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Abstract—Hydrologic connectivity plays a critical role in un-
derstanding and managing environmental processes. The spatial
characterization of hydrologic connectivity often relies on hydro-
topographic delineation using Geographic Information Systems
(GIS) and digital terrain models (DEMs). Recent advancements
in LiDAR technology have provided high-resolution DEMs that
accurately represent topographic conditions. However, accurately
delineating hydrologic connectivity using LiDAR DEMs faces
challenges, particularly in the presence of virtual flow barriers
such as roads and bridges which impede water flow and act as
“digital dams.” This paper addresses the need for an efficient and
effective approach to detect the locations of drainage structures,
such as roads and bridges, which significantly impact hydrologic
connectivity. While previous studies have shown that incorpo-
rating drainage structures improves the delineation of drainage
flows, the availability of consistent and high-quality drainage
structure datasets remains limited. Therefore, this study aims to
develop a methodology that utilizes deep learning (DL) frame-
works to detect drainage structures by leveraging their unique
topographic patterns on LiDAR DEMs and supplemental GIS
datasets. The paper explores multiple advanced deep learning-
based object detection models, including Faster RCNN, DINO,
DETR:DINO and YOLOVS5, to analyze the distinctive patterns
exhibited by drainage structures. These models are trained to
spatially detect the locations of drainage structures by recogniz-
ing the specific ’signatures” present in their topographic patterns.
The investigation of these state-of-the-art DL frameworks for
drainage structure detection represents a novel approach that
extends the current understanding of utilizing DL techniques
in the field of hydrologic connectivity analysis. We performed
both quantitative and qualitative analyses, and propose a novel
evaluation framework to demonstrate that DINO:DETR and
Faster-RCNN methods are both capable of correctly identifying
culvert locations and outperform DETR and YOLOvS methods.

Index Terms—Faster RCNN, DINO, DINO:DETR, YOLOVS,
LiDAR Elevation Data, DEMs, GIS, Advanced DL methods
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I. INTRODUCTION

Hydrologic connectivity in a landscape is critical to un-
derstand a range of environmental management issues, such
as tracking the nutrient transport for diffuse pollution runoff
[1] [2]. The spatial characterization of hydrologic connectiv-
ity often involves hydro-topographic delineation using Geo-
graphic Information Systems (GIS) and digital terrain models
(DEMs). In recent decades, high-resolution DEMs products,
mostly generated from Light Detection and Ranging (LiDAR)
technology, have demonstrated their excellent performance in
representing topographic conditions in subtle spatial details
compared with conventional DEMs [3]. According to the U.S.
Geological Survey’s 3D Elevation Program, it is expected
to have “the first-ever national baseline of consistent high-
resolution” LiDAR elevation data by 2023 [4]. However, accu-
rate delineation of hydrologic connectivity using these LiDAR
DEMs still exhibits a unique challenge. Many studies have
shown that drainage flowlines derived from LiDAR DEMs is
susceptible to virtual flow barriers (e.g., roads and bridges),
which function as ‘digital dams’ [5] [6] [7]. This is especially
the case in agricultural areas, where the gentle terrain is
widely segmented by rural road networks. Previous studies
have shown that the incorporation of drainage structures such
as culverts and bridges can improve the delineation of drainage
flows over the landscape [6] [8] [9]. However, such a drainage
structure dataset is largely unavailable, or merely available
with inconsistent format and quality. Although the dataset may
be developed based on transportation infrastructure records
maintained by state transportation agencies, or by on-screen
digitization, these methods suffer from the problems of data
completeness, accuracy, and/or labor intensity. Therefore, it
is imperative to develop an approach that can efficiently and



effectively detect the locations of drainage structures.

The objective of this study is to develop deep learning (DL)
models capable of spatially detecting the locations of drainage
structures using spatial images that represent topographic and
landscape characteristics. In this regard, this paper makes a
significant contribution by exploring multiple advanced DL-
based object detection models, including Faster RCNN [10],
DETR [11], DINO:DETR [12] and YOLOVS5 [13]. These
models are employed to analyze the unique topographic
patterns exhibited by drainage structures on LiDAR DEMs
dataset. By leveraging the distinctive ’signatures’ present in
these patterns, the proposed models aim to efficiently and
effectively detect the locations of drainage structures. The
investigation of state-of-the-art DL frameworks for drainage
structure detection represents a novel approach that expands
our current understanding of using DL techniques in hydro-
logic connectivity analysis. Additionally, it introduces a new
framework of metrics to enhance our comprehension of model
performance in this specific use case.

The paper is organized as follows: Section II will provide
a review of related works. Section III describes the study area
and dataset. Section IV provides a background on DL-based
object detection methods. In Section V-A and B, our proposed
models are presented along with a novel evaluation framework.
Section V-C covers the experimental design, evaluation, and
results. Finally, in Section VI, we conclude the paper.

II. RELATED WORK

Research has indicated that drainage structures have exhib-
ited unique topographic patterns on the LiDAR DEMs and
other supplemental GIS datasets such as aerial orthophotos
[14] [15]. These patterns can be leveraged as unique ‘signa-
tures’ to guide the detection of drainage structures through DL
frameworks. DL has shown excellent performance comparable
to human performance for solving a wide range of geographic
object classification and detection. For example, Ye et al.
detected landslides from images using Deep Belief Network
(DBN) [16]. For terrain feature mapping, Li and Hsu detected
a large collection of terrain features from remotely sensed
images using a Faster-RCNN approach [17]. Xu et al. adopted
an attention U-Net framework and LiDAR DEMs for devel-
oping detailed streamline detection, resulting in an improved
performance over traditional machine learning methods [18].
The flow barriers from road embankments were recognized
as an important issue to be addressed for future research
[19]. Our previous work proved convolutional neural network
(CNN) models can achieve high classification accuracy and
good model transferability for identifying images containing
drainage structure locations [14] [20]. However, it is unclear if
a deep learning framework can be extended for detecting the
locations of objects with bounding boxes. In this paper, we
explore the application of advanced DL-based object detection
algorithms, including Faster RCNN, DINO, DETR:DINO, and
YOLOVS, for the spatial detection of drainage structures.

TABLE 1
DATA SOURCES OF LIDAR-DERIVED HRDEMS AND AERIAL
ORTHOPHOTOS
. Vertical
Data Locations Sources Rfsl:)‘;tl;:)n Accuracy N;::efe :f
utt RMSE P
West Fork Big Blue Nebraska
DEM watershed, Department of 1.0m 0.185m 2022
Nebraska Natural Resource
Vermilion River [linois
A Geospatial Data 0.30m 0.36m 1011
‘Watershed, Illinois -
Clearinghouse
Maple River North Dakota
Watershed, North GIS Hub Data 0.61m 0.15m 613
Dakota Portal
Sacramento-Stone
Corral Watershed, USGS 1.0m 0.196m 2388
California
Aerial USGS National
Orthoy lholoi Four Watersheds Agriculture Imagery 1.0m - 6034
P : Program (NAIP)

III. DATASET

Our data was collected in four study areas - West Fork
Big Blue Watershed in Nebraska, Vermilion River Watershed
in Illinois, Maple River Watershed in North Dakota, and
Sacramento-Stone Corral Watershed in California (Fig. 1).
The landscapes of these areas are dominated by relatively
flat terrains and dense road networks. We selected these four
watersheds because they represent major agricultural systems
in the United States. We downloaded LiDAR DEMs and 4-
band aerial orthophotos from federal and state agencies. The
sources and specifications of these datasets are shown in Table
L
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Fig. 1. Topography and locations of four study areas [15]

The data are formatted as 32-bit TIF files, each records ter-
rain elevation data of 800x800 segments of a larger region. The
entire dataset is comprised of 6k samples (whose geographical
distribution is outlined in Table I) of various topographical
segments containing either one or more culverts. Example
images can be seen in Fig. 6.

IV. GENERAL APPROACH

Many traditional object detection models face challenges
when it comes to accurately detecting drainage structures in
LiDAR DEMs. This is primarily because drainage structures
have unique topographic patterns that may differ significantly



from other objects or features in the landscape. Traditional
object detection models often rely on predefined patterns
or templates that may not adequately capture the distinct
characteristics of drainage structures. As a result, these models
may struggle to accurately identify and delineate drainage
structures from LiDAR DEM data. Although prior research has
demonstrated the benefits of incorporating drainage structures
in drainage flow delineation, there is a scarcity of consistent
and high-quality drainage structure datasets. To address this
gap, our study aims to develop a methodology that employs
DL frameworks to detect drainage structures by leveraging
their unique topographic patterns on LiDAR DEMs and sup-
plemental GIS datasets.

In this section, we will assess the effectiveness of three
prominent DL based object detection architectures in solving
our drainage structures detection (culvert/bridge detection)
problem. A key to adapting many object detection models
to our use case is framing culvert detection as both object
detection (locating an object or bounding box label) as well as
classification (identifying the detected object’s classification).
While our task is not inherently a classification problem, as
we know all “objects” of interest are culverts, it is required to
utilize existing models whose architectures are framed around
both locating a bounding box as well as classifying the object
within. To solve this problem, we represent our task as both
culvert detection as well as binary classification. Our object
classes were defined as “Culvert/Bridge” and “Background”.
In other words, each object could be classified as either a
culvert, or not. With this modification, our task adapts to the
detection-and-classification paradigm of many object detection
models allowing for easier adaptation for our use case.

A. Faster-RCNN

Faster-RCNN [10] utilizes two model components, a Region
Proposal Network (RPN) and an object classifier. The RPN
is implemented as a convolutional network whose output is
a series of proposed regions (boxes potentially bounding the
location of a culvert) as well as 2 scores (for each proposal)
representing the probability of being a culvert or not. The
proposed regions then feed forward into the second model
component, a classifier which shares the convolutional layers’
learned features (which are referred to as a feature map). The
classifier’s output then gives a classification to all regions
of interest. Fig. 2 outlines this process, we can see the
convolutional network takes input and learns a feature map.
These features are given to the RPN, whose output feeds
to the classifier along with the feature maps for analysis.
Additionally, pre-trained resnet-50 [21] was used as the back-
end convolutional neural network for this model.

Potential advantages of Faster-RCNN include its reduced
parameter size which helps reduce overfitting on our limited
dataset size, as well as its competitive run time speed for real
time image analysis [10] (which benefits any further users of
our model).

B. DETR

Detection Transformer (DETR) is an end to end object de-
tection model consisting of a *"Backbone’ convolutional neural
network as well as a transformer (encoder-decoder) model. As
seen in Fig. 3 the backbone CNN model creates an activation
map of features from the input image to be supplied to the
transformer for further use. The transformer’s encoder learns
positional embeddings called ’Object (culvert) Queries”. The
decoder takes object (culvert) queries as input and outputs into
a feed forward neural network directly converting transformer
output to predicted bounding boxes. Then some matching
algorithm (such as bipartite matching) is used to relate the
predictions to ground truth labels. We used a Resnet50 [21]
as the backbone CNN for the DETR model.

C. DINO: DETR

DINO [12] represents an advanced end-to-end object detec-
tion system that surpasses DETR-like models in terms of both
efficacy and efficiency. The model incorporates DAB-DETR
[22], DN-DETR [23], and Deformable DETR [24] strategies,
including a contrastive denoising training methodology, a
mixed query selection technique for anchor initialization, and
a look forward twice scheme for box prediction.

Similar to DETR [11], the DINO [12] architecture consists
of a backbone, a multi-layer transformer encompassing an
encoder and decoder, and multiple prediction heads. Fig.4
shows the process of culvert detection using DINO model.
Resnet50 serves as the backbone to extract multi-scale fea-
tures from input images. These extracted features, along with
positional embeddings, are then fed into the encoder for
enhanced feature representation. To initialize the anchors and
positional queries for the decoder, a mixed query selection
approach is employed while retaining the learnable aspect of
content queries. By utilizing deformable attention, the encoder
outputs are combined with initialized anchors and learnable
content queries, resulting in feature fusion and iterative query
refinement. The final outputs are generated by refining anchor
boxes and predicting classification results based on refined
content features.

To enhance training efficiency and detection performance,
this model formulates positional queries as dynamic anchor
boxes and is trained with an additional DN loss. A query
selection process generates class embeddings, which are used
to predict the object class for each detection. Class embeddings
are learned representations of each class (or category) in the
dataset.

D. YOLO and YOLOvS

”You Only Look Once” or YOLO for short, is an object
detection model which reframes object detection as a single
regression problem, simplifying the detection pipeline while
maintaining accuracy [25]. By combining all components into
a single neural network, YOLO predicts bounding boxes for
multiple object classes simultaneously, enabling it to detect a
wide range of objects within a single pass.
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Fig. 2. The Flowchart outline of the Faster-RCNN model applied to our use case of identifying culverts.
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Fig. 3. Example usage of the DETR model and architecture in culvert analysis.

YOLO’s primary methodology involves dividing an image
into an NxN grid, where each cell in the grid is responsible for
determining if the center of an object falls within its bounds,
predicting a set number of potential bounding boxes, as well
as predicting class probabilities for objects that may or may
not fall in the grid cell. An example of this process can be
visualized in Fig. 5 This model’s greatest advantage is its
highly competitive analysis speed.

YOLOVS is the fifth iteration improvement on the original
YOLO algorithm, and the version used in our experiments.
While retaining the same fundamental algorithm, it contains
several hardware acceleration improvements (for faster train-
ing times) as well as architectural improvements such as the
addition of a multi-scale learning system, allowing the model
to analyze images across various sizes (scales) during a single
pass through.

YOLOVS is also available in various parameter sizes: nano,
small, medium, large, and Xlarge. The nano size is used in our
experiments because the reduced number of parameters will
help mitigate the effects of overfitting on our limited dataset
size.

E. Data Preparation

In our approach, the images are first compressed to 8 bits
and normalized between 0 and 255 to simplify processing,
reduce computational complexity, and enhance visibility.

Each image is labeled with the exact coordinates for all of
its present culverts (which we will refer to as “centroids”),
as well as a "Culvert” class label for each. To represent the

ground truth labels, a variable-width bounding box centered
around each culvert centroid is defined. In our experiments, a
bounding box with side lengths of 100 pixels yielded optimal
results for both model training and qualitative evaluation.

Information of all bounding boxes for a given image is then
stored in each tested model’s respective file format: Pascal
VOC XML for Faster-RCNN, COCO for DETR models,
and YOLO DarknetTXT for YOLOvVS. Each image-file pair
represents a single data sample for model training.

It is also important to note that only true class labels (those
marked as “Culvert”) are used in the data, as any non-culvert
feature on an image would be an arbitrary label and could
technically count as a "False’ or 'Background’ classification,
and thus does not provide any additional value.

To further enhance the training process and promote gen-
eralization, we employ Albumentations [26], a popular data
augmentation library. This allows us to apply various trans-
formations to the data, such as image flipping, rotation, and
shifting, augmenting the dataset for improved training and
generalization performance.

In all experiments, to evaluate the advanced object detection
models, we divide data into train, validation, and test sets,
where final evaluations were performed on a reserved and non-
utilized set of data randomly drawn from the total pool of
images across all geographical regions.
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V. RESULTS AND DISCUSSION

A. Experimental Setup

Our tested models utilize publicly available pre-trained
weights, which are then fine tuned on our dataset. Fine-tuning
allows us to utilize prior knowledge and boosts performance
on our relatively limited dataset size.

To consider which culvert predictions to keep in the pres-
ence of many potential outputs, we cannot match culverts
to their nearest prediction, as this would leave us no way
to select outputs in the absence of labels (such as in an
applied setting, searching for culvert locations). To combat this
problem, we set a “Confidence Threshold” parameter for each
model, allowing a consistent and non-label dependent method
to consider which model outputs are worthy of evaluation.

Confidence Threshold is defined as a number between 0
and 1, representing the model’s prediction confidence needed
to consider a bounding box proposal as an official model
prediction. This hyper-parameter allows us to tune the balance
between a model’s false positive and negative rates. A low

confidence threshold results in a high prediction rate and many
proposed bounding boxes, a high threshold results in much
more limited predictions.

An example of the threshold values effects can be seen in
Fig. 12. The model makes a set of predictions that are filtered
to meet the minimum confidence threshold. As the threshold
increases in value, less confident predictions are filtered out,
leaving only predictions which meet the new threshold.

The exception to the threshold rule is the base DETR
model, which due to architecture limitations, we select its top-
k results. We find that a k of 2 (such that we are taking only
the top two predictions) works best, as we do not want to
severely skew results by consistently guessing several extra
culvert locations when many of the images contain only a
single culvert.

Notable parameters such as learning rate and detection
threshold are listed in Table II. Abbreviations used in the table
are defined as follows: Stochastic Gradient Descent (SGD),
Adam Optimization (Adam), an alternate weight decaying
version of Adam (AdamW), Learning Rate (LR), Weight



(a)

(b)

Fig. 6. Five randomly chosen images from the dataset, after preprocessing. Normalized into visual range for display. An example culvert can be seen clearly
in image (d), where the roadway traveling horizontally across the screen intersects the waterway traveling vertically down through the center. It is important

to note that while not apparent, all images contain at least a single culvert.

TABLE II
MODEL PARAMETERS

Model Faster RCNN DETR DETR: DINO YOLOVS
Optimizer SGD AdamW AdamW SGD
Optimizer Ll:A::'OOI LR =.0001 LR =.0001 Lﬁ - .(;1
Parameters WD = 005 WD = .0001 WD = .0005 WD = 001

Top
Confidence 7 Two 3 1
Threshold .
Choices

Decay (WD), and Momentum (M).

The Yolov5-nano model was used in our tests. The “nano”
version of the model is a reduced size architecture that has
significantly less parameters. This benefits our limited dataset
size, allowing for more impactful fine tuning. Additionally, a
much smaller detection threshold of 0.1 was used to consider
this model’s predictions.

B. Metrics

The unique nature of our drainage crossing (culvert) de-
tection analysis presents challenges for conventional object
detection methods. Unlike typical scenarios where multiple
classes need to be distinguished, our objective is to simply
identify the presence of a single class label within an image.
Consequently, traditional object detection approaches may
not be directly applicable. To achieve a comprehensive and
accurate assessment of model performance, we propose a
framework for quantitatively analyzing the models’ ability to
identify culverts. In evaluating the performance of a model, we
consider its overall effectiveness across the following metrics:

o Accuracy: The accuracy of which the model correctly
identifies all culverts (Accuracy).

¢ IOU: Intersection Over Union of predicted bounding
boxes.

o Extra: Rate of predicting extra labels and bounding
boxes.

o Miss: Rate the model misses the presence of a culvert.

Accuracy Defined as the percent of culverts correctly
identified out of the total being present. Because there can
be multiple culvert locations with multiple predicted locations,
we must first map predictions to their most likely culvert label.

First, we find the centroid for each prediction and culvert (the
ground truth label centroid). Then each prediction centroid is
mapped to its closest available ground truth centroid. Accuracy
is then computed as a percentage of ground truth labels
which have been assigned a culvert prediction. This process
is visualized in Fig. 7

This value does not account for any extra predictions (e.g.
if there is a single culvert present in an image and two
predictions are made, only the correctly identified culvert is
counted). We compensate for this discrepancy with the "Extra”
value.

Fig. 7. Example assignment of predictions (red) to their closest possible
label (green) before computing performance metrics. The two furthest right
predictions would count as both a miss and a single "Extra” label.

IOU Intersection over union is used to account for the
accuracy of the predicted bounding boxes which have been
mapped to each label. While accuracy reveals when the model
correctly identifies the presence of a culvert, we must analyze
whether the predicted bounding box correctly and precisely
locates the culvert in the image.

IOU is the value used to describe the percentage overlap
of two shapes. It takes the intersection of two shapes (area
of overlap) and divides by the union (the area of both shapes
together) and is defined in (1). A visualization of the equation
is also available in Fig. 8.
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Extra Accounts for the rate at which a given model provides
too many bounding boxes. As defined in (2) the Extra value
is computed as the number of extra labels predicted (that are
not mapped to a potential ground truth label) over the total
number of ground truth labels. For example, if there are 3
culverts present in an image and the model predicts 4, the
number of extra labels would be 1. This would result in an
Extra rate of 1/3 or, 1 extra prediction in 3 labels.

Area of Union

Extra predicted labels
FExtra =
Total True Labels

Miss accounts for the rate at which a given model provides
too little bounding boxes. We define Miss, shown in (3), as
the number of unpredicted labels present in a given image,
out of the total. For example, if there are 3 culverts present in
an image and the model predicts bounding boxes for 2, this
would result in a Miss rate of 1/3, or 1 miss in 3 labels.

(@)

Unpredicted Labels 3)
Total True Labels

Quantitative model performance is based on the average
values for each of the above metrics averaged across all
validation data samples.

Miss =

C. Results and Discussion

State of the art object detection techniques each offer unique
advantages and disadvantages. As will be seen in the following
results, architecture changes can drastically change both model
performance and behavior. These differences are further exac-
erbated by our limited data set size of six thousand samples,
as real world data is not always available in the quantities
commonly used for newer state of the art models. Decreased
data quantity poses an increased risk of both overfitting to
limited samples, as well as underfitting when models have too
many parameters to train and not enough samples to do so.

Culvert detection provides a unique challenge to traditional
object detection algorithms. Culverts do not have distinct
object boundaries the way a physical object, such as a ball
or a car would. A culvert, for the purpose of model training,

is defined not only by its visible features but also its bounding
box label which may or may not include non-relavent back-
ground. In essence, the signature” (features that indicate an
object) are much more loosely defined and rely partly on a
bounding box label rather than just visible features.

There is also the additional challenge of terrain resolution.
Because images are normalized for model use, minute high-
resolution details that may have once been present in LIDAR
imaging can be lost. This in turn results in instances of very
difficult to identify culverts. One such example can be seen
in Fig. 13 (a) and (c), where the model classifies the roadway
rather than the culvert because its loss in resolution renders
the culvert nearly invisible.

Thresholding model predictions according to confidence
played a large role in understanding model performance.
Fig. 12 outlines the same model (DETR: DINO) generating
predictions across three different threshold values. Model
architecture has a large impact on how sensitive model confi-
dence is on potentially identified culverts. This means tuning
the threshold value for each model is key in optimizing its
performance.

Because model architectures have varying degrees of sensi-
tivity when generating confidence for their predictions, thresh-
olding adjustment allows us to tune how a model is interpreted
for evaluation. If a model is highly sensitive, high threshold
values can be used to reign in overly confident but poorly
placed predictions. Conversely, if a model’s architecture results
in overall low confidence scores, we can adjust the threshold
value to be lower, fine tuning what model output will be
considered as a prediction. We find that each architecture must
strike its own balance. Threshold values for our experiments
can be found in Table II.

Table III outlines the overall results of all models. The
highest accuracy model was DETR: DINO, while the model
with the most accurate bounds was Faster-RCNN. While it
may seem that DETR:DINO lacks in performance due to its
notably high Extra rate, we will see in the following sections
that upon further qualitative analysis, it provides accurate
and competitive predictions even when considering its large
number of extra predictions.

TABLE Il
PERFORMANCE BY MODEL.
Model Accuracy | IOU | Miss | Extra
Faster RCNN 723 557 | 277 194
DETR 510 004 | 364 .100
DETR: DINO 778 024 | 221 .507
YOLOVS5 .335 358 | .665 016

1) Faster-RCNN: The Faster RCNN model shows clear
promise in its performance. Fig. 9 shows various examples
generated from the model to display its different behaviors.
While there are some images such as in Fig. 9 (a) in which the
model massively over-predicts, it has a high IOU rate and low
overall Extra rate (Table III) , indicating over predictions do
not happen frequently, and that there is a high rate of overlap



(a) (b)

(d)

Fig. 9. A variety of validation samples generated by the Faster-RCNN model. Model predictions are denoted in red. (a) shows an instance where the model
predicts only a single culvert when there are many, (b) shows a handful of quite precise predictions, (c) shows a clear miss, (d) is another accurate prediction,
(e) is an instance where the model was capable of finding a culvert that was missed in the data labeling process.

between true and predicted bounding boxes. In addition to pre-
cise bounding boxes in the remaining images it is particularly
notable to see its ability to classify and locate the unlabeled
culvert in image (e) that was initially overlooked by those
creating the dataset.

2) DETR: DETR performance was somewhat hindered by
its top-k selection of bounding boxes. This is consequently the
reason behind its low extra rate and should thus be disregarded
for this model (Table III). Additionally its low IOU indicates
that the bounds it did detect, were rarely accurate. The primary
issue with its performance, as can be seen in Fig. 10, is its
tendency to generate large enveloping predictions, resulting in
a low IOU.

3) DETR: DINO: The choice of the detection threshold
value has a significant impact on the DINO model’s perfor-
mance, with particular implications observed in the context of
culvert detection. Fig.12 illustrates the diverse behaviors of the
DINO model across various examples, with distinct outcomes
observed for three different threshold values, demonstrating
its particular sensitivity in confidence values for predictions.
Adjusting the threshold from 0.3 to 0.1 increases the number
of detected culverts and also increases false positives. For a
threshold of 0.1, the model produces 270% more bounding
boxes than there are objects, resulting in an inflated accuracy
and very high extra rate. For a threshold of 0.2, the model
results in 100% more bounding boxes, with an 88% accuracy.
However, when the threshold is 0.3, the model generates
only 50% more boxes, resulting in an accuracy drop of 77%.
Because of this, a model threshold of 0.2 was used in its final
results.

DETR:DINO achieves the highest accuracy of the tested
models, however its sensitivity in prediction confidence results
in many extra bounding predictions (Table III). This conse-
quently decreases the model’s IOU rating drastically, as many
extra predictions that do not fall on a correct bounding box
have no intersection.

Despite its low IOU, a qualitative analysis of sample outputs
such as in Figure 11 show that its predictions can be quite
accurate, particularly when its extra predictions are correctly
limited.

Treshold =0.1 Treshold =0. 2 Treshold = 0.3

Sample Image 1

Sample Image 2

Sample Image 3

Fig. 12. Validation samples generated by DINO model over various threshold
values. Model predictions are outlined in green. Notice how threshold increase
filters out lower confidence predictions.

4) YOLOvS5: Our YOLOvVS model had lower than expected
overall accuracy (Table III). A notable result is the stunningly
low “Extra” rate, as the model was incredibly reserved in its
confidence values. The model was evaluated on a confidence
threshold of 0.1 (meaning only a confidence of 10% was
needed to count a prediction) and yet it still has an extra
rate of approximately 1.6%. This means the drop in accuracy
is largely due to a lack of predictions, with a notably small
confidence across many predictions. Low confidence values
are likely a consequence of the architecture, as its output
contains a very large number of predictions, resulting in small
probability differences between each prediction. Examples can
be seen in Fig. 13 in which single predictions (as indicated by
the low extra rate) are either relatively accurate, or completely
off.

VI. CONCLUSIONS

In this study, we developed an efficient methodology for
detecting drainage structures, specifically culverts and bridges,
using DL based object detection frameworks. Through quanti-
tative and qualitative analyses, we found that DINO:DETR and
Faster-RCNN methods outperformed DETR and YOLOVS in



(a) (b)

(d) (e)

Fig. 10. A series of DETR output examples showcasing model tendency to create bounds that are far too large, resulting in low IOU. As well as examples

of misplaced bounds (model output is red, culvert labels are green).

(b)
Fig. 11. A series of DETR:DINO output examples (model output is red, culvert label is green).

(a) (b) (©) (d)

()

(d)

Fig. 13. A series of YOLOVS output examples (model output is red, culvert label is green).

accurately identifying culvert locations. Our research empha-
sizes the potential of these advanced DL models for object de-
tection in improving the delineation of hydro-topographic fea-
tures and enhancing our understanding of hydrologic connec-
tivity. Applying these DL frameworks for detecting drainage
structures represents a new approach in the field of hydrologic
connectivity analysis. Our findings underscore the ability of
these models to significantly enhance the accuracy and effi-
ciency of hydro-topographic delineation, especially in areas
where flow barriers create challenges for water movement.

VII. FUTURE WORK

It still remains to be seen how well models trained on a
single geographical region can transfer to different regions,
particularly those outside the US. Additionally, it may be
fruitful to explore how different architectures perform on
objects with more or less distinct signatures (for example,
a culvert bounding box is more loosely defined than the
presence of a person, or visibly apparent object). There is also
a potential that different geographical archetypes and terrain

types (such as mountains, flatlands, desert, etc.) may be more
or less difficult to analyze.
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