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Abstract—Hydrologic connectivity plays a critical role in un-
derstanding and managing environmental processes. The spatial
characterization of hydrologic connectivity often relies on hydro-
topographic delineation using Geographic Information Systems
(GIS) and digital terrain models (DEMs). Recent advancements
in LiDAR technology have provided high-resolution DEMs that
accurately represent topographic conditions. However, accurately
delineating hydrologic connectivity using LiDAR DEMs faces
challenges, particularly in the presence of virtual flow barriers
such as roads and bridges which impede water flow and act as
”digital dams.” This paper addresses the need for an efficient and
effective approach to detect the locations of drainage structures,
such as roads and bridges, which significantly impact hydrologic
connectivity. While previous studies have shown that incorpo-
rating drainage structures improves the delineation of drainage
flows, the availability of consistent and high-quality drainage
structure datasets remains limited. Therefore, this study aims to
develop a methodology that utilizes deep learning (DL) frame-
works to detect drainage structures by leveraging their unique
topographic patterns on LiDAR DEMs and supplemental GIS
datasets. The paper explores multiple advanced deep learning-
based object detection models, including Faster RCNN, DINO,
DETR:DINO and YOLOv5, to analyze the distinctive patterns
exhibited by drainage structures. These models are trained to
spatially detect the locations of drainage structures by recogniz-
ing the specific ”signatures” present in their topographic patterns.
The investigation of these state-of-the-art DL frameworks for
drainage structure detection represents a novel approach that
extends the current understanding of utilizing DL techniques
in the field of hydrologic connectivity analysis. We performed
both quantitative and qualitative analyses, and propose a novel
evaluation framework to demonstrate that DINO:DETR and
Faster-RCNN methods are both capable of correctly identifying
culvert locations and outperform DETR and YOLOv5 methods.

Index Terms—Faster RCNN, DINO, DINO:DETR, YOLOv5,
LiDAR Elevation Data, DEMs, GIS, Advanced DL methods

This material is based upon work supported by the National Science
Foundation under Grant 1951741.

I. INTRODUCTION

Hydrologic connectivity in a landscape is critical to un-

derstand a range of environmental management issues, such

as tracking the nutrient transport for diffuse pollution runoff

[1] [2]. The spatial characterization of hydrologic connectiv-

ity often involves hydro-topographic delineation using Geo-

graphic Information Systems (GIS) and digital terrain models

(DEMs). In recent decades, high-resolution DEMs products,

mostly generated from Light Detection and Ranging (LiDAR)

technology, have demonstrated their excellent performance in

representing topographic conditions in subtle spatial details

compared with conventional DEMs [3]. According to the U.S.

Geological Survey’s 3D Elevation Program, it is expected

to have “the first-ever national baseline of consistent high-

resolution” LiDAR elevation data by 2023 [4]. However, accu-

rate delineation of hydrologic connectivity using these LiDAR

DEMs still exhibits a unique challenge. Many studies have

shown that drainage flowlines derived from LiDAR DEMs is

susceptible to virtual flow barriers (e.g., roads and bridges),

which function as ‘digital dams’ [5] [6] [7]. This is especially

the case in agricultural areas, where the gentle terrain is

widely segmented by rural road networks. Previous studies

have shown that the incorporation of drainage structures such

as culverts and bridges can improve the delineation of drainage

flows over the landscape [6] [8] [9]. However, such a drainage

structure dataset is largely unavailable, or merely available

with inconsistent format and quality. Although the dataset may

be developed based on transportation infrastructure records

maintained by state transportation agencies, or by on-screen

digitization, these methods suffer from the problems of data

completeness, accuracy, and/or labor intensity. Therefore, it

is imperative to develop an approach that can efficiently and
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effectively detect the locations of drainage structures.

The objective of this study is to develop deep learning (DL)

models capable of spatially detecting the locations of drainage

structures using spatial images that represent topographic and

landscape characteristics. In this regard, this paper makes a

significant contribution by exploring multiple advanced DL-

based object detection models, including Faster RCNN [10],

DETR [11], DINO:DETR [12] and YOLOv5 [13]. These

models are employed to analyze the unique topographic

patterns exhibited by drainage structures on LiDAR DEMs

dataset. By leveraging the distinctive ’signatures’ present in

these patterns, the proposed models aim to efficiently and

effectively detect the locations of drainage structures. The

investigation of state-of-the-art DL frameworks for drainage

structure detection represents a novel approach that expands

our current understanding of using DL techniques in hydro-

logic connectivity analysis. Additionally, it introduces a new

framework of metrics to enhance our comprehension of model

performance in this specific use case.

The paper is organized as follows: Section II will provide

a review of related works. Section III describes the study area

and dataset. Section IV provides a background on DL-based

object detection methods. In Section V-A and B, our proposed

models are presented along with a novel evaluation framework.

Section V-C covers the experimental design, evaluation, and

results. Finally, in Section VI, we conclude the paper.

II. RELATED WORK

Research has indicated that drainage structures have exhib-

ited unique topographic patterns on the LiDAR DEMs and

other supplemental GIS datasets such as aerial orthophotos

[14] [15]. These patterns can be leveraged as unique ‘signa-

tures’ to guide the detection of drainage structures through DL

frameworks. DL has shown excellent performance comparable

to human performance for solving a wide range of geographic

object classification and detection. For example, Ye et al.

detected landslides from images using Deep Belief Network

(DBN) [16]. For terrain feature mapping, Li and Hsu detected

a large collection of terrain features from remotely sensed

images using a Faster-RCNN approach [17]. Xu et al. adopted

an attention U-Net framework and LiDAR DEMs for devel-

oping detailed streamline detection, resulting in an improved

performance over traditional machine learning methods [18].

The flow barriers from road embankments were recognized

as an important issue to be addressed for future research

[19]. Our previous work proved convolutional neural network

(CNN) models can achieve high classification accuracy and

good model transferability for identifying images containing

drainage structure locations [14] [20]. However, it is unclear if

a deep learning framework can be extended for detecting the

locations of objects with bounding boxes. In this paper, we

explore the application of advanced DL-based object detection

algorithms, including Faster RCNN, DINO, DETR:DINO, and

YOLOv5, for the spatial detection of drainage structures.

TABLE I
DATA SOURCES OF LIDAR-DERIVED HRDEMS AND AERIAL

ORTHOPHOTOS

Data Locations Sources Spatial
Resolution

Vertical
Accuracy

RMSE

Number of
Samples

DEM
West Fork Big Blue

watershed,
Nebraska

Nebraska
Department of

Natural Resource
1.0m 0.185m 2022

Vermilion River
Watershed, Illinois

Illinois
Geospatial Data
Clearinghouse

0.30m 0.36m 1011

Maple River
Watershed, North

Dakota

North Dakota
GIS Hub Data

Portal
0.61m 0.15m 613

Sacramento-Stone
Corral Watershed,

California
USGS 1.0m 0.196m 2388

Aerial
Orthophotos

Four Watersheds
USGS National

Agriculture Imagery
Program (NAIP)

1.0m - 6034

III. DATASET

Our data was collected in four study areas - West Fork

Big Blue Watershed in Nebraska, Vermilion River Watershed

in Illinois, Maple River Watershed in North Dakota, and

Sacramento-Stone Corral Watershed in California (Fig. 1).

The landscapes of these areas are dominated by relatively

flat terrains and dense road networks. We selected these four

watersheds because they represent major agricultural systems

in the United States. We downloaded LiDAR DEMs and 4-

band aerial orthophotos from federal and state agencies. The

sources and specifications of these datasets are shown in Table

I.

Fig. 1. Topography and locations of four study areas [15]

The data are formatted as 32-bit TIF files, each records ter-

rain elevation data of 800x800 segments of a larger region. The

entire dataset is comprised of 6k samples (whose geographical

distribution is outlined in Table I) of various topographical

segments containing either one or more culverts. Example

images can be seen in Fig. 6.

IV. GENERAL APPROACH

Many traditional object detection models face challenges

when it comes to accurately detecting drainage structures in

LiDAR DEMs. This is primarily because drainage structures

have unique topographic patterns that may differ significantly
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from other objects or features in the landscape. Traditional

object detection models often rely on predefined patterns

or templates that may not adequately capture the distinct

characteristics of drainage structures. As a result, these models

may struggle to accurately identify and delineate drainage

structures from LiDAR DEM data. Although prior research has

demonstrated the benefits of incorporating drainage structures

in drainage flow delineation, there is a scarcity of consistent

and high-quality drainage structure datasets. To address this

gap, our study aims to develop a methodology that employs

DL frameworks to detect drainage structures by leveraging

their unique topographic patterns on LiDAR DEMs and sup-

plemental GIS datasets.

In this section, we will assess the effectiveness of three

prominent DL based object detection architectures in solving

our drainage structures detection (culvert/bridge detection)

problem. A key to adapting many object detection models

to our use case is framing culvert detection as both object

detection (locating an object or bounding box label) as well as

classification (identifying the detected object’s classification).

While our task is not inherently a classification problem, as

we know all ”objects” of interest are culverts, it is required to

utilize existing models whose architectures are framed around

both locating a bounding box as well as classifying the object

within. To solve this problem, we represent our task as both

culvert detection as well as binary classification. Our object

classes were defined as ”Culvert/Bridge” and ”Background”.

In other words, each object could be classified as either a

culvert, or not. With this modification, our task adapts to the

detection-and-classification paradigm of many object detection

models allowing for easier adaptation for our use case.

A. Faster-RCNN

Faster-RCNN [10] utilizes two model components, a Region

Proposal Network (RPN) and an object classifier. The RPN

is implemented as a convolutional network whose output is

a series of proposed regions (boxes potentially bounding the

location of a culvert) as well as 2 scores (for each proposal)

representing the probability of being a culvert or not. The

proposed regions then feed forward into the second model

component, a classifier which shares the convolutional layers’

learned features (which are referred to as a feature map). The

classifier’s output then gives a classification to all regions

of interest. Fig. 2 outlines this process, we can see the

convolutional network takes input and learns a feature map.

These features are given to the RPN, whose output feeds

to the classifier along with the feature maps for analysis.

Additionally, pre-trained resnet-50 [21] was used as the back-

end convolutional neural network for this model.

Potential advantages of Faster-RCNN include its reduced

parameter size which helps reduce overfitting on our limited

dataset size, as well as its competitive run time speed for real

time image analysis [10] (which benefits any further users of

our model).

B. DETR

Detection Transformer (DETR) is an end to end object de-

tection model consisting of a ’Backbone’ convolutional neural

network as well as a transformer (encoder-decoder) model. As

seen in Fig. 3 the backbone CNN model creates an activation

map of features from the input image to be supplied to the

transformer for further use. The transformer’s encoder learns

positional embeddings called ”Object (culvert) Queries”. The

decoder takes object (culvert) queries as input and outputs into

a feed forward neural network directly converting transformer

output to predicted bounding boxes. Then some matching

algorithm (such as bipartite matching) is used to relate the

predictions to ground truth labels. We used a Resnet50 [21]

as the backbone CNN for the DETR model.

C. DINO: DETR

DINO [12] represents an advanced end-to-end object detec-

tion system that surpasses DETR-like models in terms of both

efficacy and efficiency. The model incorporates DAB-DETR

[22], DN-DETR [23], and Deformable DETR [24] strategies,

including a contrastive denoising training methodology, a

mixed query selection technique for anchor initialization, and

a look forward twice scheme for box prediction.

Similar to DETR [11], the DINO [12] architecture consists

of a backbone, a multi-layer transformer encompassing an

encoder and decoder, and multiple prediction heads. Fig.4

shows the process of culvert detection using DINO model.

Resnet50 serves as the backbone to extract multi-scale fea-

tures from input images. These extracted features, along with

positional embeddings, are then fed into the encoder for

enhanced feature representation. To initialize the anchors and

positional queries for the decoder, a mixed query selection

approach is employed while retaining the learnable aspect of

content queries. By utilizing deformable attention, the encoder

outputs are combined with initialized anchors and learnable

content queries, resulting in feature fusion and iterative query

refinement. The final outputs are generated by refining anchor

boxes and predicting classification results based on refined

content features.

To enhance training efficiency and detection performance,

this model formulates positional queries as dynamic anchor

boxes and is trained with an additional DN loss. A query

selection process generates class embeddings, which are used

to predict the object class for each detection. Class embeddings

are learned representations of each class (or category) in the

dataset.

D. YOLO and YOLOv5

”You Only Look Once” or YOLO for short, is an object

detection model which reframes object detection as a single

regression problem, simplifying the detection pipeline while

maintaining accuracy [25]. By combining all components into

a single neural network, YOLO predicts bounding boxes for

multiple object classes simultaneously, enabling it to detect a

wide range of objects within a single pass.
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Fig. 2. The Flowchart outline of the Faster-RCNN model applied to our use case of identifying culverts.

Fig. 3. Example usage of the DETR model and architecture in culvert analysis.

YOLO’s primary methodology involves dividing an image

into an NxN grid, where each cell in the grid is responsible for

determining if the center of an object falls within its bounds,

predicting a set number of potential bounding boxes, as well

as predicting class probabilities for objects that may or may

not fall in the grid cell. An example of this process can be

visualized in Fig. 5 This model’s greatest advantage is its

highly competitive analysis speed.
YOLOv5 is the fifth iteration improvement on the original

YOLO algorithm, and the version used in our experiments.

While retaining the same fundamental algorithm, it contains

several hardware acceleration improvements (for faster train-

ing times) as well as architectural improvements such as the

addition of a multi-scale learning system, allowing the model

to analyze images across various sizes (scales) during a single

pass through.
YOLOv5 is also available in various parameter sizes: nano,

small, medium, large, and Xlarge. The nano size is used in our

experiments because the reduced number of parameters will

help mitigate the effects of overfitting on our limited dataset

size.

E. Data Preparation
In our approach, the images are first compressed to 8 bits

and normalized between 0 and 255 to simplify processing,

reduce computational complexity, and enhance visibility.
Each image is labeled with the exact coordinates for all of

its present culverts (which we will refer to as ”centroids”),

as well as a ”Culvert” class label for each. To represent the

ground truth labels, a variable-width bounding box centered

around each culvert centroid is defined. In our experiments, a

bounding box with side lengths of 100 pixels yielded optimal

results for both model training and qualitative evaluation.

Information of all bounding boxes for a given image is then

stored in each tested model’s respective file format: Pascal

VOC XML for Faster-RCNN, COCO for DETR models,

and YOLO DarknetTXT for YOLOv5. Each image-file pair

represents a single data sample for model training.

It is also important to note that only true class labels (those

marked as ”Culvert”) are used in the data, as any non-culvert

feature on an image would be an arbitrary label and could

technically count as a ’False’ or ’Background’ classification,

and thus does not provide any additional value.

To further enhance the training process and promote gen-

eralization, we employ Albumentations [26], a popular data

augmentation library. This allows us to apply various trans-

formations to the data, such as image flipping, rotation, and

shifting, augmenting the dataset for improved training and

generalization performance.

In all experiments, to evaluate the advanced object detection

models, we divide data into train, validation, and test sets,

where final evaluations were performed on a reserved and non-

utilized set of data randomly drawn from the total pool of

images across all geographical regions.

4



Fig. 4. The overall pipeline of DINO model applied to our use case of identifying culverts.

Fig. 5. Example usage of the YOLO model and architecture in culvert analysis.

V. RESULTS AND DISCUSSION

A. Experimental Setup

Our tested models utilize publicly available pre-trained

weights, which are then fine tuned on our dataset. Fine-tuning

allows us to utilize prior knowledge and boosts performance

on our relatively limited dataset size.

To consider which culvert predictions to keep in the pres-

ence of many potential outputs, we cannot match culverts

to their nearest prediction, as this would leave us no way

to select outputs in the absence of labels (such as in an

applied setting, searching for culvert locations). To combat this

problem, we set a ”Confidence Threshold” parameter for each

model, allowing a consistent and non-label dependent method

to consider which model outputs are worthy of evaluation.

Confidence Threshold is defined as a number between 0

and 1, representing the model’s prediction confidence needed

to consider a bounding box proposal as an official model

prediction. This hyper-parameter allows us to tune the balance

between a model’s false positive and negative rates. A low

confidence threshold results in a high prediction rate and many

proposed bounding boxes, a high threshold results in much

more limited predictions.

An example of the threshold values effects can be seen in

Fig. 12. The model makes a set of predictions that are filtered

to meet the minimum confidence threshold. As the threshold

increases in value, less confident predictions are filtered out,

leaving only predictions which meet the new threshold.

The exception to the threshold rule is the base DETR

model, which due to architecture limitations, we select its top-

k results. We find that a k of 2 (such that we are taking only

the top two predictions) works best, as we do not want to

severely skew results by consistently guessing several extra

culvert locations when many of the images contain only a

single culvert.

Notable parameters such as learning rate and detection

threshold are listed in Table II. Abbreviations used in the table

are defined as follows: Stochastic Gradient Descent (SGD),

Adam Optimization (Adam), an alternate weight decaying

version of Adam (AdamW), Learning Rate (LR), Weight

5



(a) (b) (c) (d) (e)

Fig. 6. Five randomly chosen images from the dataset, after preprocessing. Normalized into visual range for display. An example culvert can be seen clearly
in image (d), where the roadway traveling horizontally across the screen intersects the waterway traveling vertically down through the center. It is important
to note that while not apparent, all images contain at least a single culvert.

TABLE II
MODEL PARAMETERS

Model Faster RCNN DETR DETR: DINO YOLOv5
Optimizer SGD AdamW AdamW SGD

Optimizer
Parameters

LR = .001
M = .9

WD = .005

LR = .0001
WD = .0001

LR = .0001
WD = .0005

LR = .01
M = .3

WD = .001

Confidence
Threshold

.7
Top
Two

Choices
.3 .1

Decay (WD), and Momentum (M).

The Yolov5-nano model was used in our tests. The ”nano”

version of the model is a reduced size architecture that has

significantly less parameters. This benefits our limited dataset

size, allowing for more impactful fine tuning. Additionally, a

much smaller detection threshold of 0.1 was used to consider

this model’s predictions.

B. Metrics

The unique nature of our drainage crossing (culvert) de-

tection analysis presents challenges for conventional object

detection methods. Unlike typical scenarios where multiple

classes need to be distinguished, our objective is to simply

identify the presence of a single class label within an image.

Consequently, traditional object detection approaches may

not be directly applicable. To achieve a comprehensive and

accurate assessment of model performance, we propose a

framework for quantitatively analyzing the models’ ability to

identify culverts. In evaluating the performance of a model, we

consider its overall effectiveness across the following metrics:

• Accuracy: The accuracy of which the model correctly

identifies all culverts (Accuracy).

• IOU: Intersection Over Union of predicted bounding

boxes.

• Extra: Rate of predicting extra labels and bounding

boxes.

• Miss: Rate the model misses the presence of a culvert.

Accuracy Defined as the percent of culverts correctly

identified out of the total being present. Because there can

be multiple culvert locations with multiple predicted locations,

we must first map predictions to their most likely culvert label.

First, we find the centroid for each prediction and culvert (the

ground truth label centroid). Then each prediction centroid is

mapped to its closest available ground truth centroid. Accuracy

is then computed as a percentage of ground truth labels

which have been assigned a culvert prediction. This process

is visualized in Fig. 7

This value does not account for any extra predictions (e.g.

if there is a single culvert present in an image and two

predictions are made, only the correctly identified culvert is

counted). We compensate for this discrepancy with the ”Extra”

value.

Fig. 7. Example assignment of predictions (red) to their closest possible
label (green) before computing performance metrics. The two furthest right
predictions would count as both a miss and a single ”Extra” label.

IOU Intersection over union is used to account for the

accuracy of the predicted bounding boxes which have been

mapped to each label. While accuracy reveals when the model

correctly identifies the presence of a culvert, we must analyze

whether the predicted bounding box correctly and precisely

locates the culvert in the image.

IOU is the value used to describe the percentage overlap

of two shapes. It takes the intersection of two shapes (area

of overlap) and divides by the union (the area of both shapes

together) and is defined in (1). A visualization of the equation

is also available in Fig. 8.
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Fig. 8. A visualization of Intersection Over Union, which computes the
percentage overlap of two shapes.

IOU =
Area of Overlap

Area of Union
(1)

Extra Accounts for the rate at which a given model provides

too many bounding boxes. As defined in (2) the Extra value

is computed as the number of extra labels predicted (that are

not mapped to a potential ground truth label) over the total

number of ground truth labels. For example, if there are 3

culverts present in an image and the model predicts 4, the

number of extra labels would be 1. This would result in an

Extra rate of 1/3 or, 1 extra prediction in 3 labels.

Extra =
Extra predicted labels

Total True Labels
(2)

Miss accounts for the rate at which a given model provides

too little bounding boxes. We define Miss, shown in (3), as

the number of unpredicted labels present in a given image,

out of the total. For example, if there are 3 culverts present in

an image and the model predicts bounding boxes for 2, this

would result in a Miss rate of 1/3, or 1 miss in 3 labels.

Miss =
Unpredicted Labels

Total True Labels
(3)

Quantitative model performance is based on the average

values for each of the above metrics averaged across all

validation data samples.

C. Results and Discussion

State of the art object detection techniques each offer unique

advantages and disadvantages. As will be seen in the following

results, architecture changes can drastically change both model

performance and behavior. These differences are further exac-

erbated by our limited data set size of six thousand samples,

as real world data is not always available in the quantities

commonly used for newer state of the art models. Decreased

data quantity poses an increased risk of both overfitting to

limited samples, as well as underfitting when models have too

many parameters to train and not enough samples to do so.

Culvert detection provides a unique challenge to traditional

object detection algorithms. Culverts do not have distinct

object boundaries the way a physical object, such as a ball

or a car would. A culvert, for the purpose of model training,

is defined not only by its visible features but also its bounding

box label which may or may not include non-relavent back-

ground. In essence, the ”signature” (features that indicate an

object) are much more loosely defined and rely partly on a

bounding box label rather than just visible features.

There is also the additional challenge of terrain resolution.

Because images are normalized for model use, minute high-

resolution details that may have once been present in LiDAR

imaging can be lost. This in turn results in instances of very

difficult to identify culverts. One such example can be seen

in Fig. 13 (a) and (c), where the model classifies the roadway

rather than the culvert because its loss in resolution renders

the culvert nearly invisible.

Thresholding model predictions according to confidence

played a large role in understanding model performance.

Fig. 12 outlines the same model (DETR: DINO) generating

predictions across three different threshold values. Model

architecture has a large impact on how sensitive model confi-

dence is on potentially identified culverts. This means tuning

the threshold value for each model is key in optimizing its

performance.

Because model architectures have varying degrees of sensi-

tivity when generating confidence for their predictions, thresh-

olding adjustment allows us to tune how a model is interpreted

for evaluation. If a model is highly sensitive, high threshold

values can be used to reign in overly confident but poorly

placed predictions. Conversely, if a model’s architecture results

in overall low confidence scores, we can adjust the threshold

value to be lower, fine tuning what model output will be

considered as a prediction. We find that each architecture must

strike its own balance. Threshold values for our experiments

can be found in Table II.

Table III outlines the overall results of all models. The

highest accuracy model was DETR: DINO, while the model

with the most accurate bounds was Faster-RCNN. While it

may seem that DETR:DINO lacks in performance due to its

notably high Extra rate, we will see in the following sections

that upon further qualitative analysis, it provides accurate

and competitive predictions even when considering its large

number of extra predictions.

TABLE III
PERFORMANCE BY MODEL.

Model Accuracy IOU Miss Extra
Faster RCNN .723 .557 .277 .194

DETR .510 .004 .364 .100
DETR: DINO .778 .024 .221 .507

YOLOv5 .335 .358 .665 .016

1) Faster-RCNN: The Faster RCNN model shows clear

promise in its performance. Fig. 9 shows various examples

generated from the model to display its different behaviors.

While there are some images such as in Fig. 9 (a) in which the

model massively over-predicts, it has a high IOU rate and low

overall Extra rate (Table III) , indicating over predictions do

not happen frequently, and that there is a high rate of overlap

7



(a) (b) (c) (d) (e)

Fig. 9. A variety of validation samples generated by the Faster-RCNN model. Model predictions are denoted in red. (a) shows an instance where the model
predicts only a single culvert when there are many, (b) shows a handful of quite precise predictions, (c) shows a clear miss, (d) is another accurate prediction,
(e) is an instance where the model was capable of finding a culvert that was missed in the data labeling process.

between true and predicted bounding boxes. In addition to pre-

cise bounding boxes in the remaining images it is particularly

notable to see its ability to classify and locate the unlabeled

culvert in image (e) that was initially overlooked by those

creating the dataset.

2) DETR: DETR performance was somewhat hindered by

its top-k selection of bounding boxes. This is consequently the

reason behind its low extra rate and should thus be disregarded

for this model (Table III). Additionally its low IOU indicates

that the bounds it did detect, were rarely accurate. The primary

issue with its performance, as can be seen in Fig. 10, is its

tendency to generate large enveloping predictions, resulting in

a low IOU.

3) DETR: DINO: The choice of the detection threshold

value has a significant impact on the DINO model’s perfor-

mance, with particular implications observed in the context of

culvert detection. Fig.12 illustrates the diverse behaviors of the

DINO model across various examples, with distinct outcomes

observed for three different threshold values, demonstrating

its particular sensitivity in confidence values for predictions.

Adjusting the threshold from 0.3 to 0.1 increases the number

of detected culverts and also increases false positives. For a

threshold of 0.1, the model produces 270% more bounding

boxes than there are objects, resulting in an inflated accuracy

and very high extra rate. For a threshold of 0.2, the model

results in 100% more bounding boxes, with an 88% accuracy.

However, when the threshold is 0.3, the model generates

only 50% more boxes, resulting in an accuracy drop of 77%.

Because of this, a model threshold of 0.2 was used in its final

results.

DETR:DINO achieves the highest accuracy of the tested

models, however its sensitivity in prediction confidence results

in many extra bounding predictions (Table III). This conse-

quently decreases the model’s IOU rating drastically, as many

extra predictions that do not fall on a correct bounding box

have no intersection.

Despite its low IOU, a qualitative analysis of sample outputs

such as in Figure 11 show that its predictions can be quite

accurate, particularly when its extra predictions are correctly

limited.

Fig. 12. Validation samples generated by DINO model over various threshold
values. Model predictions are outlined in green. Notice how threshold increase
filters out lower confidence predictions.

4) YOLOv5: Our YOLOv5 model had lower than expected

overall accuracy (Table III). A notable result is the stunningly

low ”Extra” rate, as the model was incredibly reserved in its

confidence values. The model was evaluated on a confidence

threshold of 0.1 (meaning only a confidence of 10% was

needed to count a prediction) and yet it still has an extra

rate of approximately 1.6%. This means the drop in accuracy

is largely due to a lack of predictions, with a notably small

confidence across many predictions. Low confidence values

are likely a consequence of the architecture, as its output

contains a very large number of predictions, resulting in small

probability differences between each prediction. Examples can

be seen in Fig. 13 in which single predictions (as indicated by

the low extra rate) are either relatively accurate, or completely

off.

VI. CONCLUSIONS

In this study, we developed an efficient methodology for

detecting drainage structures, specifically culverts and bridges,

using DL based object detection frameworks. Through quanti-

tative and qualitative analyses, we found that DINO:DETR and

Faster-RCNN methods outperformed DETR and YOLOv5 in
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(a) (b) (c) (d) (e)

Fig. 10. A series of DETR output examples showcasing model tendency to create bounds that are far too large, resulting in low IOU. As well as examples
of misplaced bounds (model output is red, culvert labels are green).

(a) (b) (c) (d) (e)

Fig. 11. A series of DETR:DINO output examples (model output is red, culvert label is green).

(a) (b) (c) (d) (e)

Fig. 13. A series of YOLOv5 output examples (model output is red, culvert label is green).

accurately identifying culvert locations. Our research empha-

sizes the potential of these advanced DL models for object de-

tection in improving the delineation of hydro-topographic fea-

tures and enhancing our understanding of hydrologic connec-

tivity. Applying these DL frameworks for detecting drainage

structures represents a new approach in the field of hydrologic

connectivity analysis. Our findings underscore the ability of

these models to significantly enhance the accuracy and effi-

ciency of hydro-topographic delineation, especially in areas

where flow barriers create challenges for water movement.

VII. FUTURE WORK

It still remains to be seen how well models trained on a

single geographical region can transfer to different regions,

particularly those outside the US. Additionally, it may be

fruitful to explore how different architectures perform on

objects with more or less distinct signatures (for example,

a culvert bounding box is more loosely defined than the

presence of a person, or visibly apparent object). There is also

a potential that different geographical archetypes and terrain

types (such as mountains, flatlands, desert, etc.) may be more

or less difficult to analyze.
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