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Abstract

Alaska is one of the most seismically active regions of the world. Coincidentally, the state
has also experienced dramatic impacts of climate change as it is warming at twice the rate
of the rest of the United States. Through mechanisms such as permafrost thaw, water table
fluctuation, and melting of sea ice and glaciers, climatic-driven changes to the natural and
built-environment influence the seismic response of infrastructure systems. This paper dis-
cusses the challenges and needs posed by earthquake hazards and climate change to Alas-
ka’s infrastructure and built environment, drawing on the contributions of researchers and
decision-makers in interviews and a workshop. It outlines policy, mitigation, and adaptation
areas meriting further attention to improve the seismic resilience of Alaska’s built environ-
ment from the perspectives of engineering and complementary coupled human-environ-
mental systems.

Introduction

The state of Alaska is highly vulnerable to the compound impacts of earthquakes and climate
change. Since the 1960s, the direct financial cost of earthquakes and ensuing tsunamis in
Alaska has far outweighed that of all other non-human-caused disasters combined [1]. Seismic
impacts include coastal inundation, topographic rupture, mass movement of landslides and
rockfalls, and soil liquefaction. Two of the most damaging earthquakes in 1964 (commonly
referred to as the Great Alaskan Earthquake) and 2018 (commonly referred to as the Anchor-
age Earthquake) highlight the fragility of Alaska’s infrastructure, the former resulting in 115
deaths [2] (mainly from the ensuing tsunami) and about US$2.8 billion (in 2022 dollars) in
estimated damages [3] and the latter causing significant damage to roads, railroad lines, and
buildings [4, 5]. Examples of the damage caused by the 2018 Anchorage, Alaska Earthquake
can be seen in Fig 1A and 1B.
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Climate change is driving parallel processes such as permafrost thaw, water table fluctua-
tions, and building subsidence that influence the seismic response of infrastructure systems.
Alaska has experienced unprecedented levels of climatic warming, with statewide average tem-
peratures increasing at a rate of about 0.4°C per decade since the 1970s, twice the global aver-
age [6]. Winter temperatures have increased by an average of about 3°C since the 1950s [6].
Arctic areas are experiencing more rapid warming than the state average [7]. By 2100, Repre-
sentative Concentration Pathway scenarios [8] project annual average warming of at least
4-5.5°C in the state’s northern areas and 2-3.3°C in its southern areas [7, 9].

These changes are taking place in a state with a large geographic area, spatially dispersed
population (.46 inhabitants per km?), and a limited road system. Alaska is ethnically diverse,
with the highest Indigenous population among US states. The state is 60% non-Hispanic
white, 15% Indigenous (with 20 recognized Native languages), and 25% Asian, Black, Pacific
Islander, Latino, other, or multiracial. The cultural and livelihood differences among these
groups are substantial, as they are between the majority of Alaskans who live in cities, towns,
and suburbs, particularly along the coast, and smaller populations in rural areas accessible
only by air or water. The Alaskan economy is highly reliant on oil and gas extraction, as well as
government, military, fishing, other resource extractive industries, tourism, and subsistence
hunting.

The challenges of seismic activity and climate change in Alaska are intricately connected,
particularly in Arctic and sub-Arctic regions. The U.S. Global Change Research Program in
the Fourth National Climate Assessment notes that as the Arctic region warms due to climate
change, the permafrost layer that supports infrastructure such as buildings, roads, and pipe-
lines may thaw, leading to soil instability and subsidence [7]. For example, Instanes and Mjur-
eke [10] used the Arctic Climate Change Impact Assessment (ACIA) climate change models to
project changes in soil bearing strength for seven sites throughout Alaska. Of the seven sites
considered, Bethel Alaska experienced the largest reduction in soil strength (40%) between
1999 and 2090. It should be noted that Instanes and Mjureke [10] used an identical soil profile
with the same thermal properties for all of the locations; therefore, their analysis can only be
used as an indication of relative climate differences between locations. Nonetheless, soil
strength deterioration can increase the risk of earthquake damage in some areas. Whitehouse
etal. [11] found that climate change can also influence the magnitude of glacial isostatic

(a) (b)

Fig 1. Damage caused by the 2018 Anchorage Alaska earthquake showing (a) lateral spreading along Vine Road close to Wasilla and (b)
ground crack propagation along a sloping valley on the south side of Potter Creek in Anchorage.

https://doi.org/10.1371/journal.pone.0292320.9001
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adjustment in some regions. For instance, the melting of glaciers can lead to changes in the
stress distribution along major faults throughout Alaska, potentially increasing the frequency
and magnitude of earthquakes. Rollins et al. [12] discussed the impact of glacial melt on the
1958 moment magnitude, M,,, 7.8 earthquake in Alaska, which triggered a landslide in Lituya
Bay, resulting in a tsunami with a record-breaking maximum wave height of 1720 meters. Fur-
thermore, the authors found that 23 of the 30 instrumentally constrained M,,>5.0 earthquakes
in Southeast Alaska were promoted by glacial isostatic adjustment.

The impacts of climate change, such as permafrost thaw, melting of sea ice and glaciers, and
water table fluctuations, can increase the vulnerability of infrastructure systems to seismic
activity. This, in turn, may exacerbate the impacts of climate change by damaging critical infra-
structure and further compromising the resilience of communities. Mitigating these risks
requires a multidisciplinary and collaborative approach that accounts for the unique social,
economic, and cultural contexts of Alaska. This qualitative study assesses and prioritizes con-
cerns involved in earthquake resilience, amid a changing climate, at both the state and local
levels in Alaska by leveraging informant interviews, an international workshop, and a review
of the state of the art and identifies opportunities for enhancing capacity to prepare and
respond at the community, academic, and governance levels.

In this study, resilience and vulnerability are viewed as closely connected concepts. Resil-
ience refers to the ability of a system to withstand and recover from shocks and stresses [13-
17], while vulnerability refers to the susceptibility of a system to damage or harm from such
shocks and stresses [18, 19].

Methods

To identify engineering opportunities to enhance seismic resilience amid a changing climate,
an exploratory research effort synthesized several sources of information compiled in 2021
and 2022. These sources include a literature review, semi-structured key informant interviews,
and contributions to a workshop titled “1** International Workshop on Seismic Resilience of
Arctic Infrastructure and Social Systems”. This workshop was hosted by the University of New
Hampshire (UNH) and held in Anchorage, Alaska [20]. Ethics approval for this study was
obtained from the Institutional Review Board of UNH (approval number 8498). The key infor-
mant sample was developed using chain-referral sampling to capture a range of expertise,
mainly engineering, physical science, and government staff (such as emergency managers and
planners), plus some representatives of Native communities (particularly Tribal government
staff), social science, private sector, and a non-profit organization. Fifteen in-depth semi-struc-
tured interviews were conducted using a set of questions as an interview guide. These were
performed via videoconference and subsequently transcribed, and thematically coded using
qualitative data management software. Prior to the videoconference interviews, informed con-
sent forms were provided to key informants through an electronically fillable PDF, subjects
were requested to sign and return the PDF via email. An opportunity to ask questions about
the consent and verbally confirm the consent was also provided at the start of the interview.
Ten of the 50 participants in the 2.5-day workshop overlapped with the interview sample, gen-
erating a combined total of 55 interview and workshop participants (Fig 2A). Workshop par-
ticipants were informed that workshop organizers may take notes and record audio and visual
throughout the event. Participants were also informed that due to the relatively public nature
of the workshop, participant anonymity may not necessarily be guaranteed. Workshops are
typically based on a participatory method where attendees work together to develop ideas and
form objectives related to a common issue or topic. This format provides opportunities for
researchers to capture discussions, form topics, and identify priority needs of a community
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Fig 2. (a) Data summary showing the backgrounds of individuals included in interviews or the workshop. Note that several individuals fit more
than one category and only professional tribal affiliations were documented, not ethnic identities. (b-f) Selected survey results of workshop
participants.

https://doi.org/10.1371/journal.pone.0292320.9002

produced by participants who may not normally interact with one another outside of a facili-
tated discussion. In addition to formal presentations and informal discussions, 30 workshop
participants completed a survey, and some survey results are highlighted in Fig 2B-2F. These
survey questions helped generate a baseline understanding of attendees’ demographics, priori-
ties, and concerns. About half of the workshop participants attended the workshop in-person
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in Anchorage, Alaska and the other half joined remotely via videoconference. The analysis and
synthesis across these sources initially applied an engineering perspective, followed by a cou-
pled human-environment systems perspective.

Results and discussion
Synthesis of engineering and physical science findings

Hazards and vulnerability of infrastructure systems influence the risk of disasters. Past
research addresses factors influencing vulnerability [21] and natural disaster losses [22-24].
Seismic risk and associated infrastructure vulnerability vary considerably across the state of
Alaska. Fig 3A shows the National Risk Index (NRI) in Alaska determined based on earth-
quake hazard, combining earthquake expected annual loss, social vulnerability, and commu-
nity resilience. Detailed documentation regarding the NRI and its derivation can be found in
the NRI technical documentation [25]. Fig 3A indicates that Northern Arctic areas have “very
low” seismic risk while central and south-central areas have “relatively low” to “relatively mod-
erate” risk. The seismic hazard distribution and population density throughout Alaska greatly
influence these variations. Climate change compounds these cumulative risks, threatening
Alaskan communities with sea level rise, thawing permafrost, melting sea and land ice, and
increased precipitation [7, 26-28]. Berman and Schmidt [29] estimated the economic costs of
these climate-induced stressors in Alaska to be roughly $310 to $530 million (in 2022 US dol-
lars) annually over the next 30-50 years. This estimate includes highly likely and easily quanti-
fied costs such as protection, maintenance, and repair of public infrastructure; community
relocation; wildfire fighting and property loss, and replacement of ice roads. This estimate
does not account for less certain or cascading direct and indirect costs such as those associated
with private infrastructure, interruptions to drinking water or sewage services [30], temporary
displacement of residents [31, 32], public health risks [33, 34], threats to monetized or subsis-
tence livelihoods [34-37], and intensified labor demands to sustain formal and informal social
networks [38]. It is important to note that the assessment of indirect losses is particularly
important when evaluating the organizational and social aspects of climate change and earth-
quake damage on the entire community [39-41]. Coastal erosion resulting from climate-
induced threats has caused several Alaskan communities to seek partial or total relocation
[42]. Thawing permafrost is also generating widespread infrastructure damage to systems not
at direct risk of erosion [7, 43, 44]. These damages shorten the useful life of buildings and lead
to early retrofit and replacement.

Cognizant of these converging threats, workshop participants identified three leading cli-
mate-induced seismic infrastructure resilience concerns: (1) permafrost thaw and soil liquefac-
tion, (2) lack of redundancy in lifeline infrastructure, and (3) cascading seismic effects.
According to one structural engineer,

[Permafrost melt] may change how seismic waves travel if the soil is softer as it melts. But
also, it starts creating problems for the piles [deep foundations] and they start losing capac-
ity. You may end up with overturning failure. . . failure of a pile due to the fact that it
doesn’t have the capacity you thought it was going to have.

Fig 3B synthesizes geographic information on seismic hazard [48] with permafrost distribu-
tions [45], uniquely identifying regions in Alaska where a changing climate will most likely
affect seismic vulnerability and resilience. According to the figure, permafrost underlies about
75% of Alaska, roughly 800,000 km?, and is subject to the varied effects of climatic change
[49]. Chadburn and coauthors [50] estimate that for every 1°C annual average temperature
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Fig 3. Maps showing (a) The National Risk Index variation in Alaska determined based on earthquake hazard [25].
Republished from [25] under a CC BY license, with permission from the Federal Emergency Management Agency,
original copyright 2021 and (b) Comparison of the 2008 Permafrost Characteristics of Alaska [45] and the United
States Geological Survey (USGS) 2018 Long-Term National Seismic Hazard Map (public domain) [46] overlaid on the
USGS National Map (public domain). The 2008 Permafrost Characteristics of Alaska map is republished from [45]
under a CC BY license, with permission from the Institute of Northern Engineering, original copyright 2008.
Permafrost distribution is classified as continuous (>>90% of the land area underlain by permafrost), discontinuous
(50-90% of the area), sporadic (10-50% of the area), or isolated (<10% of the area) [47].

https://doi.org/10.1371/journal.pone.0292320.9003

increase due to global climate warming, about 2.5 million square kilometers of permafrost in
global arctic regions could be lost. In the discontinuous permafrost zone, where permafrost
temperatures hover around the freezing point, the effects of rising temperatures are likely to be
devastating. In these regions, even a small temperature increase may result in the total disap-
pearance of permafrost [51]. Meanwhile, in the continuous permafrost zones, atmospheric
temperature increase also raises the permafrost temperature, increasing the thickness of the
active, seasonally thawed permafrost layer [52]. Estimates of the active layer thickness in
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Alaska from 2001 to 2015 suggest that this layer ranges from 0 cm in the North Slope to 300
cm in Coastal and Southern Alaska [53]. As a result of climate change, the thickness of the
active layer is expected to increase by 20-30% across most of the permafrost area in the North-
ern Hemisphere throughout the 21*" century [54]. Fluctuations in active layer depth can influ-
ence other natural surface subsystems such as vegetation distribution and forest leaf cover [55,
56]. Overall changes in permafrost distributions will result in the discontinuous zone shifting
further north, with reductions in the size of the continuous zone.

Changes in the mechanical properties of soils due to warming permafrost will alter the
strength of soil layers. Most of the strength of frozen, fine-grained soil is generated by ice
bonding, which creates a cohesive bond between soil particles [51]. Therefore, the extent of
strength deterioration during thaw depends on the ice content of the permafrost. Permafrost
with low ice content is generally considered thaw stable. When this permafrost melts, a layer of
talik (perennially thawed soil) is generated between the upper, active layer, and the lower per-
manently frozen permafrost. In contrast, ice-rich permafrost is considered thaw unstable. As
ice-rich permafrost warms, the presence of melted water reduces the strength and stiffness of
these soils [10] leading to ground surface subsidence and thermokarst formation. Past research
has shown that the seismic response of soil-foundation-structure systems is influenced by
changes to the stiffness and strength of underlying soil layers [57-62]. Fig 4 shows the concep-
tual impact of permafrost thaw on the seismic response of a building, suggesting seismic
motions propagating through once frozen soil will further deteriorate the soil strength due to
changes in the stress and strain experienced by the material. Buildings and other structures
resting on previously frozen but now saturated or near-saturated soil deposits that are sub-
jected to intense ground motions may experience a sudden reduction in support. This loss in
bearing capacity results in foundation settlements and rotations [61, 62], which in turn may
damage underground utilities (Fig 4B). Therefore, it is prudent for practitioners to account for
the variation and effect of permafrost thickness due to climate change over the design life of
infrastructure systems (i.e., considering foundations depths and load transfer mechanisms).

Permafrost in the southern sections of Alaska has temperatures near the freezing point [51].
Soils in these locations are at the greatest risk of experiencing complete permafrost disappear-
ance. According to Fig 3B, these regions also have the greatest seismic hazard, which means

HEBE M@
Seismic motion
E BH E E E generates rotation
Underground B HE B H and settlement of
tilit building resting on
d:n;Ia)g,)e HE' EJ E HE' E thawed soil layer
Active SSCRCIeR Yoty HESE S5ESEESE
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Permafrost layer

Earthquake motion at bedrock Earthquake motion at bedrock

(a) (b)

Fig 4. Conceptual impact of permafrost thaw on the seismic response of building-foundation systems showing (a) typical Arctic soil profile and (b)
climate-induced permafrost thaw.

https://doi.org/10.1371/journal.pone.0292320.9004
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the potential risk of ground failure and infrastructure damage in southern Alaska will increase
with a decrease in permafrost distribution. A practicing engineer noted,

That’s our geotechnical challenge in Alaska. It’s kind of the opposite of usual. When you
build on frozen ground, you have to keep it frozen. Whereas normally you’re trying to put
insulation down to keep it from freezing.

Furthermore, permafrost degradation may increase the seismic liquefaction potential of
soils [59]. During an earthquake, the contraction of saturated granular soil particles transfers
stress from particle-particle contacts to pore water, leading to increased pore water pressure
and a corresponding reduction in the strength of the material [63, 64]. Liquefaction occurs
when the pore water pressure rises to a critical level and the behavior of the material changes
from solid-like to liquid-like [65, 66]. After the earthquake, the dissipation of excess pore
water pressure leads to ground settlement. In many cases, liquefaction-induced foundation set-
tlements and rotations leave buildings and other infrastructure systems irreparable, even with-
out above-ground structural damage [67]. Permafrost thaw can increase the risk of seismic
liquefaction by altering the physical and mechanical properties of soil. As permafrost thaws,
the water held in the ice-rich soil melts and occupies the pore spaces between the soil particles.
This increased degree of saturation of non-frozen water changes the soil’s susceptibility to liq-
uefaction during an earthquake. Consequently, the soil becomes more unstable and prone to
soil settlements, landslides, and other forms of ground failure. Alaska has a history of well-
known instances of liquefaction. An example of liquefaction-induced damage is shown in
Fig 5, generated by the 1964 Great Alaskan earthquake, which led to a long runout landslide.
This landslide destroyed 75 homes within the Turnagain Heights area of Anchorage [68]. A
seismologist mentions,

Fig 5. Liquefaction-induced long run-out landslide in Turnagain Heights Anchorage, Alaska generated by the
1964 Great Alaskan Earthquake.

https://doi.org/10.1371/journal.pone.0292320.g005

PLOS ONE | https://doi.org/10.1371/journal.pone.0292320 October 18, 2023 8/17


https://doi.org/10.1371/journal.pone.0292320.g005
https://doi.org/10.1371/journal.pone.0292320

PLOS ONE

Climate change and seismic resilience: Key considerations for Alaska’s infrastructure and built environment

Elevated building prevents
conduction between
ground and warm structure

We think at great length, in terms of strong ground motion during earthquakes. There’s a
lot of [building] code that is devoted to making sure that structures can withstand strong
shaking. That’s all worthless if the ground beneath the building moves, doesn’t matter. It
doesn’t matter how you build it if the underlying soils are compromised.

Building foundation technologies as potential solutions

Interview and workshop participants discussed several solutions and adaptation strategies to
reduce the hazard of permafrost degradation on the seismic response of infrastructure systems.
Generally, engineers seek to build infrastructure on ice-poor and ice-free terrain, where the
amount of soil strength deterioration during thaw is minimal. For infrastructure systems
already built on, or placed in, ice-rich permafrost, however, careful monitoring and evaluation
of thaw-induced settlement and liquefaction potential of the foundation soil over the design
life of the system can reduce risk. When building new infrastructure systems on ice-rich per-
mafrost, foundation designs can compensate for permafrost thaw or actively/passively cool the
underlying soil layers [69]. Active cooling relies on the use of systems with external power
sources to maintain a certain permafrost temperature whereas passive approaches do not rely
on external power.

Examples of passive systems can be seen in Fig 6 and include elevating a structure off the
ground and using passive thermosyphons that employ a working fluid to convect thermal
energy between the ground and atmosphere. Since the 1960s, thermosyphons have been used
to stabilize foundations placed in continuous and discontinuous permafrost regions [70].
Thermosyphons have been incorporated into infrastructure design in more than 900 instances
in Alaska [69], including about 120,000 thermosyphons installed along the Trans-Alaska
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Fig 6. Engineering solutions to prevent permafrost thaw below a building [69]. This building features a crawl space between the building and
foundation as well as several passive thermosyphons installed throughout the pile foundation system (commonly referred to as thermopiles).

https://doi.org/10.1371/journal.pone.0292320.9006
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Pipeline [71]. Notably, passive thermosyphons often only effectively function when the air is
colder than the ground. Considering the current, and projected, climate change influence on
the average winter temperature across Alaska, performance-based design would need to con-
sider the reduction in the number of days in the year when passive thermosyphons function.

Challenges of human-environment systems and building codes

From a coupled human-environment systems perspective, apparent engineering solutions
encounter additional challenges. When asked about leading social concerns related to earth-
quake and climate impacts, workshop participants identified (1) capacities of small/local/
Indigenous communities, (2) resource distribution, and (3) information access inequality. For
example, access to crucial information related to seismic events and public safety is limited in
remote areas, including Indigenous villages, though documents produced by the Alaska Earth-
quake Information Center and Alaska Division of Homeland Security and Emergency Man-
agement provide guidance to prepare for and recover from earthquakes at the household level.
Participants suggested that opportunities exist to incorporate this information into in-person
training-based modules.

Among possible options to increase seismic resilience, one advanced by several project par-
ticipants was building code implementation to ensure the design of infrastructure systems that
resist seismic loading. Widely used model US building codes (the International Building Code
and International Residential Code) have included earthquake safety provisions since the
1990s but states and localities retain broad jurisdiction in the regulation of private construction
and may adopt model codes fully, in part, or not at all. Construction in many smaller Alaskan
communities falls under the jurisdiction of the state fire marshal, which requires building code
adoption but not enforcement. A practicing engineer mentions,

Review of building plans, typically for larger structures in more remote communities, will
undergo a fire safety review, making sure that the egress and all of these [similar] things are
thought through. But there’s no structural engineer reviewing the structural calculations.
There’s nobody looking into the real details.

In more populated areas, the local government may enforce codes, though requirements
can vary between commercially built and owner-built homes, the latter being relatively com-
mon in Alaska. The value of building code implementation as earthquake protection was
apparent in the 2018 Anchorage earthquake, which occurred after Alaska adopted the 2012
International Building Code. Within the Anchorage municipality, 40 buildings suffered signif-
icant structural damage. Of these, 38 were located in an area without code enforcement, sug-
gesting that full code implementation can reduce property damage [72].

Practical challenges to building code enforcement in Alaska include difficulties of enforce-
ment over large, sparsely populated areas, expensive and time-consuming transportation sys-
tems, and inclement weather. Furthermore, an interviewed geologist noted,

People don’t want to be told how to build their building. And people [in Alaska] still have
that cowboy mindset of “I just want to build this how I want, and I don’t want the govern-
ment to come in and tell me how it should be built.” But then they get in trouble when an
earthquake happens and then they try to sell those houses to people that don’t realize that
they’re not constructed to code and that’s dangerous. . .

In regions where less expensive housing exposes low-income communities to increased
seismic hazards, the project participants proposed steps for building code implementation
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improvement including: (1) extending the code requirements to Anchorage surrounds; (2)
requiring limited adoption of the residential building code for structures located in high-seis-
mic zones elsewhere; and (3) requiring residential building inspectors be hired by the property
owner and not the constructor/builder, to improve transparency and reduce conflicts of
interest.

Other project participants raised related countervailing points, suggesting a cascade of
questions and tradeoffs meriting further research exploration from a coupled human-environ-
ment systems perspective on adaptive capacity as a longer-term endeavor. Most regulatory
change involves a reallocation of cost and benefits between public and private interests. These
changes often result in differential impacts among heterogeneous social groups and entities.
Significantly, social science and practitioner analyses of seismic and other environmental haz-
ards find that reliance on centralized government and prevailing command-and-control mod-
els of resource mobilization can correlate negatively with resilience and that less tangible,
social factors and capacity building can be significant [73-75]. One workshop speaker and
advocate for Native communities urged consideration of alternative construction methods,
avoiding technologies that are standard outside Alaska but may fail and cannot be easily
repaired by local people with readily available materials. She pointed to reliance on bathroom
plumbing as particularly problematic, whereas composting toilets or outhouses can be more
reliable in remote, seismically active areas.

Social science studies of housing, construction, and regulatory oversight note that these
activities are longitudinal processes that take place in complex and heterogeneous social con-
texts [73, 74, 76, 77]. In other words, they involve a wide array of social groups with diverse
interests and knowledge bases, interacting in ways that vary over time and space. For example,
building codes are often influenced by private sector interest groups with sufficient lobbying
resources, are implemented per variable priorities of enforcement officers, and mainly affect
new construction and renovations rather than existing construction [78]. In some housing
markets, building codes can lower housing costs and associated transaction costs and/or raise
property values through standardization and safety protections [79, 80]. In other markets,
stringent or aspirational codes can shift the low-income housing market toward publicly-pro-
vided rental housing built for economies of scale, and away from local tradespeople who might
build wealth in their neighborhoods through incremental, small-scale development, which
tends to be more adaptive to social-environmental change [75, 79, 80]. Research supports the
feelings of many independent builders and owner-builders that codes often advantage larger
businesses with weaker social ties to tenants and business models focused on short-term profits
rather than longer-term neighborhood development and quality of life [80].

Building code enforcement has differential effects on owner-occupied and rental properties
and may reduce the availability of low-income housing in some markets [80, 81]. Codes can
discourage the repurposing of older buildings and recycling of materials, stifle competition,
and slow or speed certain kinds of innovation [79]. Some note that mandatory codes encour-
age building to the minimum standard, whereas training in best practices and voluntary or
incentivized codes (such as streamlined permitting and inspections) can help establish self-
replicating ethical norms while allowing for innovation [79]. Like any regulatory process,
building codes can become mechanisms for discrimination or corruption [81]. Alaska is not
immune from these phenomena as a resource-extractive frontier with relatively attenuated
social networks, cultural tensions between Indigenous and settler populations, and limited
news media coverage. Additionally, many communities are staunchly opposed to any increase
in government regulatory oversight.

Helpfully, process models for the development of resilient housing and building codes that
increase local capacity and are appropriate to local social and material contexts can be found
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in community and international development cases elsewhere [73, 77, 82]. Different construc-
tion approaches can have significant impacts on longer-term adaptive capacity, including local
livelihoods, skill development, ecological knowledge, land tenure, cultural identity, and sense of
place; norms of reciprocity, cooperation, and social aid; and sustainability of local resource use
[73, 77, 83]. Community-based research methods could help articulate community values, iden-
tify resilience priorities, establish participatory and community-collaborative research methods,
and identify and pursue shared goals [82, 84-86]. Indigenous and vernacular architectures and
settlement patterns are often adapted to local environmental hazards and can sometimes be
integrated with contemporary building techniques [73, 87, 88]. Related factors such as neigh-
borhood density, architectural and landscape design, mixed-use development, and pedestrian
and transit infrastructure also have powerful impacts on community resilience, such as by
improving informal communications, mutual aid, upward economic mobility, and broad civic
engagement [75]. Such decisions also have major climate change mitigation potential, without
which public budgets will be depleted by escalating costs of environmental disaster.

Conclusions

In this exploratory research, interviews and workshop contributors emphasized challenges
posed by earthquake hazards and climate change for Alaska’s built environment, both from an
engineering perspective and a coupled human-environment perspective. The array of con-
cerns includes cumulative impacts of cascading seismic and climate events, such as destabiliza-
tion of soils, sparse and diverse settlements spread across large distances, limited lifeline
infrastructure and social networks, and variation in resource access and norms of decision
making. Participants provided a clear and supported argument for the importance of consider-
ing permafrost thaw in seismic performance. Some proposed engineering solutions and miti-
gation strategies to address these risks and emphasized the potential role of building codes for
public safety in relation to permafrost thaw and seismic performance. Others noted that build-
ing practices take place in complex human-environment decision contexts, which vary sub-
stantially over space and time, therefore meriting community-based approaches to identify
policy gaps, opportunities, and limitations. This suggests that economic and social benefits can
result from the consideration of permafrost thaw by engineers in relation to seismic perfor-
mance of built infrastructure, including attention to building foundations and development of
locally-appropriate building practices. Such actions are more likely to be effective and publicly
supported if undertaken using methods that engage fully with a broad diversity of interests
and knowledge bases, both in the framing of problems and their potential solutions.
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