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ABSTRACT

There are many important high dimensional function classes that
have fast agnostic learning algorithms when strong assumptions
on the distribution of examples can be made, such as Gaussianity or
uniformity over the domain. But how can one be sufficiently con-
fident that the data indeed satisfies the distributional assumption,
so that one can trust in the output quality of the agnostic learning
algorithm? We propose a model by which to systematically study
the design of tester-learner pairs (A, 7°), such that if the distribution
on examples in the data passes the tester 7~ then one can safely
trust the output of the agnostic learner A on the data.

To demonstrate the power of the model, we apply it to the classi-
cal problem of agnostically learning halfspaces under the standard
Gaussian distribution and present a tester-learner pair with a com-
bined run-time of n®(1/¢") This qualitatively matches that of the
best known ordinary agnostic learning algorithms for this task. In
contrast, finite sample Gaussian distribution testers do not exist for
the L; and EMD distance measures. Previously it was known that
half-spaces are well-approximated with low-degree polynomials
relative to the Gaussian distribution. A key step in our analysis is
showing that this is the case even relative to distributions whose
low-degree moments approximately match those of a Gaussian.

We also go beyond spherically-symmetric distributions, and give
a tester-learner pair for halfspaces under the uniform distribution
on {0, 1}" with combined run-time of nO(/€") This is achieved us-
ing polynomial approximation theory and critical index machinery
of [Diakonikolas, Gopalan, Jaiswal, Servedio, and Viola 2009].

Can one design agnostic learning algorithms under distributional
assumptions and count on future technical work to produce, as a
matter of course, tester-learner pairs with similar run-time? Our
answer is a resounding no, as we show there exist some well-studied
settings for which 20(¥1) run-time agnostic learning algorithms
are available, yet the combined run-times of tester-learner pairs
must be as high as 29(n) On that account, the design of tester-
learner pairs is a research direction in its own right independent of
standard agnostic learning. To be specific, our lower bounds apply
to the problems of agnostically learning convex sets under the
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1 INTRODUCTION
1.1 Motivation

Suppose one wants to learn from i.i.d. example-label pairs, but
some unknown fraction of labels are corrupted by an adversary.
The well-studied field of agnostic learning seeks to develop learning
algorithms that are robust to such corruptions'. Agnostic learning
can be notoriously harder than standard learning (see for exam-
ple [19, 29, 39, 40]). Nevertheless, there are many important high
dimensional function classes that do have fast agnostic learning al-
gorithms, including halfspaces, convex sets and monotone Boolean
functions. However, these learning algorithms make strong as-
sumptions about the underlying distribution on examples, such as
Gaussianity or uniformity over {0, 1}".

Thus, to be confident in such a learning algorithm one needs to
be confident in the distributional assumptions. In some cases, users
can attain confidence in their distributional assumptions by creating
their own set of examples which conform to the distribution, and
querying labels for these examples. Yet, this approach requires
query access, which is often unavailable. Is there a way to ascertain
that the examples are indeed coming from a distribution for which
the learning algorithm will give a robust answer?

We propose to systematically study the design of tester-learner
pairs (A, T), such that tester T tests the distributional assumptions
of agnostic learner A. In other words, the tester-learner pair is to
be designed such that if the distribution on examples in the data
pass the tester, then one can safely use the learner on the data. By
considering the most basic requirements that such a pair ought to
satisfy, we propose a new model that makes the following end-to-
end requirements on a tester-learner pair (A, 7):

e Composability: For any example-label distribution, it should
be unlikely that simultaneously (i) the tester 7~ accepts but

!See [11] for more on how exactly agnostic learning algorithms yield algorithms that
are resilient to adversarial noise in labels.
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(ii) the learner A outputs something not satisfying the ag-
nostic learning guarantee.

e Completeness: If the distribution on examples conforms to
the distributional assumption, tester 7~ will likely accept.

o The performance of the tester-learner pair is judged by the
combined run-time of A and 7.

See Section 2.2 for the fully formal definition and see Subsection
1.3 for more comments.

We emphasize that assumptions on the distribution of examples
are in fact made in a very large number of works on agnostic
learning 2. Here is an incomplete list of such papers that only
scratches the surface: [4, 9, 10, 15-17, 23, 25, 30-32, 38, 41, 43, 44,
49, 52, 57]. Hence, we think it is important to understand to what
extent these distributional assumptions can be tested.

Perhaps surprisingly, in spite of how natural this definition is,
nothing was previously known on how well it can be achieved
for various well-studied problems. The gamut of open possibilities
included the most optimistic one: that for all these problems one can
test the assumption with very small overhead relative to the existing
agnostic learning algorithms. It also included the most pessimistic
one: that for all these problems one can test the assumption only
at a very steep additional cost in terms of run-time. We note that
such steep additional cost would indeed be payed if one were to
use existing identity testers of n-dimensional distributions, as these
testers have run-times of 22(") (see below for more information
on this).

We commence the charting of the landscape of these possibil-
ities. We find that neither of these extreme possibilities holds in
general. On one hand, we find that for some natural problems the
most optimistic possibility does materialize and there is a tester-
learner pair whose run-time is of the same order as that of the best
known agnostic learning algorithm. Specifically, for agnostically
learning the class of half-spaces with respect to standard® Gaussian
distribution, we design a tester-learner pair (A, 7)) with combined

run-time of n9(1/€")_ This run-time qualitatively matches the run-
time of nO(1/€") [20, 43] achieved by the best algorithm* and the
statistical query lower bound of n(1/e’) by [24, 26, 34]. We also

go beyond spherically-symmetric distributions, and give a tester-
learner pair for halfspaces under the uniform distribution on {0, 1}"

with combined run-time of n®(1/€")_ For this setting, please see

2The reason for this ubiquity of distributional assumptions in high-dimensional agnos-
tic learning is that with no assumption at all on the distribution the task of agnostic
learning is usually intractable. For example (i) The task of learning indicators of convex
sets over R™ cannot be achieved with finite number of samples if nothing is assumed
about the distribution. If the distribution is assumed to be Gaussian, this task can
be achieved with run-time of n©(V7/ ) [49]. (ii) If one is unwilling to make any
distributional assumption, no agnostic learning algorithm for halfspaces with run-time
of 2°(") is known despite decades of research (also see [19, 29, 39] for some known
hardness results). However, as we mentioned if the examples are distributed according
to the standard Gaussian, a dramatically faster run-time of nOW/e) is achievable
[20, 43].

3Note that the case of Gaussian distribution with arbitrary known mean and covariance
reduces to the case of standard Gaussian via a change of coordinates.

4However, note that the work of [18] shows how to obtain an even faster run-time of
poly (n, % ) if one is willing to settle for a weaker guarantee than the standard agnostic
learning guarantee. Specifically, for any absolute constant g, [18] gives a predictor,
such that, if the best halfspace has error opt, the predictor of [18] will have error of at
most (1 + p)opt + € (note that standard agnostic learning requires an error bound of
opt + €). In this work we only consider standard agnostic learning.
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the full version of this work for the precise statement of the theo-
rem and the proof. Here also, the run-time qualitatively matches

the run-time of n®(1/€") [20, 43] achieved by the best algorithm.
Additionally, we remark that positive results in our framework
extend to function classes beyond halfspaces and, as a proof of con-
cept, we give a simple tester-learner pair for agnostically learning
decision lists® under uniform distribution on {0, 1}" (see the full
version of this work). Also see [40] for some intractability results
on distribution-free learning of decision lists.

On the other hand, for some other natural problems, we show
that the most pessimistic scenario holds and the additional require-
ment of testing the distributional assumption comes at a steep price
in terms of run-time. Specifically:

o A well-known algorithm of [49] agnostically learns con-
vex sets under the Gaussian distribution with a run-time of
nO(n/€) We show that if a tester 7~ tests the distributional
assumption of this algorithm, then 7 has run-time of 29(m),
More generally, any tester-learner pair for this task requires
22(") run-time combined.

o A well-known algorithm of [12, 43] agnostically learns mono-
tone Boolean functions under uniform distribution over

vn

{0, 1} with a run-time of 2O <% ). We show that if a tester
T tests the distributional assumption of this algorithm, then
7 has run-time of 2°("). Again, any tester-learner pair for
this task requires 22(") run-time combined.

We emphasize that these lower bounds exhibit natural problems
where there is a dramatic gap between standard agnostic learning
run-time and the run-time of the best tester-learner pair. Therefore,
there is provably no general method that allows one to automat-
ically convert standard agnostic learning algorithms into tester-
learner pairs with low run-time overhead. Please see the full version
of this work for the precise statements of these intractability results
and the proofs.

Additionally, lower bounds for tester-learner pairs can imply
lower bounds for standard agnostic learning: Specifically, our lower
bounds imply that agnostic learning of monotone functions under

distributions 2noﬁ—closeﬁ to n%%?-wise independent distributions

requires 29(n) yun-time. The reason is that by [2, 3, 53] one can test

. . . . 9 0.99
n%-wise independence up to error ﬁ in time 29(""") | and

therefore the existence of such an algorithm would contradict our

general lower bound for tester-learner pairs. As there are 20(Vn/e*)
time learners for monotone functions over the uniform distribution
[12, 43], this lower bound highlights the sensitivity of agnostic
learners to the assumption on the input distribution.

Distribution Testing Perspective. Existing work on identity testing
of n-dimensional distributions has focused on testing with respect to
very strict distance measures (i.e. TV distance, earth-mover distance,
etc.). On one hand this yields strong general-purpose guarantees
on distributions accepted by the tester — it is hard to think of a
situation where closeness in TV distance is unsatisfactory. On the

SFor this example, a decision list is a special case of a decision tree corresponding to
a path. More formally, for some ordering of the variables x,(j), ..., Xyz(n)» values
01, ..., 0, and bits by, ..., by, a decision list does the following: For i = 1 to n, if
Xr(i) = b (i) output v, (;), else continue. A more general definition is given in [55].
®In total variation distance.
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other hand, in n dimensions this leads to run-times of 29(n) Ag
a concrete example, distinguishing the uniform distribution over
{0, 1}" from a distribution that is e-far from it in total variation

distance requires a run-time of ® (éz"/z) (see text [14]).

Yet, run-times of 22(1) can be prohibitive. Indeed, as we ex-
plained above, the theory of n-dimensional agnostic learning aims
at developing algorithms with run-times of 20(1) or even nQ¢(1)
If one were to combine these algorithms with a 22(") _run-time
distribution tester, the total run-time would rise precipitously.

From the distribution testing perspective, this work studies appli-
cation-targeted testers that, in favor of much faster run-time, forgo
the general-purpose guarantees provided by these strict distance
measures. The application domain which this work considers is the
testing of distributional assumptions made by agnostic learning
algorithms. Here, the application-targeted testers are developed
with a view towards special-purpose guarantees sufficient to ensure
that the learning algorithms are still robust. For some problems in
this domain - this work shows — the use of general-purpose testers
can indeed be circumvented, with a dramatic gain in run-time.

In general, surprisingly little is known about such application-
targeted testers and we hope more application-targeted distribution
testers can be developed for other domains.

Brief Comparison with Distribution-Free Agnostic Learning. Recall
that an agnostic learning algorithm is distribution-free if it succeeds
regardless of the distribution on examples. Designing such algo-
rithms has proven to be intractable for many function classes (see
for example [19, 29, 39, 40]). This intractability has prompted the
study of agnostic learning algorithms under distributional assump-
tions.

The model we introduce in this work is intermediate between
distribution-free agnostic learning and agnostic learning under a
distributional assumption. While the learning algorithm is not re-
quired to satisfy the agnostic learning guarantee under every single
distribution on example, the testing algorithm needs to alerts us
whenever the learning algorithm does fail to satisfy this guarantee.

Incidentally, when using a tester-learner pair, whenever the
testing algorithm rejects, the user can choose to then run a slow
distribution-free agnostic learning algorithm. Overall, this strat-
egy yields a learning algorithm that always satisfies the agnostic
guarantee, and additionally runs fast whenever the distributional
assumption does hold, thereby adapting to the distribution on ex-
amples.

Recent Followup Work [37]. In an exciting new development we
were contacted regarding a follow up work [37] that builds on
an earlier version of this paper. [37] develops novel techniques
for the design and analysis of tester-learner pairs that leverage
connections with the notion of fooling a function class from the
field of pseudorandomness. This allows [37] to

o Give tester-learner pairs for more general function classes,
such as intersections of halfspaces.

e Handle more general classes of distributional assumptions,
such as strictly subexponential distributions in R" and uni-
form over {0, 1}".

e Present a new connection between the notion of tester-
learner pairs and Rademacher complexity.
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e Improve on our run-time for tester-learner pairs for halfs-
paces under the Gaussian distribution on R". Specifically,

they give a bound of n0/e?)

bound of n0(1/€") Their tighter bound also matches the
known statistical query lower bounds [24, 26, 34].

which improves upon our

We would like to note that tester-learner pairs for halfspaces
under the uniform distribution on {0, 1}" is concurrent work with
[37] (they give a faster run-time of nO(/€") for this problem and
also give more general results as explained above). The earlier
version of our work (which they build upon) already contained the
other results presented in our current version, i.e. (i) the definition

of tester-learner pairs (ii) the tester learner pair for half-spaces

under the Gaussian distribution with run-time n©(1/¢") (Theorem
5) (iii) the intractability results for tester-learner pairs in for the
class of convex sets under the Gaussian distribution in R" and
the class of monotone functions under the uniform distribution in
{1}

1.2 Our Techniques

1.2.1 Tester-Learner Pair for Agnostically Learning Halfspaces un-
der Gaussian Distribution. We first give an overview of our tester-

learner pair (A, 7)) with combined run-time of nOU/€Y for the
class of half-spaces with respect to standard Gaussian distribution.
We also discuss the techniques we use to analyze it. See Sections 3,
5 and 6 for complete details.

A natural first approach would be to try to take advantage of the
literature on testing and learning distributions. However, almost all
results we are aware of on testing and learning high-dimensional
distributions (without assuming the distribution already belongs
to some highly restricted family as in [13]) require a number of
samples that is exponentially large in the dimension. It follows
from well-known techniques that Gaussianity over an infinite do-
main cannot be tested with respect to total variation distance in
finite samples. Potentially, one could obtain a tester-learner pair
for Gaussianity with respect to the earth-mover distance via the
tester” of [5], yielding a tester of run-time 20(n) However one can
see that, in earth-mover distance, no significantly better (i.e. 20(”))
bound can be obtained®. Such enormous run-times far exceed the
run-times that can be achieved for agnostically learning halfspaces.

Previously it was known that half-spaces are well-approximated
with low-degree polynomials relative to the Gaussian distribution.
A key step in our analysis is showing that this is the case even
relative to distributions whose low-degree moments approximately
match those of a Gaussian. One of our ideas is to start with a proof
of the exact Gaussian case and modify it so it only relies on low-
degree properties of the distribution. We are aware of three distinct
proofs of this exact Gaussian case in the literature:

(1) The method of [43] that uses specific facts about Hermite
polynomials.

(2) The noise sensitivity method of [49]. This method also uses
Hermite polynomials to argue that functions that tend to

"This tester requires that the distribution is confined to a box [—B, B]", but this by
itself is not a devastating problem, since most of probability mass of a Gaussian is
confined to such a box.

8Even when truncating the distribution to a box around the origin.
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be stable to perturbations of their input tend to be well-
approximated by low-degree polynomials.

(3) The method of [20] that, in order to approximate a halfspace
sign(v - x + 0), constructs a polynomial P(v - x) that ap-
proximates this halfspace tightly for values of |v - x| that are
not too large. It is then argued that large values of | - x| do
not contribute much to the total L; error of the polynomial
because its contribution is weighted by a rapidly decaying
Gaussian weight.

As Hermite polynomials are the unique family of polynomials or-
thogonal under the Gaussian distribution, the proof strategies of
[43] and [49] seem highly specialized to the distribution being ex-
actly Gaussian. Because of this, a method similar to the one of [20]
is the one serving as our starting point.

This method needs to be modified in a thoroughgoing way in
order to rely merely on the low-degree moments of the distribution
being close to those of Gaussian. For instance, a very easy-to-show
property of the n-dimensional standard Gaussian distribution is its
anti-concentration when projected on any direction. This property
becomes much less obvious once one is only promised that low-
degree moments of the distribution are close to those of Gaussian,
which is something we do show. We note that this step of our proof
is similar in spirit to the work of [45] that introduces a notion of
low-degree certified anti-concentration and shows it for various
distributions. Our proofs use extensively tools from polynomial
approximation theory.

Given these ideas, our tester-learner pair does the following.
The tester estimates the low-degree moments of the distribution
and compares them to the corresponding moments of the standard
Gaussian. It follows then that halfspaces are well-approximated
by low-degree polynomials with respect to this distribution. The
learning algorithm takes advantage of this by performing low-
degree polynomial L; regression similar to the one used in [43].

A technical complication, which we deal with, is that both our
tester and learner work with a truncated version of the distribution.
In other words, they discard the examples whose coordinates are too
large. This guarantees to us that we can actually produce estimates
for the moments of the truncated distribution (if distribution is not
truncated, moments could even be infinite).

Note that our arguments use strongly the fact that we are work-
ing with halfspaces and not with some arbitrary function class
that is well-approximated by low-degree polynomials under the
Gaussian distribution. This is due to how we use the concentration
and anti-concentration properties of the distribution. In a certain
sense this is necessary, as shown by our intractability results for
indicators of convex sets. Even though these functions are also well-
approximated by low-degree polynomials [49], for them a similar
method based on estimating low-degree moments will provably
not succeed. This underscores that designing tester-learner pairs
can be subtle and does not generally follow by mere extension of
already existing analyses of agnostic learning algorithms.

1.2.2  Tester-Learner Pair for Agnostically Learning Halfspaces under
Uniform Distribution on {£1}". We now discuss the techniques used
to give our tester-learner pair for halfspaces under the uniform
distribution on {+1}". As we mentioned, the run-time we show
O(1/¢

here is n *) and this is concurrent work with [37], who use
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other techniques. See the full version of this work for complete
details.

Our tester tests poly(1/€)-wise independence of the input distri-
bution with respect to the TV distance using [2, 3, 53]. The learning
algorithm uses the low-degree polynomial L; regression of [43]. To
show that these two algorithms indeed form a valid tester-learner
pair we show that every halfspace is well-approximated by a low-
degree polynomial relative to any poly(1/€)-wise independent dis-
tribution.

Suppose for a halfspace sign(v - x+ 0) it is the case that the norm
of the vector v is well-distributed among all the coordinates. Then,
by Berry-Esseen theorem, for x that is uniform over {+1}" the
inner product v - x is distributed similarly to a Gaussian. Roughly,
we use this to argue that if x is merely poly(1/€)-wise independent
then v - x has low-degree moments close to those of a Gaussian.
This allows us to use methods similar to the ones we use to give
tester-learner pairs for halfspaces under the standard Gaussian
distribution.

Finally, we handle halfspaces sign( - x + 6) for whom the norm
of the vector v is not well-spread across all the coordinates. We use
the critical index machinery of [20] to handle such halfspaces.

1.2.3  Intractability Results. Finally, we discuss the techniques used
to show that 22(") samples are required by (i) any tester-learner
pair for learning indicator functions of convex sets under the stan-
dard Gaussian on R" (ii) any tester-learner pair for learning mono-
tone functions under the uniform distribution on {0, 1}". See See
the full version of this work for complete details.

From technical standpoint, we find these lower bounds surpris-
ing: The mentioned standard agnostic learning algorithms in these
settings rely on low-degree polynomial regression. This suggests
that testing low-degree moments of the distribution (as we did for
halfspaces) ought to lead to the development of a fast tester-learner
pair. Yet, the lower bounds show that this can not be done.

We now roughly explain how we prove these lower bounds.
Let us focus on the lower bound for tester-learner pairs for con-
vex sets under standard Gaussian distribution (the lower bound
for monotone functions is similar). Take samples z1, - - - , zps from
the standard Gaussian, and let D be the uniform distribution on
{z1, -+ ,zpm}. The first idea is to show that the tester will have a
hard time distinguishing D from the standard Gaussian if it uses
much fewer than M samples’. The second idea is to show that (very
likely over the choice of zj, - - - , zp1) one can obtain, by excluding
only a small fraction of elements from {z1,- - ,zpr}, a subset Q
of them such that no point in Q is in the convex hull of the other
points in Q. Once we have such a set, we essentially'? define our
hard-to-learn convex set to be the convex hull of a random subset
of Q, and this convex set will not contain any other elements of Q
because no member of Q is in the convex hull of the rest. In this
way, unless a learner has seen a large fraction of the elements in Q
already, it has no way of predicting whether a previously unseen
element in Q belongs to the random convex set. We note that our

?Out actual argument also takes into account that the tester sees labels and not only
examples.

0Thjs is an oversimplification, as one still needs to figure out what to do with elements
outside Q. We show that, for all these elements, we can either include them into or
exclude them from the convex set in such a way as to reveal no information about
which of the points in Q were included in the convex set.
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argument is somewhat similar to well-known arguments proving
impossibility of approximation of the volume of a convex set via a
deterministic algorithm [6, 28].

1.3 Comments on the Model

1.3.1  What about Cross-Validation? In case of realizable learning
(i.e. you are promised there is no noise) a common approach to
verifying success is via checking prediction error rate on fresh data
and making sure it is not too high. Does this idea allow one to con-
struct a tester 7~ for the distributional assumption of some agnostic
learner A? Such tester would (i) run A to obtain a predictor f (ii)
test the success rate of f on fresh example-label pairs (iii) accept or
reject based on the success rate.

As was mentioned in the discussion of our intractability results,
there cannot be a general low-overhead method of transforming
standard agnostic learning algorithms into tester-learner pairs, be-
cause of our intractability results. Therefore, in particular, there
cannot be such a method based on cross-validation.

Intuitively, the reason is the following. Suppose you run the
learning algorithm, setting the closeness parameter € to 0.01, then
check the success of the predictor on fresh data and find that the
generalization error is close to 0.25. This could potentially be con-
sistent with the two following situations: (1) there is a function in
the concept class with close to zero generalization error, but the
learning algorithm gave a poor predictor due to a violation of the
distributional assumption (2) the distributional assumption holds,
but every function in the concept class has generalization error of
at least 0.24. The composability criterion tells you that in case (1)
you should reject, but the completeness criterion tells you that in
case (2) you should accept. Overall, there is no way to tell from
generalization error alone which of the two situations you are in,
so there is no way to know if you should accept or reject.

1.3.2  Label-Aware vs Label-Oblivious Testers. We say the tester 7~
is label-aware if it makes use of the labels given to it (and not only
the examples). Otherwise, we call it label-oblivious. We feel that
label-obliviousness makes a testing algorithm fit better with the
existing literature on testing properties of distributions, because
algorithms in this line of work decide to accept or reject a distribu-
tion based only on samples from it (and no side information such
as labels). However, this condition is not strictly necessary for veri-
fying success. Due to these considerations, our impossibility results
are against more general label-aware testers, while the tester given
in this paper is label-oblivious.

1.4 Related Work

1.4.1 Agnostic Learning under Distributional Assumptions Using
Low-Degree Polynomial Regression. Since the introduction of the
agnostic learning model [42, 46] there has been an explosion of
work in agnostic learning. Making assumptions on the distribution
on examples has been ubiquitous in this line of work. So has been
the use of low-degree polynomial regression as one of the main
tools. Previous to the work of [43], there existed an extensive body
of work on using low-degree polynomial regression for learning
under distributional assumptions, including [1, 12, 33, 48, 50, 51].
The work of [43] building on [46] proposed to use low-degree
polynomial L! regression to obtain agnostic learning algorithms
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for halfspaces under distribution assumptions, as well as extended
these previously studied low-degree regression algorithms into
the agnostic setting. Further work used low degree polynomial L!
regression to obtain agnostic learning algorithms for many more
problems, again under various distributional assumptions [4, 9, 10,
15-17, 23, 25, 30-32, 38, 41, 44, 49, 52, 57].

1.4.2  Learning Halfspaces. See the work of [25] and references
therein, for a historical discussion about the problem of learning
halfspaces, as well as some up-to-date references regarding some
problems connected to the one studied here.

1.4.3  Polynomial Approximation Theory. Polynomial approxima-
tion theory has been used extensively as a tool for studying halfs-
paces. Among other work, see [18, 20, 25, 27, 43, 47].

1.4.4  Other Works in Testing Distributions. There is a large body
of literature on finite sample guarantees for property testing of
distributions. Algorithms developed within this framework are
given samples of an input distribution and aim to distinguish the
case in which the distribution has a specified property, from the case
in which the distribution is far (in a reasonable distance metric) from
any distribution with that property. Properties of interest include
whether the distribution is uniform, independent, monotone, has
high entropy or is supported by a large number of distinct elements.
We mention a few specific results that are closest to the results in
this work: Let p be a distribution on a discrete domain of size M.
For a “known" distribution q (where the algorithm knows the value
of q on every element of the domain, and does not need samples
from it — e.g., when g is the uniform distribution), distinguishing
whether p is the same as g from the case where p is e-far (in L;
norm) from q requires O(VM/e?) samples [7, 8, 21, 22, 35, 54]. For
a more in depth discussion of the history and results in this area,
see the monograph by Canonne [14].

1.4.5 Other Models of Trusting Agnostic Learners. The work of
Goldwasser, Rothblum, Shafer and Yehudayoff considers the ques-
tion of how an untrusted prover can convince a learner that a
hypothesis is approximately correct, and show that significantly
less data is needed than that required for agnostic learning [36].

2 PRELIMINARIES
2.1 Standard Definitions

The definition of agnostic learning is as follows:

Definition 1. An algorithm A is an agnostic (€, §)-learning algo-
rithm for function class ¥ relative to the distribution D, if given
access to i.i.d. example-label pairs (x,y) distributed according to
Dpairs, with the marginal distribution on the examples equal to D,
the algorithm A with probability at least 1 — § outputs a circuit
computing a function f , such that

Pr [y # f(x)] < min Pr
(xsy)ERDpairs v f f€7: (xsy)ERDpairs

[f(x) #y]| +e

The quantity Pr(y, ) gDy [f (%) # y] is often called the gener-

alization error of f (a.k.a. out-of-sample error or risk).
The following is standard theorem about agnostic learning from
£1-approximation. The proof is implicit in [43] and this theorem
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has been implicitly used in much subsequent work (see Subsection
1.4 for references). Let U be some domain we are working over.

THEOREM 2. Let {g,- - gn} be a collection of real-valued func-
tions over U that can be evaluated in time T. Then, for every e > 0,
there is a learning algorithm A for which the following is true. Let D
be any distribution over U and let F be any class of Boolean functions
over U, such that every element of F is e-approximated in L' norm
relative to the distribution D by some element of span (g1,- - ,gN)-
Then, A agnostically (e, 5)-learns F relative to D. The algorithm A

uses O (iv—z log (%) samples and uses run-time polynomial in this

number of samples and T.

We will also need the definition of k-wise independent distribu-
tions:

Definition 3. A distribution of a random variable x over {+1}" is
called k-wise independent (a.k.a. k-wise uniform) if for any size-k
subset S of {1,- -, n} the distribution of {x; : i € S} is uniform
over {+1}k.

2.2 New Definition: Testing Distributional
Assumptions of a Learning Algorithm

Definition 4. Let A be an agnostic (¢, d1)-learning algorithm
for function class ¥ relative to the distribution D. We say that an
algorithm 7 is a tester for the distributional assumption of A if

(1) (Composability) Suppose a distribution Dpajrs on example-
label pairs is such that, given access to i.i.d. labeled examples
from it, the algorithm 7 outputs “Yes” with probability at
least 1/4. Then A, given access to i.i.d. labeled examples
from the same distribution Dp,jrs, Will with probability at
least 1 — §; output a circuit computing a function f , such
that

Pr [y # f(x)] < mm Pr
(x,y) €RDpairs F\(xy) €RDpairs

[f(x) #y]

(2) (Completeness) Suppose Dpairs is such that the marginal dis-
tribution on examples equals to D. Then, given i.i.d. example-
label pairs from Dpajys, tester 7 outputs “Yes” with probabil-
ity at least 3/4.

If this definition is satisfied, then we say that (A,7") form a tester-
learner pair.

Constants 1/4 and 3/4 in the definition above can without loss
of generality be replaced with any other pair of constants 1 — ,
and 1 — 63 with 62 € (0,1) and 83 € (2, 1). See the full version of
this work for the proof via a standard repetition argument.

3 AN EFFICIENT TESTER-LEARNER PAIR FOR
LEARNING HALFSPACES

We now describe our tester-learner pair for learning halfspaces
under the Gaussian distribution. Roughly, the testing algorithm
checks that the low-degree moments of the distribution on examples
are close enough to those of the standard Gaussian distribution.
The learning algorithm uses a low-degree polynomial regression
(similarly to [43]).
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As explained earlier, both of the algorithms ignore examples
whose absolute value is too high, which allows them to obtain ac-
curate estimates of distribution moments.

Tester-learner pair for learning halfspaces:
o LetCy,---
propriately. Define d := 2 l L In? ( )J A= L—ﬂ In* (%)J

t :=CiAlnAylogn+,/2In (CZ") Np = [ncwl
[tzA nC4A‘|.
e Learning algorithm A. Given access to i.i.d. labeled sam-
ples (x,y) € R™ x {+1} from an unknown distribution:
(1) Obtain N1 many labeled samples (x;, ;).
(2) Discard all the samples (x;j,y;) for which the absolute
value of some coordinate |(xi) j| is greater than t.
(3) Run the algorithm of Theorem 2 on the remaining samples,
With accuracy parameter {5, allowed failure probability

,C4 be a collection of constants to be tuned ap-

] and Ny :=

20, and taking the set of {g;} to be the set of monomials

of degree at most d, i.e. the set{ e x 12 < d}

This gives us a circuit computing predlctor f . Form a new
predictor f ’ that given x outputs (i) f (x) ifforall j € [n],
the value of |(x,~)j| is at most ¢. (ii) 1 if'! for some j € [n],
the value of ’(xi)j| exceeds t.
e Testing algorithm 7. Given access to i.i.d. labeled samples
x € R" from an unknown distribution:
(1) For each j € [n]:
(a) Estimate Pr [lx j| > t] up to additive 55 with error prob-
ability 15
(b) If the estimate is at least 15, output No and terminate.
(2) Draw Ny fresh samples {x;}, and discard the ones for
which the absolute value of some coordinate I(xi) J-| is
greater than ¢.

. no . Qj
(3) For every monomial [] 1%

of degree at most A, com-
pute its empirical expectation w.r.t. the samples {x;}. If

for any of them resulting value is not within # of

z~N(OI,1><,,) l_lx =

output No and terminate.
(4) Output Yes.

n
( j - l)” . naj iseven),
J=1

The following theorem shows that the above algorithms indeed
satisfy the criteria for a tester-learner pair for learning halfspaces
under the Gaussian distribution:

THEOREM 5 (TESTER-LEARNER PAIR FOR LEARNING HALFSPACES UN-
DER GAUSSIAN DISTRIBUTION). Suppose the valuesCy, - - - ,Cy4 present
in algorithms A and T are chosen to be sufficiently large absolute
constants, also assume n and é are larger than some sufficiently large
absolute constant. Then, the algorithm A is an agnostic (O(¢),0.1)-
learner for the function class of linear threshold functions over R™

This one’s arbitrary. Can also output 0 in this case.
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under distribution N (0, Inxn) and the algorithm T is an assump-

5( L
tion tester for A. The algorithms A and T~ both require only no( 64)
samples and run-time. Additionally, The tester T is label-oblivious.

Note that an (O(€), 0.1)-learner can be made an agnostic (¢, §1)-
A 1

learner for any fixed constant §; and still require only no< et/ sam-
ples and run-time via a standard repeat-and-check argument. The
tester 7 for the original learner will remain an assumption tester
for the new learner.

The proof of correctness of the above tester-learner pair for half-
spaces makes use of the following lemmas, which will be proved in
Section 5. Lemma 6 states that as long as the low-degree moments
of a distribution are similar to the corresponding moments of the
Gaussian distribution, then the distribution is concentrated and
anti-concentrated when projected onto any direction. Lemma 7
states that as long as distribution D satisfies the “nice" properties
of concentration and anti-concentration, then any halfspace can be
approximated by a low-degree polynomial with respect to distribu-
tion D. Taken together, these lemmas will be used to show that for
any distribution D, if the moments of D look similar to moments of
the Gaussian distribution, then halfspaces are well-approximated
by low degree polynomials under D.

Lemma 6 (Low degree moment lemma for distributions.). Suppose
D is a distribution over R" and A is an even positive integer, such

that for every monomial [T}, xia’ of degree at most A we have

n

i
1—[ Xi

i=1

n

- EX~N(O,I,1X,,) [1_[ x;xi

i=1

1
Ey- < —.
x~D nA

Further, assume that A > 6—14 In* (%) Then, for every unit vector v,
the random variable v - x (with x €g D) has the following properties

o Concentration: For any even positive integer d < A, we have

1/d
(ExGRD [lv . x|d]) < 2Vd.
e Anti-concentration: for any realy, we have

grD [o-xe[yy+e]] <O(e).

Lemma 7 (Low degree approximation lemma for halfspaces.). Sup-
pose D is a distribution on R™ and v € R" is a unit vector, such
that for some positive real parameters a,y, € and a positive integer
parameter dy we have

e Anti-concentration: for any real y, we have
Pr [v-x€[yy+e]]l <a,
xerD

e Concentration:

(Exexn [1o-x1%]) " <

for some f > 1.

56

Also assumedy > —; and that € is smaller than some suficiently small
absolute constant. Then, for every 6 € R and there is a polynomial
2p

P(x) of degree at most 27 + 1 such that

L
8p) €
Exegp [IP(v - x) — sign(v-x—0)|]] =0 a+e+%

0
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4p
Each coefficient of the polynomial P has magnitude of at most O (2 = )

4 TECHNICAL PRELIMINARIES
4.1 Polynomial Approximation Theory

We will need some standard facts about Chebychev polynomials
and approximation of functions using them. See, for example, the
text [56] for comprehensive treatment of this topic. First, we define
Chebychev polynomials and present relevant facts about them. On
the interval [—1, 1] the k-th Chebychev polynomial can be defined
as'? T (x) := cos (k arccos(x)) .

For any k > 0, the polynomial T (x) maps [—1, 1] to [—1, 1] (this
follows immediately from the definition). Also, it is known that the
Chebyshev polynomials satisfy a recurrence relation

Ties1 (%) = 2xTie (x) = Tie—q (%),

with the first two polynomials being To(x) = 1 and T3 (x) = x.

To present a standard theorem from text [56] about approxi-
mating functions with Chebyshev polynomials, we will need the
standard notions of Lipschitz continuity and of bounded varia-
tion functions. A function f is said to be Lipschitz continuous
on [—1,1] if there is some C so for any x,y € [—1,1] we have
that |f(x) — f(y)] < C|x —y|. For a differentiable function f :
[-w, w] — R, the total variation of f is the L norm of it’s deriva-

4f o)

tive, i.e.
/W
—w| dx

If f has a single discontinuity at some point a and is differentiable
everywhere else, then the total variation of f is defined as the sum

of the following three terms (i) f_a %(xx)

dx.

dx, (ii) the magnitude

w

of the discontinuity at a and (iii) fa "

%‘ dx. Analogously, the
definition extends to functions that are differentiable outside of
finitely many discontinuities'>. We say “f is of bounded variation
V” if the total variation of f is at most V.

We are now ready to state the following theorem about approxi-
mating functions using Chebyshev polynomials:

THEOREM 8 (CONSEQUENCE OF THEOREM 7.2 IN THE TEXT [56]
(SEE ALsO THEOREM 3.1 ON PAGE 19 IN THE TEXT [56])). Let f be
Lipschitz continuous on [—1,1] and suppose the derivative f' is of
bounded variation V. Define fork > 0

Lo (MGG

T -1 V1- x2
Then, for any d > 0 we have
=o0|<|

The partial sums Zgzo ay Ty are called Chebyshev projections.

[

d

() = ) aTie(x)

k=0

max
xe[-1,1]

20ne needs to check that cos(ka) is indeed a polynomial in cos &, which follows
ika  —ika . -

by writing cos(ka) = &——— = % ((cosa+ isina)® + (cosa — isin oc)k),

expanding, observing that terms involving odd powers of sin « cancel out, and using

the identity sin’ @ = 1 — cos® a.

31t is also standard to consider more general functions, but we will not need that.
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5 PROVING THE TWO MAIN LEMMAS (6,7)
VIA POLYNOMIAL APPROXIMATION
THEORY

5.1 Propositions Useful for Proving Both Main
Lemmas
Here we will present proposition that will be useful for proving

both Lemma 6 and 7. We start with an observation that bounds the
magnitude of the coefficients of Chebyshev polynomials.

Observation 9. Let f : R — [—1,1] be a Lipschitz continuous
function. Let d > 1 be an integer, let w > 1 be a real number, and

let fy(x) = X¢_ ax T (%), whereay, = k=0 [T f(”‘v/!i)__T;c(y) dy.

Then, the largest coefficient from among all the monomials of f;(x)
has value of at most O (d3d).

ProoF. See the full version of this work for the proof. ]

Proving both lemmas, we will be approximating certain functions
using Chebyshev polynomials re-scaled to the window [—w, w].
The following proposition lets us bound the error between function
f and its low-degree polynomial approximation, contributed by the
region (—oo, w) U (w, +00).

Proposition 10. Let f be a Lipschitz continuous function R —
[-1,1]. Letd > 1 be an integer and w > 1 be real-valued, and let

falx) = ZZ:O ar Ti (%), where aj, = 1+Ill[’<>° ! fwvy) T (y) dy.

Then, for any distribution D, it is the case that
Bren [1f() = f1(0)| Ljeisa] < O (4B [0 110 )

ProoF. See the full version of this work for complete details.
m]

The following proposition, in turn, allows us to bound the ex-
pression we encounter in Proposition 10 in terms of a bound on
the moments of distribution D.

Proposition 11. Let D be a distribution on R and dy € Z° such

that
(Bxean [1x1%]) " < 5.

Then, for any k € Z.N [0,dy/2] and w € R* we have
p )d"

ExegrD [|x|k ]l|x|>w] < 2wk (W

Proor. See the full version of this work for the proof. O

5.2 Proof of Low Degree Moment Lemma for
Distributions(Lemma 6)

Let us recall the setting of Lemma 6. D is a distribution over R"
and A is an even positive integer, such that for every monomial
[17, x{ of degree at most A we have

n
xNN(O Inxn) [rl x;xi:|

i=1

L 1
< —.
- A
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Further, we have that A > 61—4 In* (%) Then, we would like to show

that for every unit vector v, the random variable v - x (with x €g D)
has the following properties

e Concentration: For any even integer d < A, we have

1/d

(ExERD [|”’x|d]) <2vVd.

e Anti-concentration: for any real-valued parameter w > 1,
for any real y, we have
Pr [v-x€[yy+e]] <O (e).
xerD

We start with the following observation saying that if moments of a
distribution D are similar to standard Gaussian, then the expectation
of a polynomial of a form (v - x)4 for D is similar to the same
expectation under standard Gaussian.

Observation 12. Suppose D is a distribution over R" and A is a
positive integer, such that for every monomial [T, x¥ of degree at

i=1 i
most A we have [Ex-p [Ty | = Ex-non) [Ty %] < 55

Then, for any unit vector v and integer d < A we have

‘EXERD [(” x) ] EXERN(OInxn) [(v x) ” %

ProOF. See the full version of this work for the proof. O

Let us now show the concentration property. Let d be even. Recall
that for even d we have
d
e N (0, [(v : x)d] =Ev - n01) [(x ) ] =(d-n <d¥2

This, together with Observation 12 implies

(Ex~D [(U , x)d])l/d g (dd/z . Z_Z)l/d )

\/3(1+"

darz

d-a\!

/d
) <2Vd,

which is the concentration property we wanted to show.

Now, we proceed to the anti-concentration property. Recall that
for this property we need to bound Prye,p [ - x € [y,y +€]]. To
this end, we first approximate 1 ¢y, y4¢] using the following func-
tion

0 ifz<y-—e
W9 fzely-eyl,

g(z) =11 ifze[yy+el, (1)
% ifze[y+ey+2e],

0 ifz>y+2e.

The key properties of g are (1) g(z) 2 L c[y,y+e) (i) g(2) € [0,1] (i)
g(z) is Lipschitz continuous (iii) the derivative ¢’(z) is of bounded
variation of % (because the function has four discontinuities, each of
magnitude 1/e and it stays constant in-between the discontinuities).

Let w > 1 be real-valued and d be an integer in [1,A/2], to
be chosen later and let g (x) := Zz o0 arTi (%), where a; =
1+]lk>0 / ’ g(wy) Tie (y)

Vi

dy. Observation 13 and propositions 14 and
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15 are stated and proven below, and we use them no to get the
following bound:

Pr [v-x€e[yy+e]l < Exerp [9(v-x)] <

xerD

d,d (28" -
O(e) by Observation 13 0(4 w (7) + %) by Proposition 14

lg(v-x)]+

[lga( - x) - g(v - x)[] +

I I
xRN (0,1,,xpn) x€RN(0,1,,xp)

O(4d Z—Z) by Proposition 15

+|Exerd [94@ - 0)] = Exepn(0.1pen) [9a(@ - 0)]|+
+ Exerpllglo-x)—gq(v-x)|] =

C\A
O(4dwd (%) + %) by Proposition 14
A
2\/Z nd
=0|e+4adwd | =] + = 4d
w ed

Now recall we assumed without loss of generality that A equals to
ln ( ) sotak1ng14d— In ( )andw— 19152 ( )weget

Pr [o-x€[yy+e]] <

xerD
2Wa\" d
w n
Ole+adwd |22 + L 44d” | =
w ed nd

St (2) ) A
ofe+(2w(2) (1) +
€ € 5

(1) ! ):O(e).

+ 4 10e*
i (D)- (D)
The only thing left to do is to prove the observations referenced
above.

Observation 13. For the function g as defined in Equation 1, we
have

Ex g N(0) [9( - X)] = O(€)

Proor. The function g has a range of [0, 1] and is supported on
[y — €,y + 3¢€]. Also, v-x is distributed as a standard one-dimensional
Gaussian. Therefore, the probability thatv-x lands in [y — €, y + 3€],
is at most O(€), which finishes the proof. O

Proposition 14. Suppose D is a distribution over R" and A is a pos-
itive integer, such that for every monomial [}, x; xX ofdegree at most
A we have [Bie-p [TT2, <] = B 0100 [T 57| <

Let d be an integer in [1,A/2], let w > 1 be a real-valued parameter
and suppose g : [—w, w] — [—1,1] is a Lipschitz function whose de-
rivative g’ is of Bounded variationV, and let g4 (x) = ZZZO ar T (55),
1+11k>0 / : 9(wy) T (y)

Vi-y?

where ay. = dy. Then, it is the case that

A
2VA 1%
4dwd(£ L Vw
w

Excep [19(0 - ) - ga(o - )[] < O .

14We also check that (taking € small enough) d is indeed in [1, A/2], as was required
earlier.
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Proor. Proposition 10 and Proposition 11 imply

Ex-p [19(v - %) = ga(@ - x)| Ljg.x|> ] <

w A-d

0 (4/Beeyp [10 1 14150 ) < 4"wd(

To use Theorem 8, we need to bound the total variation of the func-
tion % = wg’ (wz). Inspecting the definition of total variation,
we see that g’ (wz) has the same total variation as ¢’ (z), which is
£ dg(wz)
dz

at most V. Therefore, the total variation o is at most Vw.

Thus, we have by Theorem 8 that
Ex-p [|g(v x) = ga(v - x)| I[|u-x|Sw] <
Vw
max o) - a2 < 0 ).
z€[—w,w] d

Summing the two equations above and recalling thatd < A/2,
our proposition follows. O

Proposition 15. Suppose D is a distribution over R" and A is a
positive integer, such that for every monomial [}, ai ofdegree at

most A we have|Ex~ [TT2, ] - Ex-n01) [T, x; ” < A
Letg : R — [-1,1] be a Lipschitz continuous function, andgd(x) =

=17
d Wl 1 fwy)Ti(y)
2o a Tk (3;), where a .= —k=0 Vi dy. Then
d
an
ofi)

Proor. Observation 9 implies that g;(z) is a degree d polyno-
mial, whose largest coefficient is at most d3%. Using Observation
12 for each of these monomials, we get

-1

[Exern [94(@ - )] = ExeqN(0dpen) [9a(2 - 2)]| =

xexN(Odpen) [92(0 - 2)]] <

0 (dZSd) L
nA

|Ex€RD [9q (v-2)] - E

nl

d
n
4"’)

[m]

5.3 Proof of Low Degree Approximation Lemma
for Halfspaces (Lemma 7)

Let us recall what we need to show to prove Lemma 7. Without
loss of generality, we assume we are in one dimension. D is a
distribution on R, such that for some positive real parameters
a,y, € and a positive integer parameter dy we have

e Anti-concentration: for any real y, we have
Pr [xe[yy+e]] <a
xerD

>

1/dy
e Concentration: (ExeRD [|x|d°]) < B, for some f§ > 1.

Also we have dy > Sﬁ and that € is smaller than some sufficiently
small absolute constant. Then, for every 6 € R we would like to

show there is a polynomial P(x) of degree at most i—f + 1 such that

@ep )

=0|a+e+
2do

Exegp [IP(x) = sign(x — 0)|]
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Let w > 1and d € Z* be parameters, values of which will be set
later. We will approximate the sign function with a polynomial in
the following two steps:

e Approximate sign(x — 6) by a continuous function

1 if =0 > q,
fa)=4-1 if*xf <
% otherwise.

e For a parameter d, approximate f(x) by

d
fate) =) aka(%),
k=0
where

_ 1+ ILk>o / f(Wy)Tk(y)

First, we observe that f is a good approx1mat0r for sign(x — 0) with
respect to D.

Proposition 16. If D is a distribution over R such that for every
x0 € R we have Pryc,p [x € [x0,x0 + €]] < a, then (with f(x)
defined as above) we have

Exegp [If(x) = sign(x — 0)]] < 2a.

Proor. The two functions differ only on [0 — €, 6 + €], with the
absolute value of difference being at most 1. Since the distribution
D cannot have probability mass more than 2« in this interval, the
proposition follows. o

Secondly, we show that f; is a good approximator to f with
respect to D, within the region [—w, w].

Proposition 17. For any distribution D, we have
w
Exeen 1) = fa(0)| Livi<] < 0(25)

ProoF. Using Theorem 8 we have

Exepp [If(0) = fa(0) Ljxj<an] <

max | AF() = fu0l = max (f o) = fa(wy)l =0 (7).
xe

o

Now, we put all the relevant propositions together to show the
lemma. Using Propositions 10 and 11, we see that if we have d €
Z N [1,dy/2] then

Exerp [1f(x) = fa()| Ljxjsay] <
dy
o) (4d]ExeRD [|x|d1|x|>w]) <0 (4d2wd (é) )

Together with Proposition 17, this implies that

+0(2)

This, in turn, together with Proposition 16 implies that

do
Exegp [1f(x) = fa(0)] <O (4dzwd (é)

do
Exegp [Ifa(x) = sign(x - 0)I] = O (a + 2y (E)

w

~———

Ronitt Rubinfeld and Arsen Vasilyan

Taking!® w = 2f and d = [ ﬁ-‘ we get
Exegp [1fa(x) = sign(x - 0)[] =

(8) 2!

=0|a+e+
2do

Ola+e+

(5 %]
2do

Finally, we note that by Observation 9 we have that each coef-
ficient of the polynomial f; has a magnitude of at most O(d3%) =

2B
o (4 = ) This completes the proof of the low degree approximation

lemma for halfspaces (Lemma 7).

6 PROOF OF MAIN THEOREM VIA TWO MAIN
LEMMAS

6.1 Truncated Gaussian has Moments Similar to
Gaussian

Recall that our tester truncates the samples and checks that low-
degree moments are close to the corresponding moments of a Gauss-
ian. If the distribution is indeed Gaussian, the following proposition
shows that this truncation step does not distort the moments too
much.

Proposition 18. Let []I, xf"' be a monomial of degree at most A
and t a real number in [2\/Z +1, +00). Then we have

al
x”N(O Inxn) |:I—[ Xj

sl <t

i=1

- Ex~N(O Inxn) |:l_[ xal

i=1

<O(2AA 10 e 7).

Proor. For the proof, we refer the reader to the full version of
this work. ]

6.2 Finishing the Proof of Theorem 5

In this subsection we finish the proof of Theorem 5, using the low
degree moment lemma for distributions (Lemma 6) and the low
degree approximation lemma for halfspaces (Lemma 7). The main
thing left to do is to address issues relating to truncation of samples
in the learning and testing algorithms.

We now restate the theorem. The values Cy, - - - , C4 present in
algorithms A and 7~ (in the beginning of Section 3) are chosen
to be sufficiently large absolute constants, and also n and % are
larger than some sufficiently large absolute constant. Then, we need
to show that the algorithm A is an agnostic (O(¢€),0.1)-learner
for the function class of linear threshold functions over R” under
distribution N (0, Inxp) and the algorithm 7~ is an assumption tester

for A. We also need to show that A and 7 require only no<f“)
samples and run-time.

Bounds on the run-time and sample complexity of our algorithms
follow directly from our choice of parameters.

5Recall that to do all this we needed that d is in [ 1, dy/2]. Recall that by an assumption

of the lemma we are proving we have dy > % and B > 1. Therefore, for € smaller

than some sufficiently small absolute constant we indeed have [ &4 -| [1,do/2].
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o+
o The learner A draws N1 :=n (54) samples, then performs
a computation running in time polynomial in (i) Nj (ii) the

number of monomials [17_, xJO.CJ of degree at most d, which
is O (nd) (this includes the run-time consumed by the al-
: o(%)
gorithm of Theorem 2). Overall, the learner A uses n ‘¢
samples and run-time.
o The tester 7 first performs estimations of values Pr Hx jl > t]
up to additive 5&- with error probability 155, which in total
require poly () samples and run-time. Then, the tester 7~

obtains N := |-tAnC4A-| samples (where A := lél“ In* (é)J

and t = CiAlnAy/logn + {/2In (%)) and performs a
polynomial time computation with them. We see that ¢t =

o (poly (%, n)) and therefore Ny = né(i) .Finally, the tester

7 runs a computation running in time polynomial in (i) N2
n

and (ii) the number of monomials i1 x?j of degree at

most A, which is O (nA), Overall, we get that the run-time
o()
and sample complexity of 7 isn \€*/.

Proposition 19. The following proposition uses the low degree ap-
proximation lemma for halfspaces (Lemma 7) to argue that, under cer-
tain regularity conditions on the distribution D, the learning algorithm
satisfies the agnostic learning guarantee. Suppose the Cy, - - - ,Cy are
chosen to be sufficiently large absolute constants, n and % are larger
than some sufficiently large absolute constant. Suppose D is a distri-
bution over R™ such that it the following properties hold

¢ Good tail: We have Pryc,p [3i € [n] : |x;i| > t] < €.
e Concentration along any direction for truncated dis-
tribution: For any unit vector v we have

1/d
) <2Vd.

e Anti-concentration along any direction for truncated
distribution: For any unit vector v and for any real y, we
have

(ExERD [|v-x|d Vie [n]: |xi| <t

Pr [v-xe [y, y+€]

xerD

Vi€ [n] : |xi St] <O(e).

Then, the algorithm A is an agnostic (O (¢€),0.1)-learner for the
function class of linear threshold functions over R" under distribu-
tion D with failure probability at most 21—0,

PrROOF. Let Dyryncated e the distribution of x drawn from D con-
ditioned on |x;| < t for all i. We see that the premises of this propo-
sition imply that the distribution Diyyncated Satisfies the premises of
the low degree approximation lemma for halfspaces(Lemma 7) with
parameters dp = d, « = O(¢) and f§ = 2Vd. Taking € smaller than

B _ 10Vd

some absolute constant ensures that the condition d > z—z =z

is also satisfied.
The low degree approximation lemma for halfspaces(Lemma 7)
then allows us to conclude that for every € R and for any w > 1
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there is a polynomial P(x) of degree at most d such that
W g
(16\/3) <

EXERDtruncated [|sign(v CX = 9) - P(U : x)” =0|e+ Z—d

Recalling that d := 2 {# In3 (é)J so we get that
EXERDtruncated [Isign(v-x—0) - P(v-x)|] =
oz ()"

Ofe+ Zg(ﬁlna(é))

For € smaller than some sufficiently small absolute constant, the
above is O(e).

Thus, we have that for a linear threshold function sign (v - x — 6)
there is a degree d multivariate polynomial Q for which

E xerDiruncatea [15181 (2 - x = 0) = Q(x)[] < O(e)
In other words, under Dy ypcated, any linear threshold function
sign (v - x — ) is O(e)-approximated in L! by something in the
span of set of monomials of degree at most d, i.e. the set

n

aj . .
[T D=
J=1 J

Now, Theorem 2. tells us that with probability at least 1 — 2—10 the

predictor ]? given in step 3 has an error of at most O(€) more than
sign(v - x — 0) for samples x €R Diruncated- Overall, recalling the
definition of Diyypcated We have

Pr []?'(x)iy] < Pr [Tie|[n]: |xi| >t]+
x,yGRDpairs XERD
+ Pr |f(x)#yVieln]: [xul<t|<
x’yeRDpairs
Pr [sign(u-x—@)iy‘v’ie[n]: |xi] <t +O0(e),
x’yeRDpairs
which completes the proof. O

Now, the following proposition, using low degree moment lemma
for distributions (Lemma 6), tells us that the tester we use (1) is
likely accept if the Gaussian assumption indeed holds (2) is likely
to reject if the regularity conditions for Proposition 19 do not hold.

Proposition 20. Suppose theCy, - - -, C4 are chosen to be sufficiently
large absolute constants, n and é are larger than some sufficiently
large absolute constant. Then, there is some absolute constant B, so
the tester T~ has the following properties:

(1) If T is given samples from N (0, Inxn), it outputs Yes with
probability at least 0.9.
(2) The tester T rejects with probability greater than 0.9 any D
for which at least one of the following holds:
(a) Bad tail: We have Prycpp [3i € [n] : |x;| > t] > £.
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(b) Failure of concentration along somedirection for trun-
cated distribution: there is a unit vector v such that

Vie([n]: x| <t

1/d
) > 2\/3.

(lExERD [|v -x|?

(c) Failure of anti-concentration along some direction
for truncated distribution: there is a unit vectorv and
real y, for which

Vi€ [n] :

|xi| < t| > Be.

Pr [v~x€ ly,y + €]

xerD

Proor. First, assume that 7 is getting samples from N (0, Iyxn)
and let us prove that 7 outputs Yes with probability at least 0.9.

2
Since t > 1, by we have!® Proeno) [zl >8] <O (e_%), As

2In (CZ") taking Cy large enough we get

Pr [lz] > ] < —.
zeN(0,1) 30n

Therefore, N'(0, Inxn) passes step 1 of tester 7~ with probability at
least 1 — 150
Also, Proe v(o,1) 2] > t] < 55 implies that

€
B il i<z 1o
Together with a very loose application of the Hoeffding bound, we
see that for sufficiently large C4 with probability at least 1 — 100
only at most half of the samples are discarded in the step 2 of 7. We
henceforth assume this indeed was the case. The remaining sam-
ples themselves are i.i.d. and distributed according to N (0, I;xn)
conditioned on all coordinates being in [, t].

Since all remaining samples have the size of their coordinates
bounded by t, the value of a given monomial []" =1%; 7 of degree
at most A evaluated on any of them is in [ —th, tA] Therefore,
the Hoeffding bound 1mphes that for sufficiently large C4 with

probability at least 1 — 100—A the empirical average of H = 7’ on
the (at least % many) remaining samples is within 0_ of

Vi |xi| <¢].

n

a;

ExNN(O)Inxn) |:l_[ xi '
i=1

For sufficiently large Cy, we verify the premise of Proposition 18
thatt € [ZX/Z +1, +0<>) and therefore have

a;
x i
1

.~:3
;]:

Vi: x| < t} - = [
xNN(OIan)

2
O(ZAA A "7).

xNN(O Inxn) [

2

2 2 _ t 2
oo _ X _t2 oo _llx=t) -5 _t

16Proof:/t e"Zdx<e Z/t e 2 dxszetz <Ole 7.
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2
Now, we have % (A logt — %) = % — t which is negative when

t>VA. Ast > C1A (In Ay/log n) > \/K, we have

(ClA (1n A\/@))Z

2

Ae_% < (ClA (lnA\/loE))Aexp -

which together with the preceding inequality implies

n

B N (0 [H x;!

i=1

Vi |xil St]—

n

aj

- EXNN(O Inxn) Hxl '
i=1

C1A lnA\/@))

o|22a% (CIA(lnA\/loE exp

for sufficiently large C; the above is less than Therefore,

10A

in the whole, we have that the empirical average of TT" i1 ja' in

step 3 of 7 is with probability at least 1 — 0 —— within 0 — of

E o N(0,1uxn) [lel xl. ] Taking a union bound over all monomi-
als I_I;.’:1 xj.cj of degree at most A, we see that the step 3 of the tester

7 also passes with probability at least 1 — ﬁ when it is run on
N (0, Inxn).

Overall, we conclude that the probability 7 outputs No when
given samples from N (0, Inxy) is at most % < 0.1 as promised.

Now, we shall show that 7 will likely output No if any of the
conditions given in the proposition hold.

If Condition (a) holds, we have Prye,p [3i € [n] : |xi| > t] >
£, then there is some coordinate i for which Pryc,p [|xi| > t] >
5. This coordinate w1ll lead to 7 outputting No in step 1 with
probablhty at least 1 — 100

Now, suppose condition (a) doesn’t hold so we have

Pr [Jie[n]: x| >t <<
XER 5

but condition (b) or (c) does hold. We would like to show that 7~
will still likely output No. With a very loose application of the
Hoeffding bound, for sufficiently large C4 with probability at least
1- ﬁ only at most half of the samples are discarded in the step 2
of 7", which we also assume henceforth. Using the Hoeffding bound
again we see that for sufficiently large C4 with probability at least

N
7 of

1- 100 the empirical expectatlon of all monomials [T, %

degree at most A is within m of

n

Qi
1_[ i

i=1

Exepd Vien]: |xl<t|.

In other words, with probability at least 1 — 1(1)0 the tester 7~ will
R

output No in step 3, unless we have for all monomials " 1%
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that

a
x. "

SVie [n] s x| <t] -

—

‘EXERD
1

12

o
x4]

<
J

- ]Ez"'N(O»Ian)

n
Jj=1

1 13
T S

So, to finish the proof, it is enough to show that the inequality

above cannot hold if Condition (b) or Condition (c) holds. This fol-

lows from the low degree moment lemma for distributions(Lemma

6), for a sufficiently large choice of B, thereby finishing the proof'’.

m]

Finally, we can use the two propositions above to finish the
proof of Theorem 5. Bounds on run-time have been shown earlier,
so now we need to show correctness. That requires us to show the
following two conditions:

(1) (Composability) If, given access to i.i.d. labeled samples
(x,y) distributed according to Dpairs, the algorithm 7~ out-
puts “Yes” with probability at least 1/4, then A will with
probability at least 0.9 output a circuit computing a function
f , such that

[y # f(x)] <

r
(x.y) €RDhpairs

fehfirllflsr;aces (x,y)ERDpairs @) #yl)+0(e).

(2) (Completeness) Given access to i.i.d. labeled samples (x, y)
distributed according to Dpajrs, with x itself distributed as a
Gaussian over R", tester 7~ outputs “Yes” with probability at
least 3/4.

(3) A is an agnostic learner for halfspaces over R" under the
Gaussian distribution.

Note that Condition 3 follows from the first two. The completeness
condition (i.e. Condition 2) immediately follows from Proposition
20. The composability condition (i.e. Condition 1) follows from
Proposition 20 and Proposition 19 in following way. If 7~ outputs
“No” with probability less than 3/4 then conditions (a), (b) and
(c) in Proposition 20 should all be violated. This allows us to use
Proposition 19 to conclude that A is an agnostic (O (€), 0.1)-learner
for the function class of linear threshold functions over R" under
distribution D, where D is the marginal distribution of x when
(x,y) distributed according to Dpairs. This implies the composability
condition (i.e. Condition 1 above) and finishes the proof of Theorem
5.
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7To be explicit: if condition (a) doesn’t hold but condition (b) or (c) does hold via

union bound the probability that 7~ will fail to output No is at most 1170 + ﬁ <0.1
as required.
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