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ABSTRACT
There are many important high dimensional function classes that

have fast agnostic learning algorithms when strong assumptions

on the distribution of examples can be made, such as Gaussianity or

uniformity over the domain. But how can one be sufficiently con-

fident that the data indeed satisfies the distributional assumption,

so that one can trust in the output quality of the agnostic learning

algorithm? We propose a model by which to systematically study

the design of tester-learner pairs (A,T), such that if the distribution
on examples in the data passes the tester T then one can safely

trust the output of the agnostic learner A on the data.

To demonstrate the power of the model, we apply it to the classi-

cal problem of agnostically learning halfspaces under the standard

Gaussian distribution and present a tester-learner pair with a com-

bined run-time of 𝑛𝑂̃ (1/𝜖4 )
. This qualitatively matches that of the

best known ordinary agnostic learning algorithms for this task. In

contrast, finite sample Gaussian distribution testers do not exist for

the 𝐿1 and EMD distance measures. Previously it was known that

half-spaces are well-approximated with low-degree polynomials

relative to the Gaussian distribution. A key step in our analysis is

showing that this is the case even relative to distributions whose

low-degree moments approximately match those of a Gaussian.

We also go beyond spherically-symmetric distributions, and give

a tester-learner pair for halfspaces under the uniform distribution

on {0, 1}𝑛 with combined run-time of 𝑛𝑂̃ (1/𝜖4 )
. This is achieved us-

ing polynomial approximation theory and critical index machinery

of [Diakonikolas, Gopalan, Jaiswal, Servedio, and Viola 2009].

Can one design agnostic learning algorithms under distributional

assumptions and count on future technical work to produce, as a

matter of course, tester-learner pairs with similar run-time? Our

answer is a resounding no, as we show there exist somewell-studied

settings for which 2
𝑂̃ (

√
𝑛)

run-time agnostic learning algorithms

are available, yet the combined run-times of tester-learner pairs

must be as high as 2
Ω (𝑛)

. On that account, the design of tester-

learner pairs is a research direction in its own right independent of

standard agnostic learning. To be specific, our lower bounds apply

to the problems of agnostically learning convex sets under the

∗
Ronitt Rubinfeld was supported in part by NSF awards CCF-2006664, DMS-2022448

and Fintech@CSAIL.

†
Arsen Vasilyan was supported in part by NSF awards CCF-1565235, CCF-1955217,

DMS-2022448, Big George Fellowship and Fintech@CSAIL.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

STOC ’23, June 20–23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9913-5/23/06.

https://doi.org/10.1145/3564246.3585117

Gaussian distribution and for monotone Boolean functions under

the uniform distribution over {0, 1}𝑛 .

CCS CONCEPTS
•Theory of computation→Machine learning theory; Stream-
ing, sublinear and near linear time algorithms.

KEYWORDS
agnostic learning, distribution testing, learning theory

ACM Reference Format:
Ronitt Rubinfeld and Arsen Vasilyan. 2023. Testing Distributional Assump-

tions of Learning Algorithms. In Proceedings of the 55th Annual ACM Sympo-

sium on Theory of Computing (STOC ’23), June 20–23, 2023, Orlando, FL, USA.

ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3564246.3585117

1 INTRODUCTION
1.1 Motivation
Suppose one wants to learn from i.i.d. example-label pairs, but

some unknown fraction of labels are corrupted by an adversary.

The well-studied field of agnostic learning seeks to develop learning

algorithms that are robust to such corruptions
1
. Agnostic learning

can be notoriously harder than standard learning (see for exam-

ple [19, 29, 39, 40]). Nevertheless, there are many important high

dimensional function classes that do have fast agnostic learning al-

gorithms, including halfspaces, convex sets and monotone Boolean

functions. However, these learning algorithms make strong as-

sumptions about the underlying distribution on examples, such as

Gaussianity or uniformity over {0, 1}𝑛 .
Thus, to be confident in such a learning algorithm one needs to

be confident in the distributional assumptions. In some cases, users

can attain confidence in their distributional assumptions by creating

their own set of examples which conform to the distribution, and

querying labels for these examples. Yet, this approach requires

query access, which is often unavailable. Is there a way to ascertain

that the examples are indeed coming from a distribution for which

the learning algorithm will give a robust answer?

We propose to systematically study the design of tester-learner

pairs (A,T), such that tester T tests the distributional assumptions

of agnostic learner A. In other words, the tester-learner pair is to

be designed such that if the distribution on examples in the data

pass the tester, then one can safely use the learner on the data. By

considering the most basic requirements that such a pair ought to

satisfy, we propose a new model that makes the following end-to-

end requirements on a tester-learner pair (A,T):
• Composability: For any example-label distribution, it should

be unlikely that simultaneously (i) the tester T accepts but

1
See [11] for more on how exactly agnostic learning algorithms yield algorithms that

are resilient to adversarial noise in labels.

https://doi.org/10.1145/3564246.3585117
https://doi.org/10.1145/3564246.3585117
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(ii) the learner A outputs something not satisfying the ag-

nostic learning guarantee.

• Completeness: If the distribution on examples conforms to

the distributional assumption, tester T will likely accept.

• The performance of the tester-learner pair is judged by the

combined run-time of A and T .

See Section 2.2 for the fully formal definition and see Subsection

1.3 for more comments.

We emphasize that assumptions on the distribution of examples

are in fact made in a very large number of works on agnostic

learning
2
. Here is an incomplete list of such papers that only

scratches the surface: [4, 9, 10, 15–17, 23, 25, 30–32, 38, 41, 43, 44,

49, 52, 57]. Hence, we think it is important to understand to what

extent these distributional assumptions can be tested.

Perhaps surprisingly, in spite of how natural this definition is,

nothing was previously known on how well it can be achieved

for various well-studied problems. The gamut of open possibilities

included the most optimistic one: that for all these problems one can

test the assumptionwith very small overhead relative to the existing

agnostic learning algorithms. It also included the most pessimistic

one: that for all these problems one can test the assumption only

at a very steep additional cost in terms of run-time. We note that

such steep additional cost would indeed be payed if one were to

use existing identity testers of 𝑛-dimensional distributions, as these

testers have run-times of 2
Ω (𝑛)

(see below for more information

on this).

We commence the charting of the landscape of these possibil-

ities. We find that neither of these extreme possibilities holds in

general. On one hand, we find that for some natural problems the

most optimistic possibility does materialize and there is a tester-

learner pair whose run-time is of the same order as that of the best

known agnostic learning algorithm. Specifically, for agnostically

learning the class of half-spaces with respect to standard
3
Gaussian

distribution, we design a tester-learner pair (A,T) with combined

run-time of 𝑛𝑂̃ (1/𝜖4 )
. This run-time qualitatively matches the run-

time of 𝑛𝑂̃ (1/𝜖2 )
[20, 43] achieved by the best algorithm

4
and the

statistical query lower bound of 𝑛Ω (1/𝜖2 )
by [24, 26, 34]. We also

go beyond spherically-symmetric distributions, and give a tester-

learner pair for halfspaces under the uniform distribution on {0, 1}𝑛

with combined run-time of 𝑛𝑂̃ (1/𝜖4 )
. For this setting, please see

2
The reason for this ubiquity of distributional assumptions in high-dimensional agnos-

tic learning is that with no assumption at all on the distribution the task of agnostic

learning is usually intractable. For example (i) The task of learning indicators of convex

sets overR𝑛
cannot be achieved with finite number of samples if nothing is assumed

about the distribution. If the distribution is assumed to be Gaussian, this task can

be achieved with run-time of 𝑛𝑂̃ (
√
𝑛/𝜖4 )

[49]. (ii) If one is unwilling to make any

distributional assumption, no agnostic learning algorithm for halfspaces with run-time

of 2
𝑜 (𝑛)

is known despite decades of research (also see [19, 29, 39] for some known

hardness results). However, as we mentioned if the examples are distributed according

to the standard Gaussian, a dramatically faster run-time of 𝑛𝑂̃ (1/𝜖2 )
is achievable

[20, 43].

3
Note that the case of Gaussian distribution with arbitrary knownmean and covariance

reduces to the case of standard Gaussian via a change of coordinates.

4
However, note that the work of [18] shows how to obtain an even faster run-time of

poly

(
𝑛, 1

𝜖

)
if one is willing to settle for a weaker guarantee than the standard agnostic

learning guarantee. Specifically, for any absolute constant 𝜇, [18] gives a predictor,

such that, if the best halfspace has error opt, the predictor of [18] will have error of at

most (1 + 𝜇 )opt + 𝜖 (note that standard agnostic learning requires an error bound of

opt + 𝜖). In this work we only consider standard agnostic learning.

the full version of this work for the precise statement of the theo-

rem and the proof. Here also, the run-time qualitatively matches

the run-time of 𝑛𝑂̃ (1/𝜖2 )
[20, 43] achieved by the best algorithm.

Additionally, we remark that positive results in our framework

extend to function classes beyond halfspaces and, as a proof of con-

cept, we give a simple tester-learner pair for agnostically learning

decision lists
5
under uniform distribution on {0, 1}𝑛 (see the full

version of this work). Also see [40] for some intractability results

on distribution-free learning of decision lists.

On the other hand, for some other natural problems, we show

that the most pessimistic scenario holds and the additional require-

ment of testing the distributional assumption comes at a steep price

in terms of run-time. Specifically:

• A well-known algorithm of [49] agnostically learns con-

vex sets under the Gaussian distribution with a run-time of

𝑛𝑂̃ (
√
𝑛/𝜖4 )

. We show that if a tester T tests the distributional

assumption of this algorithm, then T has run-time of 2
Ω (𝑛)

.

More generally, any tester-learner pair for this task requires

2
Ω (𝑛)

run-time combined.

• Awell-known algorithm of [12, 43] agnostically learns mono-

tone Boolean functions under uniform distribution over

{0, 1}𝑛 with a run-time of 2

𝑂̃

( √
𝑛

𝜖2

)
. We show that if a tester

T tests the distributional assumption of this algorithm, then

T has run-time of 2
Ω (𝑛)

. Again, any tester-learner pair for

this task requires 2
Ω (𝑛)

run-time combined.

We emphasize that these lower bounds exhibit natural problems

where there is a dramatic gap between standard agnostic learning

run-time and the run-time of the best tester-learner pair. Therefore,

there is provably no general method that allows one to automat-

ically convert standard agnostic learning algorithms into tester-

learner pairs with low run-time overhead. Please see the full version

of this work for the precise statements of these intractability results

and the proofs.

Additionally, lower bounds for tester-learner pairs can imply

lower bounds for standard agnostic learning: Specifically, our lower

bounds imply that agnostic learning of monotone functions under

distributions
1

2
𝑛0.99

-close
6
to 𝑛0.99-wise independent distributions

requires 2
Ω (𝑛)

run-time. The reason is that by [2, 3, 53] one can test

𝑛0.99-wise independence up to error
1

2
𝑛0.99

in time 2
𝑂̃ (𝑛0.99 )

, and

therefore the existence of such an algorithm would contradict our

general lower bound for tester-learner pairs. As there are 2
𝑂̃ (

√
𝑛/𝜖2 )

time learners for monotone functions over the uniform distribution

[12, 43], this lower bound highlights the sensitivity of agnostic

learners to the assumption on the input distribution.

Distribution Testing Perspective. Existing work on identity testing

of𝑛-dimensional distributions has focused on testingwith respect to

very strict distancemeasures (i.e. TV distance, earth-mover distance,

etc.). On one hand this yields strong general-purpose guarantees

on distributions accepted by the tester – it is hard to think of a

situation where closeness in TV distance is unsatisfactory. On the

5
For this example, a decision list is a special case of a decision tree corresponding to

a path. More formally, for some ordering of the variables 𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑛) , values
𝑣1, . . . , 𝑣𝑛 and bits 𝑏1, . . . , 𝑏𝑛 , a decision list does the following: For 𝑖 = 1 to 𝑛, if

𝑥𝜋 (𝑖 ) = 𝑏𝜋 (𝑖 ) output 𝑣𝜋 (𝑖 ) , else continue. A more general definition is given in [55].

6
In total variation distance.
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other hand, in 𝑛 dimensions this leads to run-times of 2
Ω (𝑛)

. As

a concrete example, distinguishing the uniform distribution over

{0, 1}𝑛 from a distribution that is 𝜖-far from it in total variation

distance requires a run-time of Θ
(
1

𝜖2
2
𝑛/2

)
(see text [14]).

Yet, run-times of 2
Ω (𝑛)

can be prohibitive. Indeed, as we ex-

plained above, the theory of 𝑛-dimensional agnostic learning aims

at developing algorithms with run-times of 2
𝑜 (𝑛)

or even 𝑛𝑂𝜖 (1)
.

If one were to combine these algorithms with a 2
Ω (𝑛)

-run-time

distribution tester, the total run-time would rise precipitously.

From the distribution testing perspective, this work studies appli-

cation-targeted testers that, in favor of much faster run-time, forgo

the general-purpose guarantees provided by these strict distance

measures. The application domain which this work considers is the

testing of distributional assumptions made by agnostic learning

algorithms. Here, the application-targeted testers are developed

with a view towards special-purpose guarantees sufficient to ensure

that the learning algorithms are still robust. For some problems in

this domain – this work shows – the use of general-purpose testers

can indeed be circumvented, with a dramatic gain in run-time.

In general, surprisingly little is known about such application-

targeted testers and we hope more application-targeted distribution

testers can be developed for other domains.

Brief Comparison with Distribution-Free Agnostic Learning. Recall

that an agnostic learning algorithm is distribution-free if it succeeds

regardless of the distribution on examples. Designing such algo-

rithms has proven to be intractable for many function classes (see

for example [19, 29, 39, 40]). This intractability has prompted the

study of agnostic learning algorithms under distributional assump-

tions.

The model we introduce in this work is intermediate between

distribution-free agnostic learning and agnostic learning under a

distributional assumption. While the learning algorithm is not re-

quired to satisfy the agnostic learning guarantee under every single

distribution on example, the testing algorithm needs to alerts us

whenever the learning algorithm does fail to satisfy this guarantee.

Incidentally, when using a tester-learner pair, whenever the

testing algorithm rejects, the user can choose to then run a slow

distribution-free agnostic learning algorithm. Overall, this strat-

egy yields a learning algorithm that always satisfies the agnostic

guarantee, and additionally runs fast whenever the distributional

assumption does hold, thereby adapting to the distribution on ex-

amples.

Recent Followup Work [37]. In an exciting new development we

were contacted regarding a follow up work [37] that builds on

an earlier version of this paper. [37] develops novel techniques

for the design and analysis of tester-learner pairs that leverage

connections with the notion of fooling a function class from the

field of pseudorandomness. This allows [37] to

• Give tester-learner pairs for more general function classes,

such as intersections of halfspaces.

• Handle more general classes of distributional assumptions,

such as strictly subexponential distributions inR𝑛
and uni-

form over {0, 1}𝑛 .
• Present a new connection between the notion of tester-

learner pairs and Rademacher complexity.

• Improve on our run-time for tester-learner pairs for halfs-

paces under the Gaussian distribution on R𝑛
. Specifically,

they give a bound of 𝑛𝑂̃ (1/𝜖2 )
which improves upon our

bound of 𝑛𝑂̃ (1/𝜖4 )
. Their tighter bound also matches the

known statistical query lower bounds [24, 26, 34].

We would like to note that tester-learner pairs for halfspaces

under the uniform distribution on {0, 1}𝑛 is concurrent work with

[37] (they give a faster run-time of 𝑛𝑂̃ (1/𝜖2 )
for this problem and

also give more general results as explained above). The earlier

version of our work (which they build upon) already contained the

other results presented in our current version, i.e. (i) the definition

of tester-learner pairs (ii) the tester learner pair for half-spaces

under the Gaussian distribution with run-time 𝑛𝑂̃ (1/𝜖4 )
(Theorem

5) (iii) the intractability results for tester-learner pairs in for the

class of convex sets under the Gaussian distribution in R𝑛
and

the class of monotone functions under the uniform distribution in

{±1}𝑛 .

1.2 Our Techniques
1.2.1 Tester-Learner Pair for Agnostically Learning Halfspaces un-
der Gaussian Distribution. We first give an overview of our tester-

learner pair (A,T) with combined run-time of 𝑛𝑂̃ (1/𝜖4 )
for the

class of half-spaces with respect to standard Gaussian distribution.

We also discuss the techniques we use to analyze it. See Sections 3,

5 and 6 for complete details.

A natural first approach would be to try to take advantage of the

literature on testing and learning distributions. However, almost all

results we are aware of on testing and learning high-dimensional

distributions (without assuming the distribution already belongs

to some highly restricted family as in [13]) require a number of

samples that is exponentially large in the dimension. It follows

from well-known techniques that Gaussianity over an infinite do-

main cannot be tested with respect to total variation distance in

finite samples. Potentially, one could obtain a tester-learner pair

for Gaussianity with respect to the earth-mover distance via the

tester
7
of [5], yielding a tester of run-time 2

𝑂̃ (𝑛)
. However one can

see that, in earth-mover distance, no significantly better (i.e. 2
𝑜 (𝑛)

)

bound can be obtained
8
. Such enormous run-times far exceed the

run-times that can be achieved for agnostically learning halfspaces.

Previously it was known that half-spaces are well-approximated

with low-degree polynomials relative to the Gaussian distribution.

A key step in our analysis is showing that this is the case even

relative to distributions whose low-degree moments approximately

match those of a Gaussian. One of our ideas is to start with a proof

of the exact Gaussian case and modify it so it only relies on low-

degree properties of the distribution. We are aware of three distinct

proofs of this exact Gaussian case in the literature:

(1) The method of [43] that uses specific facts about Hermite

polynomials.

(2) The noise sensitivity method of [49]. This method also uses

Hermite polynomials to argue that functions that tend to

7
This tester requires that the distribution is confined to a box [−𝐵, 𝐵 ]𝑛 , but this by
itself is not a devastating problem, since most of probability mass of a Gaussian is

confined to such a box.

8
Even when truncating the distribution to a box around the origin.
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be stable to perturbations of their input tend to be well-

approximated by low-degree polynomials.

(3) The method of [20] that, in order to approximate a halfspace

sign(𝒗 · 𝒙 + 𝜃 ), constructs a polynomial 𝑃 (𝒗 · 𝒙) that ap-
proximates this halfspace tightly for values of |𝒗 · 𝒙 | that are
not too large. It is then argued that large values of |𝒗 · 𝒙 | do
not contribute much to the total 𝐿1 error of the polynomial

because its contribution is weighted by a rapidly decaying

Gaussian weight.

As Hermite polynomials are the unique family of polynomials or-

thogonal under the Gaussian distribution, the proof strategies of

[43] and [49] seem highly specialized to the distribution being ex-

actly Gaussian. Because of this, a method similar to the one of [20]

is the one serving as our starting point.

This method needs to be modified in a thoroughgoing way in

order to rely merely on the low-degree moments of the distribution

being close to those of Gaussian. For instance, a very easy-to-show

property of the 𝑛-dimensional standard Gaussian distribution is its

anti-concentration when projected on any direction. This property

becomes much less obvious once one is only promised that low-

degree moments of the distribution are close to those of Gaussian,

which is something we do show. We note that this step of our proof

is similar in spirit to the work of [45] that introduces a notion of

low-degree certified anti-concentration and shows it for various

distributions. Our proofs use extensively tools from polynomial

approximation theory.

Given these ideas, our tester-learner pair does the following.

The tester estimates the low-degree moments of the distribution

and compares them to the corresponding moments of the standard

Gaussian. It follows then that halfspaces are well-approximated

by low-degree polynomials with respect to this distribution. The

learning algorithm takes advantage of this by performing low-

degree polynomial 𝐿1 regression similar to the one used in [43].

A technical complication, which we deal with, is that both our

tester and learner work with a truncated version of the distribution.

In other words, they discard the examples whose coordinates are too

large. This guarantees to us that we can actually produce estimates

for the moments of the truncated distribution (if distribution is not

truncated, moments could even be infinite).

Note that our arguments use strongly the fact that we are work-

ing with halfspaces and not with some arbitrary function class

that is well-approximated by low-degree polynomials under the

Gaussian distribution. This is due to how we use the concentration

and anti-concentration properties of the distribution. In a certain

sense this is necessary, as shown by our intractability results for

indicators of convex sets. Even though these functions are also well-

approximated by low-degree polynomials [49], for them a similar

method based on estimating low-degree moments will provably

not succeed. This underscores that designing tester-learner pairs

can be subtle and does not generally follow by mere extension of

already existing analyses of agnostic learning algorithms.

1.2.2 Tester-Learner Pair for Agnostically Learning Halfspaces under
UniformDistribution on {±1}𝑛 . Wenow discuss the techniques used

to give our tester-learner pair for halfspaces under the uniform

distribution on {±1}𝑛 . As we mentioned, the run-time we show

here is 𝑛𝑂̃ (1/𝜖4) and this is concurrent work with [37], who use

other techniques. See the full version of this work for complete

details.

Our tester tests poly(1/𝜖)-wise independence of the input distri-
bution with respect to the TV distance using [2, 3, 53]. The learning

algorithm uses the low-degree polynomial 𝐿1 regression of [43]. To

show that these two algorithms indeed form a valid tester-learner

pair we show that every halfspace is well-approximated by a low-

degree polynomial relative to any poly(1/𝜖)-wise independent dis-
tribution.

Suppose for a halfspace sign(𝒗 ·𝒙 +𝜃 ) it is the case that the norm
of the vector 𝒗 is well-distributed among all the coordinates. Then,

by Berry-Esseen theorem, for 𝒙 that is uniform over {±1}𝑛 the

inner product 𝒗 · 𝒙 is distributed similarly to a Gaussian. Roughly,

we use this to argue that if 𝒙 is merely poly(1/𝜖)-wise independent
then 𝒗 · 𝒙 has low-degree moments close to those of a Gaussian.

This allows us to use methods similar to the ones we use to give

tester-learner pairs for halfspaces under the standard Gaussian

distribution.

Finally, we handle halfspaces sign(𝒗 · 𝒙 + 𝜃 ) for whom the norm

of the vector 𝒗 is not well-spread across all the coordinates. We use

the critical index machinery of [20] to handle such halfspaces.

1.2.3 Intractability Results. Finally, we discuss the techniques used
to show that 2

Ω (𝑛)
samples are required by (i) any tester-learner

pair for learning indicator functions of convex sets under the stan-

dard Gaussian onR𝑛
(ii) any tester-learner pair for learning mono-

tone functions under the uniform distribution on {0, 1}𝑛 . See See
the full version of this work for complete details.

From technical standpoint, we find these lower bounds surpris-

ing: The mentioned standard agnostic learning algorithms in these

settings rely on low-degree polynomial regression. This suggests

that testing low-degree moments of the distribution (as we did for

halfspaces) ought to lead to the development of a fast tester-learner

pair. Yet, the lower bounds show that this can not be done.

We now roughly explain how we prove these lower bounds.

Let us focus on the lower bound for tester-learner pairs for con-

vex sets under standard Gaussian distribution (the lower bound

for monotone functions is similar). Take samples 𝒛1, · · · , 𝒛𝑀 from

the standard Gaussian, and let 𝐷 be the uniform distribution on

{𝒛1, · · · , 𝒛𝑀 }. The first idea is to show that the tester will have a

hard time distinguishing 𝐷 from the standard Gaussian if it uses

much fewer than𝑀 samples
9
. The second idea is to show that (very

likely over the choice of 𝒛1, · · · , 𝒛𝑀 ) one can obtain, by excluding

only a small fraction of elements from {𝒛1, · · · , 𝒛𝑀 }, a subset 𝑄

of them such that no point in 𝑄 is in the convex hull of the other

points in 𝑄 . Once we have such a set, we essentially
10

define our

hard-to-learn convex set to be the convex hull of a random subset

of 𝑄 , and this convex set will not contain any other elements of 𝑄

because no member of 𝑄 is in the convex hull of the rest. In this

way, unless a learner has seen a large fraction of the elements in 𝑄

already, it has no way of predicting whether a previously unseen

element in 𝑄 belongs to the random convex set. We note that our

9
Out actual argument also takes into account that the tester sees labels and not only

examples.

10
This is an oversimplification, as one still needs to figure out what to do with elements

outside𝑄 . We show that, for all these elements, we can either include them into or

exclude them from the convex set in such a way as to reveal no information about

which of the points in𝑄 were included in the convex set.
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argument is somewhat similar to well-known arguments proving

impossibility of approximation of the volume of a convex set via a

deterministic algorithm [6, 28].

1.3 Comments on the Model
1.3.1 What about Cross-Validation? In case of realizable learning

(i.e. you are promised there is no noise) a common approach to

verifying success is via checking prediction error rate on fresh data

and making sure it is not too high. Does this idea allow one to con-

struct a tester T for the distributional assumption of some agnostic

learner A? Such tester would (i) run A to obtain a predictor
ˆ𝑓 (ii)

test the success rate of
ˆ𝑓 on fresh example-label pairs (iii) accept or

reject based on the success rate.

As was mentioned in the discussion of our intractability results,

there cannot be a general low-overhead method of transforming

standard agnostic learning algorithms into tester-learner pairs, be-

cause of our intractability results. Therefore, in particular, there

cannot be such a method based on cross-validation.

Intuitively, the reason is the following. Suppose you run the

learning algorithm, setting the closeness parameter 𝜖 to 0.01, then

check the success of the predictor on fresh data and find that the

generalization error is close to 0.25. This could potentially be con-

sistent with the two following situations: (1) there is a function in

the concept class with close to zero generalization error, but the

learning algorithm gave a poor predictor due to a violation of the

distributional assumption (2) the distributional assumption holds,

but every function in the concept class has generalization error of

at least 0.24. The composability criterion tells you that in case (1)

you should reject, but the completeness criterion tells you that in

case (2) you should accept. Overall, there is no way to tell from

generalization error alone which of the two situations you are in,

so there is no way to know if you should accept or reject.

1.3.2 Label-Aware vs Label-Oblivious Testers. We say the tester T
is label-aware if it makes use of the labels given to it (and not only

the examples). Otherwise, we call it label-oblivious. We feel that

label-obliviousness makes a testing algorithm fit better with the

existing literature on testing properties of distributions, because

algorithms in this line of work decide to accept or reject a distribu-

tion based only on samples from it (and no side information such

as labels). However, this condition is not strictly necessary for veri-

fying success. Due to these considerations, our impossibility results

are against more general label-aware testers, while the tester given

in this paper is label-oblivious.

1.4 Related Work
1.4.1 Agnostic Learning under Distributional Assumptions Using
Low-Degree Polynomial Regression. Since the introduction of the

agnostic learning model [42, 46] there has been an explosion of

work in agnostic learning. Making assumptions on the distribution

on examples has been ubiquitous in this line of work. So has been

the use of low-degree polynomial regression as one of the main

tools. Previous to the work of [43], there existed an extensive body

of work on using low-degree polynomial regression for learning

under distributional assumptions, including [1, 12, 33, 48, 50, 51].

The work of [43] building on [46] proposed to use low-degree

polynomial 𝐿1 regression to obtain agnostic learning algorithms

for halfspaces under distribution assumptions, as well as extended

these previously studied low-degree regression algorithms into

the agnostic setting. Further work used low degree polynomial 𝐿1

regression to obtain agnostic learning algorithms for many more

problems, again under various distributional assumptions [4, 9, 10,

15–17, 23, 25, 30–32, 38, 41, 44, 49, 52, 57].

1.4.2 Learning Halfspaces. See the work of [25] and references

therein, for a historical discussion about the problem of learning

halfspaces, as well as some up-to-date references regarding some

problems connected to the one studied here.

1.4.3 Polynomial Approximation Theory. Polynomial approxima-

tion theory has been used extensively as a tool for studying halfs-

paces. Among other work, see [18, 20, 25, 27, 43, 47].

1.4.4 Other Works in Testing Distributions. There is a large body
of literature on finite sample guarantees for property testing of

distributions. Algorithms developed within this framework are

given samples of an input distribution and aim to distinguish the

case in which the distribution has a specified property, from the case

inwhich the distribution is far (in a reasonable distancemetric) from

any distribution with that property. Properties of interest include

whether the distribution is uniform, independent, monotone, has

high entropy or is supported by a large number of distinct elements.

We mention a few specific results that are closest to the results in

this work: Let 𝑝 be a distribution on a discrete domain of size 𝑀 .

For a “known" distribution 𝑞 (where the algorithm knows the value

of 𝑞 on every element of the domain, and does not need samples

from it – e.g., when 𝑞 is the uniform distribution), distinguishing

whether 𝑝 is the same as 𝑞 from the case where 𝑝 is 𝜖-far (in 𝐿1

norm) from 𝑞 requires Θ(
√
𝑀/𝜖2) samples [7, 8, 21, 22, 35, 54]. For

a more in depth discussion of the history and results in this area,

see the monograph by Canonne [14].

1.4.5 Other Models of Trusting Agnostic Learners. The work of

Goldwasser, Rothblum, Shafer and Yehudayoff considers the ques-

tion of how an untrusted prover can convince a learner that a

hypothesis is approximately correct, and show that significantly

less data is needed than that required for agnostic learning [36].

2 PRELIMINARIES
2.1 Standard Definitions
The definition of agnostic learning is as follows:

Definition 1. An algorithm A is an agnostic (𝜖, 𝛿)-learning algo-
rithm for function class F relative to the distribution 𝐷 , if given

access to i.i.d. example-label pairs (𝑥,𝑦) distributed according to

𝐷pairs, with the marginal distribution on the examples equal to 𝐷 ,

the algorithm A with probability at least 1 − 𝛿 outputs a circuit

computing a function
ˆ𝑓 , such that

Pr

(𝑥,𝑦) ∈𝑅𝐷pairs

[𝑦 ≠ ˆ𝑓 (𝑥)] ≤ min

𝑓 ∈F

(
Pr

(𝑥,𝑦) ∈𝑅𝐷pairs

[𝑓 (𝑥) ≠ 𝑦]
)
+ 𝜖.

The quantity Pr(𝑥,𝑦) ∈𝑅𝐷pairs
[𝑓 (𝑥) ≠ 𝑦] is often called the gener-

alization error of
ˆ𝑓 (a.k.a. out-of-sample error or risk).

The following is standard theorem about agnostic learning from

ℓ1-approximation. The proof is implicit in [43] and this theorem
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has been implicitly used in much subsequent work (see Subsection

1.4 for references). Let 𝑈 be some domain we are working over.

Theorem 2. Let {𝑔1, · · ·𝑔𝑁 } be a collection of real-valued func-

tions over 𝑈 that can be evaluated in time 𝑇 . Then, for every 𝜖 > 0,

there is a learning algorithm A for which the following is true. Let 𝐷

be any distribution over𝑈 and let F be any class of Boolean functions

over𝑈 , such that every element of F is 𝜖-approximated in 𝐿1 norm

relative to the distribution 𝐷 by some element of span (𝑔1, · · · , 𝑔𝑁 ).
Then, A agnostically (𝜖, 𝛿)-learns F relative to 𝐷 . The algorithm A
uses 𝑂̃

(
𝑁
𝜖2

log

(
1

𝛿

))
samples and uses run-time polynomial in this

number of samples and 𝑇 .

We will also need the definition of 𝑘-wise independent distribu-

tions:

Definition 3. A distribution of a random variable 𝒙 over {±1}𝑛 is

called 𝑘-wise independent (a.k.a. 𝑘-wise uniform) if for any size-𝑘

subset 𝑆 of {1, · · · , 𝑛} the distribution of {𝑥𝑖 : 𝑖 ∈ 𝑆} is uniform
over {±1}𝑘 .

2.2 New Definition: Testing Distributional
Assumptions of a Learning Algorithm

Definition 4. Let A be an agnostic (𝜖, 𝛿1)-learning algorithm

for function class F relative to the distribution 𝐷 . We say that an

algorithm T is a tester for the distributional assumption of A if

(1) (Composability) Suppose a distribution 𝐷pairs on example-

label pairs is such that, given access to i.i.d. labeled examples

from it, the algorithm T outputs “Yes” with probability at

least 1/4. Then A, given access to i.i.d. labeled examples

from the same distribution 𝐷pairs, will with probability at

least 1 − 𝛿1 output a circuit computing a function
ˆ𝑓 , such

that

Pr

(𝑥,𝑦) ∈𝑅𝐷pairs

[𝑦 ≠ ˆ𝑓 (𝑥)] ≤ min

𝑓 ∈F

(
Pr

(𝑥,𝑦) ∈𝑅𝐷pairs

[𝑓 (𝑥) ≠ 𝑦]
)
+ 𝜖.

(2) (Completeness) Suppose 𝐷pairs is such that the marginal dis-

tribution on examples equals to𝐷 . Then, given i.i.d. example-

label pairs from 𝐷pairs, tester T outputs “Yes” with probabil-

ity at least 3/4.
If this definition is satisfied, then we say that (A,T ) form a tester-

learner pair.

Constants 1/4 and 3/4 in the definition above can without loss

of generality be replaced with any other pair of constants 1 − 𝛿2
and 1 − 𝛿3 with 𝛿2 ∈ (0, 1) and 𝛿3 ∈ (𝛿2, 1). See the full version of

this work for the proof via a standard repetition argument.

3 AN EFFICIENT TESTER-LEARNER PAIR FOR
LEARNING HALFSPACES

We now describe our tester-learner pair for learning halfspaces

under the Gaussian distribution. Roughly, the testing algorithm

checks that the low-degreemoments of the distribution on examples

are close enough to those of the standard Gaussian distribution.

The learning algorithm uses a low-degree polynomial regression

(similarly to [43]).

As explained earlier, both of the algorithms ignore examples

whose absolute value is too high, which allows them to obtain ac-

curate estimates of distribution moments.

Tester-learner pair for learning halfspaces:

• Let 𝐶1, · · · ,𝐶4 be a collection of constants to be tuned ap-

propriately. Define 𝑑 := 2

⌊
1

2𝜖4
ln
3

(
1

𝜖

)⌋
, Δ :=

⌊
1

𝜖4
ln
4

(
1

𝜖

)⌋
,

𝑡 := 𝐶1Δ lnΔ
√︁
log𝑛 +

√︂
2 ln

(
𝐶2𝑛
𝜖

)
, 𝑁1 :=

⌈
𝑛𝐶3𝑑

⌉
and 𝑁2 :=⌈

𝑡2Δ𝑛𝐶4Δ
⌉
.

• Learning algorithm A. Given access to i.i.d. labeled sam-

ples (𝒙, 𝑦) ∈ R𝑛 × {±1} from an unknown distribution:

(1) Obtain 𝑁1 many labeled samples (𝒙𝑖 , 𝑦𝑖 ).
(2) Discard all the samples (𝒙𝑖 , 𝑦𝑖 ) for which the absolute

value of some coordinate

��(𝒙𝑖 ) 𝑗 �� is greater than 𝑡 .

(3) Run the algorithm of Theorem 2 on the remaining samples,

with accuracy parameter
𝜖
10
, allowed failure probability

1

20
, and taking the set of {𝑔𝑖 } to be the set of monomials

of degree at most 𝑑 , i.e. the set

{∏𝑛
𝑗=1 𝑥

𝛼 𝑗

𝑗
:

∑
𝑗 𝛼 𝑗 ≤ 𝑑

}
.

This gives us a circuit computing predictor
ˆ𝑓 . Form a new

predictor
ˆ𝑓 ′ that given 𝒙 outputs (i)

ˆ𝑓 (𝒙) if for all 𝑗 ∈ [𝑛],
the value of

��(𝒙𝑖 ) 𝑗 �� is at most 𝑡 . (ii) 1 if11 for some 𝑗 ∈ [𝑛],
the value of

��(𝒙𝑖 ) 𝑗 �� exceeds 𝑡 .
• Testing algorithm T . Given access to i.i.d. labeled samples

𝒙 ∈ R𝑛
from an unknown distribution:

(1) For each 𝑗 ∈ [𝑛]:
(a) Estimate Pr

[��𝑥 𝑗 �� > 𝑡
]
up to additive

𝜖
30𝑛 with error prob-

ability
1

100𝑛 .

(b) If the estimate is at least
𝜖
10𝑛 , output No and terminate.

(2) Draw 𝑁2 fresh samples {𝒙𝑖 }, and discard the ones for

which the absolute value of some coordinate

��(𝒙𝑖 ) 𝑗 �� is
greater than 𝑡 .

(3) For every monomial

∏𝑛
𝑗=1 𝑥

𝛼 𝑗

𝑗
of degree at most Δ, com-

pute its empirical expectation w.r.t. the samples {𝒙𝑖 }. If
for any of them resulting value is not within

1

2𝑛Δ of

E𝒛∼N(0,𝐼𝑛×𝑛 )


𝑛∏
𝑗=1

𝑥
𝛼 𝑗

𝑗

 =

𝑛∏
𝑗=1

( (
𝛼 𝑗 − 1

)
!! · 1𝛼 𝑗 is even

)
,

output No and terminate.

(4) Output Yes.

The following theorem shows that the above algorithms indeed

satisfy the criteria for a tester-learner pair for learning halfspaces

under the Gaussian distribution:

Theorem 5 (Tester-learner pair for learning halfspaces un-

der Gaussian distribution). Suppose the values𝐶1, · · · ,𝐶4 present

in algorithms A and T are chosen to be sufficiently large absolute

constants, also assume 𝑛 and
1

𝜖 are larger than some sufficiently large

absolute constant. Then, the algorithm A is an agnostic (𝑂 (𝜖), 0.1)-
learner for the function class of linear threshold functions over R𝑛

11
This one’s arbitrary. Can also output 0 in this case.
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under distribution N(0, 𝐼𝑛×𝑛) and the algorithm T is an assump-

tion tester for A. The algorithms A and T both require only 𝑛
𝑂̃

(
1

𝜖4

)
samples and run-time. Additionally, The tester T is label-oblivious.

Note that an (𝑂 (𝜖), 0.1)-learner can be made an agnostic (𝜖, 𝛿1)-

learner for any fixed constant 𝛿1 and still require only 𝑛
𝑂̃

(
1

𝜖4

)
sam-

ples and run-time via a standard repeat-and-check argument. The

tester T for the original learner will remain an assumption tester

for the new learner.

The proof of correctness of the above tester-learner pair for half-

spaces makes use of the following lemmas, which will be proved in

Section 5. Lemma 6 states that as long as the low-degree moments

of a distribution are similar to the corresponding moments of the

Gaussian distribution, then the distribution is concentrated and

anti-concentrated when projected onto any direction. Lemma 7

states that as long as distribution 𝐷 satisfies the “nice" properties

of concentration and anti-concentration, then any halfspace can be

approximated by a low-degree polynomial with respect to distribu-

tion 𝐷 . Taken together, these lemmas will be used to show that for

any distribution 𝐷 , if the moments of 𝐷 look similar to moments of

the Gaussian distribution, then halfspaces are well-approximated

by low degree polynomials under 𝐷 .

Lemma 6 (Low degree moment lemma for distributions.). Suppose

𝐷 is a distribution over R𝑛
and Δ is an even positive integer, such

that for every monomial

∏𝑛
𝑖=1 𝑥

𝛼𝑖
𝑖

of degree at most Δ we have�����E𝒙∼𝐷

[
𝑛∏
𝑖=1

𝑥
𝛼𝑖
𝑖

]
−E𝒙∼N(0,𝐼𝑛×𝑛 )

[
𝑛∏
𝑖=1

𝑥
𝛼𝑖
𝑖

] ����� ≤ 1

𝑛Δ
.

Further, assume that Δ ≥ 1

𝜖4
ln
4

(
1

𝜖

)
. Then, for every unit vector 𝒗,

the random variable 𝒗 · 𝒙 (with 𝒙 ∈𝑅 𝐷) has the following properties

• Concentration: For any even positive integer 𝑑 ≤ Δ, we have(
E𝒙∈𝑅𝐷

[
|𝒗 · 𝒙 |𝑑

] )
1/𝑑

≤ 2

√
𝑑 .

• Anti-concentration: for any real 𝑦, we have

Pr

𝒙∈𝑅𝐷
[𝒗 · 𝒙 ∈ [𝑦,𝑦 + 𝜖]] ≤ 𝑂 (𝜖) .

Lemma 7 (Low degree approximation lemma for halfspaces.). Sup-

pose 𝐷 is a distribution on R𝑛
and 𝒗 ∈ R𝑛

is a unit vector, such

that for some positive real parameters 𝛼,𝛾, 𝜖 and a positive integer

parameter 𝑑0 we have

• Anti-concentration: for any real 𝑦, we have

Pr

𝒙∈𝑅𝐷
[𝒗 · 𝒙 ∈ [𝑦,𝑦 + 𝜖]] ≤ 𝛼,

• Concentration:(
E𝒙∈𝑅𝐷

[
|𝒗 · 𝒙 |𝑑0

] )
1/𝑑0

≤ 𝛽,

for some 𝛽 ≥ 1.

Also assume𝑑0 >
5𝛽

𝜖2
and that 𝜖 is smaller than some sufficiently small

absolute constant. Then, for every 𝜃 ∈ R and there is a polynomial

𝑃 (𝑥) of degree at most
2𝛽

𝜖2
+ 1 such that

𝐸𝒙∈𝑅𝐷 [|𝑃 (𝒗 · 𝒙) − sign(𝒗 · 𝒙 − 𝜃 ) |] = 𝑂
©­«𝛼 + 𝜖 + (8𝛽)

2𝛽

𝜖2
+1

2
𝑑0

ª®¬ .

Each coefficient of the polynomial 𝑃 hasmagnitude of atmost𝑂

(
2

4𝛽

𝜖2

)
.

4 TECHNICAL PRELIMINARIES
4.1 Polynomial Approximation Theory
We will need some standard facts about Chebychev polynomials

and approximation of functions using them. See, for example, the

text [56] for comprehensive treatment of this topic. First, we define

Chebychev polynomials and present relevant facts about them. On

the interval [−1, 1] the 𝑘-th Chebychev polynomial can be defined

as
12 𝑇𝑘 (𝑥) := cos (𝑘 arccos(𝑥)) .
For any 𝑘 ≥ 0, the polynomial𝑇𝑘 (𝑥) maps [−1, 1] to [−1, 1] (this

follows immediately from the definition). Also, it is known that the

Chebyshev polynomials satisfy a recurrence relation

𝑇𝑘+1 (𝑥) = 2𝑥𝑇𝑘 (𝑥) −𝑇𝑘−1 (𝑥),

with the first two polynomials being 𝑇0 (𝑥) = 1 and 𝑇1 (𝑥) = 𝑥 .

To present a standard theorem from text [56] about approxi-

mating functions with Chebyshev polynomials, we will need the

standard notions of Lipschitz continuity and of bounded varia-

tion functions. A function 𝑓 is said to be Lipschitz continuous

on [−1, 1] if there is some 𝐶 so for any 𝑥,𝑦 ∈ [−1, 1] we have

that |𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐶 |𝑥 − 𝑦 | . For a differentiable function 𝑓 :

[−𝑤,𝑤] → R, the total variation of 𝑓 is the 𝐿1 norm of it’s deriva-

tive, i.e. ∫ 𝑤

−𝑤

����𝑑 𝑓 (𝑥)𝑑𝑥

���� 𝑑𝑥 .
If 𝑓 has a single discontinuity at some point 𝑎 and is differentiable

everywhere else, then the total variation of 𝑓 is defined as the sum

of the following three terms (i)

∫ 𝑎

−𝑤

���𝑑𝑓 (𝑥 )
𝑑𝑥

��� 𝑑𝑥 , (ii) the magnitude

of the discontinuity at 𝑎 and (iii)

∫ 𝑤

𝑎

���𝑑𝑓 (𝑥 )
𝑑𝑥

��� 𝑑𝑥 . Analogously, the
definition extends to functions that are differentiable outside of

finitely many discontinuities
13
. We say “𝑓 is of bounded variation

𝑉 ” if the total variation of 𝑓 is at most 𝑉 .

We are now ready to state the following theorem about approxi-

mating functions using Chebyshev polynomials:

Theorem 8 (Conseqence of Theorem 7.2 in the text [56]

(see also Theorem 3.1 on page 19 in the text [56])). Let 𝑓 be

Lipschitz continuous on [−1, 1] and suppose the derivative 𝑓
′
is of

bounded variation 𝑉 . Define for 𝑘 ≥ 0

𝑎𝑘 :=
1 + 1𝑘>0

𝜋

∫
1

−1

𝑓 (𝑥)𝑇𝑘 (𝑥)√
1 − 𝑥2

𝑑𝑥.

Then, for any 𝑑 ≥ 0 we have

max

𝑥∈[−1,1]

�����𝑓 (𝑥) − 𝑑∑︁
𝑘=0

𝑎𝑘𝑇𝑘 (𝑥)
����� = 𝑂

(
𝑉

𝑑

)
.

The partial sums

∑𝑑
𝑘=0

𝑎𝑘𝑇𝑘 are called Chebyshev projections.

12
One needs to check that cos(𝑘𝛼 ) is indeed a polynomial in cos𝛼 , which follows

by writing cos(𝑘𝛼 ) = 𝑒𝑖𝑘𝛼 +𝑒−𝑖𝑘𝛼
2

= 1

2

(
(cos𝛼 + 𝑖 sin𝛼 )𝑘 + (cos𝛼 − 𝑖 sin𝛼 )𝑘

)
,

expanding, observing that terms involving odd powers of sin𝛼 cancel out, and using

the identity sin
2 𝛼 = 1 − cos

2 𝛼 .
13
It is also standard to consider more general functions, but we will not need that.
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5 PROVING THE TWO MAIN LEMMAS (6,7)
VIA POLYNOMIAL APPROXIMATION
THEORY

5.1 Propositions Useful for Proving Both Main
Lemmas

Here we will present proposition that will be useful for proving

both Lemma 6 and 7. We start with an observation that bounds the

magnitude of the coefficients of Chebyshev polynomials.

Observation 9. Let 𝑓 : R → [−1, 1] be a Lipschitz continuous

function. Let 𝑑 ≥ 1 be an integer, let 𝑤 ≥ 1 be a real number, and

let 𝑓𝑑 (𝑥) :=
∑𝑑
𝑘=0

𝑎𝑘𝑇𝑘 ( 𝑥𝑤 ), where 𝑎𝑘 :=
1+1𝑘>0

𝜋

∫
1

−1
𝑓 (𝑤𝑦)𝑇𝑘 (𝑦)√

1−𝑦2

𝑑𝑦.

Then, the largest coefficient from among all the monomials of 𝑓𝑑 (𝑥)
has value of at most 𝑂

(
𝑑3𝑑

)
.

Proof. See the full version of this work for the proof. □

Proving both lemmas, wewill be approximating certain functions

using Chebyshev polynomials re-scaled to the window [−𝑤,𝑤].
The following proposition lets us bound the error between function

𝑓 and its low-degree polynomial approximation, contributed by the

region (−∞,𝑤) ∪ (𝑤, +∞).

Proposition 10. Let 𝑓 be a Lipschitz continuous function R →
[−1, 1]. Let 𝑑 ≥ 1 be an integer and 𝑤 ≥ 1 be real-valued, and let

𝑓𝑑 (𝑥) :=
∑𝑑
𝑘=0

𝑎𝑘𝑇𝑘 ( 𝑥𝑤 ), where 𝑎𝑘 :=
1+1𝑘>0

𝜋

∫
1

−1
𝑓 (𝑤𝑦)𝑇𝑘 (𝑦)√

1−𝑦2

𝑑𝑦.

Then, for any distribution 𝐷 , it is the case that

E𝑥∈𝑅𝐷
[
|𝑓 (𝑥) − 𝑓𝑑 (𝑥) | 1 |𝑥 |>𝑤

]
≤ 𝑂

(
4
𝑑E𝑥∈𝑅𝐷

[
|𝑥 |𝑑 1 |𝑥 |>𝑤

] )
.

Proof. See the full version of this work for complete details.

□

The following proposition, in turn, allows us to bound the ex-

pression we encounter in Proposition 10 in terms of a bound on

the moments of distribution 𝐷 .

Proposition 11. Let 𝐷 be a distribution onR and 𝑑0 ∈ Z>0
such

that (
E𝑥∈𝑅𝐷

[
|𝑥 |𝑑0

] )
1/𝑑0

≤ 𝛽.

Then, for any 𝑘 ∈ Z ∩ [0, 𝑑0/2] and𝑤 ∈ R+
we have

E𝑥∈𝑅𝐷
[
|𝑥 |𝑘 1 |𝑥 |>𝑤

]
≤ 2𝑤𝑘

(
𝛽

𝑤

)𝑑0
Proof. See the full version of this work for the proof. □

5.2 Proof of Low Degree Moment Lemma for
Distributions(Lemma 6)

Let us recall the setting of Lemma 6. 𝐷 is a distribution over R𝑛

and Δ is an even positive integer, such that for every monomial∏𝑛
𝑖=1 𝑥

𝛼𝑖
𝑖

of degree at most Δ we have�����E𝒙∼𝐷

[
𝑛∏
𝑖=1

𝑥
𝛼𝑖
𝑖

]
−E𝒙∼N(0,𝐼𝑛×𝑛 )

[
𝑛∏
𝑖=1

𝑥
𝛼𝑖
𝑖

] ����� ≤ 1

𝑛Δ
.

Further, we have that Δ ≥ 1

𝜖4
ln
4

(
1

𝜖

)
. Then, we would like to show

that for every unit vector 𝒗, the random variable 𝒗 ·𝒙 (with 𝒙 ∈𝑅 𝐷)

has the following properties

• Concentration: For any even integer 𝑑 ≤ Δ, we have(
E𝒙∈𝑅𝐷

[
|𝒗 · 𝒙 |𝑑

] )
1/𝑑

≤ 2

√
𝑑 .

• Anti-concentration: for any real-valued parameter𝑤 ≥ 1,

for any real 𝑦, we have

Pr

𝒙∈𝑅𝐷
[𝒗 · 𝒙 ∈ [𝑦,𝑦 + 𝜖]] ≤ 𝑂 (𝜖) .

We start with the following observation saying that if moments of a

distribution𝐷 are similar to standardGaussian, then the expectation

of a polynomial of a form (𝒗 · 𝒙)𝑑 for 𝐷 is similar to the same

expectation under standard Gaussian.

Observation 12. Suppose 𝐷 is a distribution over R𝑛
and Δ is a

positive integer, such that for every monomial

∏𝑛
𝑖=1 𝑥

𝛼𝑖
𝑖

of degree at

most Δ we have

��E𝒙∼𝐷
[∏𝑛

𝑖=1 𝑥
𝛼𝑖
𝑖

]
−E𝒙∼N(0,1)

[∏𝑛
𝑖=1 𝑥

𝛼𝑖
𝑖

] �� ≤ 1

𝑛Δ .

Then, for any unit vector 𝒗 and integer 𝑑 ≤ Δ we have���E𝒙∈𝑅𝐷
[
(𝒗 · 𝒙)𝑑

]
−E𝒙∈𝑅N(0,𝐼𝑛×𝑛 )

[
(𝒗 · 𝒙)𝑑

] ��� ≤ 𝑛𝑑

𝑛Δ
.

Proof. See the full version of this work for the proof. □

Let us now show the concentration property. Let𝑑 be even. Recall

that for even 𝑑 we have

E𝒙∼N(0,𝐼𝑛×𝑛 )
[
(𝒗 · 𝒙)𝑑

]
= E𝑥 ′∼N(0,1)

[ (
𝑥 ′

)𝑑 ]
= (𝑑 − 1)!! ≤ 𝑑𝑑/2 .

This, together with Observation 12 implies

(
E𝒙∼𝐷

[
(𝒗 · 𝒙)𝑑

] )
1/𝑑

≤
(
𝑑𝑑/2 + 𝑛𝑑

𝑛Δ

)
1/𝑑

=

√
𝑑

(
1 + 𝑛𝑑−Δ

𝑑𝑑/2

)
1/𝑑

≤ 2

√
𝑑,

which is the concentration property we wanted to show.

Now, we proceed to the anti-concentration property. Recall that

for this property we need to bound Pr𝒙∈𝑅𝐷 [𝒗 · 𝒙 ∈ [𝑦,𝑦 + 𝜖]]. To
this end, we first approximate 1𝑧∈[𝑦,𝑦+𝜖 ] using the following func-
tion

𝑔(𝑧) :=



0 if 𝑧 ≤ 𝑦 − 𝜖,
𝑧−(𝑦−𝜖 )

𝜖 if 𝑧 ∈ [𝑦 − 𝜖,𝑦] ,
1 if 𝑧 ∈ [𝑦,𝑦 + 𝜖] ,
(𝑦+2𝜖 )−𝑧

𝜖 if 𝑧 ∈ [𝑦 + 𝜖,𝑦 + 2𝜖] ,
0 if 𝑧 ≥ 𝑦 + 2𝜖.

(1)

The key properties of𝑔 are (i)𝑔(𝑧) ≥ 1𝑧∈[𝑦,𝑦+𝜖 ] (ii)𝑔(𝑧) ∈ [0, 1] (ii)
𝑔(𝑧) is Lipschitz continuous (iii) the derivative 𝑔′ (𝑧) is of bounded
variation of

4

𝜖 (because the function has four discontinuities, each of

magnitude 1/𝜖 and it stays constant in-between the discontinuities).
Let 𝑤 ≥ 1 be real-valued and 𝑑 be an integer in [1,Δ/2], to

be chosen later and let 𝑔𝑑 (𝑥) :=
∑𝑑
𝑘=0

𝑎𝑘𝑇𝑘 ( 𝑥𝑤 ), where 𝑎𝑘 :=

1+1𝑘>0

𝜋

∫
1

−1
𝑔 (𝑤𝑦)𝑇𝑘 (𝑦)√

1−𝑦2

𝑑𝑦. Observation 13 and propositions 14 and
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15 are stated and proven below, and we use them no to get the

following bound:

Pr

𝒙∈𝑅𝐷
[𝒗 · 𝒙 ∈ [𝑦,𝑦 + 𝜖]] ≤ E𝒙∈𝑅𝐷 [𝑔(𝒗 · 𝒙)] ≤

𝑂 (𝜖 ) by Observation 13︷                       ︸︸                       ︷
E

𝒙∈𝑅N(0,𝐼𝑛×𝑛 )
[𝑔(𝒗 · 𝒙)] +

O

(
4
𝑑𝑤𝑑

(
2

√
Δ

𝑤

)Δ
+ 𝑤

𝜖𝑑

)
by Proposition 14︷                                         ︸︸                                         ︷

E
𝒙∈𝑅N(0,𝐼𝑛×𝑛 )

[|𝑔𝑑 (𝒗 · 𝒙) − 𝑔(𝒗 · 𝒙) |] +

+

O

(
4
𝑑 𝑛𝑑

𝑛Δ

)
by Proposition 15︷                                                           ︸︸                                                           ︷��E𝒙∈𝑅𝐷 [𝑔𝑑 (𝒗 · 𝒙)] −E𝒙∈𝑅N(0,𝐼𝑛×𝑛 ) [𝑔𝑑 (𝒗 · 𝒙)]

��+
+ E𝒙∈𝑅𝐷 [|𝑔(𝒗 · 𝒙) − 𝑔𝑑 (𝒗 · 𝒙) |]︸                                  ︷︷                                  ︸
O

(
4
𝑑𝑤𝑑

(
2

√
Δ

𝑤

)Δ
+ 𝑤

𝜖𝑑

)
by Proposition 14

=

= 𝑂
©­«𝜖 + 4

𝑑𝑤𝑑

(
2

√
Δ

𝑤

)Δ
+ 𝑤

𝜖𝑑
+ 4

𝑑 𝑛
𝑑

𝑛Δ
ª®¬ .

Now, recall we assumed without loss of generality that Δ equals to

1

𝜖4
ln
4

(
1

𝜖

)
, so taking

14 𝑑 = 1

10𝜖4
ln
2

(
1

𝜖

)
and𝑤 = 10

𝜖2
ln
2

(
1

𝜖

)
we get

Pr

𝒙∈𝑅𝐷
[𝒗 · 𝒙 ∈ [𝑦,𝑦 + 𝜖]] ≤

𝑂
©­«𝜖 + 4

𝑑𝑤𝑑

(
2

√
Δ

𝑤

)Δ
+ 𝑤

𝜖𝑑
+ 4

𝑑 𝑛
𝑑

𝑛Δ
ª®¬ =

𝑂

(
𝜖 +

(
40

𝜖2
ln
2

(
1

𝜖

)) 1

10𝜖4
ln

2 ( 1

𝜖 ) (
1

5

) 1

𝜖4
ln

4 ( 1

𝜖 )
+

+ 4

1

10𝜖4
ln

2 ( 1

𝜖 ) 1

𝑛
1

𝜖4
ln

4 ( 1

𝜖 )− 1

10𝜖4
ln

2 ( 1

𝜖 )

)
= 𝑂 (𝜖).

The only thing left to do is to prove the observations referenced

above.

Observation 13. For the function 𝑔 as defined in Equation 1, we

have

E𝒙∈𝑅N(0,𝐼𝑛×𝑛 ) [𝑔(𝒗 · 𝒙)] = 𝑂 (𝜖)

Proof. The function 𝑔 has a range of [0, 1] and is supported on

[𝑦 − 𝜖,𝑦 + 3𝜖]. Also, 𝒗·𝒙 is distributed as a standard one-dimensional

Gaussian. Therefore, the probability that 𝒗 ·𝒙 lands in [𝑦 − 𝜖,𝑦 + 3𝜖],
is at most 𝑂 (𝜖), which finishes the proof. □

Proposition 14. Suppose 𝐷 is a distribution overR𝑛
and Δ is a pos-

itive integer, such that for every monomial

∏𝑛
𝑖=1 𝑥

𝛼𝑖
𝑖

of degree at most

Δ we have

��E𝒙∼𝐷
[∏𝑛

𝑖=1 𝑥
𝛼𝑖
𝑖

]
−E𝒙∼N(0,𝐼𝑛×𝑛 )

[∏𝑛
𝑖=1 𝑥

𝛼𝑖
𝑖

] �� ≤ 1

𝑛Δ .

Let 𝑑 be an integer in [1,Δ/2], let𝑤 ≥ 1 be a real-valued parameter,

and suppose 𝑔 : [−𝑤,𝑤] → [−1, 1] is a Lipschitz function whose de-

rivative𝑔′ is of Bounded variation𝑉 , and let𝑔𝑑 (𝑥) :=
∑𝑑
𝑘=0

𝑎𝑘𝑇𝑘 ( 𝑥𝑤 ),
where 𝑎𝑘 :=

1+1𝑘>0

𝜋

∫
1

−1
𝑔 (𝑤𝑦)𝑇𝑘 (𝑦)√

1−𝑦2

𝑑𝑦. Then, it is the case that

E𝒙∈𝑅𝐷 [|𝑔(𝒗 · 𝒙) − 𝑔𝑑 (𝒗 · 𝒙) |] ≤ 𝑂
©­«4𝑑𝑤𝑑

(
2

√
Δ

𝑤

)Δ
+ 𝑉𝑤

𝑑

ª®¬ .
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We also check that (taking 𝜖 small enough) 𝑑 is indeed in [1,Δ/2], as was required

earlier.

Proof. Proposition 10 and Proposition 11 imply

E𝒙∼𝐷
[
|𝑔(𝒗 · 𝒙) − 𝑔𝑑 (𝒗 · 𝒙) | 1 |𝒗 ·𝒙 |>𝑤

]
≤

𝑂

(
4
𝑑E𝒙∈𝑅𝐷

[
|𝒗 · 𝒙 |𝑑 1 |𝒗 ·𝒙 |>𝑤

] )
≤ 4

𝑑𝑤𝑑

(
2

√
Δ

𝑤

)Δ
Δ

Δ − 𝑑
.

To use Theorem 8, we need to bound the total variation of the func-

tion
d𝑔 (𝑤𝑧 )

d𝑧
= 𝑤𝑔′ (𝑤𝑧). Inspecting the definition of total variation,

we see that 𝑔′ (𝑤𝑧) has the same total variation as 𝑔′ (𝑧), which is

at most 𝑉 . Therefore, the total variation of
d𝑔 (𝑤𝑧 )

d𝑧
is at most 𝑉𝑤 .

Thus, we have by Theorem 8 that

E𝒙∼𝐷
[
|𝑔(𝒗 · 𝒙) − 𝑔𝑑 (𝒗 · 𝒙) | 1 |𝒗 ·𝒙 | ≤𝑤

]
≤

max

𝑧∈[−𝑤,𝑤 ]
|𝑔(𝑧) − 𝑔𝑑 (𝑧) | ≤ 𝑂

(
𝑉𝑤

𝑑

)
.

Summing the two equations above and recalling that 𝑑 ≤ Δ/2,
our proposition follows. □

Proposition 15. Suppose 𝐷 is a distribution over R𝑛
and Δ is a

positive integer, such that for every monomial

∏𝑛
𝑖=1 𝑥

𝛼𝑖
𝑖

of degree at

most Δ we have

��E𝒙∼𝐷
[∏𝑛

𝑖=1 𝑥
𝛼𝑖
𝑖

]
−E𝒙∼N(0,1)

[∏𝑛
𝑖=1 𝑥

𝛼𝑖
𝑖

] �� ≤ 1

𝑛Δ .

Let 𝑔 : R → [−1, 1] be a Lipschitz continuous function, and 𝑔𝑑 (𝑥) :=∑𝑑
𝑘=0

𝑎𝑘𝑇𝑘 ( 𝑥𝑤 ),where 𝑎𝑘 :=
1+1𝑘>0

𝜋

∫
1

−1
𝑓 (𝑤𝑦)𝑇𝑘 (𝑦)√

1−𝑦2

𝑑𝑦. Then

��E𝒙∈𝑅𝐷 [𝑔𝑑 (𝒗 · 𝒙)] −E𝒙∈𝑅N(0,𝐼𝑛×𝑛 ) [𝑔𝑑 (𝒗 · 𝒙)]
�� = 𝑂

(
4
𝑑 𝑛

𝑑

𝑛Δ

)
.

Proof. Observation 9 implies that 𝑔𝑑 (𝑧) is a degree 𝑑 polyno-

mial, whose largest coefficient is at most 𝑑3𝑑 . Using Observation

12 for each of these monomials, we get��E𝒙∈𝑅𝐷 [𝑔𝑑 (𝒗 · 𝒙)] −E𝒙∈𝑅N(0,𝐼𝑛×𝑛 ) [𝑔𝑑 (𝒗 · 𝒙)]
�� ≤

𝑂

(
𝑑23𝑑

) 𝑛𝑑

𝑛Δ
= 𝑂

(
4
𝑑 𝑛

𝑑

𝑛Δ

)
.

□

5.3 Proof of Low Degree Approximation Lemma
for Halfspaces (Lemma 7)

Let us recall what we need to show to prove Lemma 7. Without

loss of generality, we assume we are in one dimension. 𝐷 is a

distribution on R, such that for some positive real parameters

𝛼,𝛾, 𝜖 and a positive integer parameter 𝑑0 we have

• Anti-concentration: for any real 𝑦, we have

Pr

𝑥∈𝑅𝐷
[𝑥 ∈ [𝑦,𝑦 + 𝜖]] ≤ 𝛼

,

• Concentration:
(
E𝑥∈𝑅𝐷

[
|𝑥 |𝑑0

] )
1/𝑑0

≤ 𝛽 , for some 𝛽 ≥ 1.

Also we have 𝑑0 >
5𝛽

𝜖2
and that 𝜖 is smaller than some sufficiently

small absolute constant. Then, for every 𝜃 ∈ R we would like to

show there is a polynomial 𝑃 (𝑥) of degree at most
2𝛽

𝜖2
+ 1 such that

𝐸𝑥∈𝑅𝐷 [|𝑃 (𝑥) − sign(𝑥 − 𝜃 ) |] = 𝑂
©­«𝛼 + 𝜖 + (8𝛽)

2𝛽

𝜖2
+1

2
𝑑0

ª®¬ .
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Let𝑤 > 1 and 𝑑 ∈ 𝑍+
be parameters, values of which will be set

later. We will approximate the sign function with a polynomial in

the following two steps:

• Approximate sign(𝑥 − 𝜃 ) by a continuous function

𝑓 (𝑥) :=


1 if

𝑥−𝜃
𝜖 > 1,

−1 if
𝑥−𝜃
𝜖 < −1,

𝑥−𝜃
𝜖 otherwise.

• For a parameter 𝑑 , approximate 𝑓 (𝑥) by

𝑓𝑑 (𝑥) :=
𝑑∑︁

𝑘=0

𝑎𝑘𝑇𝑘 (
𝑥

𝑤
),

where

𝑎𝑘 :=
1 + 1𝑘>0

𝜋

∫
1

−1

𝑓 (𝑤𝑦)𝑇𝑘 (𝑦)√︁
1 − 𝑦2

𝑑𝑦.

First, we observe that 𝑓 is a good approximator for sign(𝑥 −𝜃 ) with
respect to 𝐷 .

Proposition 16. If 𝐷 is a distribution over R such that for every

𝑥0 ∈ R we have Pr𝑥∈𝑅𝐷 [𝑥 ∈ [𝑥0, 𝑥0 + 𝜖]] ≤ 𝛼 , then (with 𝑓 (𝑥)
defined as above) we have

E𝑥∈𝑅𝐷 [|𝑓 (𝑥) − sign(𝑥 − 𝜃 ) |] ≤ 2𝛼.

Proof. The two functions differ only on [𝜃 − 𝜖, 𝜃 + 𝜖], with the

absolute value of difference being at most 1. Since the distribution

𝐷 cannot have probability mass more than 2𝛼 in this interval, the

proposition follows. □

Secondly, we show that 𝑓𝑑 is a good approximator to 𝑓 with

respect to 𝐷 , within the region [−𝑤,𝑤].

Proposition 17. For any distribution 𝐷 , we have

E𝑥∈𝑅𝐷
[
|𝑓 (𝑥) − 𝑓𝑑 (𝑥) | 1 |𝑥 | ≤𝑤

]
≤ 𝑂

( 𝑤
𝜖𝑑

)
Proof. Using Theorem 8 we have

E𝑥∈𝑅𝐷
[
|𝑓 (𝑥) − 𝑓𝑑 (𝑥) | 1 |𝑥 | ≤𝑤

]
≤

max

𝑥∈[−𝑤,𝑤 ]
|𝑓 (𝑥) − 𝑓𝑑 (𝑥) | = max

𝑦∈[−1,1]
|𝑓 (𝑤𝑦) − 𝑓𝑑 (𝑤𝑦) | = 𝑂

( 𝑤
𝜖𝑑

)
.

□

Now, we put all the relevant propositions together to show the

lemma. Using Propositions 10 and 11, we see that if we have 𝑑 ∈
Z ∩ [1, 𝑑0/2] then

E𝑥∈𝑅𝐷
[
|𝑓 (𝑥) − 𝑓𝑑 (𝑥) | 1 |𝑥 |>𝑤

]
≤

𝑂

(
4
𝑑E𝑥∈𝑅𝐷

[
|𝑥 |𝑑 1 |𝑥 |>𝑤

] )
≤ 𝑂

(
4
𝑑
2𝑤𝑑

(
𝛽

𝑤

)𝑑0 )
Together with Proposition 17, this implies that

E𝑥∈𝑅𝐷 [|𝑓 (𝑥) − 𝑓𝑑 (𝑥) |] ≤ 𝑂

(
4
𝑑
2𝑤𝑑

(
𝛽

𝑤

)𝑑0 )
+𝑂

( 𝑤
𝜖𝑑

)
This, in turn, together with Proposition 16 implies that

𝐸𝑥∈𝑅𝐷 [|𝑓𝑑 (𝑥) − sign(𝑥 − 𝜃 ) |] = 𝑂

(
𝛼 + 𝑤

𝜖𝑑
+ 4

𝑑𝑤𝑑

(
𝛽

𝑤

)𝑑0 )
.

Taking
15 𝑤 = 2𝛽 and 𝑑 =

⌈
2𝛽

𝜖2

⌉
we get

𝐸𝑥∈𝑅𝐷 [|𝑓𝑑 (𝑥) − sign(𝑥 − 𝜃 ) |] =

𝑂
©­­«𝛼 + 𝜖 + (8𝛽)

⌈
2𝛽

𝜖2

⌉
2
𝑑0

ª®®¬ = 𝑂
©­«𝛼 + 𝜖 + (8𝛽)

2𝛽

𝜖2
+1

2
𝑑0

ª®¬ .
Finally, we note that by Observation 9 we have that each coef-

ficient of the polynomial 𝑓𝑑 has a magnitude of at most 𝑂 (𝑑3𝑑 ) =

𝑂

(
4

2𝛽

𝜖2

)
. This completes the proof of the low degree approximation

lemma for halfspaces (Lemma 7).

6 PROOF OF MAIN THEOREM VIA TWO MAIN
LEMMAS

6.1 Truncated Gaussian has Moments Similar to
Gaussian

Recall that our tester truncates the samples and checks that low-

degree moments are close to the correspondingmoments of a Gauss-

ian. If the distribution is indeed Gaussian, the following proposition

shows that this truncation step does not distort the moments too

much.

Proposition 18. Let

∏𝑛
𝑖=1 𝑥

𝛼𝑖
𝑖

be a monomial of degree at most Δ

and 𝑡 a real number in

[
2

√
Δ + 1, +∞

)
. Then we have����E𝒙∼N(0,𝐼𝑛×𝑛 )

[
𝑛∏
𝑖=1

𝑥
𝛼𝑖
𝑖

����∀𝑖 : |𝑥𝑖 | ≤ 𝑡

]
−

−E𝒙∼N(0,𝐼𝑛×𝑛 )

[
𝑛∏
𝑖=1

𝑥
𝛼𝑖
𝑖

] ���� ≤ 𝑂

(
2
ΔΔ

Δ+2
2 𝑡Δ𝑒−

𝑡2

2

)
.

Proof. For the proof, we refer the reader to the full version of

this work. □

6.2 Finishing the Proof of Theorem 5
In this subsection we finish the proof of Theorem 5, using the low

degree moment lemma for distributions (Lemma 6) and the low

degree approximation lemma for halfspaces (Lemma 7). The main

thing left to do is to address issues relating to truncation of samples

in the learning and testing algorithms.

We now restate the theorem. The values 𝐶1, · · · ,𝐶4 present in

algorithms A and T (in the beginning of Section 3) are chosen

to be sufficiently large absolute constants, and also 𝑛 and
1

𝜖 are

larger than some sufficiently large absolute constant. Then, we need

to show that the algorithm A is an agnostic (𝑂 (𝜖), 0.1)-learner
for the function class of linear threshold functions overR𝑛

under

distributionN(0, 𝐼𝑛×𝑛) and the algorithm T is an assumption tester

for A. We also need to show that A and T require only 𝑛
𝑂̃

(
1

𝜖4

)
samples and run-time.

Bounds on the run-time and sample complexity of our algorithms

follow directly from our choice of parameters.

15
Recall that to do all this we needed that𝑑 is in [1, 𝑑0/2]. Recall that by an assumption

of the lemma we are proving we have 𝑑0 >
5𝛽

𝜖2
and 𝛽 ≥ 1. Therefore, for 𝜖 smaller

than some sufficiently small absolute constant we indeed have

⌈
2𝛽

𝜖2

⌉
∈ [1, 𝑑0/2].
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• The learner A draws 𝑁1 := 𝑛
𝑂̃

(
1

𝜖4

)
samples, then performs

a computation running in time polynomial in (i) 𝑁1 (ii) the

number of monomials

∏𝑛
𝑗=1 𝑥

𝛼 𝑗

𝑗
of degree at most 𝑑 , which

is 𝑂

(
𝑛𝑑

)
(this includes the run-time consumed by the al-

gorithm of Theorem 2). Overall, the learner A uses 𝑛
𝑂̃

(
1

𝜖4

)
samples and run-time.

• The testerT first performs estimations of values Pr

[��𝑥 𝑗 �� > 𝑡
]

up to additive
𝜖
30𝑛 with error probability

1

100𝑛 , which in total

require poly

(
𝑛
𝜖

)
samples and run-time. Then, the tester T

obtains 𝑁2 :=
⌈
𝑡Δ𝑛𝐶4Δ

⌉
samples (where Δ :=

⌊
1

𝜖4
ln
4

(
1

𝜖

)⌋
and 𝑡 := 𝐶1Δ lnΔ

√︁
log𝑛 +

√︂
2 ln

(
𝐶2𝑛
𝜖

)
) and performs a

polynomial time computation with them. We see that 𝑡 =

𝑂

(
poly

(
1

𝜖 , 𝑛

))
and therefore𝑁2 = 𝑛

𝑂̃

(
1

𝜖4

)
. Finally, the tester

T runs a computation running in time polynomial in (i) 𝑁2

and (ii) the number of monomials

∏𝑛
𝑗=1 𝑥

𝛼 𝑗

𝑗
of degree at

most Δ, which is 𝑂

(
𝑛Δ

)
. Overall, we get that the run-time

and sample complexity of T is 𝑛
𝑂̃

(
1

𝜖4

)
.

Proposition 19. The following proposition uses the low degree ap-

proximation lemma for halfspaces (Lemma 7) to argue that, under cer-

tain regularity conditions on the distribution𝐷 , the learning algorithm

satisfies the agnostic learning guarantee. Suppose the 𝐶1, · · · ,𝐶4 are

chosen to be sufficiently large absolute constants, 𝑛 and
1

𝜖 are larger

than some sufficiently large absolute constant. Suppose 𝐷 is a distri-

bution overR𝑛
such that it the following properties hold

• Good tail: We have Pr𝒙∈𝑅𝐷 [∃𝑖 ∈ [𝑛] : |𝑥𝑖 | > 𝑡] ≤ 𝜖
5
.

• Concentration along any direction for truncated dis-
tribution: For any unit vector 𝒗 we have(

E𝒙∈𝑅𝐷

[
|𝒗 · 𝒙 |𝑑

����∀𝑖 ∈ [𝑛] : |𝑥𝑖 | ≤ 𝑡

] )
1/𝑑

≤ 2

√
𝑑.

• Anti-concentration along any direction for truncated
distribution: For any unit vector 𝒗 and for any real 𝑦, we

have

Pr

𝒙∈𝑅𝐷

[
𝒗 · 𝒙 ∈ [𝑦,𝑦 + 𝜖]

����∀𝑖 ∈ [𝑛] : |𝑥𝑖 | ≤ 𝑡

]
≤ 𝑂 (𝜖) .

Then, the algorithm A is an agnostic (𝑂 (𝜖) , 0.1)-learner for the
function class of linear threshold functions overR𝑛

under distribu-

tion 𝐷 with failure probability at most
1

20
.

Proof. Let𝐷
truncated

be the distribution of 𝒙 drawn from𝐷 con-

ditioned on |𝑥𝑖 | ≤ 𝑡 for all 𝑖 . We see that the premises of this propo-

sition imply that the distribution 𝐷
truncated

satisfies the premises of

the low degree approximation lemma for halfspaces(Lemma 7) with

parameters 𝑑0 = 𝑑 , 𝛼 = 𝑂 (𝜖) and 𝛽 = 2

√
𝑑 . Taking 𝜖 smaller than

some absolute constant ensures that the condition 𝑑 >
5𝛽

𝜖2
= 10

√
𝑑

𝜖2

is also satisfied.

The low degree approximation lemma for halfspaces(Lemma 7)

then allows us to conclude that for every 𝜃 ∈ R and for any𝑤 ≥ 1

there is a polynomial 𝑃 (𝑥) of degree at most 𝑑 such that

𝐸𝒙∈𝑅𝐷truncated
[|sign(𝒗 · 𝒙 − 𝜃 ) − 𝑃 (𝒗 · 𝒙) |] = 𝑂

©­­­­«
𝜖 +

(
16

√
𝑑

) 4

√
𝑑

𝜖2
+1

2
𝑑

ª®®®®¬
Recalling that 𝑑 := 2

⌊
1

2𝜖4
ln
3

(
1

𝜖

)⌋
so we get that

𝐸𝒙∈𝑅𝐷truncated
[|sign(𝒗 · 𝒙 − 𝜃 ) − 𝑃 (𝒗 · 𝒙) |] =

𝑂

©­­­­«
𝜖 +

(
𝑂

(
1

𝜖2
ln
1.5

(
1

𝜖

)))𝑂 (
1

𝜖4
ln

1.5 ( 1

𝜖 )
)

2

Ω
(

1

𝜖4
ln

3 ( 1

𝜖 )
) ª®®®®¬

.

For 𝜖 smaller than some sufficiently small absolute constant, the

above is 𝑂 (𝜖).
Thus, we have that for a linear threshold function sign (𝒗 · 𝒙 − 𝜃 )

there is a degree 𝑑 multivariate polynomial 𝑄 for which

E𝒙∈𝑅𝐷truncated
[|sign (𝒗 · 𝒙 − 𝜃 ) −𝑄 (𝒙) |] ≤ 𝑂 (𝜖)

In other words, under 𝐷
truncated

, any linear threshold function

sign (𝒗 · 𝒙 − 𝜃 ) is 𝑂 (𝜖)-approximated in 𝐿1 by something in the

span of set of monomials of degree at most 𝑑 , i.e. the set
𝑛∏
𝑗=1

𝑥
𝛼 𝑗

𝑗
:

∑︁
𝑗

𝛼 𝑗 ≤ 𝑑

 .

Now, Theorem 2. tells us that with probability at least 1 − 1

20
the

predictor 𝑓 given in step 3 has an error of at most 𝑂 (𝜖) more than

sign(𝒗 · 𝒙 − 𝜃 ) for samples 𝒙 ∈𝑅 𝐷
truncated

. Overall, recalling the

definition of 𝐷
truncated

we have

Pr

𝒙,𝑦∈𝑅𝐷pairs

[
𝑓 ′ (𝒙) ≠ 𝑦

]
≤ Pr

𝒙∈𝑅𝐷
[∃𝑖 ∈ [𝑛] : |𝑥𝑖 | > 𝑡] +

+ Pr

𝒙,𝑦∈𝑅𝐷pairs

[
𝑓 (𝒙) ≠ 𝑦

����∀𝑖 ∈ [𝑛] : |𝑥𝑖 | ≤ 𝑡

]
≤

Pr

𝒙,𝑦∈𝑅𝐷pairs

[
sign(𝒗 · 𝒙 − 𝜃 ) ≠ 𝑦

����∀𝑖 ∈ [𝑛] : |𝑥𝑖 | ≤ 𝑡

]
+𝑂 (𝜖) ,

which completes the proof. □

Now, the following proposition, using low degreemoment lemma

for distributions (Lemma 6), tells us that the tester we use (1) is

likely accept if the Gaussian assumption indeed holds (2) is likely

to reject if the regularity conditions for Proposition 19 do not hold.

Proposition 20. Suppose the𝐶1, · · · ,𝐶4 are chosen to be sufficiently

large absolute constants, 𝑛 and
1

𝜖 are larger than some sufficiently

large absolute constant. Then, there is some absolute constant 𝐵, so

the tester T has the following properties:

(1) If T is given samples from N(0, 𝐼𝑛×𝑛), it outputs Yes with
probability at least 0.9.

(2) The tester T rejects with probability greater than 0.9 any 𝐷

for which at least one of the following holds:

(a) Bad tail: We have Pr𝒙∈𝑅𝐷 [∃𝑖 ∈ [𝑛] : |𝑥𝑖 | > 𝑡] > 𝜖
5
.
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(b) Failure of concentration along some direction for trun-
cated distribution: there is a unit vector 𝒗 such that(
E𝒙∈𝑅𝐷

[
|𝒗 · 𝒙 |𝑑

����∀𝑖 ∈ [𝑛] : |𝑥𝑖 | ≤ 𝑡

] )
1/𝑑

> 2

√
𝑑.

(c) Failure of anti-concentration along some direction
for truncated distribution: there is a unit vector 𝒗 and

real 𝑦, for which

Pr

𝒙∈𝑅𝐷

[
𝒗 · 𝒙 ∈ [𝑦,𝑦 + 𝜖]

����∀𝑖 ∈ [𝑛] : |𝑥𝑖 | ≤ 𝑡

]
> 𝐵𝜖.

Proof. First, assume that T is getting samples fromN(0, 𝐼𝑛×𝑛)
and let us prove that Toutputs Yes with probability at least 0.9.

Since 𝑡 ≥ 1, by we have
16

Pr𝑧∈N(0,1) [|𝑧 | > 𝑡] ≤ 𝑂

(
𝑒−

𝑡2

2

)
. As

𝑡 ≥
√︂
2 ln

(
𝐶2𝑛
𝜖

)
, taking 𝐶2 large enough we get

Pr

𝑧∈N(0,1)
[|𝑧 | > 𝑡] ≤ 𝜖

30𝑛
.

Therefore, N(0, 𝐼𝑛×𝑛) passes step 1 of tester T with probability at

least 1 − 1

100
.

Also, Pr𝑧∈N(0,1) [|𝑧 | > 𝑡] ≤ 𝜖
30𝑛 implies that

Pr

𝒙∈N(0,𝐼𝑛×𝑛 )
[∀𝑖 ∈ [𝑛] : |𝑥𝑖 | ≤ 𝑡] ≥ 1 − 𝜖

30

.

Together with a very loose application of the Hoeffding bound, we

see that for sufficiently large 𝐶4 with probability at least 1 − 1

100

only at most half of the samples are discarded in the step 2 of T . We

henceforth assume this indeed was the case. The remaining sam-

ples themselves are i.i.d. and distributed according to N(0, 𝐼𝑛×𝑛)
conditioned on all coordinates being in [−𝑡, 𝑡].

Since all remaining samples have the size of their coordinates

bounded by 𝑡 , the value of a given monomial

∏𝑛
𝑗=1 𝑥

𝛼 𝑗

𝑗
of degree

at most Δ evaluated on any of them is in

[
−𝑡Δ, 𝑡Δ

]
. Therefore,

the Hoeffding bound implies that for sufficiently large 𝐶4 with

probability at least 1 − 1

100𝑛Δ the empirical average of

∏𝑛
𝑗=1 𝑥

𝛼 𝑗

𝑗
on

the (at least
𝑁2

2
many) remaining samples is within

1

10𝑛Δ of

E𝒙∼N(0,𝐼𝑛×𝑛 )

[
𝑛∏
𝑖=1

𝑥
𝛼𝑖
𝑖

����∀𝑖 : |𝑥𝑖 | ≤ 𝑡

]
.

For sufficiently large 𝐶1, we verify the premise of Proposition 18

that 𝑡 ∈
[
2

√
Δ + 1, +∞

)
and therefore have����� E

𝒙∼N(0,𝐼𝑛×𝑛 )

[
𝑛∏
𝑖=1

𝑥
𝛼𝑖
𝑖

����∀𝑖 : |𝑥𝑖 | ≤ 𝑡

]
− E

𝒙∼N(0,𝐼𝑛×𝑛 )

[
𝑛∏
𝑖=1

𝑥
𝛼𝑖
𝑖

] ����� ≤
𝑂

(
2
ΔΔ

Δ+2
2 𝑡Δ𝑒−

𝑡2

2

)
.

16
Proof:

∫ +∞
𝑡

𝑒
− 𝑥2

2 𝑑𝑥 ≤ 𝑒
− 𝑡2

2

∫ +∞
𝑡

𝑒
− 𝑡 (𝑥−𝑡 )

2 𝑑𝑥 ≤ 2𝑒
− 𝑡2

2

𝑡
≤ 𝑂

(
𝑒
− 𝑡2

2

)
.

Now, we have
𝑑
𝑑𝑡

(
Δ log 𝑡 − 𝑡2

2

)
= Δ

𝑡 − 𝑡 which is negative when

𝑡 >
√
Δ. As 𝑡 ≥ 𝐶1Δ

(
lnΔ

√︁
log𝑛

)
>
√
Δ, we have

𝑡Δ𝑒−
𝑡2

2 ≤
(
𝐶1Δ

(
lnΔ

√︁
log𝑛

))Δ
exp

©­­«−
(
𝐶1Δ

(
lnΔ

√︁
log𝑛

))
2

2

ª®®¬ ,
which together with the preceding inequality implies����E𝒙∼N(0,𝐼𝑛×𝑛 )

[
𝑛∏
𝑖=1

𝑥
𝛼𝑖
𝑖

����∀𝑖 : |𝑥𝑖 | ≤ 𝑡

]
−

−E𝒙∼N(0,𝐼𝑛×𝑛 )

[
𝑛∏
𝑖=1

𝑥
𝛼𝑖
𝑖

] ���� ≤
𝑂

©­­«2ΔΔ
Δ+2
2

(
𝐶1Δ

(
lnΔ

√︁
log𝑛

))Δ
exp

©­­«−
(
𝐶1Δ

(
lnΔ

√︁
log𝑛

))
2

2

ª®®¬
ª®®¬

for sufficiently large 𝐶1 the above is less than
1

10𝑛Δ . Therefore,

in the whole, we have that the empirical average of

∏𝑛
𝑗=1 𝑥

𝛼 𝑗

𝑗
in

step 3 of T is with probability at least 1 − 1

100𝑛Δ within
1

10𝑛Δ of

E𝒙∼N(0,𝐼𝑛×𝑛 )
[∏𝑛

𝑖=1 𝑥
𝛼𝑖
𝑖

]
. Taking a union bound over all monomi-

als

∏𝑛
𝑗=1 𝑥

𝛼 𝑗

𝑗
of degree at most Δ, we see that the step 3 of the tester

T also passes with probability at least 1 − 1

100
when it is run on

N(0, 𝐼𝑛×𝑛).
Overall, we conclude that the probability T outputs No when

given samples from N(0, 𝐼𝑛×𝑛) is at most
3

100
< 0.1 as promised.

Now, we shall show that Twill likely output No if any of the

conditions given in the proposition hold.

If Condition (a) holds, we have Pr𝒙∈𝑅𝐷 [∃𝑖 ∈ [𝑛] : |𝑥𝑖 | > 𝑡] >
𝜖
5
, then there is some coordinate 𝑖 for which Pr𝒙∈𝑅𝐷 [|𝑥𝑖 | > 𝑡] >
𝜖
5𝑛 . This coordinate will lead to T outputting No in step 1 with

probability at least 1 − 1

100
.

Now, suppose condition (a) doesn’t hold so we have

Pr

𝒙∈𝑅𝐷
[∃𝑖 ∈ [𝑛] : |𝑥𝑖 | > 𝑡] ≤ 𝜖

5

but condition (b) or (c) does hold. We would like to show that T
will still likely output No. With a very loose application of the

Hoeffding bound, for sufficiently large 𝐶4 with probability at least

1 − 1

100
only at most half of the samples are discarded in the step 2

of T , which we also assume henceforth. Using the Hoeffding bound

again, we see that for sufficiently large 𝐶4 with probability at least

1 − 1

100
the empirical expectation of all monomials

∏𝑛
𝑗=1 𝑥

𝛼 𝑗

𝑗
of

degree at most Δ is within
1

10𝑛Δ of

E𝒙∈𝑅𝐷

[
𝑛∏
𝑖=1

𝑥
𝛼𝑖
𝑖

����∀𝑖 ∈ [𝑛] : |𝑥𝑖 | ≤ 𝑡

]
.

In other words, with probability at least 1− 1

100
the tester T will

output No in step 3, unless we have for all monomials

∏𝑛
𝑗=1 𝑥

𝛼 𝑗

𝑗
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that����E𝒙∈𝑅𝐷

[
𝑛∏
𝑖=1

𝑥
𝛼𝑖
𝑖

����∀𝑖 ∈ [𝑛] : |𝑥𝑖 | ≤ 𝑡

]
−

−E𝒛∼N(0,𝐼𝑛×𝑛 )


𝑛∏
𝑗=1

𝑥
𝛼 𝑗

𝑗


���� ≤
1

2𝑛Δ
+ 1

10𝑛Δ
=

3

5𝑛Δ
.

So, to finish the proof, it is enough to show that the inequality

above cannot hold if Condition (b) or Condition (c) holds. This fol-

lows from the low degree moment lemma for distributions(Lemma

6), for a sufficiently large choice of 𝐵, thereby finishing the proof
17
.

□

Finally, we can use the two propositions above to finish the

proof of Theorem 5. Bounds on run-time have been shown earlier,

so now we need to show correctness. That requires us to show the

following two conditions:

(1) (Composability) If, given access to i.i.d. labeled samples

(𝑥,𝑦) distributed according to 𝐷pairs, the algorithm T out-

puts “Yes” with probability at least 1/4, then A will with

probability at least 0.9 output a circuit computing a function

ˆ𝑓 , such that

Pr

(𝑥,𝑦) ∈𝑅𝐷pairs

[𝑦 ≠ ˆ𝑓 (𝑥)] ≤

min

𝑓 ∈halfspaces

(
Pr

(𝑥,𝑦) ∈𝑅𝐷pairs

[𝑓 (𝑥) ≠ 𝑦]
)
+𝑂 (𝜖) .

(2) (Completeness) Given access to i.i.d. labeled samples (𝑥,𝑦)
distributed according to 𝐷pairs, with 𝑥 itself distributed as a

Gaussian over 𝑅𝑛 , tester T outputs “Yes” with probability at

least 3/4.
(3) A is an agnostic learner for halfspaces over R𝑛

under the

Gaussian distribution.

Note that Condition 3 follows from the first two. The completeness

condition (i.e. Condition 2) immediately follows from Proposition

20. The composability condition (i.e. Condition 1) follows from

Proposition 20 and Proposition 19 in following way. If T outputs

“No” with probability less than 3/4 then conditions (a), (b) and

(c) in Proposition 20 should all be violated. This allows us to use

Proposition 19 to conclude thatA is an agnostic (𝑂 (𝜖) , 0.1)-learner
for the function class of linear threshold functions overR𝑛

under

distribution 𝐷 , where 𝐷 is the marginal distribution of 𝑥 when

(𝑥,𝑦) distributed according to𝐷pairs. This implies the composability

condition (i.e. Condition 1 above) and finishes the proof of Theorem

5.
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17
To be explicit: if condition (a) doesn’t hold but condition (b) or (c) does hold via

union bound the probability that T will fail to output No is at most
1

100
+ 1

100
< 0.1

as required.
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