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We propose a system theoretic approach to select and stabilize the endemic equilibrium of an SIRS
epidemic model in which the decisions of a population of strategically interacting agents determine
the transmission rate. Specifically, the population’s agents recurrently revise their choices out of a
set of strategies that impact to varying levels the transmission rate. A payoff vector quantifying the
incentives provided by a planner for each strategy, after deducting the strategies’ intrinsic costs,
influences the revision process. An evolutionary dynamics model captures the population’s preferences
in the revision process by specifying as a function of the payoff vector the rates at which the agents’
choices flow toward strategies with higher payoffs. Our main result is a dynamic payoff mechanism
that is guaranteed to steer the epidemic variables (via incentives to the population) to the endemic
equilibrium with the smallest infectious fraction, subject to cost constraints. We use a Lyapunov
function not only to establish convergence but also to obtain an (anytime) upper bound for the peak
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size of the population’s infectious portion.
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1. Introduction

This article has two main tenets: (i) We adopt a continuous-
time susceptible-infectious-recovered-susceptible (SIRS) compart-
mental epidemic model (Pastor-Satorras, Castellano, Van Mieghem,
& Vespignani, 2015) in which the aggregate decisions of a pop-
ulation of bounded-rationality agents determine the transmission
rate, which we denote as B(t) at time t. We employ a population
game approach in which the agents are nondescript and must
choose from a set of available strategies {1, ...,n}, n > 2. Each
strategy will have an effect on B(t), but the agents’ choices are
guided by each strategy’s payoff, or net reward, resulting from a
payoff incentive, or reward, after the intrinsic cost of the strategy
is deducted. The collective decision-making of the population
follows an evolutionary dynamics model that captures the agents’
preferences and assumes that the agents can repeatedly revise
their strategies (see Section 1.1). (ii) We formulate and solve
a design problem that seeks to steer via payoff incentives the
agents’ decisions to attain the smallest endemic prevalence of
infections, subject to a limit on the long term incentives’ cost. The
problem envisages dynamic payoff mechanisms whose dynamics
can be coupled with the state (epidemic variables) of the SIRS
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model. We will refer to this coupled system as an epidemic
population game (see Section 1.2).

1.1. Evolutionary dynamics model (EDM)

Each agent follows one strategy at a time, which it can revise
repeatedly. A payoff vector p(t) in R" whose entries quantify the
net rewards of the available strategies influences the revision pro-
cess, as typically the agents seek strategies with higher payoffs.
Namely, we define

p(t) :==r(t) — C, (1)

where c is the vector whose £th entry ¢, is the inherent cost of
the £th strategy, and r(t) is a reward vector meant to incentivize
the adoption of safer (costlier) strategies, where r,(t) is the £th
strategy’s reward.

Rather than focusing on what each strategy may represent (see
Remark 1), in our analysis we assume that a vector g in R
is given whose fth entry B[ quantifies the effect of strategy ¢
towards B(t) according to

Bity=B'xw), t=>0, )

where x(t) is the so-called population state taking values in the
standard simplex X defined below and whose £th entry x,(t) is the
proportion of the population adopting the ¢th strategy at time t.

XH:X,‘ = ]}.
i=1

X = {x € [0, 1]"
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Following the standard approach in Sandholm (2010a, §4.1.2),
the following evolutionary dynamics model (EDM) governs the
dynamics of x in the large-population limit:

X(t) = V(x(r), p(t)), t=0, (EDMa)
where the ith component of V is specified as:
n
VO, po) = — Y x(TX(), po)
J=1j#i
outflow switching out of strategy i
n
+ Y XOTix), po) - (EDMb)

=1

inflow switching to strategy i

A Lipschitz continuous map 7 : X x R" — [0, 7]™*", with upper
bound 7 > 0, is referred to as the revision protocol and models the
agents’ strategy revision preferences. In Sandholm (2010a, Part II)
and Sandholm (2015, §13.3-13.5) there is a comprehensive dis-
cussion on protocol types and the classes of bounded rationality
rules they model.

Below, we define common protocol classes, which we will
invoke in examples and to illustrate key concepts.

Definition 1. Any protocol is said to be of the impartial pair-
wise comparison (IPC) type (Sandholm, 2010b) if there is a map
¢ :Rso — [0, T1", whose components satisfy ¢;(0) = 0 and
¢j(v) > 0 for v > 0, such that 7 can be recast as:

Ti(x, p) = &j([Pil+). 3)
where p; = p;j — pi. The well-known Smith’s protoct_)l (Smith,
1984) can be specified by ¢]§m‘th([ﬁ,~j]+) = min{A[Pyl4, T} A > 0.
For Smith’s protocol, the switching rate from the ith to the jth
strategy is proportional to the positive part of the payoff differ-
ence pj;, up to the upper bound 7.

Definition 2. Any protocol is said to be of the separable excess
payoff target (SEPT) type (Sandholm, 2005) if there is a map
¢ : Ry — [0, 71", whose components satisfy ¢;(0) = 0 and
¢j(v) > 0 for v > 0, such that 7 can be recast as:

Ti(x, p) = ¢i(lbil+). B =pi— > xii, (4)
i=1

where p is the so-called excess payoff vector. The classic Brown-
von Neumann-Nash (BNN) protocol (Brown & von Neumann,
1950) can be specified by ¢ ([p;]+) := min{A[p;l+, 7}, » > O.

1.2. Epidemic Population Game (EPG)

Let # and ¢ be the daily birth and natural death rates (from all
epidemic-unrelated causes), respectively, and define g := 6 — ¢.
Our time unit is one day, and g determines the daily population
growth according to N(t) = e8N(0), where N(0) is large and N(t)
approximates the population’s cardinality at time t > 0. The
approximate daily birth and death rates in the U.S. in 2019 were
respectively 6 = 3.1 x 107> and ¢ = 2.4 x 107°.

Below, we specify an epidemic population game (EPG):

I©) = (B)(1 = Itt) — Rw)) — o)I(0), (EPGa)
Rt) = yIt) — wR(), (EPGD)
qer) = GU(), Ry, x(0), q(v)), (EPGc)
r(t) = H(I(t), R(e), x(¢), (1)), (EPGd)
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where I(t), R(t) and S(t) := (1 —I(t) — R(t)) take values in [0, 1] and
represent the proportions of the population which are infectious,
have recovered and are susceptible to infection at time ¢, respec-
tively. Specifically, they are the numbers of infectious, recovered
and susceptible individuals at time t divided by N(¢). Here, (EPGa)
and (EPGb) is a normalized SIRS model with ¢ .=y +6 and
w = ¥ + 6, where y and ¢ denote the daily recovery rate and
the daily rate at which recovered individuals become susceptible
(due to waning immunity), respectively. The estimated mean re-
covery time and immunity duration for COVID-19 are respectively
approximately 10 days and 2-9 months, yielding y ~ 0.1 and
¥ € [0.0037,0.017].

We note that the epidemic model in (EPGa) and (EPGDb) is an
adaptation of the mean-field approximation in Kermack and McK-
endrick (1927) and has been used extensively in the literature,
e.g., Al-Radhawi, Sadeghi, and Sontag (2021), Amaral, de Oliveira,
and Javarone (2021), Bauch (2005), Bauch and Earn (2004), Di
Lauro, Kiss, and Miller (2021), d’Onofrio, Manfredi, and Poletti
(2011), Godara, Herminghaus, and Heiderman (2021), Kabir and
Tanimoto (2020), Nowzari, Preciado, and Pappas (2016), O'Regan,
Kelly, Korobeinikov, O’Callaghan, and Pokrovskii (2010), Paré,
Beck, and Basar (2020), Paré, Beck, and Nedi¢ (2018), Pastor-
Satorras et al. (2015) and Sontag (2021). In our derivation, we
assume that newborns are susceptible and the disease death rate
associated with the epidemic is zero (death rate is independent
from the epidemic). This is a reasonable assumption when the
number of deaths caused by the disease is negligible relative to
that from all other causes.

Remark 1. Conceivably, the strategies could modulate the infec-
tion risk for susceptible individuals. If x;(t)S(t) is the proportion of
the population at time t that is susceptible and adopts the ith
strategy, then (2) is consistent with a rate of new infections of
Bixi(t)S(0)I(t) for such a sub-population and B(t)S(t)I(t) for the entire
population.

Finally, (EPGc) and (EPGA) is a payoff mechanism we seek to
design, where r(t) appears in (1), and q(t) € R™, m > 1.

1.3. Problem formulation and paper structure

The strategies’ inherent costs decrease for higher transmission
rates, and we order the entries of 8 and c as:

Bi<Birrand ¢ >cy, 1<i<n-—1.

We consider that Bl > o, i.e., a transmission rate less than or
equal to o would be unfeasible or too onerous.

Henceforth, ¢ and $ satisfying the conditions above are as-
sumed given and fixed. Hence, we can simplify our notation by
omitting ¢ and 8 from this point onward. We will use ¢ defined
below to specify cost constraints because for a planner seeking
to promote the ith strategy it suffices to offer incentives to offset
the differential ;.

CGG=¢C—¢C, 1<i<n.

Definition 3. Given a cost budget c* in (0, ¢;), we determine the
optimal endemic transmission rate 8* as:

B* = min{B/x | &x <c*, xeX}]. (5)
Main Problem: We seek to obtain Lipschitz continuous G and

H for which the following hold for any I(0) in (0, 1], R(0) in
[0, 1 — I(0)], x(0) in X, and q(0) in R™:

tlim (IR, B)t) = (I*, R*, B*), (P1)
—00
lim sup x(t)r(t) < c*, (P2)

t—o00
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where, from Picard’s Theorem, {(I,R,x,q)t) | t > 0} is the
unique solution of the initial value problem for the closed loop
system formed by (EDM) and (EPG). Here, the nontrivial endemic
equilibrium for (EPGa) and (EPGb) is:

Fi=n(1-4), RF:=0-n-2) n=_75.

We will seek G and H for which a Lyapunov function for the
overall system exists. We will do so not only to establish (P1)
but, crucially, also to leverage the Lyapunov function to obtain
anytime upper bounds for I(t). This is relevant because, as has
been pointed out in studies (Godara et al., 2021; Sontag, 2021)
employing B(t) as a control variable, I(t) tends to significantly
overshoot its endemic equilibrium I* when 1(0) < I*, unless the
control policy prevents it.

To make Remark 1 more concrete, consider a scenario with
a set of available strategies, e.g., masking vs. vaccination. While
masking may be cheaper than vaccination, it is likely less effec-
tive. If we wish to prevent the peak infection from exceeding a
target threshold without knowing the details of interactions, it may
be necessary at times to encourage individuals to get vaccinated
by offering incentives (free vaccine) or rewards.

Remark 2. We interpret r(t)x(t) as the rate at which cost is
accrued on average (per-agent) at time t. Hence, (P2) would guar-
antee that the long-term cost accrual rate a social planner would
have to bear for employing G and H would not exceed c*. More-
over, since [* is an increasing function of 8*, (P1) would guarantee
the smallest endemic infectious portion, subject to (P2).

Paper structure: In Section 2, we motivate our paradigm and
compare it with previous work. In Section 3, we describe a choice
for G and H, introduce a candidate Lyapunov function, and state
Theorem 1 asserting that our choice solves our Main Problem. We
exemplify in Section 4 how to construct anytime bounds, which
we also validate numerically via simulation. The article ends with
brief conclusions in Section 5, and in the Appendix we prove
Theorem 1.

2. Motivation and comparison to prior work

Modern theoretical epidemiology can be traced back to the
early 20th century. For example, Kermack and McKendrick used a
deterministic model to study the transmissions in a closed popu-
lation, which is now known as the susceptible-infected-recovered
(SIR) model, and demonstrated the existence of a critical thresh-
old density of susceptible individuals for the occurrence of a
major epidemic. Since then, many related compartmental models
have been introduced with additional states, e.g., deceased (D),
exposed (E), maternally-derived (M), vaccinated (V), and include
SEIR/S, SIRD, SIRV, SIS, and MSIR, in addition to the SIRS model
adopted for our study. A comprehensive survey on epidemic
models and their dynamics can be found in Anderson and May
(1991), Mei, Mohagheghi, Zampieri, and Bullo (2017), Nowzari
et al. (2016).

A major aspect of epidemic processes is human behavior and
the strategic interactions among individuals, which determine
their decisions over time in response to their payoffs and in turn
shape the course of epidemic processes. Game theory provides a
natural framework and tools for studying such strategic interac-
tions, and several recent studies adopted an evolutionary or popu-
lation game framework, e.g., (Amaral et al., 2021; Arefin, Masaki,
& Tanimoto, 2020; Bauch, 2005; Bauch & Earn, 2004; d’Onofrio
et al, 2011; Kabir & Tanimoto, 2020) and Kuga and Tanimoto
(2018). We refer an interested reader to Chang, Piraveenana,
Pattison, and Prokopenko (2020) and references therein for a
comprehensive survey of earlier studies and a more detailed
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summary of work reported in Bauch (2005), Bauch and Earn
(2004), d’Onofrio et al. (2011). Amaral et al. (2021) studied the
effects of perceived risks, i.e., individual cost from infection, when
individuals can choose to voluntarily quarantine or continue their
normal life. They showed that increased perceived risks result in
multiple infection peaks due to strategic interactions. Kabir and
Tanimoto (2020) considered a similar setting and showed that
naturally acquired shield immunity is unlikely to be effective in
suppressing an epidemic without additional social measures with
low costs for individuals.

In another line of related research, Di Lauro et al. (2021)
and Sontag (2021) studied the problem of identifying when non-
pharmaceutical interventions (NPIs), such as quarantine and lock-
downs, should be put in place to minimize the peak infections;
Di Lauro et al. (2021) studied the optimal timing for one-shot
intervention, whereas Sontag (2021) considered a fixed number
of complete lockdowns. Al-Radhawi et al. (2021) modeled media
coverage, public health measures and other NPIs during a pro-
longed epidemic as feedback effects and examined the problem
of tuning NPIs to regulate infection rates as an adaptive control
problem. Using a singular-perturbation approach, the authors in-
vestigated the stability of disease-free and endemic steady states.
Godara et al. (2021) considered the problem of controlling the
infection rate to minimize the total cost till herd immunity is
achieved in an SIR model. They formulated it as an optimal con-
trol problem subject to a constraint on the fraction of infectious
population.

Although we do not consider epidemic processes on general
networks here, their dynamics on networks have been studied
extensively (see Mei et al, 2017; Nowzari et al, 2016; Paré
et al.,, 2020; Pastor-Satorras et al., 2015 for a review of the
literature), including time-varying networks (Paré et al., 2018)
and the influence of network properties on epidemic processes,
e.g., (La, 2019). Recently, the topic of mitigating disease or in-
fection spread in a network has enjoyed much attention. In
particular, researchers investigated optimal strategies using vac-
cines/immunization (prevention) (Preciado, Zargham, Enyioha,
Jadbabaie, & Pappas, 2013), antidotes or curing rates (recov-
ery) (Ottaviano, De Pellegrini, Bonaccorsi, & Van Mieghem, 2018)
or a combination of both preventive and recovery measures
(Nowzari, Preciado, & Pappas, 2017; Preciado, Zargham, Enyioha,
Jadbabaie, & Pappas, 2014). For example, Preciado et al. (2013)
studied the problem of partial vaccination via investments by
each individual to reduce the infection rates, aiming to maximize
the exponential decay rate to control the spread of an epidemic.

Our study advances the state-of-the-art in several directions:
unlike the studies that aim to suppress epidemic spread (Nowzari
et al., 2017; Ottaviano et al., 2018; Preciado et al., 2013, 2014), our
goal is to design policies for minimizing the endemic transmission
rate subject to a constraint on the long-term average cost a
planner bears. Moreover, even though Di Lauro et al. (2021),
Godara et al. (2021), Sontag (2021) investigated a related prob-
lem of managing infection rates during epidemics, these studies
did not consider strategic interactions among many agents of
bounded rationality, which can revise their strategies over time,
leading to more complex dynamics. Finally, to the best of our
knowledge, our study is the first to provide a methodology for
designing policies that can guarantee (a) provable convergence to
an equilibrium set (see Theorem 1 and Remark 5) and (b) fulfill
an anytime bound on I(t) (see Eq. (24) and Remark 6). As we will
discuss in detail, it is notable that these results hold under any
revision protocol 7 that satisfies some assumptions stated in the
subsequent section without the need to know the exact protocol.

3. A solution to main problem

In this section, we will propose a choice of G and H for (EPG)
and in Section 3.5 we will state Theorem 1, which addresses the
Main Problem, as stated in Section 1.3.
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3.1. Cases I and II, and determining x*

Before we proceed, we will introduce a definition, an assump-
tion and a related remark.

Definition 4. [Cases I and II] Given c* in (0, ¢;), one of two
cases holds: Case I is defined by when ¢+ < ¢* < ¢ for some
positive i* < n — 1. Case Il occurs when n > 3 and c* = ¢+ for
some i* € {2,...,n— 1}.

Notice that Case II is unlikely to appear in practice and is
considered in our analysis for the sake of completeness.

Assumption 1. The following must hold when n > 3:
Ci — Cipq Ci+1 — Cit2
Bm - Bi ,Bi+2 - Biﬂ ’

According to (6), we assume that as the transmission rate
decreases it becomes costlier to reduce it further.

1<i<n-2. (6)

Remark 3. Subject to Assumption 1, it follows from Karush-
Kuhn-Tucker conditions that, for any given c* in (0, ¢;), (5) has a
unique solution we denote as:

x*:=argmin{p'x | ¢x < c*, x e X}.
For Case I, with G114 < ¢* < Cp, it results that x;, = (c* —
Cory1)/(Cr — Cory1)s Xy = 1 — xi** and the other entries of x*

are zero, while for Case II, with c* = ¢;+, we get that x% = 1 and
the other entries of x* are zero. We also 1mmed1ately conclude
from B* = B'x* that ,81* < p* < ;3,*“ for Case I and 8* = ,Bl* for
Case L

3.2, Lyapunov-inspired choice for (EPGc) and (EPGd)

We start by defining (i , ﬁ) below, which can be interpreted
as “reference” epidemic variables determined by the population
state x via B = f'x:

A o\ = o
i= (1——),R::l— (1_7)_ 7

U 5 (1—=mn) 5 (7

A candidate Lyapunov function (to be described later in Sec-
tion 3.4) motivated the following choice for (EPGc) and (EPGd):

GU,R,x,q):= (0 — 1)+ n(InI — In1) + v*(* — B)
+ BR-R(1-n—R), 8)
H(I,R,x,q) := qB+r*, (9)

where v > 0 and p* > 0 (see Section 3.2.1) are design
parameters, and r* is the following stationary reward vector:

. {E,-—p* ifxr =0

T - . <i<n.
Gi otherwise,

A
In Section 3.2.1, we describe the rules for selecting a valid p*.

Definition 5 (Design Parameters). We refer to v > 0, p* > 0
and c* in (0, ¢;) as design parameters. Here, we recall that c*
determines 8* and x*.

In the Appendix, our proof for the upcoming Theorem 1 will
use the fact that, for the r* chosen, x* will be the only element x
of X that simultaneously satisfies 8'x = B*, and also maximizes
X'(r* —c), which is equivalent to it being the best response to the
equilibrium payoff r* — c.

Notice that, when the epidemic is beginning or is effectively
contained, (8) can be approximated simply as:

GU.R.x.q) ~ n(lnl— Inl) + v¥(B* — B). (10)
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According to (EPGc), G will govern the dynamics of q(t), which will
indirectly regulate B(t) via the payoff p(t) in (1) and H in (EPGd).
Specifically, if the population’s agents adhere to a protocol, such
as IPC or SEPT, that prioritizes strategies with higher payoffs, then
lowering q(t) would have the effect of decreasing more the payoffs
of riskier strategies and hence steering the population towards
safer strategies that lower B(t) and I(t). On the contrary, increasing
q(t) would incentivize higher B (€).

3.2.1. Rules for selecting a valid p*

When n = 2, since c* is in (¢, ¢1), we have Case I and from
Remark 3 we can further conclude that p* is not present in r*.
To select a valid p* > 0 for n > 3, proceed as follows: (i) For
Case ], choose any p* > 0. (ii) For Case II, select any p* >

max{p, — B, B* — 1}
3.3. Nash stationarity and §-passivity assumption

Definition 6 (Nash Stationarity). A protocol 7 is “Nash stationary”
if the following holds for all p in R™:

x € .#(p), (NS)

where .# : R" — 2% is the following best response map':

Vix,p)=0 <

A#(p) := argmax p'x, peR".
xeX

Therefore, for a protocol satisfying (NS), x is an equilibrium
of (EDM) if and only if x is a best response to p. Any IPC or SEPT
protocol satisfies (NS) (see Sandholm (2015, §13.5.3)).

Our analysis of the long-term evolution of (Z, R)(t) and (x, p)(t)
will leverage the following assumption stemming from the &-
passivity concept originally proposed in Fox and Shamma (2013)
and later generalized in Arcak and Martins (2021), Kara and
Martins (2021), Park, Martins, and Shamma (2019).

Assumption 2. There exist a differentiable function S : X x R"
— Ry and a Lipschitz continuous function P : X x R" — R
that satisfy the following inequality for all x, p and u in X, R" and
R", respectively:
880Dl y(x, p) + 25ERu < —P(x, p) + UV(X, p), (11)
where S and P must also satisfy the equivalences below:

V(x,p) =04 S(x,p) =0 < P(x,p) =0. (12)

In addition, the following inequality (not required in standard
§-passivity) must hold:

P(x,ap) > Px,p), a>1, xeX, peR". (13)

In (11), 25&2) and as{g;.p) are the row vectors of partial deriva-
tives of S(x, p) with respect to the components of x and p, respec-
tively. In the Appendix, (13) will be useful to cope with the lack
of an a-priori bound for |q(t)|.

Based on the Lyapunov functions in Hofbauer and Sandholm
(2009), the authors of Fox and Shamma (2013) determined, for
main classes of protocols, explicit expressions for S and P, of
which the following are important examples. Explicit construc-
tions for S and P for a generalization of IPC protocols can be
found in Kara and Martins (2021).

Example 1. For any IPC protocol (3) with non-decreasing
{¢1, ..., ¢n}, the following satisfy (11)-(13):

n,n

[pzj]+
s¥p) = 3 1 f & (v)dv, (14)
0

i=1,j=1

T A best response in our context may be interpreted in the mass-action
sense (Nash, 1951) also discussed in Weibull (1995).
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[Bijl+
73,|Pc Z lec X p / ¢j(v)dv,

i=1,j=1

where V'€ is obtained by substituting (3) into (EDMb). The anal-
ysis in Hofbauer and Sandholm (2009, below the expression for
¥(x) on p.1691) can be used here to show that P is non-
negative and satisfies (11) and (12). A small modification of the
same argument shows that (13) holds.

Example 2. The following satisfy (11)-(13) for a SEPT proto-
col (4) for which {¢1, ..., ¢} are non-decreasing:
n [pjl+
> / $i(v)dv, (15)
0

j—l

§(x, p) =

SEPT(X p

Z¢i([pi]+ D; V! SEPT(X p),

ij=1

where V¥ is obtained by substituting (4) into (EDMb). Here,
one can use the analysis in Fox and Shamma (2013, (62)) to
show that (11) holds. Nash stationarity and positive correlation
as defined and established in Sandholm (2005) lead to (12).
A straightforward argument using the equalities in Sandholm
(2005, proof of Lemma 3.2(ii)) leads to (13).

3.4. A candidate Lyapunov function and its properties

We start with the following reparameterization:

I(t) == B)(t), R(t) := B(t)R(t), (16a)
Z(t) == Bojl(e), R(t) := BOR®), (16b)
Tty := Z(t) — Z(t), R(t) := R(t) — R(L), 16¢)

where f(t) and IAQ(t) are defined in (7). Using (8), (9) and (16), we
rewrite (EPG) as follows:

Ity = Z(o)(Z(0) + Rev) + L0Bw), (17a)
R(t) = wR(t) — yZ(t) + ROB(L), (17b)
q(t) = G(I(), Ry, x(0), q(1)), (17¢)
re) = HU(), RO, X(¢), 4(0) = qop + 1*, (17d)
pt) = q(t)B +r° r=r"-c (17e)

Here, we modified the representation of the SIRS model in
O’Regan et al. (2010, between (3) and (4)) to obtain (17a)-(17b),
and we substituted (17d) into (1) to obtain (17e).

We proceed to define the candidate Lyapunov function:

LZ):=Sx,p)+S(I,R,B), #eY, (18)

Y =(1,R,x,q), B:=p'x,
where .7 is defined below, S satisfies (11)-(13), and # taking
values in Y defined below is the state of the complete system
comprising (EDM) and (17) :
Y= {(ZR.x.q) | x€X, g€R, By < B < pa,

0<I<B 0<R=<B-I}.

Here, .# defined below is a modification of the Lyapunov function
in O'Regan et al. (2010), withZ:=7 — 7, and R := R — R:

S(Z, R, B) _Ilnf—z+ R + Y (B B*).

Notation convention: We note that . depends on the given
design parameters c*, v and p*. But, to simplify our notation we
decided not to indicate this dependence.
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Remark 4. Notice that . is convex and nonnegative, and
S(Z,R,B) = 0 if and only if (Z, R, B) = (Z*, R*, B*), where
¥ = B*I" and R* := B*R*. Furthermore, (11)-(13) and (NS)
imply that £(#) = 0 if and only if (Z, R, B) = (Z*, R*, *), and
xe.n(qp+r°).

After taking derivatives, and using (11)-(13) and (17), we get:

L@ n) < —PX), ) — Lt — 2R (19)

o
Y
3.5. A stability concept and main result

We will leverage £ and (19) to establish global asymptotic
stability of an equilibrium set in the following sense.

Definition 7. A set E C Y is said to be globally asymptotically
stable (GAS) if it satisfies the conditions (GASa)-(GASc) for £
defined in (18), with # being the state of the feedback system
formed by (EDM) and (17):

(GASa) It holds that # € E & £(#) = 0.

(GASb) Given any #(0) in Y, {#(t) | t > 0} has at least one
accumulation point in E.

(GASc) Given any #/(0) in Y, all accumulation points of
{# ()| t > 0} are in E.

The following is our main convergence result, which we prove
in the Appendix.

Theorem 1. Let the protocol defining (EDM) and the design
parameters v > 0, p* > 0 (valid according to Section 3.2.1) and

*in (0, ¢1) be given. If (NS) and Assumptions 1-2 hold, then the
set E* defined below is GAS:

{0} (Case I)
[—¢5, &1 (CaseIn),

where £ = p*(By — %)\, and & == p*(* — B!

Under the conditions of Theorem 1, for any #/(0) in Y, the
theorem guarantees that #(r) tends to E*. Consequently, since
ﬁn > B(t) > ﬂ1 > 0, and from (16), the following holds subject to
The01em 1’s conditions:

E* .= (I*, R*,X*) % Q*, OF = =

(I, R, x, q)t) = (I*, R*, x*) x QF, (20)
implying (P1) as defined in our Main Problem. This will also
imply (P2) for Case L. For the rather unlikely Case II, we infer that
lim;, oo 1Y X(t) < C* 4 ¢ B*.

From Theorem 1 and (GASa), we conclude for Case I that
L(#) = 0 holds if and only if (Z, R, X, q) = (Z*, R*, x*, 0). Hence,
based on this fact, Remark 4 and (19) we can view £ for Case I as
a Lyapunov function associated with the equilibrium (Z*, R*, x*, 0).

Remark 5 (Universality of Theorem 1). The protocol T is absent
from (17c¢)-(17e), and Theorem 1 guarantees that E* is GAS
for any protocol satisfying (NS) and Assumption 2. These facts
are relevant when the exact protocol is uncertain, but enough
of its structure is known to establish that it satisfies (NS) and
Assumption 2. The IPC protocol class is a case in point as (NS)
and Assumption 2 hold for any 7 > 0 and any ¢ satisfying the
monotonicity condition in Example 1, which can be interpreted as
presuming (quite plausibly) that the population’s agents switch
from strategy i to j with a rate that does not decrease when pj
increases. A similar observation could be made about protocols in
the SEPT class satisfying the conditions of Example 2.
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4. Using £ to obtain anytime bounds

We start by using (19) to state (a) below, and (b) follows

from (18), for t > 0:
(a) (b)
a = L(Z(0) > L(Z 1) = L(L), R(t), Bb)). (21)

Although in Section 3.4 we adopted the convention of not indi-
cating in our notation that .~ depends on the design parameters,
here it will be useful to remember that it does and this includes
dependence on v. In fact, we will soon outline a method for
selecting v > 0 based on (21).

Assuming that p* and c* are pre-selected, while v can vary to
meet an overshoot specification, we now proceed to construct an
upper-bound for I(¢)/I*. Obtaining an upper bound for I(t)/I* is
important because, although Theorem 1 guarantees that #/(t) will
converge to E*, the theorem offers no guarantees on the transient
behavior of I(t). Using m5(c) defined below, we can leverage (21)
to obtain the anytime bound I(t) < I*m (@), t > 0.

Definition 8. Given the parameters specifying (EDM) and (17),
we seek to perform the following optimization:

mia)=Esup{ BT | (@) <, ¥ €Y}, (22)

where we reverse (16a) to write I = Z/B and I* = 7*/8*. Using
the fact that .7 is convex (see Remark 4), we conclude that (22) is
a quasi-convex program that can be swiftly solved using available
software.

From Remark 4, we can immediately conclude that for any
given v > 0, it holds that 7}(0) = 1 and 7 () is an increasing
continuous function of o > 0.

4.1. Bounds when #(0) is endemic equilibrium (n=2)
Throughout this subsection, consider that n = 2 and #/(0) is
an endemic equilibrium point for which (Z, R)0) = (Z, R)0),
= B’x(0) =: B°, and q(0) = 0. Namely, the system starts at an
equilibrium that could have resulted from the prior use of (17)
in which g° (instead of 8*) was the endemic transmission rate.
We proceed by observing that, since the entries of p(0) = r° are
identical (both are equal to —c,), any x(0) € X is in .Z(p(0)),
which implies S(x(0), p(0)) = 0. Hence, in this case by direct
substitution into (18), we obtain « = £(#(0)) = 1v?(B° — B*)?,
which using (21) leads, for t > 0, to the followmg mequalltles

#12 @ 2 ® . 0 *
BO—=p) =5 (“Jt))fﬂ B=p"—-p". (23)
Based on (a) and (b) in (23), it readily follows that |B(t) — g*| < |B|
and if 8* < B° then B(t) < B°.
From (b) in (23), we also obtain (see Proposition 1):
I(r)<1*xn(uﬂ) t>0. (24)

Remark 6. [Universality of (24)] Analogously to Remark 5,
it is pertinent to observe that since the computation of (o)
for a given o does not require knowledge of the protocol T,
(24) remains valid for any (EDM) satisfying the conditions of
Theorem 1.

The following proposition indicates that v plays a key role in
bounding the overshoot of I(t)/I*.

Proposition 1. (i) For any ¥ > v > 0, it holds that n,ij(% 2p2) >
mi(3v?B?). (ii) Furthermore, it holds that m( 232) > w1 -
oB~") > 1, B := min{|B| + B, f2}.
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Fig. 1. Plot of n:j(%vzﬁz) in Example 3 as a function of v for varied g* (other
parameters of Example 3 are unchanged).

Proof. Express the constraint defining 7(Jv?B?) as #(#) —
1B — g2 < Lv¥(B? — (B — B*)?), where for any given B
the left-hand side is a (convex) function of (Z, R). Using the same
steps leading to (a)-(b) in (23) we infer that 82 — (B — B*??> >0
Hence, we can establish (i) by observing that increasing v does
not tighten the constraint. To show (ii) it suffices to select Z = 7,
R =R and B = B as a feasible solution. O

We will use the following example to illustrate the validity of
our bounds. Our time unit will be one day.

Example 3. Consider that g = 0, 0 = 0.1 (infectiousness period
~ 10days), y = 0, and w = 0.005 (immunity period ~ 200 days).
The problem parameters are ﬂ1 0.15, /32 0.19, while the
cost vector is ¢; = 0.2, ¢c; = 0. We select ¢* = 0.1, which gives
p* = 0.17, x; = x5 = 0.5, and (I*, R*) ~ (1.96%, 39.22%). We
assume that x;(0) = 1, (I(0), R©)) = (I(0), R0)) = (1.60%, 31.75%),
and B8° = B(o) = 0.15. Our goal is to design G and H so that
I(t) < 1.344 x I*. Since n = 2, p* is irrelevant (see Section 3.2.1)
and we can use (24) to select v.

Example 3 would describe the case in which expensive mea-
sures were previously (t < 0) in place, but a planner seeks
from t = 0 onward to relax those measures to reduce the
normalized cost rate from r’(0)x(0) = 0.2 to a long-term limit
of ¢* = 0.1. From our numerical results (see Fig. 1 for g* =
0.17), we determine that 7 4,s(3(0.806 x 0.02)%) ~ 1.3436 and
conclude from Proposition 1 that any positive v < 0.806 will
guarantee for any protocol satisfying the conditions of Theorem 1
that I(t) < 1.344 x I* holds, as required in Example 3. All figures
were generated using Certorio (2022).2 Fig. 2(a) illustrates for
v € {0.806,0.316} that the required bound indeed holds for
a Smith’s protocol. Fig. 2(a) suggests that (24) may be conser-
vative. However, since (24) must be valid for any protocol (not
just Smith’s) satisfying the conditions of Theorem 1, we do not
know how conservative it may be. It is worth noting that, as
illustrated in Fig. 2(a), one could have significantly exceeded a
34.4% overshoot by selecting v > 2.

From the previous discussion, one could be tempted to select
a very small v < 0.806 expecting to perhaps eliminate any
overshoot. However, as Fig. 2(b) illustrates, smaller v may lead to
slower convergence, which would keep x(t)r(t) higher for longer.
Thus, selecting the largest v for which the required overshoot
constraint is guaranteed by (24) could be a sensible approach. In
the case of Example 3 this approach would yield v = 0.806.

4.2. Bounds when #(0) is endemic equilibrium (n > 3)

Consider that n > 3 and that #/(0) satisfies the conditions
specified in Section 4.1. Following the same argumentation as

2 The code that generates all figures, and other supplementary scripts, can
also be found at github.com/jcert/EPG.


https://github.com/jcert/EPG
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Fig. 2. Simulation for Example 3 using v as shown, and a Smith’s protocol
specified by A = 0.1 and 7 = 0.1.

in Section 4.1, we conclude that S(x(0), p(0)) = 0 when the
support of x(0) is included in that of x*, in which case (23) remains
valid. If this condition on the support of x(0) does not hold, then
(b) in (23) is no longer valid and we should instead use:

2 %12 232
VBOZFT D gy L VP
2 2
where S(x(0), p(0)) can be computed by direct substitution when
an explicit formula for S is known. We can use (14) to compute
S(x(0), p(0)) for any IPC protocol, such as for Smith’s protocol as
shown below:

+ S(x(0), p(0)),

nn
S0, p(0)) = Y XD —17),
i=1,j=1
12 i >
o) =2V Tv=T e
.7 ifv>T,

5. Conclusions and future directions

We put forth a system theoretic methodology to model and
regulate the endemic prevalence of infections for the case where
the decisions of a population of strategically interacting agents
determine the epidemic transmission rate. Our main result is a
dynamic payoff mechanism that is guaranteed to steer the epi-
demic variables (via incentives to the population) to an endemic
equilibrium characterized by the lowest prevalence of infections,
subject to cost constraints. Using a Lyapunov function we used to
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prove convergence, we established an upper bound for the size
of the population’s infectious fraction.

Subject to the conditions of Theorem 1, a planner using the
incentive policy specified by the proposed G and H, which in
some cases admits the approximation for G in (10), will steer
the population to the lowest endemic infectious fraction for a
given budget constraint (see Remark 2). In addition, as discussed
in Section 4, the planner can tune v to obtain a desired upper
bound of the peak size of the population’s infectious portion (see
Remark 6).

Although Theorem 1 is rather general (Remark 5), there are
protocols for which it is not valid. These include imitation (Sand-
holm, 20104, §5.4) and perturbed best response (PBR) (Sandholm,
2010a, §6.2) protocols, which are not Nash stationary. More-
over, the so-called replicator protocol (a particular case of imi-
tation protocol) is not §-passive (Park, Shamma, & Martins, 2018,
Proposition IIL.5) and, while PBR is §-passive (Park et al., 2018,
Proposition II1.8), it is not clear whether it would satisfy (13).
Hence, investigating modifications of G, H and Theorem 1 for
these protocols is an important future research direction.

Appendix. Proof of Theorem 1

In order to prove Theorem 1, subsequently we show that E*
is GAS (see Definition 7).

Important notes: (i) We assume that #/(0) is arbitrarily selected
in Y and kept fixed throughout the proof. (ii) We will introduce
more notation and definitions as needed. (iii) We will make
extensive use of the best response map .#. We will also refer
repeatedly to E*, Q¥ ¢, and ¢ as defined in the statement of
Theorem 1.

Proof structure: We follow a LaSalle approach (LaSalle, 1960)
with four steps: Step 1: We show that E* satisfies (GASa); Step 2:
We prove that {q(t) | t > 0} is bounded for any #(0) in Y;
Step 3: We show that E* satisfies (GASb); Step 4: We prove that
E* satisfies (GASc).

A.1. Step 1: showing that E* satisfies (GASa)
1]/ andx:=[1 --- O]/.

We start by defining x := [0
Now, define A* as follows:

A" i={(x,q) | xe.#(gB +1°), Bx =B}
or use (12), and (NS) to rewrite A* with p = qB +r° as:
A" ={(x,q) X xR | S(x,p) =0, Bx = p*). (A1)

Since, by Remark 3, 8* satisfies 31 < B* < ,Bn, subsequently we
will be able to show the following equality:

A* = (X'} x Q. (A2)

We now proceed to prove (A.2) for Cases I and II:

Case I: Let {i*, i* 4+ 1} be the support of x* (see Remark 3). If
q = 0 then we conclude, from the fact that {i*,i* 4+ 1} is the
support of any x in .#(r°), that {x € .#(r°) | B* = p'x} = {x*}. If
q > 0 and x is any element in .Z(q8+r°), thenx; = --- = x+ =0
and, consequently, 8'x > *. Analogously, if ¢ < 0 then g'x < B*
for all x in .#(qB + r°).

Case II: Let i* be the support of x*. If —¢5 < q < {7, then
x e #@p+r°)| B = Bx} = ). If ¢ > ¢, then
#(qB + 1r°) = {x}, which would not be viable for A* because
B'x = Bn > B*. A similar argument shows that q < —¢; is not
viable for A*.

The proof for Step 1 is concluded by using (A.1) and (A.2)
in conjunction with (18) and Remark 4. Or, equivalently, the
following holds for E* = (7%, R*) x A*:

v ek & L(#)=0. (A.3)
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A.2. Step 2: proving that {q(t) | t > 0} is bounded
Start by selecting and keeping fixed throughout the proof two

positive constants ¢; > ¢ and §, > &5
We proceed with the following additional definitions:

Pri= {B+yr

Pri= B4y

05)/5;“1_]},

o=y =g}

Remark 7. Notice that if p is in Py then .#(p) = {x}, and if p is
in P, then .#(p) = {x}.

We are now ready to state the following lemma.

Lemma 1. Given any € > 0, there is § > 0 such that:

max{||x —X|| ’ xeX, m]iPnP(x,p) < 6} <€, (A4a)
pePy

max{llx — x| ‘ xeX, m]iPnP(x,p) < 8} <e. (A.4b)
PP,

Proof of Lemma 1. We will prove the lemma by showing that
assuming it was not valid would lead to a contradiction. Hence,
without loss of generality, assume that there was ¢* > 0 for
which no § > 0 satisfying (A.4a) existed. (The case in which no
8 > 0 satisfying (A.4b) existed would have been analogous.) In
order to reach a contradiction, we start by noticing that under
the assumption the following would hold:

X9 — k|| > €* and P, p) < 7, £>1

for a sequence (x©), p'9)) satisfying:

X9 € arg max{||x —X|| ‘ xeX, m]ipn Px,p) < %}
pPePy

¥ e argmin P(xY, p).
pePy

We proceed by noting that since the sequence (x(©), p®) would
take values in the compact set X x ¢, it would have an accumu-
lation point (x*, p*) € X x Pq. By continuity of | - || and P, the
pair (x*, p*) would satisfy: (i) ||x* — X|| > €* and (ii) P(x*, p*) = 0.
However, since p* € Py, we can use Remark 7, (NS), (ii) and (12)
to conclude that x* = {x}, which would contradict (i). O

Since £ is lower bounded, we infer from (19) that Z(t) and R(t)
are square-integrable. Also, Z(r) and R(t) are uniformly contin-
uous (bounded derivatives). Thus, we conclude using Barbalat’s
Lemma (Farkas & Wegner, 2016, Theorem 1) that

lim Z(eY? + R(e)* = 0. (A5)
t—o00
Using a similar argument and (13), we conclude that

. _ - p(t)

lim P(x(t), =0, =— A6
Jim Px(o), po) PO = o, ol (A6)

Namely, from (13) and (19) we infer that P(x(t), p(t)) is integrable.
In order to use Barbalat's Lemma to prove (A.6), it suffices to
establish uniform continuity of P(x(t), p(t)) (as a function of t).
To do so, we observe that (i) Z(t) > n(f1 — o) > 0 and
(ii) according to (19) £(#(t)) remains bounded. It follows from (i)
and (ii) that In Z(¢) is also bounded, and, from (8) and (17c), that
q(t) is bounded and p(t) is uniformly continuous. Since from (EDM)
it holds that ||x]l < n7, we conclude that x(¢t) is also uniformly
continuous. Consequently, P(x(t), p(t)) is uniformly continuous.
Define & := v? min{B, — B*, B* — B1} and select € > 0 such
that (i) v3(B'x — B*) > %S for all x in X satisfying ||x — X|| < €
and (ii) UZ(_’,X —B*) < —%5 for all x in X satisfying ||x — X|| < €.
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From Lemma 1, we know that there is § > 0 such that (A.4a)-
(A.4b) hold. Furthermore, from (A.6) we know that there is «
such that, for all t > «, we have P(x(t), p(t)) < 8. Consequently,
we conclude that: (a) if qt) > ¢; and t > «, then p(t) is in Py
and minyep, P(x(t), p) < P(x(t), p(t)) < & and (b) if q(r) < —¢, and
t > « then p(r) is in P, and min,ep, P(X(t), p) < P(X(t), p(t)) < 8.
Hence, combining (i), (a), and (A.4a) we arrive at (A.7a), and
from (ii), (b), and (A.4b) we infer (A.7b).

qt) = & = VAB(t) - B*) > 3E, t > k.
q(t) < =5 = VA(B(t)— B*) < —2€, t > k.

(A7a)
(A.7b)

From (8), (17¢), and (A.5), and the fact that Z(t) > (81 — o) > 0,
we can select t > « satisfying:

g+ V2B — )| < 38, t>t (A8)

From (A.7), and (A.8), we can finally conclude that (i) if q(t) > ¢;
and t > t, then ¢ < —4& and (ii) if qt) < —¢; and t > t, then
q> %S. Hence, we can conclude that there is t > t such that the
following holds:

—H=qn<g, t=t (A9)

A.3. Step 3: showing that E* satisfies (GASb)

Subsequently, we will show by construction the existence of
an accumulation point of {#(t) | t > 0} in E*.

Remark 8. Before we proceed, we observe that since ¢; and &;
were any arbitrarily selected constants satisfying ¢; > ¢; and
& > ¢y, we can infer from (A.9) that any accumulation point of
{q(t) | t = 0} must be in Q*.

We start by observing that continuity of g(t) and (A.9) imply
that 0 is an accumulation point of {g(t) | t > 0}. Consequently,
from (8), (17c), and (A.5), and the fact that Z(t) > n(B1 —
o) > 0, we conclude that (Z*, R*, §*) is an accumulation point
of {(Z, R, B)t) | t > t).

Let t™ be a sequence of times such that (Z, R, B)t™) con-
verges to (Z*, R*, 8*). Then, the sequence (Z, R, B, X, q)(t™) also
has an accumulation point (Z*, R*, 8*, X, ¢) because from (A.9)
we know that, for t > ¢, the pair (x, q)¢) takes values in a
compact set X x [—¢3, £1]. We now proceed to observe thag by
continuity of P and (A.6), it must be that 7>(>V<, m(éﬁ +
r°)) = 0. Consequently, from (NS), (12), the fact that g* = B/)?
and Remark 8, we conclude that (X, ) must be in the set A*
characterized in (A.2) for Cases I and II.

A.4. Step 4: showing that E* satisfies (GASc)

In Step 3, we constructed an accumulation point e* of {#(¢) | t
> 0} in E*. Hence, there is a sequence t™ such that lim,_, . #(t™)
= e*. However, from (A.3) and the continuity of £, we conclude
that lim,_ o £L(Z (™)) = L(e*) = 0. Furthermore, since (19)
guarantees that £(#/(t)) is non-increasing, we conclude that the
following holds:

lim £(# (1)) = 0. (A.10)
t—o00

Now take any candidate accumulation point Z* in Y. From (A.10)
and the continuity of £ it follows that £(#*) = 0, which
from (A.3) implies that #* € E*.
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