be easily obtained by taking a limit; see Remark
3.4 for example.

2 Preliminaries

2.1 QuantumMarkov Semigroup

Let us first recall preliminaries about the finite-dimensionalMarkovian open quantumdynam-
ics. We say that (Pt )t≥0 : B(H) → B(H) is a quantum Markov semigroup (QMS) if Pt is a
C0-semigroup of completely positive, unital maps, whose generator L is called the Lindbla-
dian, defined by L(X) := limt→0 t−1(Pt (X) − X). A quantum channel 0 : B(H) → B(H)

is a completely positive trace preserving (CPTP)map. Then, the dual QMSP†
t is a semigroup

of quantum channels, and the associated equation d
dt ρ = L†ρ is referred to as the Lindblad

equation. It is easy to check that X > 0 implies Pt (X) > 0 for any t ≥ 0. A QMS Pt is
said to be primitive if it admits a unique full-rank invariant state σ such that P†

t (σ ) = σ for
t ≥ 0. In this case, there holds [58]

lim
t→∞Pt (X) = Tr(σ X)1 , ∀X ∈ B(H) . (2.1)

For A ∈ B(H) we define the left and right multiplication operator on B(H) by L A = AX
and RA = X A, respectively. It is easy to see that L f (A) = f (L A) and R f (A) = f (RA) holds
for A > 0 and functions f : (0,∞) → R. We also define the relative modular operator
*ρ,σ = LρR−1

σ : B(H) → B(H) for ρ, σ ∈ D+(H), and simply write it as *σ if σ = ρ.
We next introduce the quantumdetailed balance condition (DBC). For this, we define a family
of inner products on B(H): for a given σ ∈ D+(H) and s ∈ R,

⟨X , Y ⟩σ,s := Tr(σ s X∗σ 1−sY ) = ⟨X ,*1−s
σ (Y )σ ⟩ , ∀X , Y ∈ B(H) , (2.2)
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where ⟨·, ·⟩σ,1 and ⟨·, ·⟩σ,1/2 are GNS and KMS inner products, respectively. In particu-
lar, when σ is the maximally mixed state 1/d , all the inner products ⟨·, ·⟩σ,s reduce to the
normalized Hilbert-Schmidt inner product:

⟨X , Y ⟩ 1
d
:= 1

d
⟨X , Y ⟩ . (2.3)

Definition 2.1 We say that a QMS Pt satisfies the σ -GNS DBC (resp., σ -KMS DBC) for
some σ ∈ D+(H) if its generator L is self-adjoint with respect to the inner product ⟨·, ·⟩σ,1
(resp., ⟨·, ·⟩σ,1/2).

One can readily see that ifPt satisfies theσ -GNSDBCorσ -KMSDBC for someσ ∈ D+(H),
then σ is an invariant state of Pt , and that Pt is symmetric (i.e., Pt = P†

t ) if and only if
it satisfies the GNS DBC or KMS DBC for the maximally mixed state σ = 1/d . For any
f : (0,∞) → (0,∞) and σ ∈ D+(H), we can define the operator:

J f
σ := Rσ f (*σ ) : B(H) → B(H) , (2.4)

and the associated inner product:

⟨X , Y ⟩σ, f := ⟨X , J f
σ (Y )⟩ . (2.5)

It is clear that ⟨X , Y ⟩σ, f with f = x1−s gives the inner product (2.2); and the adjoint of a
linear operator K on B(H) with respect to ⟨·, ·⟩σ, f is given by (J f

σ )−1K† J f
σ . The following

result from [35, Theorem 2.9] relates the self-adjointness of L with respect to different inner
products.

Lemma 2.2 If a QMS Pt satisfies the σ -GNS DBC for some σ ∈ D+(H), then its generator
L commutes with the modular operator *σ , and it is self-adjoint with respect to ⟨·, ·⟩σ, f for
any f : (0,∞) → (0,∞), i.e.,

L*σ = *σL , J f
σ L = L† J f

σ .

In consequence, Pt also satisfies σ -KMS DBC and there holds

%σL = L†%σ .

The next lemma, due to Alicki [2], characterizes the generator L of a QMS that satisfies
the σ -GNS DBC.

Lemma 2.3 For a Lindbladian L satisfying σ -GNS DBC for some σ ∈ D+(H), it holds that

L(X) =
J∑

j=1

(
e−ω j /2V ∗

j [X , Vj ] + eω j /2[Vj , X ]V ∗
j

)
, (2.6)

with ω j ∈ R and J ≤ d2 − 1. Here, Vj ∈ B(H), 1 ≤ j ≤ J , are trace zero and orthogonal
eigenvectors of *σ :

*σ (Vj ) = e−ω j V j , ⟨Vj , Vk⟩ = c jδ j,k , Tr(Vj ) = 0 , (2.7)

where c j > 0 are normalization constants. Moreover, for each 1 ≤ j ≤ J , there exists
1 ≤ j ′ ≤ J such that

V ∗
j = Vj ′ , ω j = −ω j ′ . (2.8)
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The real numbers ω j ∈ R are called Bohr frequencies of the Lindbladian L, which
are uniquely determined by the invariant state σ , while the operators Vj are only unique
up to unitary transformations. Indeed, let {vk} be orthonormal eigenvectors of σ such that
σvk = σkvk . Then, |vk⟩ ⟨vl | are eigenvectors of *σ with *σ |vk⟩ ⟨vl | = (σk/σl) |vk⟩ ⟨vl |,
which implies that for each 1 ≤ j ≤ J , there exists 1 ≤ k, l ≤ d such that

ω j = log σl − log σk . (2.9)

In what follows, we will fix a set of Vj for the representation (2.6) with the properties in
Lemma 2.3.

Remark 2.4 When the invariant state σ is the maximally mixed state 1/d , *σ becomes the
identity operator and hence ω j = 0 by (2.7), and we can take the operators Vj to be self-
adjoint. In this symmetric case, the QMS Pt may be regarded as a noncommutative heat
semigroup, and its generator has the form:

L(X) = −
∑

j

[Vj , [Vj , X ]] . (2.10)

Example 2.5 An important example of QMS is the generalized depolarizing semigroup:

Pt (X) = e−γ t X + (1 − e−γ t )Tr(σ X)1 , X ∈ B(H) , (2.11)

for σ ∈ D+(H) and γ > 0, which is generated by

Ldepol(X) = γ (Tr(σ X)1 − X) . (2.12)

It is easy to see that Pt is primitive and satisfies σ -GNS DBC.

Lemma 2.3 actually gives a very useful first-order differential structure for a QMS with
σ -GNSDBC.We introduce theweighting operator for a full-rank quantum state σ ∈ D+(H):

%σ X = σ
1
2 Xσ

1
2 : B(H) → B(H) ,

and the noncommutative analog of partial derivatives (associated with σ ∈ D+(H)):

∂ j X = [Vj , X ] : B(H) → B(H) .

Then the noncommutative gradient ∇ : B(H) → B(H)J and divergence div : B(H)J →
B(H) can be defined by

∇X = (∂1X , . . . , ∂J X) for X ∈ B(H), (2.13)

and

divX = −
J∑

j=1

∂
†
j X j for X ∈ B(H)J ,

respectively. By definition and (2.7), it follows that the adjoint of ∂ j with respect to ⟨·, ·⟩σ,1/2
is

∂
†
j,σ B = %−1

σ ∂
†
j%σ B = e−ω j /2V ∗

j B − eω j /2BV ∗
j . (2.14)

With the help of ∂
†
j,σ (2.14), we can rewrite (2.6) as

L(X) = −
J∑

j=1

∂
†
j,σ ∂ j X , (2.15)
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and a noncommutative integration by parts formula holds:

−⟨Y ,L(X)⟩σ,1/2 =
J∑

j=1

⟨∂ j Y , ∂ j X⟩σ,1/2 for X , Y ∈ B(H) . (2.16)

The following lemma will be useful below, which generalizes [36, Proposition 4.12].

Lemma 2.6 Suppose that Pt satisfies σ -GNS DBC. For any continuous function f :
(0,∞) → (0,∞), there holds

−⟨Y ,LX⟩σ, f =
J∑

j=1

〈
∂ j Y , Re−ω j /2σ

f
(
Leω j /2σ

R−1
e−ω j /2σ

)
∂ j X

〉
, X , Y ∈ B(H) .

Proof By Stone-Weierstrass theorem, it suffices to consider f = xs . For this, we have

−⟨Y , Rσ *s
σLX⟩ =

J∑

j=1

⟨Y ,*s− 1
2

σ ∂
†
j%σ ∂ j X⟩ =

J∑

j=1

e(s−
1
2 )ω j

〈
∂ j Y , Rσ *s

σ ∂ j X
〉

=
J∑

j=1

〈
∂ j Y , Re−ω j /2σ

(
Leω j /2σ

R−1
e−ω j /2σ

)s
∂ j X

〉
,

by noting *s
σ ∂ j X = e−sω j ∂ j*

s
σ X from (2.7). ⊓⊔

2.2 Quantum Entropy and Dirichlet Form

This section will introduce quantum relative entropies and Dirichlet forms and discuss their
basic properties.

Noncommutative L p space.We start with the noncommutative weighted L p space. For p ∈
R\{0} and σ ∈ D+(H), we define the σ -weighted p-functional [73, 92]:

∥X∥p,σ := Tr
(
|%1/p

σ (X)|p
)1/p

,

for X ∈ B(H) if p > 0; X ∈ B×(H) if p < 0, which is a norm when p ≥ 1. In particular, if
σ = 1

d , then ∥·∥p, 1d
= 1

d1/p
∥·∥p is the normalized Schatten p-norm. We also need the power

operator Iq,p for p, q ∈ R\{0}:
Iq,p(X) := %−1/q

σ

(
|%1/p

σ (X)|p/q
)
,

for X ∈ B(H) if p/q > 0; X ∈ B×(H) if p/q < 0. Some important properties of ∥·∥p,σ and
Ip,q are summarized in the following lemma; see [73, Lemmas 1,2] and [17, Corollary 5].

Lemma 2.7 For p, q, r ∈ R\{0}, it holds that
1. ∥X∥p,σ ≤ ∥X∥q,σ for p ≤ q and X ∈ B×(H).
2.
∥∥Iq,p(X)

∥∥q
q,σ = ∥X∥p

p,σ and Iq,r ◦ Ir ,p(X) = Iq,p(X) for X ∈ B×(H).
3. Ip,p(X) = X for X ≥ 0.

Dirichlet form. We define the p-Dirichlet form (p ∈ R\{0}) for a QMS Pt with generator
L (our definition differs from the one in [73] by a factor of p/2): for any full-rank invariant
state σ = P†

t (σ ),

Ep,L(X) := − p̂ p
4

⟨I p̂,p(X),L(X)⟩σ,1/2 , (2.17)
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for X ∈ B(H) if p > 1; X ∈ B×(H) if p < 1. In particular, for p = 2, we have

E2,L(X) = −⟨X ,L(X)⟩σ,1/2 , X ≥ 0 .

The case p = 1 is defined by the limit p → 1 [73, Proposition 8]:

E1,L(X) := lim
p→1

Ep,L(X) = −1
4
⟨log%σ (X) − log σ,L(X)⟩σ,1/2 , (2.18)

Lemma 2.8 Let L be a Lindbladian satisfying σ -GNS DBC for some σ ∈ D+(H). Then, we
have, for p ∈ R\{0} and X > 0,

Ep,L(X) =
p2

4

J∑

j=1

〈
%1/p

σ

(
∂ j X

)
, f [1]p

(
eω j /2p%1/p

σ (X), e−ω j /2p%1/p
σ (X)

)
%1/p

σ

(
∂ j X

)〉
.

(2.19)

where f [1]p (·, ·) is the double sum operator (A.5) associated with the divided difference (A.6)
of the function:

f p(x) :=
{

1
p−1 x

p−1 if p ̸= 1,

log x if p = 1.
(2.20)

Proof It is sufficient to show (2.19) for p ∈ R\{0, 1}, since the case p = 1 can be obtained
by taking the limit p → 1. By formula (2.16), we have

Ep,L(X) =
p̂ p
4

J∑

j=1

⟨∂ j I p̂,p(X), ∂ j X⟩σ,1/2 . (2.21)

Thanks to the relation (2.7), we can further compute, for p, q ̸= 0,

∂ j Iq,p(X) = Vj%
−1/q
σ

(
|%1/p

σ (X)|p/q
)
− %−1/q

σ

(
|%1/p

σ (X)|p/q
)
Vj

= %−1/q
σ

(
Vj |%1/p

σ (e−ω j /2p X)|p/q − |%1/p
σ (eω j /2p X)|p/qVj

)
, (2.22)

and, for s ̸= 0,

∂ j X = %−1/s
σ

(
Vj%

1/s
σ (e−ω j /2s X) − %1/s

σ (eω j /2s X)Vj
)
. (2.23)

Then, substituting the formulas (2.22) with q = p̂ and (2.23) with s = p back into (2.21),
and using Lemma A.2, we can find the desired representation (2.19) of Ep,L. ⊓⊔

Corollary 2.9 Let L be a Lindbladian satisfying σ -GNS DBC for some σ ∈ D+(H). For any
X > 0 and p ̸= 0, there holds Ep,L(X) ≥ 0. Moreover, the equality Ep,L(X) = 0 holds if
and only if ∇X = 0, where ∇ is given in (2.13).

Proof It suffices to observe that f p(x) in (2.20) is increasing for x > 0, and hence the divided
difference f [1]p is strictly positive on (0,∞) × (0,∞), which, by Lemma A.1, implies that
the operator f [1]p (eω j /2p%

1/p
σ (X), e−ω j /2p%

1/p
σ (X)) is positive definite on B(H). Then, the

representation (2.19) readily gives Ep,L(X) ≥ 0, and Ep,L(X) = 0 if and only if ∂ j X = 0
for any 1 ≤ j ≤ J . ⊓⊔
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We derive integral representation formulas of f [1]p for later use. We recall [21, p.116]

x p−1 = sin(pπ)
π

∫ ∞

0

s p−1

s + x
ds , for x > 0 , 0 < p < 1 ,

which yields, for 1 < p < 2,

f [1]p (x, y) = 1
x − y

∫ y

x
t p−2 dt

= 1
x − y

sin((p − 1)π)
π

∫ y

x

∫ ∞

0

s p−2

s + t
dsdt

= sin((p − 1)π)
π

∫ ∞

0
s p−2g[1]s (x, y) dsdt , (2.24)

where gs(x) = log(x + s) and g[1]s is the associated divided difference. By the integral form
of g[1]0 :

g[1]0 (x, y) =
∫ ∞

0

1
(t + x)(t + y)

dt ,

we further have, from the formula (2.24),

f [1]p (x, y) = sin((p − 1)π)
π

∫ ∞

0
s p−2

∫ ∞

0

1
(t + s + x)(t + s + y)

dtds . (2.25)

We next recall the comparison result for Dirichlet forms Ep,L, known as the quantum
Stroock-Varopoulos inequality, which was proved in [17, Theorem 14].

Lemma 2.10 Let L be the generator of a QMS Pt satisfying σ -GNS DBC for some invariant
state σ ∈ D+(H), and Ep,L be defined in (2.17). Then, for X > 0, we have

Ep,L(Ip,2(X)) ≥ Eq,L(Iq,2(X)), 0 < p ≤ q ≤ 2. (2.26)

In the special case p ≥ 1 and q = 2, Lemma 2.10 gives the strong L p regularity of the
Dirichlet form [12, 73], which we slightly generalize as follows. The proof follows from the
basic inequality: for p ∈ (1, 2], a, b > 0,

(a − b)(a p−1 − bp−1) ≤
(
a p/2 − bp/2)2 ≤ p2

4(p − 1)
(a − b)(a p−1 − bp−1) ,

and similar arguments in [12, Theorem 4.1]. Hence we omit it here.

Corollary 2.11 Under the same assumptions as in Lemma 2.10, it holds that, for p ∈ (1, 2]
and X ≥ 0,

E2,L(I2,p(X)) ≤ Ep,L(X) ≤ p2

4(p − 1)
E2,L(I2,p(X)) . (2.27)

In particular, the lower inequality in (2.27) holds for all p > 0.

Relative entropy. We now introduce the entropy function Entp,σ (X), for p ∈ R\{0} and
σ ∈ D+(H), as follows [17] (our definition differs from the one in [73, 92] by a factor of p):

Ent p,σ (X) := Tr
((

%1/p
σ (X)

)p (
log
(
%1/p

σ (X)
)p − log σ

))
− ∥X∥p

p,σ log ∥X∥p
p,σ , X > 0 ,
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and Umegaki’s relative entropy:

D(ρ∥σ ) = Tr(ρ log ρ − ρ log σ ), ρ ∈ D(H). (2.28)

We recall from [17, Proposition 3] that for p ̸= 0 and invertible Y ∈ Bsa(H),

d
dp

∥Y∥p,σ = 1
p2

∥Y∥1−p
p,σ Ent p,σ (Ip,p(Y )) , (2.29)

which, by chain rule, implies [92, Theorem 2.7]

d
dp

∥Y∥p
p,σ = Tr

(
(%1/p

σ (Y ))p(log%1/p
σ (Y ) − 1

p
log σ )

)
, Y > 0. (2.30)

The above formulas relate the differential of L p-norm ∥·∥p,σ and the entropy function Entp,σ .
The following lemma provides some basic properties of Ent p,σ ; see [17, 73].

Lemma 2.12 For all X > 0 and p ̸= 0, we have Ent p,σ (X) ≥ 0. Moreover, for a state
ρ ∈ D(H), it holds that

Ent2,σ
(
%−1/2

σ

(√
ρ
) )

= D(ρ||σ ) and Ent1,σ
(
%−1

σ (ρ)
)
= D(ρ||σ ) .

We also recall the sandwiched Rényi relative entropy introduced in [91, 111]: for p ∈
(0, 1) ∪ (1,∞),

Dp(ρ∥σ ) := p̂ log
( ∥∥%−1

σ (ρ)
∥∥
p,σ

)
, ρ ∈ D(H) , (2.31)

and

D(ρ∥σ ) = lim
p→1

Dp(ρ∥σ ) , D∞(ρ∥σ ) := log inf{c > 0 ; ρ ≤ cσ } = lim
p→∞ Dp(ρ∥σ ) ,

(2.32)

where D(ρ∥σ ) is given in (2.28), and D∞(ρ∥σ ) is the max-relative entropy [43, 91]. [88,
Lemma 2.1] shows that for σ ∈ D+(H) and p ∈ [1,∞], the sandwiched Rényi entropy Dp
satisfies

sup
ρ∈D(H)

Dp(ρ∥σ ) = log σ−1
min . (2.33)

Here and throughout this work, we denote by σmin the minimal eigenvalue of a state σ ∈
D+(H).

We finally recall the Araki-Lieb-Thirring (ALT) inequality [5, 79], which is also useful in
the sequel.

Lemma 2.13 For any A ≥ 0, B ≥ 0, and q ≥ 0, it holds that

Tr((Br Ar Br )q) ≤ Tr((BAB)rq) , 0 ≤ r ≤ 1 . (2.34)

3 Quantum Interpolation Functional Inequalities

In this section, we shall introduce and investigate two new families of quantum functional
inequalities: quantum p-Beckner’s inequality and quantum dual q-Beckner’s inequality,
which interpolate quantum Sobolev-type inequalities and Poincaré inequality.
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3.1 QuantumDivergence

For our purpose, we need a modified sandwiched Rényi entropy, called quantum p-
divergence, defined by, for σ ∈ D+(H) and p ∈ R\{0, 1},

Fp,σ (ρ) :=
1

p(p − 1)

( ∥∥%−1
σ (ρ)

∥∥p
p,σ − 1

)
, (3.1)

where ρ ∈ D(H) if p ≥ 0; ρ ∈ D+(H) if p < 0. By definition (2.31), it follows that

Fp,σ (ρ) =
1

p(p − 1)

(
exp((p − 1)Dp(ρ∥σ )) − 1

)
, (3.2)

and then, by (2.32), we have

F1,σ (ρ) := lim
p→1

Fp,σ (ρ) = D(ρ∥σ ) .

The operator %−1
σ (ρ) can be viewed as the relative density of ρ ∈ D(H) with respect to the

reference stateσ ∈ D+(H). For convenience,we refer to operators X ≥ 0with∥X∥1,σ = 1 as
relative densities with respect to σ in what follows.We recall that the variance of X ∈ Bsa(H)

is defined by

Varσ (X) := ∥X − Tr(σ X)∥22,σ = ∥X∥22,σ − ∥X∥21,σ .

Clearly, when p = 2, Fp,σ (ρ) reduces to the variance of the relative density of ρ, up to a
constant factor,

F2,σ (ρ) =
1
2
Varσ (X) , X = %−1

σ (ρ) .

Thanks to (3.2), many properties of Dp(ρ∥σ ) can be directly translated to Fp,σ (ρ).

Lemma 3.1 For any ρ, σ ∈ D+(H), we have

1. Fp,σ (ρ) ≥ 0, and Fp,σ (ρ) = 0 if and only if ρ = σ , for p ∈ R\{0}.
2. Fp,σ (ρ) is jointly convex with respect to (ρ, σ ), for p ∈ R\(−1, 1/2).
3. The data processing inequality holds for Fp,σ (ρ) with p ∈ R\(−1, 1/2),

Fp,0(σ )(0(ρ)) ≤ Fp,σ (ρ) , (3.3)

where 0 is a quantum channel such that Fp,0(σ )(0(ρ)) is well-defined.

Proof It was proved in [16, Theorem 5] that
∥∥%−1

σ (ρ)
∥∥
p,σ ≥ 1 for p > 1, and∥∥%−1

σ (ρ)
∥∥
p,σ ≤ 1 for p < 1, with the equality condition ρ = σ . Hence, the first state-

ment follows. For the second and third statements, the case p ≥ 1/2 has been discussed
in [57, Theorems 1,2]. We now consider the case p ≤ −1, where the joint convexity of
Fp,σ (ρ) is a special case of the general result [117, Theorem 1.1]. Then, the data processing
inequality (3.3) can be derived by the standard argument; see [57]. ⊓⊔

We next extend the key estimates in [63, Lemmas 2.1, 2.2] for the relative entropy D(ρ∥σ )
to our p-divergence (3.1), which are new and will be useful in the sequel.

Lemma 3.2 Let operators Xi , Yi > 0, i = 1, 2, satisfy Xi ≤ cYi for some c > 0. It holds
that, for p ∈ (1, 2),

⟨A, f [1]p (Y1, Y2)A⟩ ≤ c2−p⟨A, f [1]p (X1, X2)A⟩ , ∀A ∈ B(H) , (3.4)

where f [1]p is the divided difference of the function f p defined in (2.20).
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Proof The proof follows from the integral form (2.25) of f [1]p :

⟨A, f [1]p (X1, X2)A⟩

= sin((p − 1)π)
π

∫ ∞

0
s p−2

∫ ∞

0
Tr
(
A∗ 1

t + s + X1
A

1
t + s + X2

)
dtds

≥ sin((p − 1)π)
π

∫ ∞

0
s p−2

∫ ∞

0
Tr
(
A∗ 1

t + s + cY1
A

1
t + s + cY2

)
dtds

= sin((p − 1)π)
π

∫ ∞

0
s p−2 1

c2

∫ ∞

0
Tr

(

A∗ 1
t+s
c + Y1

A
1

t+s
c + Y2

)

dtds

= sin((p − 1)π)
π

∫ ∞

0
(cs)p−2

∫ ∞

0
Tr
(
A∗ 1

t + s + Y1
A

1
t + s + Y2

)
dtds

= cp−2⟨A, f [1]p (Y1, Y2)A⟩ , (3.5)

where in the first inequality we have used the fact that t−1 is operator monotone decreasing;
in the third line we have used the change of variable r → r/s and t → t/s. ⊓⊔

Before we proceed, several interesting and helpful observations are in order. First, we
define the function

ϕp(x) =
1

p − 1
x − x1/p

x1/p − 1
,

for x > 0 and p ∈ R\{0, 1}. Then the kernel J
ϕp
σ = ϕp(*σ )Rσ for the inner product

⟨·, ·⟩σ,ϕp (cf. (2.4) and (2.5)) can be reformulated as follows, in terms of the double sum

operator associated with f [1]p ,

ϕp(*σ )Rσ = 1
p − 1

*σ − *
1/p
σ

*
1/p
σ − 1

Rσ

= 1
p − 1

L(p−1)/p
σ − R(p−1)/p

σ

L1/p
σ − R1/p

σ

L1/p
σ R1/p

σ

= %1/p
σ f [1]p

(
σ 1/p, σ 1/p)%1/p

σ . (3.6)

Second, the inner product ⟨·, ·⟩σ,ϕp with p ∈ R\{0, 1} also relates to the χ2-divergence (A.3)
corresponding to the power difference κα (A.4) with α ∈ R\{0, 1}. Indeed, for ρ ∈ D(H)

with the relative density X = %−1
σ (ρ), we can directly compute

∥X − 1∥2σ,ϕp
=
〈
ρ − σ,%−1

σ ϕp(*σ )Rσ %−1
σ (ρ − σ )

〉
=
〈
ρ − σ,5

x−1ϕp
σ (ρ − σ )

〉
,

by noting

%−1
σ ϕp(*σ )Rσ %−1

σ = *−1
σ ϕp(*σ )R−1

σ = 5
x−1ϕp
σ , (3.7)

where the operator 5
x−1ϕp
σ is defined as in (A.1). Then we find, by letting α = 1/p and

(A.4),

x−1ϕ1/α(x) =
1

p − 1
1 − x (1−p)/p

x1/p − 1
= α

α − 1
xα−1 − 1
xα − 1

= κα . (3.8)
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With the notation defined above, we conclude

∥X − 1∥2σ,ϕp
= χ2

κα
(ρ, σ ) . (3.9)

Third, by Lemma 2.6 with f = ϕp and the same calculation as in (3.6), it holds that, for
p ∈ R\{0, 1} and X ∈ B(H),

−⟨X ,LX⟩σ,ϕp =
J∑

j=1

〈
%1/p

σ

(
∂ j X

)
, f [1]p

(
eω j /2pσ 1/p, e−ω j /2pσ 1/p)%1/p

σ

(
∂ j X

)〉
. (3.10)

We are ready to give the following lemma, which shows that the p-divergenceFp,σ (ρ) can
be bounded from above and below by the χ2-divergence associated with the power difference
κ1/p .

Lemma 3.3 For ρ, σ ∈ D+(H) satisfying ρ ≤ cσ for some c > 0, it holds that, for p ∈
(1, 2),

kp(c)χ2
κ1/p

(ρ, σ ) ≤ Fp,σ (ρ) ≤ p−1χ2
κ1/p

(ρ, σ ), (3.11)

where the constant kp(c) is given by

kp(c) =
cp − 1 − p(c − 1)
p(c − 1)2(p − 1)

.

In particular, the upper bound estimate in (3.11) holds for any ρ ∈ D+(H).

Proof Recalling the relation (3.9), we will prove the inequality (3.11) in the Heisenberg
picture:

kp(c) ∥X − 1∥2σ,ϕp
≤ 1

p(p − 1)

(∥X∥p
p,σ − 1

)
≤ p−1 ∥X − 1∥2σ,ϕp

, (3.12)

for X > 0 satisfying Tr(σ X) = 1 and X ≤ c1. We define Xt = (1 − t)1 + t X , t ∈ [0, 1],
and consider the function:

ϕ(t) := 1
p(p − 1)

(∥Xt∥p
p,σ − 1

)
.

It is easy to compute the derivatives:

ϕ′(t) = 1
p − 1

Tr
((

%1/p
σ (Xt )

)p−1
%1/p

σ (X − 1)
)
,

and

ϕ′′(t) =
〈
%1/p

σ (X − 1), f [1]p
(
%1/p

σ (Xt ),%
1/p
σ (Xt )

)
%1/p

σ (X − 1)
〉
. (3.13)

By assumption X ≤ c1, we have

(1 − t)1 ≤ Xt ≤ (1+ (c − 1)t)1 , (3.14)

and hence (1 − t)σ 1/p ≤ %
1/p
σ (Xt ) ≤ (1 + (c − 1)t)σ 1/p. Then applying Lemma 3.2 to

(3.13) gives

(1+ (c − 1)t)p−2
〈
X − 1, Jϕp

σ (X − 1)
〉
≤ ϕ′′(t) ≤ (1 − t)p−2

〈
X − 1, Jϕp

σ (X − 1)
〉
,
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where we have used (3.14) and the observation (3.6). Note from Tr(σ X) = 1 that ϕ′(0) = 0.
It follows that

ϕ(1) − ϕ(0) =
∫ 1

0

∫ x

0
ϕ′′(t)dtdx ≤

( ∫ 1

0

∫ x

0
(1 − t)p−2 dtdx

)〈
X − 1, Jϕp

σ (X − 1)
〉

≤ p−1 ∥X − 1∥2σ,ϕp
.

Similarly, for the lower bound, we have

ϕ(1) − ϕ(0) ≥
( ∫ 1

0

∫ x

0
(1+ (c − 1)t)p−2 dtdx

)〈
X − 1, Jϕp

σ (X − 1)
〉

≥ cp − 1 − p(c − 1)
p(c − 1)2(p − 1)

∥X − 1∥2σ,ϕp
.

The proof is completed by noting ϕ(0) = 0. ⊓⊔
Remark 3.4 Lemmas 3.2 and 3.3 above rely on the integral formula (2.25) of f [1]p , which
limit the range of p to (1, 2). The cases p = 1 and p = 2 can be easily obtained by taking the
limit. In particular, when p = 1, we recover the the results in [63, Lemmas 2.1, 2.2], while,
when p = 2, the estimates in (3.4) and (3.11) are trivial.

3.2 Interpolation Between Sobolev and Poincaré Inequalities

To motivate the quantum Beckner’s inequalities, we consider a primitive QMS Pt satisfying
σ -KMS DBC for some σ ∈ D+(H). By the limit (2.1) and the data processing inequality
(3.3), Fp,σ decreases along the dynamic ρt = P†

t (ρ) and there holds Fp,σ (ρt ) → 0 as
t → ∞. We will see that the quantum Beckner’s inequality characterizes the convergence
rate ofFp,σ (ρt ). It is convenient to consider the evolution of the relative density X = %−1

σ (ρ),
i.e., the QMS in the Heisenberg picture. By KMS DBC and Lemma 2.2, we have

Xt := %−1
σ (ρt ) = %−1

σ etL
†
%σ (X) = Pt (X) . (3.15)

Then we compute the time derivative of Fp,σ (ρt ) as follows, for p ∈ R\(−1, 1/2),

d
dt

Fp,σ (ρt ) =
1

p − 1
((%−1/ p̂

σ (ρt ))
p−1),L†(ρt )⟩

= 1
p − 1

⟨%−1/ p̂
σ (%1/p

σ (Xt ))
p−1),%σL(Xt )⟩

= − 4
p2

Ep,L(Xt ) ≤ 0 , (3.16)

where ρt = P†
t (ρ) > 0 for any t ≥ 0 with ρ ∈ D+(H), and last inequality is by (3.3).

If Pt satisfies the σ -GNS DBC, by the positivity of Ep,L in Corollary 2.9, the calculation
(3.16) implies the contractivity of Fp,σ along the dynamic for all p ∈ R\{0, 1}. In view of
(3.16), we can call −4 Ep,L(%

−1
σ (ρ))/p2 the entropy production of the QMS Pt = etL for

the p-divergenceFp,σ . A simple use of Grönwall’s inequality gives the equivalence between
the exponential decay of Fp,σ : for some αp > 0,

Fp,σ (ρt ) ≤ e−4αptFp,σ (ρ) , ∀ρ ∈ D+(H) , (3.17)

and the functional inequality:

αpFp,σ (ρ) ≤ p−2Ep,L(%
−1
σ (ρ)), ∀ρ ∈ D+(H), (3.18)
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which we call the quantum Beckner’s inequality. By analogy with the classical case (1.7),
we can also easily define the quantum dual Beckner’s inequality; see (Bec’-q) below.

Let us now formally define the quantum functional inequalities in the Heisenberg picture,
which will be the main focus in the following sections.

Definition 3.5 For a primitive QMS Pt with generator L satisfying σ -KMS DBC for some
σ ∈ D+(H), let Ep,L be the associated p-Dirichlet form (2.17). Then we say thatPt satisfies:

1. the Poincaré inequality if there exists a constant λ > 0 such that for all X ∈ B(H),

λVarσ (X) ≤ E2,L(X) . (PI)

2. the modified log-Sobolev inequality (MLSI) if there exists α1 > 0 such that for all X ≥ 0,

α1 Ent1,σ (X) ≤ E1,L(X) . (mLSI)

3. the p-Beckner’s inequality with p ∈ R\{0, 1} if there exists αp > 0 such that for all
X > 0,

αp p̂ (∥X∥p
p,σ − ∥X∥p

1,σ ) ≤ Ep,L(X) . (Bec-p)

4. the log-Sobolev inequality (LSI) if there exists β > 0 such that for all Y ≥ 0,

β Ent2,σ (Y ) ≤ E2,L(Y ) . (LSI)

5. the dual q-Beckner’s inequality with q ∈ (0, 2) if there exists βq > 0 such that for all
Y ≥ 0,

βq Varq,σ (Y ) ≤ (2 − q)E2,L(Y ) , (Bec’-q)

where Varq,σ (Y ) is the q-variance: Varq,σ (Y ) := ∥Y∥22,σ − ∥Y∥2q,σ .

Remark 3.6 Note that inequalities in Definition 3.5 can be easily reformulated in the
Schrödinger picture by inserting X = %−1

σ (ρ). For instance, by definition (3.1) of Fp,σ (ρ),
(Bec-p) is clearly equivalent to (3.18), while, by Lemma 2.12, (mLSI) with X = %−1

σ (ρ)

gives the familiar one in terms of quantum states [102]:

α1D(ρ∥σ ) ≤ −1
4
Tr
(
L†(ρ)(log ρ − log σ )

)
, ∀ρ ∈ D(H).

Remark 3.7 Recalling the classical cases (1.5) and (1.7), the most interesting regimes for
(Bec-p) and (Bec’-q) are p ∈ (1, 2] and q ∈ [1, 2), respectively. Since many arguments in
the following discussions can work beyond these ranges, here we choose to define (Bec-p)
and (Bec’-q) for general p and q .

We call the optimal constant in (Bec-p) the quantumBeckner constant, denoted by αp(L).
Similar notions apply to other functional inequalities defined above. In particular, the Poincaré
constant λ(L) is nothing but the spectral gap ofL. Indeed, since L is self-adjoint with respect
to ⟨·, ·⟩σ,1/2 and ker(L) = span{1H} holds for a primitive QMS, by the min-max theorem,
the Poincaré constant

λ(L) = inf
X∈B(H),X ̸=1

−⟨X ,LX⟩σ,1/2
∥X − Tr(σ X)1∥22,σ

(3.19)

characterizes the smallest non-zero eigenvalue of −L (i.e., the spectral gap). It is worth
pointing out that as L is Hermitian-preserving, the infimum in (3.19) can be taken over X in
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Bsa(H). Moreover, by Lemma 2.2, for a primitive QMS satisfying σ -GNSDBC, the Poincaré
inequality can be equivalently defined by, for any X ∈ B(H),

λ ∥X − Tr(σ X)1∥2σ, f ≤ −⟨X ,LX⟩σ, f , (PI f )

where f : (0,∞) → (0,∞) and the norm ∥·∥σ, f is defined by the inner product (2.5). It is
clear from Lemma 2.2 that under σ -GNS DBC, the optimal constant λ(L) is independent of
the choice of f .

In the rest of this section, we will derive some properties of the optimal constants for
functional inequalities in Definition 3.5 and the relations among them. We summarize some
known relations between (mLSI), (LSI), and (PI) from [73, 92, 105] in the following lemma
for completeness and future use.

Lemma 3.8 For a primitive QMS Pt satisfying σ -KMS DBC, it holds that

2α1(L) ≤ λ(L) and
λ(L)

2 − log(σmin)
≤ 2β(L) ≤ λ(L) .

Moreover, if Pt satisfies σ -GNS DBC, we also have β(L) ≤ α1(L).

We first consider the properties of quantum dual q-Beckner’s inequalities (Bec’-q). It
is clear from definition that when q = 1, the inequality (Bec’-q) reduces to the Poincaré
inequality (PI). On the other hand, it is easy to see that in the limit q → 2, (Bec’-q) gives
(LSI). In this sense, (Bec’-q) can be considered as an interpolating family between the
quantum LSI and the Poincaré inequality. Indeed, we have Proposition 3.10 below. The
proof is based on the following monotonicity lemma.

Lemma 3.9 The function Varq,σ (Y )
1/q−1/2 is monotone increasing for q ∈ (0,∞)\{2}.

Proof We recall the interpolation of the noncommutative L p space [16, 66]: for 0 < p0 <

p1 ≤ ∞ and θ ∈ [0, 1], letting 1/pθ = (1 − θ)/p0 + θ/p1 with θ ∈ [0, 1], there holds
∥Y∥pθ ,σ ≤ ∥Y∥θ

p0,σ ∥Y∥1−θ
p1,σ , ∀ Y ∈ B(H).

We immediately see that the function log ∥Y∥1/t,σ is a convex function for t ∈ [0,∞), which
implies that

ϕ(t) := exp(2 log ∥Y∥1/t,σ ) = ∥Y∥21/t,σ
is also convex. Therefore, we have that the function

Varq,σ (Y )
1/q − 1/2

= ϕ(1/2) − ϕ(1/q)
1/q − 1/2

is increasing in q . ⊓⊔

Proposition 3.10 Let Pt be a primitive QMS with σ -KMS DBC. If (Bec’-q) holds with
lim supq→2− βq > 0, then (LSI) holds with β ≥ lim supq→2− βq/2. Conversely, if (LSI)
holds with β > 0, then (Bec’-q) holds for any q ∈ (0, 2) with constant βq ≥ qβ.

Proof Suppose that (Bec’-q) holds with lim supq→2− βq > 0. By the formula (2.29), we
have

1
2
Ent2,σ (Y ) = lim

q→2−

∥Y∥22,σ − ∥Y∥2q,σ
2 − q

for any Y ≥ 0 . (3.20)
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Then taking the upper limit as q → 2− in (Bec’-q), we find

1
2

(
lim sup
q→2−

βq
)
Ent2,σ (Y ) ≤ E2,L(Y ) .

Thus, by definition, (LSI) holds with β ≥ lim supq→2− βq/2. For the reverse direction, by
Lemma 3.9, it follows, from (3.20) and the assumption (LSI), that

Varq,σ (Y )
1/q − 1/2

≤ lim sup
q→2−

Varq,σ (Y )
1/q − 1/2

= 2 Ent2,σ (Y ) ≤ 2β−1E2,L(Y ) ,

that is, (Bec’-q) holds with βq ≥ qβ. ⊓⊔
Remark 3.11 Note from ∥Y∥1,σ ≤ ∥Y∥q,σ for q ∈ [1, 2) that

Varq,σ (Y ) ≤ Varσ (Y ) ≤ λ−1E2,L(Y ) ,

which gives βq ≥ (2 − q)λ. It follows that for q ∈ [1, 2), the lower bound βq ≥ qβ above
can be improved:

βq(L) ≥ max{(2 − q)λ(L), qβ(L)} , (3.21)

which is tight when q → 1+ and q → 2−. Indeed, for q = 1, we have β1(L) = λ(L) =
max{λ(L),β(L)} by Lemma 3.8. When p → 2−, by Proposition 3.10, there holds,

lim inf
q→2−

βq(L) ≥ lim
q→2−

max{(2 − q)λ(L), qβ(L)} = 2β(L) ≥ lim sup
q→2−

βq(L) , (3.22)

that is, limq→2− βq(L) = limq→2− max{(2 − q)λ(L), qβ(L)} = 2β(L).

The quantumdualBeckner constantβq(L) has the followingmonotonicity property,which
implies that if (Bec’-q) holds for some q ∈ (0, 2), then it holds for all q ∈ (0, 2).

Proposition 3.12 Let Pt = etL be a primitive QMS with σ -KMS DBC. For the optimal dual
Beckner constant βq(L) in (Bec’-q), it holds that βq(L)/(2− q) is increasing and βq(L)/q
is decreasing for q ∈ (0, 2).

Proof For thefirst claim, by theorderingof∥·∥p,σ inLemma2.7,wehave, for 0 < q ≤ q ′ < 2
and Y ≥ 0,

βq(∥Y∥22,σ − ∥Y∥2q ′,σ ) ≤ βq(∥Y∥22,σ − ∥Y∥2q,σ ) ≤ 2 − q
2 − q ′ (2 − q ′)E2,L(Y ),

that is, βq ′/(2− q ′) ≥ βq/(2− q). The second claim is a direct consequence of Lemma 3.9.
Indeed, due to the monotonicity, we have

2qβq ′
Varq,σ (Y )
2 − q

≤ 2q ′βq ′
Varq ′,σ (Y )
2 − q ′ ≤ 2q ′E2,L(Y ),

which clearly shows βq/q ≥ βq ′/q ′. ⊓⊔
We next prove an analog result for the quantum Beckner constant αp(L).

Proposition 3.13 Let Pt = etL be a primitive QMS with σ -GNS DBC. If the Beckner’s
inequality (Bec-p) holds for some p′ ∈ (1, 2] with αp′ > 0, then for any 1 < p ≤ p′, the
inequality (Bec-p) holds with constant αp satisfying

p̂ αp ≥ p̂′ αp′ . (3.23)

Equivalently, p̂ αp(L), as a function of p ∈ (1, 2], is nonincreasing.
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Proof It suffices to prove the inequality (3.23). For this, by the quantum Stroock-Varopoulos
inequality in (2.26) and (Bec-p) for p′, we have

Ep,L(X) ≥ Ep′,L(Ip′,p(X)) ≥ αp′ p̂′
(∥∥Ip′,p(X)

∥∥p′

p′,σ −
∥∥Ip′,p(X)

∥∥p′

1,σ

)
. (3.24)

Note from Lemma 2.7 that
∥∥Ip′,p(X)

∥∥p′

p′,σ = ∥X∥p
p,σ . By ALT inequality (2.34), we find

∥∥Ip′,p(X)
∥∥
1,σ = Tr

(
σ

1
2 p̂′
(
σ

1
2p Xσ

1
2p
) p

p′
σ

1
2 p̂′
)

≤ ∥X∥
p
p′
p
p′ ,σ

,

since
p
p′ < 1,

1

2 p̂′
p′

p
+ 1

2p
= p′

2p
.

Therefore, by (3.24) and Lemma 2.7, it follows that

Ep,L(X) ≥ αp′ p̂′
(

∥X∥p
p,σ − ∥X∥p

p
p′ ,σ

)
≥ αp′ p̂′

(
∥X∥p

p,σ − ∥X∥p
1,σ

)
.

The proof is complete by definition (Bec-p). ⊓⊔
We finally relate the p-Beckner’s inequality and the dual q-Beckner’s inequality with

q = 2/p.

Proposition 3.14 Let Pt = etL be a primitive QMS with σ -GNS DBC. Let p ∈ (1, 2] and
q = 2/p ∈ [1, 2). If (Bec’-q) holds with βq , then (Bec-p) holds with αp ≥ βq/2.

Proof We substitute Y = I2,p(X) for X ≥ 0 in (Bec’-q) and find
∥∥I2,p(X)

∥∥2
2,σ −

∥∥I2,p(X)
∥∥2
2/p,σ = ∥X∥p

p,σ −
∥∥I2,p(X)

∥∥2
2/p,σ ≤ β−1

q (2 − q)E2,L(I2,p(X)).

(3.25)

By ALT inequality (2.34) and Lemma 2.7, we have
∥∥I2,p(X)

∥∥2/p
2/p,σ = Tr

(
σ

p
4 − 1

4
(
σ

1
2p Xσ

1
2p
) p
2 σ

p
4 − 1

4
) 2
p

≤ Tr
(
(%σ (X))

p
2
) 2
p ≤ ∥X∥1,σ . (3.26)

Then, by L p regularity in Corollary 2.11, it follows from (3.25) and (3.26) that

∥X∥p
p,σ − ∥X∥p

1,σ ≤ β−1
q (2 − q)Ep,L(X) ,

which gives αp ≥ βq/2. ⊓⊔

3.3 Quantum Beckner Constant

In this section, we focus on quantum Beckner’s inequalities (Bec-p) and investigate the
properties of αp(L). We will first exploit the connections between (Bec-p) and the functional
inequality related to sandwiched Rényi entropy, as well as the hypercontractivity. We then
provide a two-sided bound for αp(L) in terms of the Poincaré constant λ(L) for a certain
range of p. The relations between (Bec-p) and (mLSI) will also be discussed. Moreover, we
extend the quantumHolley-Stroock’s argument from [69] and give a stability estimate for the
Beckner constant αp(L) with respect to the invariant state σ . In the remaining of this work,
we mainly consider the range p ∈ (1, 2] for (Bec-p) for ease of exposition, unless otherwise
specified.
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Connection with Sandwiched Rényi Entropic Inequality

In [88, Definition 3.1], a functional inequality very similar to Beckner’s inequality (3.18)
above was introduced for quantifying the convergence of sandwiched Rényi entropy (2.31)
with p > 1 along the QMS: for some α̂p > 0,

2α̂pDp(ρ∥σ ) ≤ 4Ep,L(%
−1
σ (ρ))

p
∥∥∥%−1

σ (ρ)
∥∥∥
p

p,σ

, ∀ρ ∈ D(H) . (3.27)

Note from [88, Corollary 3.1] that the right-hand side of (3.27) is the entropy production of
Dp(ρ∥σ ). Since the sandwiched Rényi entropy Dp(ρ∥σ ) is the logarithm of p-divergence
in some sense, we may expect that its exponential convergence is a stronger notion than
the one of Fp,σ . Indeed, we show in the following proposition that the inequality (3.27) for
Dp(ρ∥σ ) can imply the one (3.18) for Fp,σ , while (3.18) can only guarantee (3.27) for ρ in
a neighborhood of σ (in other words, the exponential convergence of Dp(ρt∥σ ) if a warm
start is given).

Proposition 3.15 Let Pt = etL be a primitive QMS with σ -KMS DBC and p > 1. If the
inequality (3.27) for sandwiched Rényi entropy holds, then Beckner’s inequality (3.18) holds
with αp ≥ α̂p/2. Conversely, if (3.18) holds, then (3.27) holds in a neighborhood of the
invariant state σ : for any a > 0 with ca = (1 − e−a)/a,

4Ep,L(%
−1
σ (ρ))

p
∥∥∥%−1

σ (ρ)
∥∥∥
p

p,σ

≥

⎧
⎪⎪⎨

⎪⎪⎩

4caαpDp(ρ∥σ ) if Dp(ρ∥σ ) ≤ a
p − 1

,

4αp

p − 1
(1 − e−a) if Dp(ρ∥σ ) ≥ a

p − 1
.

(3.28)

Proof We start with the easy direction (3.27) ,⇒ (3.18). We reformulate (3.27) as:

α̂p

2
p̂ log

( ∥∥%−1
σ (ρ)

∥∥p
p,σ

) ∥∥%−1
σ (ρ)

∥∥p
p,σ ≤ Ep,L(%

−1
σ (ρ)) . (3.29)

Then, by the elementary inequality x log x ≥ x − 1 with x =
∥∥%−1

σ (ρ)
∥∥p
p,σ , Beckner’s

inequality (3.18) with αp ≥ α̂p/2 follows from (3.29) immediately. Now, assuming (3.18)
holds, we rewrite it as

4αp

p − 1

(
1 −

∥∥%−1
σ (ρ)

∥∥−p
p,σ

)
≤ 4Ep,L(%

−1
σ (ρ))

p
∥∥∥%−1

σ (ρ)
∥∥∥
p

p,σ

. (3.30)

Note that for any a > 0, there holds, with ca = (1 − e−a)/a,

1 − e−x ≥ cax , ∀x ∈ [0, a] . (3.31)

Letting ex =
∥∥%−1

σ (ρ)
∥∥p
p,σ in (3.31), we readily have the restricted inequality (3.28) from

(3.30). ⊓⊔

Connection with Hypercontractivity

In view of existing works [6, 15] and the direct relations between (Bec-p) and the noncom-
mutative p-norm, onemay expect that there also exist natural connections between Beckner’s
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inequalities and the hypercontractivity of QMS,whichwewill elaborate below.We first recall
the p-log-Sobolev inequality (p ∈ R\{0}): for some β̃p > 0,

β̃p Ent p,σ (X) ≤ Ep,L(X) , ∀X > 0 , (LSIp)

which reduces to (mLSI) and (LSI) when p = 1 and p = 2, respectively. (LSIp) is known
to be equivalent to the hypercontractivity (p ≥ 1) and the reverse hypercontractivity (p < 1)
[17, 92]. To be specific, we have the following result from [17, Theorem11 and Corollary17].

Lemma 3.16 Let Pt be a primitive QMS satisfying σ -KMS DBC for some σ ∈ D+(H). It
holds that

• If for 1 ≤ p ≤ q(t) = 1+ (p − 1)e4βct with fixed p and βc > 0, there holds

∥Pt (X)∥q(t),σ ≤ ∥X∥p,σ , ∀t ≥ 0 , X > 0 , (3.32)

then the p-log-Sobolev inequality (LSIp) holds with β̃p ≥ βc. Conversely, suppose that
Pt satisfies σ -GNS DBC and (LSI) holds with optimal constant β(L). Then (3.32) holds
with βc = β(L).

• If for 1 > p ≥ q(t) = 1+ (p − 1)e4βct with p, q ̸= 0 and βc > 0, there holds

∥Pt (X)∥q(t),σ ≥ ∥X∥p,σ , ∀t ≥ 0 , X > 0 , (3.33)

then the p-log-Sobolev inequality (LSIp) holds with β̃p ≥ βc. Conversely, suppose that
Pt satisfies σ -GNS DBC and (mLSI) holds with optimal constant α1(L). Then (3.33)
holds with βc = α1(L).

It is straightforward to derive the next proposition, which, along with Lemma 3.16, relates
(Bec-p), (LSIp), and the hypercontractivity of Pt .

Proposition 3.17 LetLbe thegenerator of a primitiveQMSwithσ -KMSDBCandαp(L)and
β̃p(L) be the optimal constants for (Bec-p) and (LSIp), respectively, for p ∈ (0, 1)∪(1,∞).
Then, we have pαp(L) ≥ β̃p(L) for p > 1 and pαp(L) ≤ β̃p(L) for 0 < p < 1.

Proof We recall that log ∥X∥ p̂
p,σ for X = %−1

σ (ρ) with ρ ∈ D+(H) is increasing in p > 0,
by the monotonicity of sandwiched Rényi entropy Dp(ρ∥σ ) in p. Then, a direct computation
gives

d
dp

log ∥X∥ p̂
p,σ = − 1

(p − 1)2
log ∥X∥p,σ + 1

p(p − 1)
∥X∥−p

p,σ Ent p,σ (X) ≥ 0 ,

which implies, by again x log x ≥ x − 1 with x =
∥∥%−1

σ (ρ)
∥∥p
p,σ ,

p
p − 1

Ent p,σ (X) ≥ p
(p − 1)2

∥X∥p
p,σ log ∥X∥p

p,σ ≥ p̂
p − 1

(∥X∥p
p,σ − 1) .

The proof is complete by the definition of (Bec-p) and (LSIp). ⊓⊔

Two-Sided Estimates of˛p(L)

We next consider the estimation of the Beckner constant αp(L) in terms of λ(L). We first
show that (Bec-p) implies (PI f ) with f = ϕp by the standard linearization argument.
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Lemma 3.18 Let Pt = etL be a primitive QMS satisfying σ -GNS DBC. Then we have, for
p ∈ R\{0, 1},

2αp(L) ≤ λ(L) .

Proof We consider Z = 1+ εX for a X ∈ Bsa(H) with Tr(σ X) = 0, where ε > 0 is small
enough such that Z > 0. By a direct expansion with respect to ε, we find

∥Z∥p
p,σ = 1+ εp Tr(σ X)+ ε2

2
p(p − 1) ∥X∥2σ,ϕp

+ O(ε3), (3.34)

and

∥Z∥p
1,σ =

(
1+ ε Tr(σ X)

)p = 1+ εp Tr(σ X)+ ε2

2
p(p − 1)Tr(σ X)2 + O(ε3) .

We also compute

%σ I p̂,p(Z) = σ + ε(p − 1)ϕp(*σ )Rσ (X)+ O(ε2) , (3.35)

and L(Z) = εL(X), which yields

Ep,L(Z) = −ε2(p − 1)
p̂ p
4

⟨X ,LX⟩σ,ϕp + O(ε3) . (3.36)

Hence, applying (Bec-p) to Z with above expansions, we have

αp
ε2

2
p2
(
∥X∥2σ,ϕp

− Tr(σ X)2
)
+ O(ε3) ≤ −ε2

p2

4
⟨X ,LX⟩σ,ϕp + O(ε3) . (3.37)

Due to Tr(σ X) = 0, by dividing both sides of (3.37) by ε2 and letting ε → 0, it readily
follows that

2αp ∥X∥2σ,ϕp
≤ −⟨X ,LX⟩σ,ϕp ,

which gives the desired estimate: 2αp ≤ λ. ⊓⊔

We next generalize [1, Proposition 2.8] in the classical setting to the quantum regime,
which shows that the quantum Poincaré inequality (PI) implies p-Beckner’s inequality
(Bec-p) for p ∈ (1, 2].

Proposition 3.19 Let Pt = etL be a primitive QMS with σ -GNS DBC. If the Poincaré
inequality (PI) holds with constant λ, then, for p ∈ (1, 2], the Beckner’s inequality (Bec-p)
holds with constant αp satisfying

αp ≥ p − 1
p

λ. (3.38)

Proof We first claim that there holds

∥X∥p
p,σ − ∥X∥p

1,σ ≤ ⟨I p̂,p(X), X − Tr(σ X)1⟩σ,1/2, ∀X ≥ 0. (3.39)

Indeed, a direct computation gives
〈
I p̂,p(X), X − Tr(σ X)1

〉
σ,1/2 = ∥X∥p

p,σ − ∥X∥1,σ Tr(σ 1/p(%1/p
σ X)p−1) . (3.40)

Then, by ALT inequality (2.34) and the ordering of ∥·∥p,σ in Lemma 2.7, we have

Tr(%1/p
σ (%1/p

σ X)p−1) ≤ Tr((%1/(p−1)
σ X)p−1) = ∥X∥p−1

p−1,σ ≤ ∥X∥p−1
1,σ ,
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which, along with (3.40), implies the desired inequality (3.39). One can readily note that up
to some constant, the right-hand term in (3.39) is the p-Dirichlet form Ep,Ldepol defined by
(2.17) associated with the generator Ldepol with γ = 1; see Example 2.5. We proceed by
using Corollary 2.11 and find

Ep,Ldepol (X) ≤ p2

4(p − 1)
Var2,σ (I2,p(X))

≤ 1
λ

p2

4(p − 1)
E2,L(I2,p(X)) ≤ 1

λ

p2

4(p − 1)
Ep,L(X) , (3.41)

where we have also used the assumption that (PI) holds, and the observation:

Var2,σ (X) = ⟨X − Tr(σ X)1, X − Tr(σ X)1⟩σ,1/2 = E2,Ldepol (X).

Then it follows from (3.39) and (3.41) that

λ(∥X∥p
p,σ − ∥X∥p

1,σ ) ≤ Ep,L(X) ,

that is, p̂αp ≥ λ holds. ⊓⊔

Note that the lower bound for Beckner constant αp(L) in (3.38) vanishes as p → 1+.
Thanks to Proposition 3.17, it is easy to establish a uniform lower bound for αp(L), which
improves the estimate in (3.38).

Theorem 3.20 Let Pt = etL be a primitive QMS satisfying σ -GNS DBC. Then we have, for
p ∈ (1, 2],

αp(L) ≥ max
{ 1
2p(2 − log(σmin))

,
p − 1
p

}
λ(L). (3.42)

Proof Recall from [17, Corollary 16] that β̃p(L) is decreasing in p ∈ (0, 2] for a QMS with
σ -GNS DBC. Then, we obtain, by Lemma 3.8 and Proposition 3.17,

αp(L) ≥ 1
p
β̃p(L) ≥ 1

p
β̃2(L) ≥ 1

2p
λ(L)

2 − log(σmin)
. (3.43)

The proof is complete by Proposition 3.19. ⊓⊔

Remark 3.21 The estimate (3.43) holds for any p ≥ 1 by using β̃p(L) = β̃ p̂(L) in [17,
Proposition 10].

Remark 3.22 The minimal eigenvalue σmin for the invariant state σ has been estimated in
several interesting cases; see [73, Remark 1] and [88, Section 7]. Note that a crude estimate
σmin ≤ 1/2 gives 2(2 − log(σmin)) ≥ c0 := 2(2 + log 2). It follows that if p ≥ 1 + c−1

0 ≈
1.186, the estimate (3.42) reduces to the one (3.38), which is clearly tight when p → 2−.
However, when p → 1+, by 2α1 ≤ λ in Lemma 3.8, we only have

αp(L) ≥ α1(L)
p(2 − log(σmin))

! α1(L)
log d

,

if σmin is of the same order as 1/d , which is far from tight, given (3.45) below. For the
symmetric QMS with invariant state σ = 1/d , one can extend the results in the classical
case [1, Proposition 2.9 and Theorem 2.1] to have a tighter lower bound for αp , which goes
to Cα1(L) as p → 1+, with constant C independent of the dimension d ofH. However, the
argument involved in [1, Proposition 2.9] seems hard to be generalized to general invariant
states σ ∈ D+(H).
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Remark 3.23 In Appendix C, we will briefly discuss Beckner’s inequalities in the non-
primitive setting. In particular, we adopt the analysis framework recently proposed in [63]
for CMLSI with some tools developed above to give a lower bound for the non-primitive
Beckner constant, which is asymptotically worse than the one in (3.42) but can apply to more
general Lindbladian L.

Relation Between˛1(L) and˛p(L)

Recall from Remark 3.11 that limq→2− βq(L) = 2β(L). Next, we give a similar result for
Beckner constant αp(L), which is more technical; see Theorem 3.25 below. First, by taking
the right limit p → 1+ in (Bec-p) and using formulas (2.18) and (2.30), we obtain the
following lemma.

Lemma 3.24 Let Pt be a primitive QMS with σ -KMS DBC. If (Bec-p) holds with
lim supp→1+ αp > 0, then (mLSI) holds with constant

α1 ≥ lim sup
p→1+

αp. (3.44)

Theorem 3.25 Let Pt = etL be a primitive QMS with σ -GNS DBC. Then we have

α1(L) = lim
p→1+

αp(L). (3.45)

The proof of (3.45) needs the following lemma that extends [24, Theorem 6.5] for the
discrete MLSI.

Lemma 3.26 LetPt = etL be a primitive QMS with σ -GNSDBC. If αp(L) < λ(L)/2 holds,
then the following infimum is attained:

αp(L) = inf
X≥0,X ̸=1
∥X∥1,σ=1

Ep,L(X)

p̂(∥X∥p
p,σ − 1)

. (3.46)

Proof By definition, there exists a sequence of Xn ∈ {X ≥ 0 ; ∥X∥1,σ = 1 , X ̸= 1} such
that

Vp(Xn) :=
Ep,L(Xn)

p̂(∥Xn∥p
p,σ − 1)

→ αp(L) , as n → ∞ . (3.47)

Since the set {X ≥ 0; ∥X∥1,σ = 1} is compact, without loss of generality, we assume
Xn → X as n → ∞ for some X ≥ 0 with ∥X∥1,σ = 1. Suppose that X = 1. Then we can
write Xn = 1 + Yn with Yn → 0 and Tr(σYn) = 0. Recalling the asymptotic expansions
(3.34) and (3.36), we obtain, by (PI f ),

lim inf
n→∞ Vp(Xn) = lim inf

n→∞ −1
2

⟨Yn,LYn⟩σ,ϕp + O(∥Yn∥31,σ )
∥Yn∥2σ,ϕp

+ O(∥Yn∥31,σ )
≥ 1

2
λ(L) > αp(L) ,

which contradicts (3.47). Thus, the limiting operator X is in the desired set {X ≥
0 ; ∥X∥1,σ = 1 , X ̸= 1} and the infimum in (3.46) is attained. ⊓⊔

Proof of Theorem 3.25 To show (3.45), by Lemma 3.24, it suffices to prove

lim inf
p→1+

αp(L) ≥ α1(L) . (3.48)
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We shall prove it by contradiction. If (3.48) does not hold, there is a sequence pn → 1+ as
n → ∞ such that

lim
n→∞ αpn (L) ≤ α1(L) − ε ,

for some small enough ε > 0, that is, for any k > 0, there exists N such that for n ≥ N ,

αpn (L) ≤ α1(L) − ε + 1
k
. (3.49)

Suppose that αpn (L) = λ(L)/2 holds for infinitely many n. It follows from (3.49) that
λ(L)/2 ≤ α1(L) − ε, which is a contradiction with Lemma 3.8. Thus, without loss of
generality, we assume αpn (L) < λ(L)/2 for all n. Then, Lemma 3.26 gives the existence
of the minimizer Xn associated with αpn (L). By compactness, we further assume that Xn
converges to some X ≥ 0 with ∥X∥1,σ = 1. To proceed, we consider two cases. If X = 1,
similarly to the proof of Lemma 3.26 above, we write Xn = 1+ Yn and find

α1(L) − ε + 1
k

≥ lim inf
n→∞ αpn (L) = lim inf

n→∞ −1
2

⟨Yn,LYn⟩σ,ϕpn
+ O(∥Yn∥31,σ )

∥Yn∥2σ,ϕpn
+ O(∥Yn∥31,σ )

≥ 1
2
λ(L) ,

which, by letting k → ∞, again contradicts with Lemma 3.8. If X ̸= 1, by definition (Bec-p)
and (3.49), we have

Epn ,L(Xn) ≤
(
α1(L) − ε + 1

k

) pn(∥Xn∥pn
pn ,σ − 1)

pn − 1
,

for large enough n. It implies that, by letting n → ∞ and k → ∞ and using (2.30) with
elementary analysis,

E1,L(X) ≤
(
α1(L) − ε

)
Ent1,σ (X) ,

which contradicts the optimality of α1(L). The proof is complete. ⊓⊔

Stability of˛p(L)

We proceed to investigate the stability of the quantum Beckner constant αp(L) with respect
to the invariant state. We will compare the constants αp(L) for the following two generators
Lσ and Lσ ′ that satisfy the detailed balance conditions with respect to two different but
commuting full-rank states σ and σ ′:

Lσ (X) =
J∑

j=1

(
e−ω j /2V ∗

j [X , Vj ] + eω j /2[Vj , X ]V ∗
j
)
, (3.50)

and

Lσ ′(X) =
J∑

j=1

(
e−ν j /2V ∗

j [X , Vj ] + eν j /2[Vj , X ]V ∗
j
)
, (3.51)

where e−ω j and e−ν j are the eigenvalues of*σ and*σ ′ , respectively. For ease of exposition,
we assume that the states σ and σ ′ admit the spectral decompositions:

σ =
d∑

k=1

σk |vk⟩ ⟨vk | , σ ′ =
d∑

k=1

σ ′
k |vk⟩ ⟨vk | , (3.52)
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respectively. The following result is extended from [69, Theorem 3.1].

Theorem 3.27 Let Lσ and Lσ ′ be the generators of two primitive QMS satisfying σ -GNS
DBC and σ ′-GNS DBC, given in (3.50) and (3.51), respectively. Then it holds that, for
p ∈ (1, 2],

8min

8max
min
j

e− |ω j−ν j |(2−p)
2p αp(Lσ ′) ≤ αp(Lσ ) , (3.53)

where constants 8min and 8max are defined as

8min = min
k

σk

σ ′
k

and 8max = max
k

σk

σ ′
k
. (3.54)

Remark 3.28 The most useful case of the above result might be σ ′ = 1/d , which allows us
to reduce the estimate of αp(Lσ ) for a σ -GNS symmetric QMS to αp(L 1

d
) for a symmetric

QMS. In this case, the estimate (3.53) can be simplified as follows, by the relation (2.9),

αp(Lσ ) ≥ min
k,l

σl

σk
min
j

e− |ω j |(2−p)
2p αp(L 1

d
) =

(
min
k,l

σl

σk

) 2+p
2p

αp(L 1
d
) .

It is also worth mentioning that the assumption (σ and σ ′ commute) is restrictive in the sense
that the jump operators {Vj } in (3.50) and (3.51) are the same. A very recent work [70] by
Junge and Wu gives a general stability (continuity) result for two non-primitive generators
L and L′ that satisfy σ -GNS DBC for the same σ ∈ D+(H) and have the same fixed point
algebra. They showed that for

∥∥L − L′∥∥ < δ, the MLSI constant satisfies (1 − ε)α1(L) ≤
α1(L′), where the dependence of ε on δ is implicit. It would be interesting to generalize the
results in [70] to Beckner constant αp(L) for a more general class of generators L, which is
beyond the scope of this work.

Proof We first establish a comparison result for the p–divergence Fp,σ (ρ). We define the
map

0(A) :=
[
8−1

max%σ %−1
σ ′ (A) 0

0 Tr(A) − 8−1
max Tr(%σ %−1

σ ′ (A))

]
: B(H) → B(H ⊕ C) .

It is easy to check from (3.54) that Tr
(
8−1

max%σ %−1
σ ′ (A)

)
≤ Tr(A) for any A ∈ B+

sa(H).
Then, 0 is completely positive and trace-preserving by Kraus representation theorem. Let
X := %−1

σ ′ (ρ) ≥ 0 for ρ ∈ D(H). By the data processing inequality (3.3), we have

Fp,0(σ ′) (0(ρ)) ≤ Fp,σ ′ (ρ) = 1
p(p − 1)

(
∥X∥p

p,σ ′ − 1
)
. (3.55)

We now compute, by definition,

Fp,0(σ ′) (0(ρ)) = 1
p(p − 1)

(
8−1

max ∥X∥p
p,σ +

(
1 − 8−1

max ∥X∥1,σ
)p (1 − 8−1

max
)1−p − 1

)
.

(3.56)

Note from (3.54) that 8max ≥ 1 ≥ 8min and 8−1
max ∥X∥1,σ ≤ 1. Then the convexity of x p ,

1 < p ≤ 2, gives

(1 − 8−1
max)

(
1 − 8−1

max ∥X∥1,σ
1 − 8−1

max

)p

+ 8−1
max

(
8−1

max ∥X∥1,σ
8−1

max

)p
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=
(
1 − 8−1

max ∥X∥1,σ
)p(1 − 8−1

max
)1−p + 8−1

max ∥X∥p
1,σ ≥ 1 ,

which, by (3.56), implies

Fp,0(σ ′) (0(ρ)) ≥ 1
p(p − 1)

(
8−1

max ∥X∥p
p,σ − 8−1

max ∥X∥p
1,σ

)
. (3.57)

Combining (3.55) and (3.57), we can find

1
p(p − 1)

(
∥X∥p

p,σ − ∥X∥p
1,σ

)
≤ 8max

p(p − 1)

(
∥X∥p

p,σ ′ − 1
)
. (3.58)

We next give the comparison result for Ep,L. We recall (2.19), and, by Lemma 3.2, obtain

Ep,Lσ (X) ≥
(
inf
j
e−|ω j−ν j |(2−p)/2p

)

p2

4

J∑

j=1

〈
%1/p

σ (∂ j X), f [1]p
(
eν j /2p%1/p

σ (X), e−ν j /2p%1/p
σ (X)

)
%1/p

σ (∂ j X)
〉
,

(3.59)

since

e±ω j /2p%1/p
σ (X) ≤ (max

j
e|ω j−ν j |/2p)e±ν j /2p%1/p

σ (X).

By the integral representation (2.25) of f [1]p , we can estimate

%
1/p
σ f [1]p

(
eν j /2p%1/p

σ (X), e−ν j /2p%
1/p
σ (X)

)
%
1/p
σ

= sin((p − 1)π)
π

∫ ∞

0
s p−2%

1/p
σ g[1]0

(
s + eν j /2p%1/p

σ (X), s + e−ν j /2p%
1/p
σ (X)

)
%
1/p
σ ds ≥

sin((p − 1)π)
π

∫ ∞

0
s p−2%

1/p
σ

g[1]0

(
s8−1/p

min σ 1/p(σ ′)−1/p + eν j /2p%1/p
σ (X), s8−1/p

min σ 1/p(σ ′)−1/p + e−ν j /2p%
1/p
σ (X)

)
%
1/p
σ ds ,

(3.60)

where we used the following observation from (3.52) and (3.54):

8
−1/p
max σ 1/p(σ ′)−1/p ≤ 1 ≤ 8

−1/p
min σ 1/p(σ ′)−1/p, (3.61)

and the operator monotonicity of t−1. The inequality (3.61) also implies that 81/p
min%

−1/p
σ %

1/p
σ ′ is completely

positive and trace non-increasing. Then, by [69, Proposition 3.6], it follows that

%
1/p
σ g[1]0

(
s8−1/p

min σ 1/p(σ ′)−1/p + eν j /2p%1/p
σ (X), s8−1/p

min σ 1/p(σ ′)−1/p + e−ν j /2p%
1/p
σ (X)

)
%
1/p
σ

≥ 8
2/p
min%

1/p
σ ′ g[1]0

(
s + 8

1/p
mine

ν j /2p%
1/p
σ ′ (X), s + 8

1/p
mine

−ν j /2p%
1/p
σ ′ (X)

)
%
1/p
σ ′ .

Therefore, by (2.25) and (3.60), we have

%
1/p
σ f [1]p

(
eν j /2p%1/p

σ (X), e−ν j /2p%
1/p
σ (X)

)
%
1/p
σ

≥ sin((p − 1)π)
π

∫ ∞

0
s p−28

2/p
min%

1/p
σ ′ g[1]0

(
s + 8

1/p
mine

ν j /2p%
1/p
σ ′ (X), s + 8

1/p
mine

−ν j /2p%
1/p
σ ′ (X)

)
%
1/p
σ ′ ds

≥ 8min%
1/p
σ ′ f [1]p

(
eν j /2p%1/p

σ ′ (X), e−ν j /2p%
1/p
σ ′ (X)

)
%
1/p
σ ′ .
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Combining the above estimate with (3.59) and recalling (2.19), we readily have

Ep,Lσ (X) ≥
(
inf
j
e−|ω j−ν j |(2−p)/2p

)
8minEp,Lσ ′ (X) . (3.62)

The proof is completed by the following simple estimate, with the help of (3.58) and (3.62),

p
p − 1

(
∥X∥pp,σ − ∥X∥1,σ

)
≤ 8max

αp(Lσ ′ )
Ep,Lσ ′ (X)

≤ 8max

αp(Lσ ′ )

(
inf
j
e−|ω j−ν j |(2−p)/2p

)−1
8−1
minEp,Lσ (X) .

⊓⊔

3.4 Applications and Examples

This section is devoted to the applications of p-Beckner’s inequalities. We first analyze
the Beckner constant αp(L) for the depolarizing semigroup. We then derive a bound on the
mixing time of quantumMarkov dynamics in terms of αp(L). For the symmetric semigroups,
by borrowing the techniques from [1, 71], we obtain the moment estimates from Beckner’s
inequalities (Bec-p), which further allows us to derive a concentration inequality.

Beckner Constant for Depolarizing Semigroups

In general, it is challenging to explicitly compute or estimate the optimal constant for the
functional inequalities, even in the classical setting. We will consider the quantum Beckner
constant αp for the simplest QMS: the depolarizing semigroup (2.11) with γ = 1 and
σ = 1/d , and show that in this case, the computation of αp is equivalent to the classical
one for a Markov chain on the two-point space. We mention that the explicit values of LSI
constant β and MLSI constant α1 for Ldepol with a general invariant state σ ∈ D+(H) have
been obtained in [17] and [90], respectively.

Proposition 3.29 Let Ldepol(X) = Tr(X/d)1 − X be the Lindbladian of the depolarizing
semigroup. Then we have

αp(Ldepol) = inf
θx+(1−θ)y=1

x,y≥0, θ∈{ 1d ,...,1− 1
d }

p
4
(θx p + (1 − θ)y p) − (θx p−1 + (1 − θ)y p−1)

(θx p + (1 − θ)y p) − 1
,

(3.63)

for p ∈ (1, 2], where d is the dimension of the underlying Hilbert space H.

Proof We first compute from definition (Bec-p) that

αp(Ldepol) = inf
X≥0

p̂−1Ep,Ldepol (X)

∥X∥p
p, 1d

− ∥X∥p
1, 1d

= p
4

inf
X≥0

∥X∥p
p, 1d

− ∥X∥p−1
p−1, 1d

∥X∥1, 1d
∥X∥p

p, 1d
− ∥X∥p

1, 1d

. (3.64)

We only consider p ∈ (1, 2), since the case p = 2, corresponding to the spectral gap, is
trivial. Let µi ≥ 0, 1 ≤ i ≤ d , be the eigenvalues of X ≥ 0. It is easy to reformulate (3.64)
as

αp(Ldepol) =
p
4

inf
µi≥0

∑
i µ

p
i − d−1(∑

i µ
p−1
i

)(∑
i µi
)

∑
i µ

p
i − d−(p−1)

(∑
i µi
)p ,
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which is equivalent to, for any µi ≥ 0,

F(µ1, . . . , µd) :=
∑

i

µ
p
i − d−1(∑

i

µ
p−1
i

)(∑

i

µi
)

−4αp(Ldepol)

p

(∑

i

µ
p
i − d−(p−1)(∑

i

µi
)p) ≥ 0. (3.65)

Suppose that (ri )di=1 achieves the equality in (3.65). We claim that all ri are strictly positive.
If not, without loss of generality, we assume r1 = 0, r2 > 0, and

∑d
i=2 ri = 1. Then, from

(3.65), for small enough ε > 0, we have

F(ε, r2 − ε, r3, . . . , rd) =
∑

i=3

r pi − d−1(
d∑

i=3

r p−1
i

)
− Cp

( d∑

i=3

r pi − d−(p−1)
)

− d−1((r2 − ε)p−1 + ε p−1)− (Cp − 1)
(
(r2 − ε)p + ε p)

= −d−1ε p−1 + O(ε) < 0 ,

where Cp := 4αp/p. This fact contradicts the assumption that (ri )i saturates the equality,
so the claim holds. Now, by ri > 0 for all i , we have ∇F(r1, . . . , rd) = 0, which, by direct
computation, gives the following equations in the variables ri :

( p
4

− αp
)
r p−1
i − p − 1

4d
∥X∥1 r p−2

i = 1
4d

∥X∥p−1
p−1 − αpd1−p ∥X∥p−1

1 . (3.66)

When ∥X∥1 and ∥X∥p−1 are fixed, the above equation clearly has at most two solutions,
denoted by a and b, which means that ri takes the value either a or b. Let n be the number
of ri equal to a. Then, it follows that

αp(Ldepol) = inf
na+(d−n)b=1

a,b≥0, n∈{1,...,d−1}

p
4
(na p + (d − n)bp) − d−1(na p−1 + (d − n)bp−1)

(na p + (d − n)bp) − d−(p−1)

= inf
θx+(1−θ)y=1

x,y≥0, θ∈{ 1d ,...,1− 1
d }

p
4
(θx p + (1 − θ)y p) − (θx p−1 + (1 − θ)y p−1)

(θx p + (1 − θ)y p) − 1
,

by setting θ = n/d , x = da, and y = db. ⊓⊔

Toconnect the expression (3.63)with the classicalBeckner constant,we consider aMarkov
chain on {0, 1} with the transition matrix: for θ > 0,

P =
[
θ 1 − θ

θ 1 − θ

]
,

which has the invariant measure π(0) = θ , π(1) = 1 − θ . The Beckner constant for this
chain is give by [24, (4.1)]

αp,θ = inf
f ≥0

p
2

−⟨ f p−1, (P − I ) f ⟩π
π( f p) − π( f )p

= inf
θx+(1−θ)y=1

x,y≥0

p
2
(θx p + (1 − θ)y p) − (θx p−1 + (1 − θ)y p−1)

(θx p + (1 − θ)y p) − 1
. (3.67)
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Then we can see

αp(Ldepol) =
1
2
inf
{
αp,θ ; θ ∈ { 1

d
,
2
d
, . . . , 1 − 1

d
}
}
. (3.68)

However, although the representation (3.67) is simple, numerical techniques are still nec-
essary to find the explicit values of αp,θ and αp(Ldepol). We next derive upper and lower
bounds for αp(Ldepol).

Proposition 3.30 For Ldepol given in Proposition 3.29 and p ∈ (1, 2], there holds

p
4

≤ αp(Ldepol) ≤ min
{1
2
,

pd p−1

4(d p−1 − 1)

}
. (3.69)

Proof The lower bound follows from (3.64) and ∥X∥p−1, 1d
≤ ∥X∥1, 1d ,

4
p
αp(Ldepol) = inf

X≥0 ,∥X∥
1, 1d =1

∥X∥p
p, 1d

− ∥X∥p−1
p−1, 1d

∥X∥p
p, 1d

− 1
≥ inf

X≥0 ,∥X∥
1, 1d =1

∥X∥p
p, 1d

− 1

∥X∥p
p, 1d

− 1
.

For the upper bound, again by (3.64), we have

4
p
αp(Ldepol) ≤ inf

X≥0 ,∥X∥
1, 1d =1

∥X∥p
p, 1d

∥X∥p
p, 1d

− 1
.

Note that x p

x p−1 is decreasing in x ≥ 1 for p ∈ (1, 2], and that, by (2.33) and definition of
Dp(ρ∥σ ),

sup
X≥0 ,∥X∥

1, 1d =1

∥X∥p, 1d
= d

p−1
p .

It follows that αp(Ldepol) ≤ p
4

d p−1

d p−1−1 . The proof is completed by Lemma 3.18 and
2α2(Ldepol) = λ(Ldepol) = 1. ⊓⊔

Remark 3.31 When p → 1, the estimate (3.69) gives 1/4 ≤ α1(Ldepol) ≤ 1/2, which
recovers the known bound for MLSI constant for the depolarizing semigroup [90, Figure 1].
It is also easy to see that (3.69) is asymptotically tight for any fixed p ∈ (1, 2]when d → ∞.
Indeed, we have αp(Ldepol) → p/4 as d → ∞. Another special case is d = 2, where we
directly have αp(Ldepol) = 1/2 from (3.69), which can also be implied by the relation (3.68):
αp(Ldepol) = αp, 12

/2, and αp, 12
= 1 in [24, Proposition 4.3].

Mixing Time

We shall analyze the mixing time of a primitive QMS Pt = etL from quantum p-Beckner’s
inequalities. We define the l1 mixing time for ε > 0 by

t1(ε) = inf{t > 0 ;
∥∥P†

t (ρ) − σ
∥∥
1 ≤ ε for all ρ ∈ D(H)} . (3.70)

To bound t1(ε), we need the following lemma extending [77, Theorem 4.1] for the symmetric
QMS, which characterizes the convergence of QMS in terms of σ -weighted p-norm.
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Lemma 3.32 Let Pt be a primitive QMS satisfying σ -KMS DBC. Then it holds that, for
p ∈ (1, 2],

∥Pt (X) − Tr(σ X)1∥p,σ ≤ e−2αp(L)t ∥X∥1−p/2
p,σ

√
2

p(p − 1)

(
∥X∥p

p,σ − ∥X∥p
1,σ

)
, X ≥ 0 ,

where αp(L) > 0 is the quantum Beckner constant for Pt .

Proof We define, for X , Y ∈ Bsa(H),

GX ,Y (s) := ∥X + sY∥p
p,σ − p(p − 1)

2
s2 ∥X + sY∥p−2

p,σ ∥Y∥2p,σ .

Similarly to [77, Theorem 4.1], by results in [101], it is easy to prove that G ′′
X ,Y (0) ≥ 0

for any self-adjoint X , Y , which implies that GX ,Y (s) is a convex function on R. We now
consider A := Tr(σ X)1 and B := Xt − Tr(σ X)1 with Xt = Pt (X) for X ≥ 0. Then, by
Lemma 2.7, we have, for any s ∈ R,

∥A + sB∥p
p,σ ≥ ∥A + sB∥p

1,σ ≥ Tr(σ (A + sB))p = Tr(σ X)p = ∥A∥p
p,σ .

It then follows fromdefinition thatG ′
A,B(0) ≥ 0,which, alongwith the convexity ofGA,B(s),

yields G ′
A,B(s) ≥ 0 for any s ≥ 0. Hence, we have GA,B(1) ≥ GA,B(0), that is (recalling

the definitions of A, B),

∥Xt∥p
p,σ − p(p − 1)

2
∥Xt∥p−2

p,σ ∥Xt − Tr(σ X)1∥2p,σ ≥ ∥X∥p
1,σ . (3.71)

By (Bec-p) and Grönwall’s inequality, it holds that

∥Xt∥p
p,σ − ∥Xt∥p

1,σ ≤ e−4αpt
(
∥X∥p

p,σ − ∥X∥p
1,σ

)
, X ≥ 0 ,

which, along with (3.71), implies

∥Xt − Tr(σ X)1∥2p,σ ≤ 2
p(p − 1)

e−4αpt ∥X∥2−p
p,σ

(
∥X∥p

p,σ − ∥X∥p
1,σ

)
.

The proof is complete by taking the square root of the above inequality. ⊓⊔

Proposition 3.33 Under the same assumption as in Lemma 3.32, it holds that for p ∈ (1, 2],
t1(ε) ≤ h(p, σmin, ε) , (3.72)

where

h(p, σmin, ε) :=
1

2αp(L)
log
(

ε−1

√
2

p(p − 1)

(
σ

2
p −2
min − σ

p+ 2
p −3

min

))
.

Proof Let Xt be the relative density of ρt = etL
†
(ρ); see (3.15). We write

∥∥P†
t (ρ) − σ

∥∥
1 =

∥∥%σ (%
−1
σ P†

t (ρ) − 1)
∥∥
1 = ∥Xt − 1∥1,σ .

By Lemma 3.32, we have

sup
ρ∈D(H)

∥∥P†
t (ρ) − σ

∥∥
1 ≤ e−2αp(L)t sup

X≥0,Tr(σ X)=1

√
2

p(p − 1)

(
∥X∥2p,σ − ∥X∥2−p

p,σ

)
.

(3.73)
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Recalling the formula (2.33), there holds

sup
X≥1,Tr(σ X)=1

∥X∥p,σ = σ
1
p −1
min .

Also note that the function x2 − x2−p with p ∈ (1, 2] is increasing for x ≥ 1. It follows
from (3.73) that

sup
ρ∈D(H)

∥∥P†
t (ρ) − σ

∥∥
1 ≤ e−2αp(L)t

√
2

p(p − 1)

(
σ

2
p −2
min − σ

p+ 2
p −3

min

)
.

By definition (3.70) and a direct computation, we obtain the estimate (3.72) for t1(ε). ⊓⊔

By elementary calculus, we find

h(2, σmin, ε) =
1

λ(L)
log
(

ε−1
√

σ−1
min − 1

)
,

and, as p → 1+,

h(p, σmin, ε) → 1
2α1(L)

log
(

ε−1
√
2 log

(
σ−1
min

))
,

which are nothing else but the mixing time bounds obtained from the decays of the variance
and the relative entropy, respectively [73, 104]. If the QMS satisfies the σ -GNS DBC, then
(Bec-p) holds for all p ∈ (1, 2] by Theorem 3.20. In principle, we can take the infimum in
(3.72) over p ∈ (1, 2] and obtain t1(ε) ≤ inf p∈(1,2] h(p, σmin, ε). However, this observation
might be not that useful in practice, since it is hard to have a good estimate of αp(L) for a
general L and answer when the infimum is attained in the interior of [1, 2]. If the constants
αp(L) are of the same order, it is easy to see that when σmin ≤ 1/d is small enough, we have
inf p∈(1,2] h(p, σmin, ε) = h(1, σmin, ε).

Moment Estimates and Concentration Inequalities

In this section, we consider the primitive symmetric QMS Pt = P†
t (see Remark 2.4). We

will derive a moment estimate from p-Beckner’s inequalities, by extending the arguments of
[1, Proposition 3.3] for classical Markov semigroups. This helps us to obtain concentration
inequalities in a similar manner as [71], which could find applications in quantum parameter
estimation problems [102, Section V]. We first recall the carré du champ operator (gradient
form) associated with Pt = etL [71, 116]:

%(X , Y ) = 1
2
(L(X∗Y ) − X∗(LY ) − (LX)∗Y ) for X , Y ∈ B(H) . (3.74)

As usual, we write %(X) for %(X , X). By the self-adjointnessL† = L andL(1) = 0, a direct
computation gives the relation between the % operator and the Dirichlet form E2,L(X , Y ) =
−⟨X ,LY ⟩ 1

d
(see (2.3) for the notation ⟨·, ·⟩ 1

d
):

E2,L(X , Y ) =
〈 1
d
,%(X , Y )

〉
. (3.75)

Before we state our main result on moment estimates, we need the following useful lemma.
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Lemma 3.34 Let%(·) be given in (3.74) for a symmetric LindbladianL. For any differentiable
convex and increasing function ϕ : [0,∞) → R and c ∈ R, it holds that

E2,L(ϕ(|X + c|), |X + c|) ≤ 2⟨ϕ′(|X + c|),%(X)⟩ 1
d

≤ 2
∥∥ϕ′(|X + c|)

∥∥
p, 1d

∥%(X)∥ p̂, 1d
,

(3.76)

for X ∈ Bsa(H), where p ≥ 1.

Proof Assume that X ∈ Bsa(H) has the spectral decomposition X =∑ λi Ei , where Ei are
the eigen-projections associated with the eigenvalues λi . Note from the convexity of ϕ that
for any x, y ≥ 0,

ϕ(x) − ϕ(y)
x − y

≤ max{ϕ′(x),ϕ′(y)} ≤ ϕ′(x)+ ϕ′(y) , (3.77)

since ϕ′(x) ≥ 0 holds by the monotonicity of ϕ. Recalling the formula (2.16), by the eigen-
decomposition of X and the inequality (3.77), we have

E2,L(ϕ(|X + c|), |X + c|)

=
J∑

j=1

〈
∂ jϕ(|X + c|), ∂ j |X + c|

〉
1
d

= 1
d

J∑

j=1

d∑

i,k=1

(ϕ(|λi + c|) − ϕ(|λk + c|))(|λi + c| − |λk + c|)Tr(EkVj Ei Vj )

≤ 1
d

J∑

j=1

d∑

i,k=1

(ϕ′(|λi + c|)+ ϕ′(|λk + c|))(|λi + c| − |λk + c|)2 Tr(EkVj Ei Vj ) . (3.78)

Similarly, by definition (3.74) of %(X), we compute

2
〈
ϕ′(|X + c|),%(X)

〉
1
d
= 1

d

J∑

j=1

d∑

i,k=1

{
(ϕ′(|λi + c|) − ϕ′(|λk + c|))(λ2i − λ2k)

− 2(λiϕ′(|λi + c|) − λkϕ
′(|λk + c|))(λi − λk)

}
Tr(EkVj Ei Vj )

= 1
d

J∑

j=1

d∑

i,k=1

(ϕ′(|λi + c|)+ ϕ′(|λk + c|))(λi − λk)
2 Tr(EkVj Ei Vj ) .

(3.79)

Since there holds
∣∣|λi + c|− |λk + c|

∣∣ ≤ |λi − λk |, by (3.78) and (3.79), and using Hölder’s
inequality, we obtain the desired estimate (3.76). ⊓⊔

Proposition 3.35 Let L be a primitive symmetric Lindbladian and %(·) be defined in (3.74).
Suppose that the quantum p-Beckner’s inequality (Bec-p) holds for all p ∈ (1, 2] with
αp ≥ a(p − 1)s for some a > 0 and s ≥ 0. Then we have, for X ∈ Bsa(H) and r ≥ 2,

∥∥∥∥X − 1
d
Tr(X)

∥∥∥∥
2

r , 1d

≤ rs+1κ(s)
2a

∥%(X)∥ r
2 ,

1
d
, (3.80)

where κ(s) := (1 − e−(s+1)/2)−1.
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Proof We shall prove by induction that for all positive integers k and r ∈ (k, k + 1], there
holds

∥∥∥∥X − 1
d
Tr(X)

∥∥∥∥
2

r , 1d

≤ cr ∥%(X)∥max{ r2 ,1}, 1d
, ∀X ∈ Bsa(H) , (3.81)

where

cr :=
rs+1κr (s)

2a
, κr (s) :=

(
1 −

(r − 1
r

)(s+1)r/2
)−1

. (3.82)

The desired estimate (3.80) is a direct consequence of (3.81), since κr increases in r and
κr (s) → κ(s) as r → ∞. We first note that by Lemma 3.18, (PI) holds with λ(L) ≥ 2a. For
k = 1 and r ∈ (1, 2], by (PI) and (3.75), we have

∥∥∥∥X − 1
d
Tr(X)

∥∥∥∥
2

r , 1d

≤
∥∥∥∥X − 1

d
Tr(X)

∥∥∥∥
2

2, 1d

≤ 1
λ(L)

E2,L(X) ≤ cr ∥%(X)∥1, 1d ,

since cr is increasing in r , which gives cr ≥ c1 = 1/2a ≥ 1/λ(L). Suppose that (3.81)
holds for all integers smaller than some k > 1. Now we consider r ∈ (k, k + 1]. We define
Y = |X − 1

d Tr(X)|, and then estimate by using (Bec-p),

rαr̂
( ∥∥Yr−1∥∥r̂

r̂ , 1d
−
∥∥Yr−1∥∥r̂

1, 1d

)
≤ Er̂ ,L(Yr−1) . (3.83)

By Lemma 3.34 with ϕ(x) = xr−1, c = − 1
d Tr(X), and p = r/(r − 2), we have

Er̂ ,L(Y ) = − r̂r
4

⟨Yr−1,LY ⟩ 1
d

≤ r̂r
2
(r − 1)

∥∥Yr−2∥∥
p, 1d

∥%(X)∥ p̂, 1d

= r2

2
∥Y∥r−2

r , 1d
∥%(X)∥ r

2 ,
1
d
. (3.84)

We write lr = ∥Y∥r , 1d and note αr̂ ≥ a(r̂ − 1)s = a(r − 1)−s . Then combining estimates
(3.83) and (3.84) gives

lrr − lrr−1 ≤ r(r − 1)s

2a
lr−2
r ∥%(X)∥ r

2 ,
1
d

≤ rs+1

2a
lr−2
r ∥%(X)∥ r

2 ,
1
d
. (3.85)

Applying the assumption (3.81) to bound lr−1 and by (3.85), we obtain

lrr ≤
(
cr−1 ∥%(X)∥max{ r−1

2 ,1}, 1d
) r
2 + rs+1

2a
lr−2
r ∥%(X)∥ r

2 ,
1
d
. (3.86)

Note from (3.82) that

cr−1 ∥%(X)∥max{ r−1
2 ,1}, 1d

cr ∥%(X)∥ r
2 ,

1
d

≤ cr−1

cr
≤ (r − 1)s+1κr−1(s)

rs+1κr (s)
. (3.87)

By dividing both sides of (3.86) by (cr ∥%(X)∥ r
2 ,

1
d
)r/2 and using (3.87), it follows that

( l2r
cr ∥%(X)∥ r

2 ,
1
d

) r
2 ≤

(r − 1
r

) (s+1)r
2 + 1

κr

( l2r
cr ∥%(X)∥ r

2 ,
1
d

) r−2
2

. (3.88)

To complete the proof, we need the fact from [1, Proposition 3.1] that the function h(x) =
(1 − 1/r)(1+s)r/2 + κ−1

r x1−2/r − x is strictly concave on [0,∞) and satisfies h(0) > 0 and
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h(1) = 0, which means that h(x) ≥ 0 implies x ≤ 1. This fact, along with (3.88), readily
implies

∥∥∥∥X − 1
d
Tr(X)

∥∥∥∥
2

r , 1d

≤ cr ∥%(X)∥ r
2 ,

1
d
.

⊓⊔

Remark 3.36 In the case of s = 0, Proposition 3.35 shows that if (Bec-p) holds with
inf p∈(1,2] αp ≥ a, then

∥∥∥∥X − 1
d
Tr(X)

∥∥∥∥
2

r , 1d

≤ rκ
2a

∥%(X)∥∞ , ∀X ∈ Bsa(H) ,

by ∥%(X)∥ r
2 ,

1
d

≤ ∥%(X)∥∞, where κ := (1 − e−1/2)−1. A similar result was given in

[71, Theorem 4.4] for non-primitive symmetric QMS under the Bakry-Émery curvature-
dimension condition (%2-criterion):

%2(X , X) ≥ α%(X , X) , ∀X ∈ B(H) , (BE(α,∞))

for some α > 0, where %2 is the iterated carré du champ operator: %2(X , Y ) :=
− 1

2 (%(X ,LY ) + %(LX , Y ) − L%(X , Y )). To be precise, they used the noncommutative
martingale methods and proved that under some necessary regularity condition, if BE(α,∞)

holds, then we have

∥X − E(X)∥2r ≤ 8r
α

∥%(X)∥∞ , ∀X ∈ Bsa(H) ,

where E is the conditional expectation to the fixed point algebra {X ; Pt (X) = X for t ≥ 0}
and ∥·∥r is the Schatten norm with respect to a normal faithful tracial state. It is currently
unknown whether or not Beckner’s inequality can be implied from %2-criterion BE(α,∞).
Hence, our result is complementary to theirs.

Similarly to [71, Corollary 4.13], we next show that the moment estimate (3.80) with
s = 0 implies a noncommutative exponential integrability and a Gaussian concentration
inequality. The idea of the proof is standard and borrowed from the commutative case [18]
by Efraim and Lust-Piquard.

Corollary 3.37 Let L be a primitive symmetric Lindbladian and %(·) be defined in (3.74).
Suppose that p-Beckner’s inequality (Bec-p) holds with inf p∈(1,2] αp ≥ a for some a > 0.
Then it holds that, for X ∈ Bsa(H),

∥∥∥∥exp
(∣∣∣X − 1

d
Tr(X)

∣∣∣
)∥∥∥∥

1, 1d

≤ 2 exp
(
eκ ∥%(X)∥∞

4a

)
, (3.89)

and, for any t > 0,

1
d
Tr
(
1[t,∞)

(∣∣∣X − 1
d
Tr(X)

∣∣∣
))

≤ 2 exp
(

− at2

eκ ∥%(X)∥∞

)
, (3.90)

where κ = (1 − e−1/2)−1.
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Proof Note that %(X) = %
(
X − 1

d Tr(X)
)
. Without loss of generality, we assume 1

d Tr(X) =
0. By functional calculus and Proposition 3.35, we obtain

1
2d

Tr(e|X |) ≤ 1
d
Tr(cosh X) = 1+

∞∑

j=1

1
(2 j)! ∥X∥2 j

2 j, 1d

≤ 1+
∞∑

j=1

1
(2 j)!

(2 j) jκ j

(2a) j
∥%(X)∥ j

j, 1d

≤ 1+
∞∑

j=1

j j

j !(2 j − 1)!!

(κ ∥%(X)∥ j, 1d

2a

) j

≤ 1+
∞∑

j=1

1
j !

(eκ ∥%(X)∥ j, 1d

4a

) j

, (3.91)

where in the last inequality we have used j j
(2 j−1)!! ≤

( e
2

) j for all j ∈ N from Stirling’s
formula. Then the inequality (3.89) follows from (3.91) and again ∥%(X)∥ j, 1d

≤ ∥%(X)∥∞.
For the concentration inequality (3.90), by (3.89) and Chebyshev inequality, we have, for
any λ > 0,

1
d
Tr
(
1[t,∞)(|X |)

)
≤ e−λt 1

d
Tr
(
eλ|X |) ≤ 2 exp

(
eκ ∥%(X)∥∞

4a
λ2 − tλ

)
.

Then, choosing λ to minimize the right-hand side of the above estimate gives the desired
(3.90). ⊓⊔

Remark 3.38 The classical Gaussian-type concentration inequalities can be derived by vari-
ous approaches; see [99] for a review. In particular, Marton [84, 85] showed that Gaussian
concentration can be implied from a transportation cost inequality (TC1) associated with
Wasserstein distance of order one W1. Later, Bobkov and Götze [23] proved the exponential
integrability (EI) by a log-Sobolev inequality and established the equivalence between EI and
TC1 (note that Gaussian concentration is an easy consequence of EI). Such an approach turns
out to be very useful for noncommutative concentration inequalities and has been exploited
in different settings. We refer the interested readers to [71, Theorem 4.18], [59, Proposition
6.13], [46, Theorem 3], and [102, Theorem 8] for recent results, all of which involve a quan-
tum version of Lipschitz constant ∥O∥Lip for observables O and an associated 1-Wasserstein
distance defined by W1(ρ, σ ) = sup{|Tr(ρO) − Tr(σO)| ; O self-adjoint , ∥O∥Lip ≤ 1}.

In our case (3.90), the Lipschitz constant is defined by ∥X∥Lip,1 := ∥%(X)∥1/2∞ , which is
a natural generalization from the classical case [11, Definition 3.3.24]. Such a definition has
been used to define a quantum W1 distance [71, Definition 4.15] and derive concentration
inequalities [71, Corollary 4.13]; see also [59] for similar results for non-ergodic semigroups.
An alternative definition of the Lipschitz constant associated with σ -GNS symmetric QMS is
givenbyRouzé andDatta [102, SectionE.2]:∥X∥Lip,2 := (

∑
j (e

−ω j /2+eω j /2)
∥∥∂ j X

∥∥2
∞)1/2,

using the differential structure in Lemma 2.3. It is clear that both ∥X∥Lip,1 in [59, 71] and
∥X∥Lip,2 in [102] depend on the generator L of a QMS. In [46], De Palma et al. suggested
another way to define the Lipschitz constant (denoted by ∥X∥Lip,3) and W1 distance, which
is based on the notion of neighboring states instead of the QMS. However, there is no
consensus on the definition of ∥·∥Lip, and each one has its own interest and advantage.
In certain scenarios, they can be compared with each other. For instance, for a symmetric
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Lindbladian L, by (2.15) and the Leibniz rule for ∂ j , we have %(X) = ∑
j (∂ j X)∗(∂ j X),

which gives

∥X∥2Lip,1 =
∥∥∥
∑

j

(∂ j X)∗(∂ j X)
∥∥∥

∞
≤
∑

j

∥∥∂ j X
∥∥2

∞ = 1
2

∥X∥2Lip,2 .

Moreover, [47, Proposition10] compares ∥X∥Lip,2 and ∥X∥Lip,3 in the case of σ being the
Gibbs state of a local commuting Hamiltonian.

Remark 3.39 The concentration inequality (3.90) above is derived from (Bec-p), thanks to
the moment estimate (3.80). Due to some technical issues, we are not able to extend (3.80)
to general QMS satisfying σ -GNS DBC, which is more desirable. Nevertheless, similarly to
[102], we can bypass themoment estimate to obtain a Gaussian concentration, by a geometric
characterization of (Bec-p) that will be explored in Sect. 4. To be precise, in Proposition 4.20
below, we imply from (Bec-p) a transport cost inequality associated with the distance W2,p
in (4.20). As in [102, Lemma6], we can also show thatW1,L(ρ, σ ) ≤ CW2,p(ρ, σ ) for some
constantC > 0, whereW1,L is 1-Wasserstein distance defined in [102]. Then a concentration
inequality can follow in the same way as [102, Theorems 3,8].

4 Generalized QuantumOptimal Transport

In this section, we limit our discussion to the primitive QMS satisfying σ -GNS DBC for
some σ ∈ D+(H) and only consider Fp,σ with p ∈ (1, 2] for clarity.

4.1 Gradient Flow of Quantum p-Divergence

This subsection aims to identify the QMS P†
t = etL

†
with σ -GNS DBC as the gradient flow

of quantum p–divergence Fp,σ with respect to some Riemannian metric gp,L constructed
below. The argument follows closely with those in [35] (see also [93] for the classical case).
The necessary and sufficient conditions for the existence of such a Riemannian metric will
also be discussed.

For our purpose, we first compute the functional derivative δρFp,σ (ρ) of Fp,σ , which is
defined by

d
dt

∣∣∣
t=0

Fp,σ (ρt ) = ⟨δρFp,σ (ρ), ρ̇⟩ ,

where ρt : (−ε, ε) → D+(H) with ε > 0 is any smooth curve satisfying ρ0 = ρ. Similarly
to (3.16), we find

δρFp,σ (ρ) =
1

p − 1
%−1/ p̂

σ

((
%−1/ p̂

σ (ρ)
)p−1)

, ∀ρ ∈ D+(H). (4.1)

Then, defining Y := %
−1/ p̂
σ (ρ), by (2.23) and Lemma A.2, we derive, for 1 ≤ j ≤ J ,

∂ jδρFp,σ (ρ) =
1

p − 1
∂ j%

−1/ p̂
σ

(
Y p−1)

= 1
p − 1

%−1/ p̂
σ

(
Vj
(
e−ω j /2pY

)p−1 −
(
eω j /2pY

)p−1
Vj

)
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= %−1/ p̂
σ

(
f [1]p
(
eω j /2pY , e−ω j /2pY

) (
Vj
(
e−ω j /2pY

)
−
(
eω j /2pY

)
Vj
))

,

(4.2)

with f p given in (2.20). Again by (2.23) and ∂ j,σ = %σ ∂ j%
−1
σ in (2.14), it follows that

Vj
(
e−ω j /2pY

)
−
(
eω j /2pY

)
Vj = %1/p

σ

(
∂ j%

−1/p
σ (Y )

)

= %1/p
σ

(
∂ j%

−1
σ (ρ)

)
= %−1/ p̂

σ (∂ j,σ ρ) . (4.3)

Combining (4.2) and (4.3) readily gives

∂ jδρFp,σ (ρ) = %−1/ p̂
σ

(
f [1]p

(
eω j /2p%−1/ p̂

σ (ρ), e−ω j /2p%−1/ p̂
σ (ρ)

) (
%−1/ p̂

σ (∂ j,σ ρ)
))

.

(4.4)

We next define the Riemannian structure, associated withFp,σ (ρ), on thematrix manifold
D+(H), that is, a family of inner products on the tangent space Tρ = B0

sa(H) := {X ∈
Bsa(H) ; Tr(X) = 0} that depends smoothly on ρ. Motivated by (4.4), we first define the
operator [ρ]p,ω : B(H) → B(H) for ρ ∈ D+(H) and ω ∈ R by

[ρ]p,ω = %1/ p̂
σ ◦ θp

(
eω/2p%−1/ p̂

σ (ρ), e−ω/2p%−1/ p̂
σ (ρ)

)
◦ %1/ p̂

σ , (4.5)

where

θp(x, y) :=
(
f [1]p (x, y)

)−1 =
{
(p − 1) x−y

x p−1−y p−1 , x ̸= y ,

x2−p , x = y .
(4.6)

It is clear that when σ = 1/d and ω = 0, we have [ρ]p,ωA = d1−pρ2−p A =
%σ ((%

−1
σ (ρ))2−p)A for any A that commutes with ρ. Thus, [ρ]p,ω can be regarded as a

noncommutative analog of the multiplication by the relative density (%−1
σ ρ)2−p with respect

to the reference state σ . Noting%
−1/ p̂
σ (ρ) > 0, by LemmaA.1 the operator [ρ]p,ω is evidently

invertible. Then, we immediately obtain from (4.4) that

∂ jδρFp,σ (ρ) = [ρ]−1
p,ω j

∂ j,σ ρ . (4.7)

With the help of [ρ]p,ω, we now introduce the operator:

Dp,ρ(A) :=
J∑

j=1

∂
†
j

(
[ρ]p,ω j ∂ j A

)
: B(H) → B(H) , (4.8)

which is crucial for defining the desired Riemannian metric on D+(H); see Definition 4.2.
The next lemma gives the main properties of [ρ]p,ω andDp,ρ and can be proved in the same
manner as [35, Lemma 5.8] and [36, Lemma 7.3]. Hence we omit its proof.

Lemma 4.1 Let ρ ∈ D+(H), ω ∈ R. It holds that

1. ⟨·, [ρ]p,ω(·)⟩ gives an inner product on B(H). Moreover, both [ρ]p,ω and [ρ]−1
p,ω are C∞

on D+(H).
2. Dp,ρ is a positive semidefinite operator on B(H) and preserves self-adjointness.

Moreover, we have

Ran(Dp,ρ) = Ran(L†) = Ran(div) , ker(Dp,ρ) = ker(L) = ker(∇) .
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Recalling ker(L) = span{1H} for a primitive QMS Pt = etL, a direct consequence of the
above lemma is that Dp,ρ for ρ ∈ D+(H) is a positive definite operator on B0

sa(H) =
(ker(Dp,ρ))

⊥ that depends C∞ on ρ. These facts allow us to define the following class of
Riemannian metrics on D+(H).

Definition 4.2 For each ρ ∈ D+(H), we define the metric tensor gp,ρ on the tangent space
Tρ = B0

sa(H) by

gp,ρ(ν1, ν2) := ⟨D−1
p,ρ(ν1), ν2⟩ , ν1, ν2 ∈ Tρ . (4.9)

We introduce Ui := D−1
p,ρ(νi ) ∈ B0

sa(H) and define the inner product on B(H)J :

⟨A,B⟩p,ρ :=
J∑

j=1

⟨A j , [ρ]p,ω j B j ⟩ for A,B ∈ B(H)J .

Then, by (4.8), the metric tensor gp,ρ can be rewritten as

gp,ρ(ν1, ν2) =
J∑

j=1

⟨∂ jU1, [ρ]p,ω j ∂ jU2⟩ = ⟨∇U1,∇U2⟩p,ρ . (4.10)

We are now ready to conclude Proposition 4.3 below. We first recall that the Riemannian
gradient of Fp,σ with respect to the metric gp,ρ , denoted by gradFp,σ (ρ), is determined by
the relation:

gp,ρ(gradFp,σ (ρ), ν) = ⟨δρFp,σ (ρ), ν⟩ , ∀ν ∈ Tρ .

Then, by Definition 4.2 and formulas (4.7) and (4.8), it follows that

gradFp,σ (ρ) = Dp,ρ(δρFp,ρ(ρ)) = −L†(ρ) , (4.11)

and the following result holds.

Proposition 4.3 The dual primitive QMS, ρt = etL
†
(ρ) for ρ ∈ D+(H), satisfying σ -GNS

DBC is the gradient flow of p–divergenceFp,σ for p ∈ (1, 2]with respect to the Riemannian
metric gp,ρ in (4.9):

∂tρt = −gradFp,σ (ρt ) = L†(ρt ) .

A direct consequence of Proposition 4.3 above is the decrease of Fp,σ (ρ) along the
quantum dynamic ρt = P†

t (ρ) (also recall (3.16)):

d
dt

Fp,σ (ρt ) = gp,ρt (gradFp,σ (ρt ), ρ̇t ) = −gp,ρt (L
†(ρt ),L†(ρt )) ≤ 0 . (4.12)

We shall see in Sect. 4.3 that the decay rate of Fp,σ (ρt ), characterized by the quantum
Beckner’s inequality (cf. (3.17) and (3.18)), naturally connects with the geodesic convexity
of the functional Fp,σ .

It was proved by Dietert [49] that if a Markov chain with finite states can be formulated
as the gradient flow of the relative entropy, then it must be time-reversible. This result, along
with [81], implies that the reversibleMarkov chains are exactly those that can be characterized
by the gradient flows. We next give the necessary condition for P†

t being the gradient flow
of Fp,σ for some Riemannian metric, which extends the previous results [31, 36]. Before we
proceed, we give the following lemma that will be useful in the sequel.
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Lemma 4.4 For σ ∈ D+(H), let [σ ]p,0 and [σ ]p,ω be defined as in (4.5) with p ∈ R\{0, 1}.
Then there holds

[σ ]p,0 = J
κ−1
1/p

σ = Rσ κ−1
1/p(*σ ), (4.13)

where the function κ1/p is the power difference (A.4). In addition, for L satisfying σ -GNS
DBC, we have

−⟨X ,LX⟩σ,ϕp =
J∑

j=1

⟨%σ ∂ j X , [σ ]−1
p,ω j

%σ ∂ j X⟩ , (4.14)

and

[σ ]p,ω j ◦ ∂ j ◦ [σ ]−1
p,0 = %σ ◦ ∂ j ◦ %−1

σ . (4.15)

We also have

Ep,L(%
−1
σ (ρ)) = p2

4

J∑

j=1

〈
∂ j,σ ρ, [ρ]−1

p,ω j
∂ j,σ ρ

〉
, ρ ∈ D+(H) . (4.16)

Proof The first identity (4.13) follows from (3.6), (3.7), (3.8), and definition (4.5). The
representation (4.14) is a reformulation of (3.10) by [σ ]p,ω. Note from formulas (2.15) and
(4.13) that

−⟨X ,LX⟩σ,ϕp =
J∑

j=1

⟨%σ X , [σ ]−1
p,0∂

†
j%σ ∂ j X⟩ ,

which, along with (4.14), gives the identity (4.15). The last one (4.16) is reformulated from
(2.19) by using operators ∂ j,σ in (2.14) and [ρ]p,ω in (4.5). ⊓⊔

Proposition 4.5 If a primitive QMS P†
t = etL

†
is the gradient flow of Fp,σ (ρ) for p ∈ (1, 2]

with respect to some smooth Riemannian metric gρ , then L is self-adjoint with respect to the
inner product:

⟨X , Y ⟩[σ ]p,0 := ⟨X , [σ ]p,0Y ⟩, X , Y ∈ B(H). (4.17)

Proof Note that any Riemannian metric gρ on D+(H) can be written as

gρ(ν1, ν2) = ⟨D−1
ρ ν1, ν2⟩ , ν1, ν2 ∈ Tρ ,

whereDρ is a positive definite operator from the cotangent space T ∗
ρ to the tangent space Tρ

at ρ (both Tρ and T ∗
ρ can be identified with B0

sa(H)). The dual QMS P†
t is the gradient flow

of Fp,σ (ρ) with respect to gρ means that

L†ρ = −Dρ(δρFp,σ (ρ)) . (4.18)

Substituting ρ = σ +εX for X ∈ B0
sa(H) into (4.18) above and differentiating it with respect

to ε gives

L†X = −Dρ%−1/ p̂
σ f [1]p (σ 1/p, σ 1/p)%−1/ p̂

σ (X) = −Dρ[σ ]−1
p,0X , (4.19)

by (4.1) and (A.8). Hence, it follows from (4.19) that, for X , Y ∈ B0
sa(H),

⟨LY , X⟩[σ ]p,0 = −⟨Y ,DρX⟩ = −⟨DρY , X⟩ = ⟨Y ,LX⟩[σ ]p,0 ,
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which implies that L is self-adjoint on B(H) with respect to ⟨·, ·⟩[σ ]p,0 , since L and [σ ]p,0
are Hermitian-preserving and satisfy L(1) = 0 and [σ ]p,01 = σ . ⊓⊔

In the limiting case p → 1+, which corresponds to the relative entropy D(ρ∥σ ), the inner
product ⟨·, ·⟩[σ ]p,0 in (4.17) reduces to the BKM inner product:

⟨X , Y ⟩BKM :=
∫ 1

0
Tr(σ 1−t X∗σ t Y ) dt,

hence our result generalizes [36, Theorem 2.9] by Carlen and Maas. In the case of p = 2,
where Fp,σ is the variance (up to a constant factor), ⟨·, ·⟩[σ ]p,0 becomes the familiar KMS
inner product ⟨·, ·⟩σ,1/2. Similarly to Definition 2.1, it is convenient to say that L satisfies
the [σ ]p,0-DBC if it is self-adjoint with respect to ⟨·, ·⟩[σ ]p,0 (the cases p = 1 and p = 2
are the known BKM DBC and KMS DBC, respectively). In Appendix B, we show that the
class of QMS satisfying the [σ ]p,0-DBC with p ∈ (1, 2) is strictly larger than the class of
QMS with σ -GNS DBC. Thus, in view of Propositions 4.3 and 4.5, there is a gap between
the necessary and sufficient conditions for a QMS being the gradient flow of Fp,σ (ρ). Very
recently, Brooks and Maas [29] characterizes the gradient flow for a given functional on
a general smooth manifold, and show that the BKM DBC is the necessary and sufficient
condition for a primitive QMS being the gradient flow of D(ρ∥σ ), which closes the gap in
the case p = 1. We next further exploit the arguments in [29] for our p-divergence Fp,σ ,
which complements the discussion in Proposition 4.5.

Proposition 4.6 Let L be the generator of a primitive QMS with invariant state σ ∈ D+(H)

and p ∈ (1, 2]. Suppose thatL satisfies the [σ ]p,0-DBC and Ep,L(%
−1
σ (ρ)) is strictly positive

for ρ ∈ D+(H) except at ρ = σ . Then there exists a Riemannian metric onD+(H) such that
the QMS P†

t = etL
†
is the gradient flow of Fp,σ (ρ).

Proof This result is a simple consequence of [29, Corollary 2.5], which shows that for a
smooth function f on the manifold M , a vector field ϕα , and a co-vector field φβ = ∇β f
with some mild assumptions, there exists a Riemannian metric gαβ such that φβ = gαβϕα if
i) the field φ has a unique zero m̄ ∈ M , where f takes its minimum value and there holds
ϕα|m̄ = 0; ii) ∇ϕα f |m < 0 holds for all m ̸= m̄; iii) the map ∇αϕβ : Tm̄M → Tm̄M is
positive and symmetric with respect to the inner product on Tm̄M induced by the Hessian
hαβ = ∇α∇β f |m̄ .

For our case, we consider the manifold M = D+(H), the vector field ϕ = L†, and the
functional f = Fp,σ . Note from Lemma 3.1 that Fp,σ (ρ) is strictly positive except at its
global minimum ρ = σ . By definition (4.1), we have ⟨δρFp,σ (ρ), A⟩ = 0, ∀A ∈ Tρ =
B0
sa(H), if and only if ρ = σ . Moreover, in our case, ϕα|m̄ = 0 simply means L†(σ ) = 0.

Thus, the condition i) holds. Since∇ϕα f is nothing than the entropy production ofFp,σ (i.e.,
the minus Dirichlet form Ep,L) by (3.16), the condition ii) is guaranteed by the assumption. It
suffices to verify the condition iii). For this, note that ∇αϕβ = L†, as ϕ is linear, and that the
Hessian can be computed as follows: for X , Y ∈ Bsa(H) and A = %σ (X) and B = %σ (Y ),

h(A, B) = ∂ε|ε=0∂η|η=0Fp,σ (σ + εA + ηB)

= ∂ε|ε=0
1

p − 1
⟨%−1/ p̂

σ ((%−1/ p̂
σ (σ + εA))p−1), B⟩

= ∂ε|ε=0
1

p − 1
⟨I p̂,p(1+ εX),%σ (Y )⟩ = ⟨A, [σ ]−1

p,0B⟩ ,
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where the second identity follows from (3.16) and the last identity is by (3.7) and (3.35).
Recall that the Lindbladian L is assumed to satisfy the [σ ]p,0-DBC, which is equivalent to
the fact that L† is self-adjoint with respect to the inner product ⟨·, [σ ]−1

p,0·⟩. The proof is
complete. ⊓⊔

Remark 4.7 Compared to [29, Theorem 1.2], here we have an additional assumption of the
strict positivity of the p-Dirichlet form, so there is still a small gap between the necessary and
sufficient conditions in our case. When p = 2, it is easy to show that such an assumption can
be removed by the KMS DBC of the Lindbladian. Indeed, by (3.16) and the detailed balance
condition, we have that E2,L(%−1

σ (ρ)) is convex and attains its minimum at ρ = σ . Then, the
invertibility of L† on the tangent space readily implies the strict convexity of E2,L(%−1

σ (ρ))

at ρ = σ , which further gives its strict positivity for any ρ ̸= σ . However, for a general p,
it seems not a very easy task to remove this assumption. A potential barrier may be the lack
of the characterization of the QMS satisfying the [σ ]p,0-DBC; see [2, 4, 54, 106] for related
results.

4.2 Generalized QuantumTransport Distances

The Riemannian distance W2,p induced by the metric gp,ρ in (4.9) can be defined as: for
ρ0, ρ1 ∈ D+(H),

W2,p(ρ0, ρ1)
2 = inf

{∫ 1

0
gp,γ (s) (γ̇ (s), γ̇ (s)) ds ; γ (0) = ρ0 , γ (1) = ρ1

}
(4.20)

(4.10)= inf
{∫ 1

0
∥∇U (s)∥2p,γ (s) ds ; γ̇ (s) = Dp,ρU (s) with γ (0) = ρ0 , γ (1) = ρ1

}
,

(4.21)

where the infimum is taken over the smooth (C∞) curves γ (s) : [0, 1] → D+(H). In this
section, wewill investigate the basic properties of the distance functionW2,p . By the standard
reparameterization techniques (cf. [3, Lemma 1.1.4] or [50, Theorem 5.4]), we have thatW2,p
equals to the minimum arc length:

W2,p(ρ0, ρ1) = inf
{∫ 1

0
gp,γ (s) (γ̇ (s), γ̇ (s))1/2 ds ; γ (0) = ρ0 , γ (1) = ρ1

}
, (4.22)

where the infimum is taken over smooth curves of constant speed (i.e., gp,γ (s) (γ̇ (s), γ̇ (s))1/2

is constant). Then it follows from (4.22) that the Riemannian manifold D+(H) equipped
with the distance W2,p is a metric space. Moreover, it turns out that W2,p can be extended
continuously to the boundary of D+(ρ).

Lemma 4.8 The metric W2,p for p ∈ (1, 2] on D+(H) extends continuously to D(H).

Proof As the proof is similar to that of [36, Proposition 9.2], we only sketch its main steps
below. Consider ρ0, ρ1 ∈ D(H) and let {ρn

0 }, {ρn
1 } be any sequences in D+(H) such that∥∥ρn

i − ρi
∥∥
2 → 0 as n → ∞ for i = 0, 1. It suffices to show that W2,p(ρ

n
0 , ρ

n
1 ) is a Cauchy

sequence. For this, by the triangle inequality, we only need to show W2,p(ρ
n
i , ρ

m
i ) → 0 as

n,m → ∞ for i = 0, 1. For ε ∈ (0, 1), we define ρ̃0 = (1 − ε)ρ0 + ε1, and the linear
interpolation γn(s) := (1 − s)ρn

0 + sρ̃0 which satisfies γn(s) ≥ sε1. Then it is easy to see

e±ω j /2p%−1/ p̂
σ (γn(s)) ≥ inf

j
{e−|ω j |/2p}sεσ−1/ p̂ ,
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by which, Lemma 3.2 implies that [γn(s)]−1
p,ω ≤ C(sε)p−2idH holds for some constant

C > 0, and hence that

D−1
p,γn(s)

≤ C(sε)p−2 ∥∥(−div ◦ ∇(·))−1∥∥ idH .

Recalling the expression (4.22), we obtain

W2,p(ρ
n
0 , ρ̃0) ≤

∫ 1

0

〈
γ̇n(s),D

−1
p,γn(s)

γ̇n(s)
〉1/2

ds

≤ C(sε)p−2 ∥∥(−div ◦ ∇(·))−1∥∥
∫ 1

0
∥γ̇n(s)∥2 ds . (4.23)

Note the estimate:

∥γ̇n(s)∥2 =
∥∥ρ̃0 − ρn

0

∥∥
2 ≤ ε ∥ρ0 − 1∥2 +

∥∥ρ0 − ρn
0

∥∥
2 ,

which, by (4.23), gives

lim sup
n→∞

W2,p(ρ
n
0 , ρ̃0) ≤ C(sε)p−1 ∥∥(−div ◦ ∇(·))−1∥∥ ∥ρ0 − 1∥2 .

Since p ∈ (1, 2] and ε is arbitrary, it follows that limn,m→∞ W2,p(ρ
n
0 , ρ

m
0 ) = 0, by triangle

inequality. ⊓⊔

In analogy with the classical 2-Wasserstein distance, it is helpful to introduce the quantum
moment variable B = ([ρ]p,ω1∂1U , . . . , [ρ]p,ωJ ∂JU ) for U ∈ B0

sa and reformulate (4.21)
as a convex optimization problem:

W2,p(ρ0, ρ1)
2 = inf

{ ∫ 1

0
∥B∥2−1,p,γ (s) ds ; γ̇ (s)+ divB(s) = 0 with γ (0) = ρ0 , γ (1) = ρ1,

γ (s) ∈ C ([0, 1];D(H)) , and B(s) ∈ L1
(
[0, 1];B(H)J

) }
, (4.24)

where the continuity equation γ̇ (s)+divB(s) = 0 is understood in the sense of distributions,
and ∥·∥−1,p,ρ is the norm from the inner product ⟨·, ·⟩−1,p,ρ on B(H)J defined by

⟨A,B⟩−1,p,ρ :=
J∑

j=1

⟨A j , [ρ]−1
p,ω j

B j ⟩ .

Indeed, by approximation techniques in [114, Proposition 1] and a mollification argument
from [53, Lemma 2.9], we can show that the infimum in the above representation (4.24)
of W2,p can be equivalently taken over smooth curves γ ∈ C∞([0, 1];D+(H)). Then, the
equivalence between formulations (4.21) and (4.24) follows from the same arguments as
in [36, Lemma 9.1], while the convexity of the optimization problem (4.24) is a simple
consequence of the following lemma and [36, Theorem 9.7].

Lemma 4.9 ⟨X , [ρ]−1
p,ωX⟩ with p ∈ (1, 2] is jointly convex in (ρ, X) ∈ D+(H) × B(H).

Proof Note from (4.5) that

⟨X , [ρ]−1
p,ωX⟩ = ⟨%−1/ p̂

σ (X), f [1]p (eω/2p%−1/ p̂
σ (ρ), e−ω/2p%−1/ p̂

σ (ρ))(%−1/ p̂
σ (X))⟩.

Then the statement follows from [118, Lemma 2.3], which shows the joint convexity of
⟨Y , f [1]p (A, B)Y ⟩ for Y ∈ B(H) and full-rank A, B ∈ B+

sa(H). ⊓⊔

We summarize the above discussion in the following proposition.
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Proposition 4.10 W 2
2,p has an equivalent convex optimization formulation (4.24). More pre-

cisely, letρi
0, ρ

i
1 ∈ D(H) for i = 0, 1, and setρs

0 := (1−s)ρ0
0+sρ1

0 andρs
1 := (1−s)ρ0

1+sρ1
1

for s ∈ [0, 1]. Then there holds
W2,p(ρ

s
0, ρ

s
1)

2 ≤ (1 − s)W2,p(ρ
0
0 , ρ

0
1 )

2 + sW2,p(ρ
1
0 , ρ

1
1 )

2.

The main result of this section is Theorem 4.11 below.

Theorem 4.11 (D(H),W2,p) for p ∈ (1, 2] is a complete geodesic space. In particular,
for any ρ0, ρ1 ∈ D(H), the minimizer to (4.24) exists and gives the minimizing geodesic
(γ∗(s))s∈[0,1] connecting ρ0 and ρ1 and satisfying

W2,p(γ∗(s), γ∗(t)) = |s − t |W2,p(ρ0, ρ1), ∀s, t ∈ [0, 1]. (4.25)

The completeness of the metric space (D(H),W2,p) needs the following lemma, which is of
interest itself.

Lemma 4.12 There exists a constant C > 0, independent of p ∈ (1, 2], such that for any
ρ0, ρ1 ∈ D(H),

∥ρ1 − ρ0∥1 ≤ CW2,p(ρ0, ρ1) .

We now give the proofs of Theorem 4.11 and Lemma 4.12.

Proof of Theorem 4.11 We will first show the existence of the minimizer of (4.24)
by direct method. Let

{
(γ (n),B(n))

}
be the minimizing sequence such that

supn
∫ 1
0

∥∥B(n)
∥∥2

−1,p,γ (n) ds < +∞ . We claim that there exists constant C j , depending on
σ ∈ D+(H) and ω j ∈ R, such that

⟨X , [ρ]p,ω j X⟩ ≤ C j ∥X∥22 , ∀ρ ∈ D(H) . (4.26)

To show this, by the representation (4.39) of [ρ]p,ω with notations from Proposition 4.14
below, we first have

⟨X , [ρ]p,ωX⟩ ≤ (p − 1)
(
sup
i,k

θp
(
eω/2pλk,p, e−ω/2pλi,p

) ) ∥∥∥%1/ p̂
σ (X)

∥∥∥
2

2
.

We also note that there exists a closed interval I containing e±ω/2pλk,p for all ρ ∈ D(H),
and that the function θp(x, y) is bounded for x, y ∈ I . Then the claim (4.26) readily follows.
Since B(n) ∈ L1 ([0, 1],B(H)J

)
, we can consider the B(H)J -valued measure B(n)(ds) :=

B(n)(s)ds. Then, for every Borel set E ⊂ [0, 1], we estimate

|B(n)|(E) ≤
∫

E

( J∑

j=1

∥∥∥B(n)
j (s)

∥∥∥
2

2

)1/2
ds

=
∫

E

( J∑

j=1

〈
[γ (n)]−1/2

p,ω j B
(n)
j , [γ (n)]p,ω j [γ (n)]−1/2

p,ω j B
(n)
j

〉 )1/2
ds

≤ CL (E)1/2
(∫

E

J∑

j=1

〈
B(n)
j , [γ (n)]−1

p,ω j
B(n)
j

〉
ds
)1/2

≤ CL (E)1/2
(∫ 1

0

∥∥B(n)∥∥2
−1,p,γ (n)ds

)1/2
< +∞ , (4.27)
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for C := max j {C1/2
j }, where L is the Lebesgue measure on R and the third line is from

Hölder’s inequality and the estimate (4.26). It follows that the total variations of the measures
B(n) are uniformly bounded in n. Hence there exists a subsequence, still denoted by B(n),
converging weakly* to a B(H)J -valued measure B∗. Then, by (4.27), we can obtain

|B∗|(E) ≤ lim inf
n→∞ |B(n)|(E) ≤ CL (E)1/2,

for some constant C , which implies that B∗ ≪ L and hence the R-N derivative B∗ := dB∗
dL

exists. We next prove that γ (n)(s) converges pointwise to some γ (s) : [0, 1] → D(H). For
this, we note

γ (n)(t) − γ (n)(0) = −
∫ t

0
divB(n)(s) ds.

Then by the weak* convergence of B(n) and γ (n)(0) = ρ0, we have the pointwise con-
vergence of γ (n)(s) with the limit denoted by γ∗(s). Moreover, it is easy to check that
γ∗(s) ∈ C([0, 1],D(H)) and B∗ ∈ L1([0, 1],B(H)J ) satisfy the continuity equation. By
dominated convergence theorem, we also have B(B(H))-valued measure [γ (n)(s)]p,ω j ds
weakly* converge to [γ∗(s)]p,ω j ds. Finally, noting the integral representation for [ρ]−1

p,ω
from (2.24) and (4.5):

[ρ]−1
p,ω(·)

= sin((p − 1)π)
π

%−1/ p̂
σ

∫ ∞

0
s p−2g[1]s

(
eω/2p%−1/ p̂

σ (ρ), e−ω/2p%−1/ p̂
σ (ρ)

)
%−1/ p̂

σ (·) ds ,

we have

lim inf
n→∞

∫ 1

0

∥∥B(n)∥∥2−1,p,γ (n) ds

≥ sin((p − 1)π)
π

J∑

j=1

∫ ∞

0
t p−2 lim inf

n→∞

∫ 1

0

〈
%

−1/ p̂
σ

(
B(n)
j (s)

)
, g[1]t

(
eω/2p%−1/ p̂

σ
(
γ (n)(s)

)
, e−ω/2p%

−1/ p̂
σ

(
γ (n)(s)

))
%

−1/ p̂
σ

(
B(n)
j (s)

)〉
dsdt

≥ sin((p − 1)π)
π

J∑

j=1

∫ ∞

0
t p−2

∫ 1

0

〈
%

−1/ p̂
σ

(
B∗, j (s)

)
, g[1]t

(
eω/2p%−1/ p̂

σ
(
γ∗(s)

)
, e−ω/2p%

−1/ p̂
σ

(
γ∗(s)

))
%

−1/ p̂
σ

(
B∗, j (s)

)〉
dsdt

≥
∫ 1

0

∥∥B∗
∥∥2−1,p,γ∗ds , (4.28)

where in the first inequality we have used Fatou’s lemma, and in the second inequality we
have used Theorem 3.4.3 of [30] on the lower-semicontinuity of integral functionals. Then
the estimate (4.28) directly implies that (γ∗,B∗) is a minimizer to (4.24).

Recalling formulations (4.20) and (4.22), by Jensen’s inequality, we find

W2,p(ρ0, ρ1) =
( ∫ 1

0
gp,γ∗(s) (γ̇∗(s), γ̇∗(s)) ds

)1/2
=
∫ 1

0
gp,γ∗(s) (γ̇∗(s), γ̇∗(s))1/2 ds .

It follows that W2,p(ρ0, ρ1)
2 = gp,γ∗(s) (γ̇∗(s), γ̇∗(s)) for s ∈ [0, 1] a.e.. Then, by definition

of W2,p and a time scaling, it is easy to check that the property (4.25) holds. Therefore, we
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have proved that (D(H),W2,p) is a geodesic space. The completeness of the metric space
(D(H),W2,p) is a simple consequence of Lemma 4.12. Indeed, let {ρn} be aCauchy sequence
such that W2,p(ρn, ρm) → 0 as n,m → ∞. Then, by Lemma 4.12, it is also Cauchy in the
complete metric space (D(H), ∥·∥1), which implies that there exists ρ∞ ∈ D(H) such that
∥ρn − ρ∞∥1 → 0 as n → ∞. Similarly to the proof of Lemma 4.8, by ∥ρn − ρ∞∥1 → 0,
we can conclude W2,p(ρn, ρ∞) → 0 as n → ∞. ⊓⊔
Proof of Lemma 4.12 For any δ > 0 and ρ0, ρ1 ∈ D+(H), by Theorem 4.11, there exists a
curve (γ (s),B(s)), s ∈ [0, 1], satisfying γ̇ (s)+divB(s) = 0 with γ (0) = ρ0 and γ (1) = ρ1,
such that

∫ 1

0
∥B(s)∥2−1,p,γ (s) ds ≤ W2,p(ρ0, ρ1)

2 + δ .

It then follows that, by Cauchy’s inequality,

Tr(X(ρ1 − ρ0)) = Tr
(
X
∫ 1

0
γ̇ (s)ds

)
=
∫ 1

0
⟨∇X ,B(s)⟩ds

≤
(∫ 1

0
∥∇X∥2p,γ (s) ds

)1/2 (∫ 1

0
∥B(s)∥2−1,p,γ (s) ds

)1/2

≤
(∫ 1

0

∑

j

⟨∂ j X , [γ (s)]p,ω j ∂ j X⟩ds
)1/2 (

W2,p(ρ0, ρ1)
2 + δ

)1/2
.

(4.29)

To deal with the term ⟨∂ j X , [γ (s)]p,ω j ∂ j X⟩, we next estimate the kernel operator [ρ]p,ω
for ρ ∈ D+ and ω ∈ R. For this, recalling (4.39) below:

[ρ]p,ω(·) = (p − 1)
∑

i,k

eω/2pλk − e−ω/2pλi
(
eω/2pλk

)p−1 −
(
e−ω/2pλi

)p−1 %1/ p̂
σ

(
Ek%

1/ p̂
σ (·)Ei

)
, (4.30)

where λi and Ei are eigenvalues and the associated eigen-projections of %
−1/ p̂
σ (ρ), respec-

tively (we omit the subscript p of λi and Ei for simplicity). By the integral formula (2.24),
we can estimate

1
p − 1

(
eω/2pλk

)p−1 −
(
e−ω/2pλi

)p−1

eω/2pλk − e−ω/2pλi

= sin((p − 1)π)
π

∫ ∞

0
s p−2 log(s + eω/2pλk) − log(s + e−ω/2pλi )

eω/2pλk − e−ω/2pλi
ds

≥ sin((p − 1)π)
π

∫ ∞

0
s p−2 2

2s + eω/2pλk + e−ω/2pλi
ds

= sin((p − 1)π)
π

(
eω/2pλk + e−ω/2pλi

)p−2
∫ ∞

0
s p−2 2

1+ 2s
ds , (4.31)

where the third line is from the elementary inequality:

x − y
log x − log y

≤ x + y
2

for all x, y > 0,

and the last line is by change of variable. We define the constant:

Cp := sin((p − 1)π)
π

∫ ∞

0
s p−2 2

1+ 2s
dt . (4.32)
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By (4.30) and (4.31), there holds
〈
∂ j X , [ρ]p,ω∂ j X

〉

≤ C−1
p

∑

i,k

(
eω/2pλk + e−ω/2pλi

)2−p
〈
%1/ p̂

σ (∂ j X),
(
Ek%

1/ p̂
σ (∂ j X)Ei

)〉

≤ C−1
p

∑

i,k

((
eω/2pλk

)2−p +
(
e−ω/2pλi

)2−p
) 〈

%1/ p̂
σ (∂ j X),

(
Ek%

1/ p̂
σ (∂ j X)Ei

)〉

= C−1
p

〈

%1/ p̂
σ (∂ j X),

(

L(
eω/2p%

−1/ p̂
σ (ρ)

)2−p + R(
e−ω/2p%

−1/ p̂
σ (ρ)

)2−p

)

%1/ p̂
σ (∂ j X)

〉

≤ C−1
p

〈
%1/ p̂

σ (∂ j X),
(
L(

eω/2pσ−1/ p̂
)2−p + R(

e−ω/2pσ−1/ p̂
)2−p

)
%1/ p̂

σ (∂ j X)
〉

≤ C−1
p

(
e(2−p)ω/2p + e(p−2)ω/2p

)
Tr
(
σ (p−2)/ p̂

) ∥∥∥%1/ p̂
σ (∂ j X)

∥∥∥
2

∞

≤ 4C−1
p

(
e(2−p)ω/2p + e(p−2)ω/2p

)
Tr
(
σ (p−2)/ p̂

)
∥σ∥2/ p̂∞

∥∥Vj
∥∥2

∞ ∥X∥2∞ ,

where the second inequality is by (x + y)p ≤ x p + y p for p ∈ (0, 1) and x, y > 0; the third
inequality is by ρ ≤ 1 for all ρ ∈ D(H) and the operator monotonicity of t p for 0 ≤ p ≤ 1;
the fourth inequality is by Hölder’s inequality. Then we arrive at, by (4.29),

∥ρ1 − ρ0∥1 ≤
(
4C−1

p Tr
(
σ (p−2)/ p̂

)
∥σ∥2/ p̂∞

∑

j

(
e(2−p)ω j /2p + e(p−2)ω j /2p

) ∥∥Vj
∥∥2

∞

)1/2
W2,p(ρ0, ρ1) . (4.33)

We finally prove the uniform boundedness of the prefactor in (4.33) for p ∈ (1, 2]. It
suffices to consider the constant Cp in (4.32). By elementary calculation, we derive

2
3

(
1

p − 1
+ 1

2 − p

)
≤
∫ ∞

0

2s p−2

1+ 2s
ds

=
∫ 1

0

2s p−2

1+ 2s
ds +

∫ ∞

1

2s p−2

1+ 2s
ds ≤ 2

p − 1
+ 1

2 − p
,

which immediately gives the following estimates:

2
3
+ O(p − 1) ≤ Cp ≤ 2+ O(p − 1) as p → 1+ ,

and

2
3
+ O(p − 1) ≤ Cp ≤ 1+ O(p − 2) as p → 2 .

The proof is complete. ⊓⊔

We next derive the geodesic equations for the Riemannian manifold (D+(H), gp,ρ).
Instead of regarding the geodesic equation as the Euler-Lagrange equation for the minimiza-
tion problem (4.21) as in [36, 44], we interpret it as the Hamiltonian flow of the Hamiltonian
associated with the metric gp,ρ :

H(ρ,U ) := 1
2
g−1
p,ρ(U ,U ) = 1

2
⟨Dp,ρU ,U ⟩ for ρ ∈ D+(H) and U ∈ B0

sa(H),
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where g−1
p,ρ is the inverse of the metric tensor. Then we can write the geodesic equations:

ρ̇ = δU H(ρ,U ) , U̇ = −δρH(ρ,U ) . (4.34)

By definition, it is clear that δU H(ρ,U ) = Dp,ρU . To find δρH , by Lemma A.3, we have

⟨δρH(ρ,U ), A⟩ = lim
ε→0

1
2

( 〈
Dp,ρ+εAU ,U

〉
−
〈
Dp,ρU ,U

〉 )
/ε

= lim
ε→0

1
2

( 〈
∂ jU , [ρ + εA]p,ω j ∂ jU

〉
−
〈
∂ jU , [ρ]p,ω j ∂ jU

〉 )
/ε

=1
2

J∑

j=1

〈
%1/ p̂

σ (∂ jU ), (δ1θp)
(
(l j (ρ), l j (ρ)), r j (ρ)

)(
l j (A),%1/ p̂

σ (∂ jU )
)〉

+ 1
2

J∑

j=1

〈
%1/ p̂

σ (∂ jU ), (δ2θp)
(
l j (ρ), (r j (ρ), r j (ρ))

)(
%1/ p̂

σ (∂ jU ), r j (A)
)〉

,

(4.35)

where for any X ∈ B(H),

l j (X) := eω j /2p%−1/ p̂
σ (X) , r j (X) := e−ω j /2p%−1/ p̂

σ (X) .

We also note
〈
%1/ p̂

σ (∂ j ′U ), (δ1θp)
(
(l j ′(ρ), l j ′(ρ)), r j ′(ρ)

)(
l j ′(A),%

1/ p̂
σ (∂ j ′U )

)〉

=
〈
%1/ p̂

σ ((∂ jU )∗), (δ1θp)
(
(r j (ρ), r j (ρ)), l j (ρ)

)(
r j (A),%1/ p̂

σ ((∂ jU )∗)
)〉

=
〈
%1/ p̂

σ (∂ jU ), (δ2θp)
(
l j (ρ), (r j (ρ), r j (ρ))

)(
%1/ p̂

σ (∂ jU ), r j (A)
)〉

, (4.36)

where the first equality is from the relations l j (ρ) = r j ′(ρ), r j (ρ) = l j ′(ρ), and (∂ jU )∗ =
−∂ j ′U by (2.8), and the second equality is by the following formula from definitions (A.9)
and (A.10):

⟨X∗, (δ1 f )((A, A), B)(Y , X∗)⟩ = ⟨X , (δ2 f )(B, (A, A))(X , Y )⟩,

for any symmetric f : f (s, t) = f (t, s), X ∈ B(H), Y ∈ Bsa(H), and commuting matrices
A, B ∈ Bsa(H). The identity (4.36) implies that the two sums in (4.35) are actually equal.
Therefore, we obtain from (4.34) and (4.35) the following proposition, where the local
existence and uniqueness of geodesics follow from the standard theory of ODE.

Proposition 4.13 On the Riemannian manifold (D+(H), gp,ρ), the unique constant speed
geodesic (ρ(t))t∈(−ε,ε), ε > 0, with initial data: ρ(0) = ρ0 ∈ D+(H) and ρ̇(0) = ν0 ∈
B0
sa(H), satisfies the equation:

ρ̇ = Dp,ρU ,

⟨U̇ , A⟩ = −
J∑

j=1

〈
∂ jU ,K(i), j

ρ,A

[
∂ jU

]〉
, ∀A ∈ B0

sa(H),
(4.37)
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with ρ(0) = ρ0 and U (0) = D−1
p,ρ0ν0, where i = 1 or 2, and K(i), j

ρ,A is defined by, for
ρ ∈ D(H) and A ∈ B0

sa(H),

K(1), j
ρ,A [·] = %1/ p̂

σ ◦ (δ1θp)
(
(l j (ρ), l j (ρ)), r j (ρ)

)[
l j (A),%1/ p̂

σ (·)
]
: B(H) → B(H),

K(2), j
ρ,A [·] = %1/ p̂

σ ◦ (δ2θp)
(
l j (ρ), (r j (ρ), r j (ρ))

)[
%1/ p̂

σ (·), r j (A)
]
: B(H) → B(H).

(4.38)

We end this section with the observation that the Riemannianmetrics gp,ρ with 1 < p ≤ 2
serve as an interpolating family between themetric defined byCarlen andMass in [35] and the
one induced from the KMS inner product ⟨·, ·⟩σ,1/2. It can be easily proved by an elementary
analysis with the fact, from the analytic perturbation theory [100], that the eigenvalues and
eigenfunctions of %

−1/ p̂
σ (ρ) are differentiable with respect to p.

Proposition 4.14 Suppose that %
−1/ p̂
σ (ρ) has the eigen-decomposition: %

−1/ p̂
σ (ρ) =∑d

j=1 λ j,pE j,p. Then, we have

[ρ]p,ωA =
d∑

i,k=1

θp
(
eω/2pλk,p, e−ω/2pλi,p

)
%1/ p̂

σ

(
Ek,p%

1/ p̂
σ (A)Ei,p

)
, (4.39)

for A ∈ B(H) and p ∈ (1, 2] with θp given in (4.6). Moreover, [ρ]p,ω is continuous in p,
and it holds that

[ρ]2,ωA = %σ (A) ,

and when p → 1+,

[ρ]p,ωA → [ρ]ωA :=
d∑

i,k=1

θlog
(
eω/2λk, e−ω/2λi

)
Ek AEi , (4.40)

where θlog is the logarithmic mean:

θlog(x, y) :=
{

x−y
log x−log y , x ̸= y ,

x , x = y ,

and λ j are eigenvalues of ρ with E j being the associated rank-one eigen-projections: ρ =∑d
j=1 λ j E j .

Recalling the integral formula: x−y
log x−log y =

∫ 1
0 x1−s ys ds, we can write the operator [ρ]ω

in (4.40) as

[ρ]ω(A) =
∫ 1

0
eω(1/2−s)ρ1−s Aρs ds , A ∈ B(H) ,

which is nothing but the noncommutative multiplication by ρ involved in the definition of
the quantum 2-Wasserstein distanceW2 [34, 35]. It follows that in the limiting case p → 1+,
our transport distance W2,p reduces to the one W2 introduced by Carlen and Maas. When
p = 2, the representation (4.24) of W2,p gives

W2,2(ρ0, ρ1)
2 = inf

{ ∫ 1

0

J∑

j=1

⟨Bj ,%
−1
σ Bj ⟩ ds ; γ̇ (s)+ divB(s) = 0 with γ (0) = ρ0 , γ (1) = ρ1

}
,

(4.41)
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which has a similar form as the classical distance W2,α,γ in (1.8) with α = 0, and thus
can be regarded as a quantum analog of dual Ḣ−1 Sobolev distance. These facts allow us
to (at least formally) conclude that our new family of quantum distances W2,p interpolates
the noncommutative 2-Wasserstein and the Ḣ−1 Sobolev ones. One may further expect
a stronger result that for ρ0, ρ1 ∈ D(H), W2,p(ρ0, ρ1) is continuous in p ∈ (1, 2] and
W2,p(ρ0, ρ1) → W2(ρ0, ρ1) as p → 1+, but this task seems to be challenging, and we leave
it for future investigation.

4.3 Ricci Curvature and Functional Inequalities

In this section, we will investigate the entropic Ricci curvature lower bound in terms of
p-divergence Fp,σ (ρ) with p ∈ (1, 2]. Thanks to the gradient flow structure obtained in
Sect. 4.1, we are allowed to derive some new functional inequalities from the Ricci curvature
lower bound: a quantumHWI-type inequality and a transportation cost inequality, and connect
them with the quantum Beckner’s inequality (Bec-p), in the spirit of Otto and Villani [94].

Let us first introduce the Ricci curvature in our setting. We follow the terminology of [44,
53], and say that a primitive QMS Pt with σ -GNS DBC has the Ricci curvature lower bound
κ ∈ R associated with Fp,σ if

d2

ds2

∣∣∣
s=0

Fp,σ (γ (s)) ≥ κgp,γ (0)(γ̇ (0), γ̇ (0)), (4.42)

whereγ (s), s ∈ (−ε, ε), is a geodesic satisfyingγ (0) = ρ ∈ D+(H).We compute the second
derivative of Fp,σ along the constant-speed geodesic γ (s). For this, noting the Riemannian
gradient (4.11) of Fp,σ , by definition, we have

d
ds

Fp,σ (γ (s)) = −gp,γ (s)(γ̇ (s),L†(γ (s))) = −⟨U (s),L†(γ (s))⟩ , (4.43)

where (γ ,U ) is the unique solution to (4.37). Then, differentiating (4.43) again with respect
to s, we obtain

d2

ds2

∣∣∣
s=0

Fp,σ (γ (s)) = −⟨U̇ (s),L†(γ (s))⟩ − ⟨U (s),L†(γ̇ (s))⟩
∣∣∣
s=0

=
J∑

j=1

〈
∂ jU (0),K(i), j

ρ,L†(γ (0))

[
∂ jU (0)

] 〉
−
〈
U (0),L†(Dp,γ (0)U (0))

〉
.

(4.44)

Recall that the Riemannian Hessian of Fp,σ at ρ ∈ D+(H) is defined by, for U ∈ B0
sa(H),

HessFp,σ (ρ)[U ,U ] := d2

ds2

∣∣∣
s=0

Fp,σ (γ (s)) ,

where (γ (s),U (s)) satisfies the geodesic equation (4.37) with initial conditions γ (0) = ρ,
U (0) = U , and γ̇ (0) = Dp,ρU . We readily conclude from the formula (4.44) that

HessFp,σ (ρ)[U ,U ] =
J∑

j=1

〈
∂ jU ,K(i), j

ρ,L†(ρ)

[
∂ jU

] 〉
−
〈
U ,L†(Dp,ρU )

〉
, ∀U ∈ B0

sa(H) .

(4.45)
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Hence, it follows from definition that (4.42) is equivalent to

HessFp,σ (ρ)[U ,U ] ≥ κ⟨U ,Dp,ρU ⟩ , (Ricp(L) ≥ κ)

for ρ ∈ D+(H) and U ∈ B0
sa(H). The next proposition provides several equivalent charac-

terizations of (Ricp(L) ≥ κ), in terms of the κ-geodesic convexity of Fp,σ (ρ), the gradient
estimates, and the evolution variational inequality. In what follows, we will use the notation:

d+

dt
f (t) = lim sup

h→0+

f (t + h) − f (t)
h

. (4.46)

Proposition 4.15 Let Pt be a primitive QMS satisfying σ -GNS DBC with σ ∈ D+(H). For
κ ∈ R, (Ricp(L) ≥ κ) is equivalent to the following statements:

(i) Fp,σ (ρ) is geodesically κ-convex on (D(H),W2,p), that is, for any constant-speed
geodesic (γ (s))s∈[0,1] ⊂ D(H),

Fp,σ (γ (s)) ≤ (1 − s)Fp,σ (γ (0))+ sFp,σ (γ (1)) − κ

2
s(1 − s)W2,p(γ (0), γ (1))2 .

(4.47)

(ii) For any ρ0, ρ1 ∈ D(H), the following evolution variational inequality (EVI) holds:
∀t ≥ 0,

1
2
d+

dt
W2,p(P†

t ρ0, ρ1)
2 + κ

2
W2,p(P†

t ρ0, ρ1)
2 ≤ Fp,σ (ρ1) − Fp,σ (P†

t ρ0) . (4.48)

(iii) The following gradient estimate holds: for ρ ∈ D+(H) and U ∈ B0
sa(H), ∀t > 0,

∥∇Pt (U )∥2p,ρ ≤ e−2κt ∥∇U∥2
p,P†

t ρ
.

(iv) The following contraction of the transport distance W2,p along the gradient flow holds:

W2,p(P†
t ρ0,P†

t ρ1) ≤ e−κtW2,p(ρ0, ρ1) ∀ρ0, ρ1 ∈ D+(H).

Proof The equivalence: (Ricp(L) ≥ κ)⇐⇒ (i) ⇐⇒ (i i) can be proved in the same manner
as [44, Theorem 3] with the gradient flow techniques from [42, 51, 95]; see also [36, Theorem
10.2]. (Ricp(L) ≥ κ) ⇐⇒ (i i i) follows from a similar semigroup interpolation argument
as in the proof of [36, Theorem 10.4], while the proof of (Ricp(L) ≥ κ) ⇐⇒ (iv) can be
easily modified from those of Proposition 3.1 and (2.12) of [42]. ⊓⊔

With the notion of Ricci curvature, we next prove some interesting implications between
functional inequalities, following the arguments of Otto and Villani [94] (see also [44,
53]). We start with an HWI-type inequality, which relates the generalized quantum transport
distance W2,p , the quantum p-divergence Fp,σ , and the entropy production (p-Dirichlet
form) Ep,L. The following lemma will be used later on.

Lemma 4.16 Let ρ, ρ̃ ∈ D+(H) and ρt = P†
t ρ. Then there holds, for t ≥ 0,

d+

dt
W2,p(ρt , ρ̃) ≤ 2

p

√
Ep,L(%

−1
σ (ρt )) .

Proof By definition (4.46) and the triangle inequality, we have

d+

dt
W2,p(ρt , ρ̃) = lim sup

s→0+

1
s

(
W2,p(ρt+s, ρ̃) − W2,p(ρt , ρ̃)

)
≤ lim sup

s→0+

1
s
W2,p(ρt , ρt+s) .
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The expression (4.22) with a time scaling gives

W2,p(ρt , ρt+s) ≤
∫ t+s

t

√
gp,γ (τ )(γ̇ (τ ), γ̇ (τ )) dτ ,

for any smooth curve γ in D+(H) such that γ (t) = ρt and γ (t + s) = ρt+s . Note from
(3.16) and (4.12) that

gp,γ (τ )(γ̇ (τ ), γ̇ (τ )) =
4
p2

Ep,L(%
−1
σ (γ (τ ))) .

Therefore, we can find

d+

dt
W2,p(ρt , ρ̃) ≤ lim sup

s→0+

1
s

∫ t+s

t

2
p

√
Ep,L(%

−1
σ (γ (τ ))) dτ = 2

p

√
Ep,L(%

−1
σ (ρt )).

⊓⊔

Theorem 4.17 If (Ricp(L) ≥ κ) holds for some κ ∈ R, then the following HWI-type
inequality holds:

Fp,σ (ρ) ≤ 2
p
W2,p(ρ, σ )

√
Ep,L(%

−1
σ (ρ)) − κ

2
W2,p(ρ, σ )

2, for all ρ ∈ D(H). (4.49)

Proof It suffices to consider ρ ∈ D+(H), since D+(H) is dense in D(H) and the inequality
(4.49) is continuous with respect to ρ. Letting ρt = P†

t ρ for ρ ∈ D+(H), we derive from
Lemma 4.16 that

−1
2
d+

dt

∣∣∣
t=0

W2,p(ρt , σ )
2 = lim inf

t→0+

1
2t

(
W2,p(ρ, σ )

2 − W2,p(ρt , σ )
2)

≤ lim sup
t→0+

1
2t

(
W2,p(ρ, ρt )

2 + 2W2,p(ρ, ρt )W2,p(ρt , σ )
)

≤ 2
p

√
Ep,L(%

−1
σ (ρ))W2,p(ρ, σ ) .

Then, by above estimate, recalling the EVI (4.48) in Proposition 4.15 with ρ0 = ρ and
ρ1 = σ , we obtain

Fp,σ (ρ) ≤ −1
2
d+

dt

∣∣∣
t=0

W2,p(ρt , σ )
2 − κ

2
W2,p(ρ, σ )

2

≤ 2
p
W2,p(ρ, σ )

√
Ep,L(%

−1
σ (ρ)) − κ

2
W2,p(ρ, σ )

2 .

⊓⊔

As a direct consequence of Theorem 4.17 above, in the case of positive Ricci curvature
lower bound, we can obtain the quantum Beckner’s inequality.

Corollary 4.18 If (Ricp(L) ≥ κ) holds for some κ > 0, then the quantum p-Beckner’s
inequality (3.18) holds with constant αp ≥ κ/2.

Proof By Theorem 4.17 and Young’s inequality, we have

Fp,σ (ρ) ≤ 2
p

( 1
2C

W2,p(ρ, σ )
2 + C

2
Ep,L(%

−1
σ (ρ))

)
− κ

2
W2,p(ρ, σ )

2 .

Letting C = 2/(pκ), by definition (3.18), we complete the proof. ⊓⊔
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Another implication of positive Ricci curvature is the finite diameter of the metric space
(D(H),W2,p), which can be viewed as a noncommutative Bonnet-Myers theorem.

Corollary 4.19 If (Ricp(L) ≥ κ) holds for some κ > 0, then it holds that

sup
ρ0,ρ1∈D(H)

W2,p(ρ0, ρ1)
2 ≤ 8

κ p(p − 1)
(σ

1−p
min − 1), (4.50)

where σmin is the minimal eigenvalue of the invariant state σ ∈ D+(H).

Proof Note that the geodesic convexity (4.47) gives

κ

8
W2,p(ρ0, ρ1)

2 ≤ 1
2
Fp,σ (ρ0)+

1
2
Fp,σ (ρ1) . (4.51)

Then the estimate (4.50) follows from (3.2), (2.33), and (4.51). ⊓⊔

We say that a primitive QMS with σ -GNS DBC satisfies a transport cost inequality
associated with the distance W2,p with constant c > 0 if for all ρ ∈ D(H),

W2,p(ρ, σ ) ≤
√
cFp,σ (ρ) . (TCp)

We will show the chain of quantum functional inequalities (1.10).

Proposition 4.20 Suppose that p-Beckner’s inequality (3.18) holds for some p ∈ (1, 2]. Then
the transport cost inequality (TCp) holds with constant c ≥ 1/αp.

Proof Again, it suffices to consider ρ ∈ D+(H). Let ρt = P†
t ρ and define the function

h(t) := W2,p(ρt , ρ)+
√
cFp,σ (ρt ) , t ≥ 0 .

Clearly, h(t) satisfies that h(0) = √cFp,σ (ρ) and h(t) → W2,p(σ, ρ) as t → ∞ by (2.1).

We now claim that when c ≥ 1/αp , d+
dt h(t) ≤ 0 holds for t ≥ 0, which completes the proof.

By Lemma 4.16 and (3.16), when ρt ̸= σ , we compute

d+

dt
h(t) ≤ 2

p

√
Ep,L(%

−1
σ (ρt )) − 2

√
c

p2
√
Fp,σ (ρt )

Ep,L
(
%−1

σ (ρt )
)

= 2
p

√
Ep,L(%

−1
σ (ρt ))

(
1 −

√
c

p
√
Fp,σ (ρt )

√
Ep,L(%

−1
σ (ρt ))

))
≤ 0 ,

where the last inequality follows from c ≥ 1/αp and the Beckner’s inequality (3.18). If
ρt0 = σ for some t0, then ρt = σ for t ≥ t0 and hence d+

dt h(t) = 0 for t ≥ t0. ⊓⊔

Proposition 4.21 If the transport cost inequality (TCp) holds with constant c, then the
Poincaré inequality (PI f ) holds with f = ϕp and constant λ ≥ 2/c.

Proof We consider X ∈ Bsa(H) with Tr(σ X) = 0, and define ρε = %σ (1 + εX). Recall
Theorem 4.11 and let (γε,Bε) be the minimizer to (4.24) for W2,p(ρε, σ ). Then, note from
(3.9) that

∥X∥2σ,ϕp
= 1

ε2

〈
5

κ1/p
σ (ρε − σ ),

∫ 1

0
−divBε(s)ds

〉

≤ 1
ε2

( ∫ 1

0

∥∥∥∇5
κ1/p
σ (ρε − σ )

∥∥∥
2

p,γε(s)
ds
)1/2( ∫ 1

0
∥Bε(s)∥2−1,p,γε(s) ds

)1/2
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≤ 1
ε2

( ∫ 1

0

∥∥∥∇5
κ1/p
σ (ρε − σ )

∥∥∥
2

p,γε(s)
ds
)1/2

W2,p(ρε, σ ) , (4.52)

by using the continuity equation in the first line, and Cauchy’s inequality in the second line.
Applying (TCp) with the expansion (3.34), by definition (3.1) of Fp,σ (ρ) and the relation
(3.9), we find

1
ε
W2,p(ρε, σ ) ≤

√
c
2

∥X∥2σ,ϕp
+ O(ε) . (4.53)

A direct computation with (3.7) and Lemma 4.4 gives

∂ j5
κ1/p
σ (ρε − σ ) = ε∂ j%

−1
σ ϕp(*σ )Rσ %−1

σ %σ X

= ε∂ j [σ ]−1
p,0%σ X

= ε[σ ]−1
p,ω j

%σ ∂ j X . (4.54)

By the proof of Lemma 4.8, ∥ρε − σ∥1 → 0 as ε → 0 implies W2,p(ρε, σ ) → 0, which
further yields W2,p(γε(t), σ ) = |1 − t |W2,p(ρε, σ ) → 0, as ε → 0, for all t ∈ (0, 1).
Moreover, using Lemma 4.12, we have ∥γε(t) − σ∥1 → 0, as ε → 0, for t ∈ (0, 1). It
follows from the dominated convergence theorem that

1
ε2

∫ 1

0

∥∥∥∇5
κ1/p
σ (ρε − σ )

∥∥∥
2

p,γε(s)
ds

(4.54)=
J∑

j=1

∫ 1

0
⟨[σ ]−1

p,ω j
%σ ∂ j X , [γε(s)]p,ω j [σ ]−1

p,ω j
%σ ∂ j X⟩

→
J∑

j=1

∫ 1

0
⟨%σ ∂ j X , [σ ]−1

p,ω j
%σ ∂ j X⟩ (4.14)= −⟨X ,LX⟩σ,ϕp , as ε → 0 .

Combining the above formula with (4.52) and (4.53), we conclude

∥X∥2σ,ϕp
≤ − c

2
⟨X ,LX⟩σ,ϕp .

⊓⊔

We have seen that the entropic Ricci curvature lower bound (Ricp(L) ≥ κ) can imply a
sequence of quantum functional inequalities. A natural and important following-up question
is how to estimate the lower bound κ for the Ricci curvature. Following closely the arguments
in [36, Theorem 10.6], we can explicitly estimate the Ricci curvature lower bound for the
depolarizing semigroup by definition (Ricp(L) ≥ κ).

Proposition 4.22 Let Ldepol be the generator (2.12) for the depolarizing semigroup with
γ > 0 and σ = 1/d. Then the Ricci curvature of Ldepol is bounded below by γ p/2.

Proof Note from the definition of Ldepol that ∂ jLdepol = −γ ∂ j . Recalling (4.45), and we
compute

−⟨LdepolU ,Dp,σU ⟩ = γ d1−p
J∑

j=1

⟨∂ jU , θp(ρ, ρ)∂ jU ⟩ .
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By definition (4.38), we can also calculate

J∑

j=1

〈
∂ jU ,K(1), j

ρ,L†
depol(ρ)

[
∂ jU

] 〉
= γ d1−p

J∑

j=1

〈
∂ jU , (δ1θp)

(
(ρ, ρ), ρ

)[ 1
d

− ρ, ∂ jU
]〉

= γ d1−p
J∑

j=1

〈
∂ jU , L 1

d −ρ(∂1θp)(ρ, ρ)[∂ jU ]
〉
,

since L†
depol = γ

( 1
d − ρ

)
. Similarly, we have

J∑

j=1

〈
∂ jU ,K(2), j

ρ,L†
depol(ρ)

[
∂ jU

] 〉
= γ d1−p

J∑

j=1

〈
∂ jU , R 1

d −ρ(∂2θp)(ρ, ρ)[∂ jU ]
〉
.

It follows that

HessFp,σ (ρ)[U ,U ]

= 1
2

J∑

j=1

〈
∂ jU ,

(
K(1), j

ρ,L†
depol(ρ)

+K(1), j
ρ,L†

depol(ρ)

) [
∂ jU

] 〉
−
〈
U ,L†

depol(Dp,ρU )
〉

= γ d1−p
J∑

j=1

〈
∂ jU ,

( 1
2d

∂1θp +
1
2d

∂2θp +
p
2

θp
)
(ρ, ρ)[∂ jU ]

〉

≥ d1−p pγ
2

J∑

j=1

〈
∂ jU , θp(ρ, ρ)[∂ jU ]

〉
= pγ

2
⟨U ,Dp,ρU ⟩ ,

where the second line is from x∂xθp(x, y) + y∂yθp(x, y) = (2 − p)θp(x, y); the third
inequality follows from ∂xθp(x, y)+ ∂yθp(x, y) ≥ 0 by the concavity of x p−1. ⊓⊔

However, similarly to the case of estimating the functional inequality constant, there are
very few examples where the explicit expressions of the Ricci curvature lower bounds can
be obtained. To avoid the complicated computation and estimation based on the definition
(Ricp(L) ≥ κ), Carlen and Maas [35] consider the following intertwining property of a
QMS: for some κ ∈ R and all j ,

∂ jPt = e−κtPt∂ j , (4.55)

which can be verified for many interesting cases, e.g., Fermi and Bose Ornstein-Uhlenbeck
semigroups [35, Section 6]. They showed that under the condition (4.55), the Ricci curvature
of the QMS Pt associated with the relative entropy D(ρ∥σ ) is bounded from below by κ .
The key step in their argument is the monotonicity of the action functional:

⟨P†
t A, [P†

t ρ]−1
ω P†

t A⟩ ≤ ⟨A, [ρ]−1
ω A⟩ , (4.56)

wherePt is the primitive QMS satisfying σ -GNSDBC. To extend their approach to our case,
we need to show a similar monotonicity result as (4.56) for ⟨A, [ρ]−1

p,ωA⟩. It is a nontrivial
task, since ⟨A, [ρ]−1

p,ωA⟩ is not 1-homogeneous so that the contractivity of ⟨A, [ρ]−1
p,ωA⟩ under

P†
t can not be implied from its joint convexity [76]. For the symmetric QMS, Pt = P†

t is the
unital quantum channel for each t . Note that [119, Theorem 5.1] has shown that

⟨0(A), [0(ρ)]−1
p,00(A)⟩ ≤ ⟨A, [ρ]−1

p,0A⟩, ∀ρ ∈ D+(H), A ∈ B(H), (4.57)
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holds for any unital quantum channel 0. Thus, in this case, it is straightforward to conclude
as in [36, Theorem 10.9] that if the primitive symmetric QMSPt satisfies the property (4.55),
then its Ricci curvature associated withFp,σ has a lower bound κ . It is known [35, 36] that the
infinite temperature Fermi Ornstein-Uhlenbeck semigroup is symmetric and satisfies (4.55)
with κ = 1, which readily gives that it has Ricci curvature lower bound 1 and then Beckner’s
inequality (Bec-p) holdswithαp ≥ 1/2 byCorollary 4.18. But it seems not easy to extend the
monotonicity result (4.57) beyond the symmetric regime, namely, to show the monotonicity
⟨A, [ρ]−1

p,ωA⟩ under quantum channels with σ -GNS DBC. We choose to investigate it in the
future.

5 Conclusions and Discussion

We have introduced the families of quantum Beckner’s inequalities (Bec-p) and (Bec’-q)
on a finite-dimensional matrix algebra that interpolate between Sobolev-type and Poincaré
inequalities. The basic properties of Beckner’s inequality, e.g., the monotonicity, the uniform
positivity, and the stability of the optimal constant, have been investigated in detail. We have
also discussed their relationswith the hypercontractivity and other known quantum functional
inequalities and applied Beckner’s inequalities (Bec-p) to estimating the mixing time and
deriving moment estimates. Furthermore, we have provided a quantum optimal transport
framework for analyzing Beckner’s inequalities. In doing so, we have defined a new class
of quantum transport distances W2,p such that the QMS with σ -GNS DBC is the gradient
flow of the p-divergence Fp,σ . The main properties of the metric space (D(H),W2,p) have
been analyzed. We have then introduced the associated entropic Ricci curvature and showed
that it could yield a number of implications between (Bec-p), (PI), an HWI-type inequality,
and a transport cost inequality. This provides an interesting starting point for an optimal
transport-inspired approach to study quantum Beckner’s inequalities.

We briefly discuss below some further generalizations and applications of our results
and methods. The details and refinements of these results might be worth being reported
elsewhere.

• As mentioned in the introduction, the tensorization property for quantum functional
inequalities ismuchmore subtle than classical ones. Some tensorization-type results have
been obtained for quantumMLSI and LSI, e.g., [73, Lemma 25], [17, Section 4] and [105,
Theorem 9]; see also [74, 87]. By comparison results in Sect. 3.3, these results can be
easily adapted to provide dimension-independent lower bounds for the quantum Beckner
constantαp(L) in certain scenarios. For instance, let;t (X) = e−t X+ 1

2 (1−e−t )Tr(X)1
be the qubit depolarizing channel. [74, Theorem 1] shows that

∥∥;⊗n
t (X)

∥∥
q, 1

2n
≤ ∥X∥p, 1

2n
, for q ≥ p > 1 , t ≥ log

√
q − 1
p − 1

.

Then, by Lemma 3.16 and Proposition 3.17, we have αp ≥ 1
p β̃p ≥ 1

2p for p ≥ 1.
• Thanks to Lemma 3.3, we can estimate the strong data processing inequality constant

for the quantum p-divergence Fp,σ in terms of the χ2
κ1/p

-contraction coefficient, in the
sense of [63, Theorem 4.1]. We can also discuss the stability of the data processing
inequality for the divergenceFp,σ similarly to [69, Proposition 5.1] and the approximate
tensorization property of Fp,σ similarly to [63, Theorem 5.1].

• It is straightforward to generalize the arguments in [114] to derive the dual formulation for
the distanceW2,p in terms of noncommutativeHamilton-Jacobi-Bellman-type equations.
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Indeed, a formal calculation gives

1
2
W 2

2,p(ρ0, ρ1)

= sup
{
Tr(A(1)ρ1 − A(0)ρ0) ; Tr( Ȧ(t)ρ)+ 1

2
∥∇A(t)∥2p,ρ ≤ 0 , ∀ρ ∈ D(H)

}
.

The above dual formula allows us to fit our distance W2,p into the general framework of
noncommutative transportation metrics recently proposed in [62], and to further discuss
the coarse Ricci curvature of quantum channels with respect to W2,p . Moreover, in view
of [116], it is also straightforward to consider the curvature-dimension conditions for
quantum systems and investigate the finite-dimensional version of quantum Beckner’s
inequalities (Bec-p).

• Note that one main ingredient for our analysis is Alicki’s theorem in Lemma 2.3, which
actually holds for the QMS with σ -GNS DBC on an arbitrary finite-dimensional unital
∗-subalgebra; see [113, Corollary 5.4]. Hence, we are allowed to extend most results in
this work to the QMS not necessarily acting on B(H) but only on a ∗-subalgebra which
includes the finite state Markov chain as a special case; see also [36]. In particular, it
connects the classical Beckner’s inequality with a class of Wasserstein distance, which
enables us to investigate the Beckner constant for Markov chains in terms of the Ricci
curvature lower bound as in [55].

• For the numerical computation of functional inequality constants, there is a recent
research line attempting to estimate the classical log-Sobolev constant by the sum-of-
squares relaxation [56]. It is interesting to extend their method to quantum functional
inequalities.

We conclude with some interesting and important open questions.

• There are two technical questions we are unable to solve. The first one is stated in Remark
4.7: for a primitive Lindbladian L satisfying [σ ]p,0-DBC,

Ep,L(%
−1
σ (ρ)) > 0, for ρ ∈ D+(H) with ρ ̸= σ. (5.1)

The case of p = 1 has been proved in [29, Proposition6.2], fromwhich we easily see that
the key step for (5.1) is the convexity of p-Dirichlet formEp,Lwhich seems open.Another
one is mentioned at the end of Sect. 4: the monotonicity ⟨0(A), [0(ρ)]−1

p,ω0(A)⟩ ≤
⟨A, [ρ]−1

p,ωA⟩ under quantum channels with σ -GNS DBC, for which the characterization
for such channels [17, Lemma 13] might be helpful. Addressing these questions would
directly make our results more complete.

• One important feature of the classical Beckner’s inequality is its ability to capture the
tail behavior of the family of probability measures: dµα(x) = cαe−(1+x2)α/2dx on R
with α ∈ [1, 2], which satisfies the Poincaré inequality for all α but satisfies LSI only for
α = 2 [11, 14, 75]. In detail, [75] considers the following variant of (1.7): for a ∈ [0, 1]
and some Ca > 0,

sup
q∈[1,2)

1
(2 − q)a

(
µ[g2] − µ[gq ]2/q

)
≤ CaE(g, g) , (5.2)

where µ is a probability measure. It can be shown that the measure µα satisfies the
inequality (5.2) with parameter a ∈ [0, 1] if and only if α ≥ 2

2−a ; see [11, Section 7.6]. It
would be verymuch desirable to find a similar example in the quantum setting.Moreover,
whilewe have obtained several generic results for the quantumBeckner constant, it would
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also be beneficial to establish more quantitative estimates (even numerically) for some
concrete, physically meaningful models, for instance, the quantum spin system [32]
and the quantum Markov semigroups constructed from the classical ones via the group
transference [59]. In view of these, it seems necessary to develop the theory of quantum
Beckner’s inequalities on a general von Neumann algebra to access more advanced
examples to enrich the applications; see [26, 27, 112, 115] and references therein for
recent progress on quantum MLSI in the operator algebra framework.

• We have only considered the quantum Beckner’s inequality for the primitive QMS. It
would be very useful to extend the theory to the non-primitive setting, which might be
necessary for the general tensorization results and most of the applications. The study of
non-primitive quantum functional inequalities is initiated by Bardet [12] and has become
an active research topic in recent years. Here, we have included a short discussion on the
non-primitive Beckner’s inequality in Appendix C to stimulate the further investigation
in the spirit of recent works [26, 27, 59, 63].
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Appendix A: Some Additional Preliminaries

A.1: Quantum !2-Divergence

In this appendix, we briefly recall the quantum χ2-divergences introduced in [104]. For any
σ ∈ D+(H) and κ : (0,∞) → (0,∞), we define the operator:

5κ
σ = R−1

σ κ(*σ ) : B(H) → B(H) . (A.1)

Recalling J f
σ in (2.4), clearly there holds

(5κ
σ )

−1 = J 1/κσ . (A.2)

The quantum χ2
κ -divergence for ρ ∈ D(H) and σ ∈ D+(H) is defined by

χ2
κ (ρ, σ ) = ⟨ρ − σ,5κ

σ (ρ − σ )⟩ . (A.3)

To make the divergence χ2
κ (·, ·) have nice properties, we usually consider κ in the following

functional class:

K = {κ : (0,∞) → (0,∞) ; κ is operator convex, xκ(x) = κ(x−1), κ(1) = 1}.
For the purposes of this work, the following family of power difference means in K is of
particular interest [67]:

κα = α

α − 1
xα−1 − 1
xα − 1

, α ∈ [−1, 2] . (A.4)
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In fact, the kernel function of the operator J 1/kσ in (A.2) is given by

Mα = yκ−1
α (x/y) = α − 1

α

xα − yα

xα−1 − yα−1 ,

which is the so-called A-L-G interpolation mean since Mα , for α = −1, α = 1/2, α = 1,
and α = 2, gives the harmonic mean, the geometric mean, the logarithmic mean, and the
arithmetic mean, respectively.

A.2: Noncommutative Calculus

In this appendix, following [12, 36], we review some fundamentals about noncommuta-
tive calculus associated with the derivation ∂ j . Let A, B ∈ Bsa(H) admit the spectral
decompositions:

A =
d∑

i=1

λi Ai , B =
d∑

k=1

µk Bk ,

where λi and µk are eigenvalues of A and B, respectively; Ai and Bi are the associated
rank-one spectral projections. For a function f ∈ C(I × I ) with I being a compact interval
containing the spectra of A and B, we define the Schur multiplier (double sum operator) by
[22, 45, 98]

f (A, B) =
d∑

i,k=1

f (λi , µk)L Ai RBk , (A.5)

whereC(I × I ) is the Banach space of complex-valued continuous functions on I × I . It was
observed in [12] that given A, B ∈ Bsa(H), f (A, B) is ∗-representation between C(I × I )
and B(B(H)). Indeed, we have the following lemma from [12, Lemma 4.1] and [36, Lemma
6.6].

Lemma A.1 Let A, B ∈ Bsa(H) and the compact interval I contain the spectra of A and B.
It holds that

1. f (A, B)g(A, B) = ( f g)(A, B) for f , g ∈ C(I × I ).
2. If f ∈ C(I × I ) is non-negative, then f (A, B) is a positive semidefinite operator on

B(H) with respect to the inner product ⟨·, ·⟩. It follows that if f is strictly positive, the
sequilinear form ⟨·, f (A, B)(·)⟩ defines an inner product on B(H).

In this work, we mainly consider the case where f is the divided difference of some
differentiable function ϕ on I :

ϕ[1](λ, µ) =
{

ϕ(λ)−ϕ(µ)
λ−µ , λ ̸= µ ,

ϕ′(λ) , λ = µ ,
(A.6)

which is closely related to the chain rule for ∂ j (cf. [12, Lemma 4.2] and [36, Proposition
6.2]).

Lemma A.2 Under the same assumption as in Lemma A.1, for any f : I → C, we have, for
V ∈ B(H),

V f (B) − f (A)V = f [1](A, B)(V B − AV ) . (A.7)
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Then, by Lemma A.2, for a differentiable curve A(t) : (a, b) → B(H) and function f , we
have

d
dt

f (A(t)) = f [1](A(t), A(t))(A′(t)) . (A.8)

We also need a multiple operator version of (A.8). We recall that for a differentiable function
ϕ : Rn → C, the partial divided difference δ jϕ : Rn+1 → C with respect to the variable x j
is defined by

(δ jϕ)(x1, . . . , x j−1, (λ, µ), x j+1, . . . , xn) =
(
ϕ(x1, . . . , x j−1, ·, x j+1, . . . , xn)

)[1]
(λ, µ) .

(A.9)

Let A(k), k = 1, . . . , n, be self-adjoint operators with the spectral decompositions: Ai =∑
i λ

(k)
i A(k)

i , where λ
(k)
i are eigenvalues and A(k)

i are the associated rank-one spectral pro-
jections. For a function ϕ : I × · · · × I → C with the interval I containing the spectra of
A(i), the multiple operator sum is defined as:

ϕ(A1, . . . , An) =
d∑

i1,··· ,in=1

ϕ(λ
(1)
i1

, · · · , λ(n)in )A(1)
i1

⊗ · · · ⊗ A(n)
in . (A.10)

The following chain rule from [36, Proposition 6.8] shall be useful in the expression of the
geodesic equations for the generalized quantum transport distance.

Lemma A.3 Let the curves At , Bt : (a, b) → Bsa(H) be differentiable, and letϕ : I× I → C
be differentiable with I containing the spectra of At and Bt for all t ∈ (a, b). Then there
holds

∂tϕ(At , Bt )(·) = (δ1ϕ)((At , At ), Bt )[∂t At , ·] + (δ2ϕ)(At , (Bt , Bt ))[·, ∂t Bt ].

Appendix B: Note on the Detailed Balance Condition

Noting (4.13), it follows from Lemma 2.2 that the QMS satisfying σ -GNS DBC is also
self-adjoint with respect to the inner product ⟨·, ·⟩[σ ]p,0 . In this appendix, we modify the
discussions in [36, Appendix B] and [20, Appendix B] to show that the [σ ]p,0-DBC, for
p ∈ (1, 2), and KMS DBC are not comparable, and that there exists a primitive QMS
satisfying [σ ]p,0-DBC but not σ -GNS DBC.

Let {|0⟩ , |1⟩} be the standard basis of C2, and |v1⟩ = 1√
2
(|0⟩+ |1⟩) and |v2⟩ = 1√

5
(|0⟩+

2 |1⟩) be an another basis ofC2. We define the quantum channel0(X) = K ∗
1 XK1+K ∗

2 XK2
with K1 = |v1⟩ ⟨0| and K2 = |v2⟩ ⟨1|. It is easy to see that the associated unique invariant
state of 0† is

σ = 1
7

[
2 3
3 5

]
,

and the spectrum of 0† is given by {1, 3
10 , 0} with 0 of multiplicity two. We denote by

0
†
KMS the adjoint of 0 with respect to the KMS inner product and define ; = 0

†
KMS0,

which is also a quantum channel with ;†(σ ) = σ but satisfying the KMS DBC. Note
that for a linear map 0 on B(H) satisfying both [σ ]p,0-DBC and KMS DBC, there holds
g(*σ ) ◦ 0 = 0 ◦ g(*σ ), where g(x) = κ1/p(x)x1/2 and g(*σ ) = [σ ]−1

p,0%σ . By definition
(A.4), we have g(1/x) = g(x). Then, by exactly the same argument as in [20, Appendix B],

123

Interpolation Between Modified Logarithmic Sobolev and... 161Page 63 of 70



we can show that the operator ; defined above does not commute with g(*σ ) and hence the
Lindbladian ; − id satisfies the KMS DBC but not [σ ]p,0-DBC.

We next consider ;̃ := [σ ]−1
p,0 ◦ ;† ◦ %σ , which is a quantum channel, since the operator

[σ ]−1
p,0 is completely positive for p ∈ (1, 2) by [68, Example 4.7]. Then we can check from

definition that ;̃ satisfies the [σ ]p,0-DBC. Again, since ; defined above does not commute
with g(*σ ), neither does ;̃. Hence, the Lindbladian ;̃ − id satisfies [σ ]p,0-DBC but not
KMS DBC.

We conclude with an example of a primitive QMSwith [σ ]p,0-DBC but not σ -GNSDBC.
The construction is modified from [20] as well. We define, for some η ∈ (0, 1/2),

K1 =
[√

η 0
0

√
1 − η

]
, K2 =

[
0

√
η√

1 − η 0

]
,

and the associated quantum channel 0(X) = K ∗
1 XK1 + K ∗

2 XK2, which has the unique
invariant state:

σ =
[
η 0
0 1 − η

]
.

It is direct to verify [σ ]−1
p,0 ◦ 0† = 0 ◦ [σ ]−1

p,0, i.e., 0 satisfies the [σ ]p,0-DBC. However, it
was shown in [20] that σ -GNS DBC does not hold for 0. It follows that the generator 0− id
is the desired example.

Appendix C: Beckner’s Inequality for Non-primitive QMS

In this appendix, we introduce p-Beckner’s inequality with p ∈ (1, 2] for the non-primitive
QMS and show that it holds for any QMS satisfying GNSDBC, which extends [63, Theorem
3.3] for MLSI.

Let Pt = etL be a non-primitive QMS with a full-rank invariant state σ ∈
D+(H), which may be non-unique. We introduce the fixed-point algebra F :=
{X ∈ B(H); ∀t ≥ 0, Pt (X) = X}, and denote the associated conditional expectation by EF .
It is known from [58, 63] that EFPt = Pt EF = EF and for X ∈ B(H),

lim
t→∞Pt (X − EF (X)) = lim

t→∞Pt (X) − EF (X) = 0 . (C.1)

Similarly, Beckner’s inequality quantifies the convergence rate of (C.1) in terms of the p-
divergence (3.1). We consider QMS that satisfies σ -GNS DBC as in Definition 2.1, which
is well-defined since the self-adjointness of L with respect to ⟨·, ·⟩σ,1 is independent of the
choice of invariant state σ ; see [63, Lemma 2.6]. We compute the entropy production of
Fp,σ (ρ) as in (3.16): for ρt = P†

t (ρ) with ρ ∈ D+(H),

d
dt

∣∣∣
t=0

Fp,E†
F (ρ)

(ρt ) = − 4
p2

Ep,L(X) , X = %−1
E†
F (ρ)

(ρ) ,

where Ep,L is given in (2.17) with σ = E†
F (ρ). Hence, we can define the non-primitive

Beckner’s inequality as (3.18): for some αp > 0 and any ρ ∈ D+(H),

αpFp,E†
F (ρ)

(ρ) ≤ p−2Ep,L
(
%−1
E†
F (ρ)

(ρ)
)
, (C.2)

which is equivalent to the exponential convergence:Fp,E†
F (ρ)

(P†
t (ρ)) ≤ e−4αptFp,E†

F (ρ)
(ρ).
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We introduce the subalgebra index for the fixed-point algebra F by

C(EF ) = inf
{
c > 0 ; ρ ≤ cE†

F (ρ) , ∀ρ ∈ D(H)
}
, (C.3)

which is finite in the finite-dimensional setting [97, Theorem 6.1]. For a primitive QMS with
the unique invariant state σ ∈ D+(H), the index (C.3) reduces to

C(σ ) := inf{c > 0 ; ρ ≤ cσ for all ρ ∈ D(H)} , (C.4)

which is closely related to the max-relative entropy D∞ in (2.32) and can be explicitly
represented by (2.33),

C(σ ) = sup
ρ∈D(H)

exp (D∞(ρ∥σ )) = σ−1
min . (C.5)

We also recall the spectral gap (Poincaré constant) λ(L) for a non-primitive Lindbladian L:

λ(L) = inf
X∈B(H)

−⟨X ,L(X)⟩σ, f
∥X − EF (X)∥2σ, f

,

for an invariant state σ ∈ D+(H) and function f : (0,∞) → (0,∞), where the inner
product ⟨·, ·⟩σ, f is given in (2.5). It was proved in [63, Lemma 3.2] that λ(L) is independent
of the choice of σ and f . We are now prepared to give the following result.

Theorem C.1 Let Pt = etL be a QMS satisfying σ -GNS DBC for some σ ∈ D+(H). Then
the Beckner’s inequality (C.2) holds for all p ∈ (1, 2] with constant αp(L) satisfying the
estimate:

αp(L) ≥ p
4
C(EF )p−2λ(L) . (C.6)

Proof We consider the relative density X = %−1
E†
F (ρ)

(ρ) for ρ ∈ D+(H) and then have

p2Fp,E†
F (ρ)

(ρ)

= p
p − 1

( ∥X∥p
p,E†

F (ρ)
− 1
)

≤ p ∥X − 1∥2
E†
F (ρ),ϕp

≤ −λ(L)−1 p⟨X ,LX⟩E†
F (ρ),ϕp

,

(C.7)

by using E†
F%σ = %σ EF for any invariant state σ and the upper estimate in (3.12). By

definition (C.3) and formulas (2.19) and (3.10), it follows from Lemma 3.2 that

− ⟨X ,LX⟩σ,ϕp

=
〈
%1/p

σ

(
∂ j X

)
, f [1]p

(
eω j /2pσ 1/p, e−ω j /2pσ 1/p)%1/p

σ

(
∂ j X

)〉

≤ C(EF )2−p
〈
%1/p

σ

(
∂ j X

)
, f [1]p

(
eω j /2p%1/p

σ (X), e−ω j /2p%1/p
σ (X)

)
%1/p

σ

(
∂ j X

)〉

≤ 4p−2C(EF )2−pEp,L(X) , (C.8)

where σ = E†
F (ρ) and X = %−1

E†
F (ρ)

(ρ). Therefore, by (C.7) and (C.8), we obtain

p2Fp,E†
F (ρ)

(ρ) ≤ 4
pλ(L)

C(EF )2−pEp,L
(
%−1
E†
F (ρ)

(ρ)
)
.

The proof is complete by (C.2). ⊓⊔
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Remark C.2 If Pt in Theorem C.1 is primitive, then we have αp ≥ p σ
2−p
min λ/4, which is

asymptotically worse than the one in (3.43) for fixed σmin ≤ 1/2 and p close to 1 or fixed
p ∈ (1, 2] and small enough σmin.

Remark C.3 When p → 1+, the lower bound (C.6) reduces to the one in [63, Theorem3.3] for
MLSI constant, which has been improved very recently in [60, Theorem 4.18] by Gao et al.
with a logarithmic dependence on the complete version of subalgebra index. One may hence
expect a similar improvement for αp(L) as well, which we leave for future investigation.
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