


Capturing these sophisticated characteristics of heteroge-
neous features, missing values, and irregular measures poses
challenges to deep learning models. Besides the challenge
in representation learning of these characteristics, another
challenge lies in crafting synthetic EHR data that retains
these characteristics. Most of the existing works focused on
isolated aspects of these characteristics, resulting in synthe-
sized EHR data that cannot fulfill the downstream require-
ments. For instance, some works (Neil, Pfeiffer, and Liu
2016) only concentrated on the representation learning of
irregular measures while disregarding the impact of miss-
ing values, which can lead to completely opposite diagnosis.
The detailed related works about EHR representation learn-
ing and synthesizing are discussed in Section 2.

Privacy leakage is another major challenge for models
built on sensitive data like EHR. Synthetic data is typically
generated by a deep generative model trained on real data,
therefore when the model and synthetic data are published,
the original data can be still inferred and incurs privacy leak-
age (Rahman et al. 2018). To prevent this issue, differen-
tial privacy (DP), a formal mathematical privacy-preserving
framework, is widely applied in the model training stage
(Beaulieu-Jones et al. 2019; Lee et al. 2020). One limitation
of the state-of-the-art DP techniques, like gradient perturba-
tion (Abadi et al. 2016), is that they can undermine the utility
of the model because of the randomization introduced in the
model. Therefore, how to mitigate utility degradation and
balance the trade-off between utility and privacy is a major
challenge. Existing works on EHR data synthesization can
neither maintain all the special characteristics nor provide
a formal privacy guarantee to the training data (Choi et al.
2017; Beaulieu-Jones et al. 2019; Lee et al. 2020; Baowaly
et al. 2019; Chin-Cheong, Sutter, and Vogt 2020; ?).

Contributions. In this work, we propose the Imita-
tive Generative Adversarial Mixed-embedding Transformer
(IGAMT) to generate differentially private EHR with so-
phisticated characteristics. As shown in Figure 3a, the ar-
chitecture of IGAMT contains three generative adversarial
networks (GANs) (Goodfellow et al. 2014) and an autoen-
coder (Hinton and Salakhutdinov 2006). IGAMT leverages
transformer (Vaswani et al. 2017) to capture both tempo-
ral and non-temporal features. In addition, we utilize masks
and time embedding to capture missing values and irregular
measures and combine sequence-to-sequence autoencoder
with transformer and GAN to better maintain the sophisti-
cated characteristics. We further adopt a new structure, Imi-
tator, to reduce the randomization required by the DP tech-
nique while keeping the complex architecture for enhanced
privacy and utility trade-off.

IGAMT is the first framework to generate differentially
private EHR data of high quality with heterogeneous fea-
tures, missing values, and irregular measures. Our key con-
tributions are listed as follows:

1. We propose an EHR data generative model that not only
maintains the specific characteristics of EHR but also
provides a differential privacy (DP) guarantee.

2. We leverage sequence-to-sequence transformer with
missing value masks, time embedding, and non-temporal

embedding in our generative model to learn the sophisti-
cated characteristics of EHR and generate synthetic data.

3. We incorporate a novel Imitator in our architecture to
imitate the behaviors of the decoder. Applying gradient
perturbation to the Imitator rather than the decoder itself
improves the model utility (quality of the synthetic EHR)
while preserving the same level of DP.

4. Extensive experiments on real-world EHR data demon-
strate that IGAMT significantly outperforms baseline and
state-of-the-art models in terms of resemblance of the
synthetic data to real data and performance of down-
stream applications and achieves enhanced privacy utility
trade-off.

2 Related Work

In this section, we briefly introduce the existing work on
EHR data representation learning and synthesization, and
the differential privacy techniques, especially the applica-
tions in generative models.

EHR representation learning. Several works focused on
representation learning of EHR data by building specific
neural networks to capture these characteristics. Neil, Pfeif-
fer, and Liu (2016) proposed a novel recurrent network,
Phased-LSTM, to capture irregular measures of temporal
data, and Bang, Wang, and Yang (2020) further improved
Phased-LSTM to fit missing values and irregular measures.

EHR data synthesization. For EHR synthesization, Choi
et al. (2017) proposed medGAN to generate multi-label dis-
crete records. However, medGAN only works on discrete
features and does not address the potential privacy leakage.
Hyland, Esteban, and RÈatsch (2018) proposed recurrent con-
ditional GAN (RCGAN), which can generate temporal med-
ical features. However, RCGAN does not take non-temporal
features, missing values and privacy protection into consid-
eration. Xu et al. (2019) built CTGAN for tabular medical
data, but cannot be directly applied to EHR data. Baowaly
et al. (2019) introduced medWGAN and medBGAN on top
of medGAN by replacing GAN with more powerful variants,
WGAN (Arjovsky, Chintala, and Bottou 2017; Gulrajani
et al. 2017) and boundary-seeking GAN (BGAN) (Hjelm
et al. 2017). However, they did not take temporal features
and privacy preservation into consideration.

Differential privacy. Differential Privacy (DP) (Dwork
2011; Dwork et al. 2006; Dwork, Roth et al. 2014) is a
theoretical privacy framework for aggregate data analysis,
which ensures the output of a randomized algorithm is in-
distinguishable between two neighboring datasets that differ
in one record (or bounded by a distance metric) with a cer-
tain probability. Gradient perturbation is a common practice
to achieve DP for deep learning models by injecting pertur-
bation into the gradient of each parameter (Song, Chaud-
huri, and Sarwate 2013; Bassily, Smith, and Thakurta 2014;
Abadi et al. 2016; Wang, Ye, and Xu 2017; Lee and Kifer
2018; Yu et al. 2019; Wang et al. 2021).

Privacy-preserving generative model for EHR. To ob-
tain a privacy-preserving generative model for EHR data,
Beaulieu (Beaulieu-Jones et al. 2019) applied DP into the







Algorithm 1: IGAMT algorithm

Input: preprocessed training EHRs x and masks m, total
training epoch T , gradient perturbation scale σ,
learning rate η, batch size B, discriminators update
frequency base fb and frequency hit fh, gradient
clipping norm C

1 t = 0;
2 initialize parameters of IGAMT;
3 while t < T do
4 get mini-batch EHRs x(t) and masks m(t);
5 z(t) = Enc(x(t),m(t));
6 x̂(t), m̂(t) = Dec(x(t),m(t), z(t));
7 z̃(t) = G(B) (generate synthetic hidden states);
8 sample start features sf and craft start masks sm;
9 x̃(t), m̃(t) = Dec(sf , sm, z̃(t));

10 x̄(t), m̄(t) = Deci(sf , sm, z̃(t));
11 if t%fb < fh then

// Update Dx with DP perturbation

12 LDx
= dDx

(x, x̂) + dDx
(x, x̃) + dDx

(x, x̄);

13 gradDx

(t) = 1
B
∇

θ
Dx

(t)
LDx

;

14 gradDx

(t) = gradDx

(t) /max(1, ∥gradDx

(t) ∥/C);

15 θDx

(t+1) = θDx

(t) − η (gradDx

(t) +N (0, σ2)) ;

// Update Dz with DP perturbation

16 LDz
= dDz

(z̃, z);

17 gradDz

(t) = 1
B
∇

θ
Dz

(t)
LDz

;

18 gradDz

(t) = gradDz

(t) /max(1, ∥gradDz

(t) ∥/C) ;

19 θDz

(t+1) = θDz

(t) − η (gradDz

(t) +N (0, σ2)) ;

20 end

21 θlast: parameters of the shared last layer between Dec
and Deci;
// Update Enc

22 LEnc = Dz(z) + Lrec;

23 θEnc
(t+1) = θEnc

(t) − η 1
B
∇θEnc

(t)
LEnc;

// Update Dec excluding the last

layer

24 LDec = −Dx(x̂)−Dx(x̃) + Lrec;

25 θDec
(t+1) = θDec

(t) − η 1
B
∇θDec

(t)
LDec;

// Update Deci’s last layer with

gradient perturbation

26 Lim = MSE(x̂, x̄) + MSE(x̃, x̄) + MSE(x, x̄);
27 LDeci = −Dx(x̄) + Lim;

28 gradlast(t) = 1
B
∇θlast

(t)
LDeci ;

29 ĝrad
last

(t) =

gradlast(t) /max(1, ∥gradlast(t) ∥/C) +N (0, σ2);

30 θlast(t) = θlast(t) − η (ĝrad
last

(t) );

// Update Deci excluding the last

layer with chain rule

31 gradDeci
(t) = ĝrad

last

(t) ∗ ∇
Output(θ

Deci

(t)
)

θ
Deci

(t)

;

32 θDeci
(t+1) = θDeci

(t) − η 1
B
gradDeci

(t) ;

// Update G
33 LG = −Dz(z̃);

34 θG(t+1) = θG(t) − η 1
B
∇

θG
(t)

LG ;

35 end
Output: Deci and G

guide the Imitator to mimic Dec, we let these two structures
share the same last layer during training (Dec and Deci have
the same architecture) and also utilize an imitation loss for
the imitator. We will analyze the DP in detail in the follow-
ing sections.

Synthesization framework. We explained the training ar-
chitecture of the IGAMT in the above section. After training,
we use the DP components of IGAMT to generate synthetic
EHR, as shown in Figure 3b, which contains G and Deci
including the shared last layer of Dec and Deci. The syn-
thesization process can be divided into the following steps:
1) sampling random states from a Gaussian distribution, 2)
G takes random states as the input and generates central hid-
den states z̃, 3) the Imitator Deci takes z̃ as input and gener-
ates data and masks, and 4) assemble the generated data and
masks to form the synthetic EHR.

The synthetic EHRs generated from IGAMT retain the
heterogeneous features, missing values, and irregular mea-
sures. Moreover, because the generative model is differ-
entially private, these synthetic EHRs are correspondingly
privacy-preserved.

Loss Functions and Optimization

In this section, we will first elaborate on each loss function
designed to solve each challenge. Then we will present our
optimization process and training algorithm (Algorithm 1).

Discriminator Dx. Dec and Deci are generators in two
GANs respectively, sharing the same discriminator Dx. The
loss for Dx consists of the discrimination loss between each
synthetic data generated from Dec and Deci and the real
data, which can be stated as:

LDx
= dDx

(x, x̂) + dDx
(x, x̃) + dDx

(x, x̄) (2)

where x denotes element-wise multiplication of x and m, x̂,
x̃ and x̄ denotes the generator outputs of the three GANs
respectively (illustrated in Figure 3a), and dDx

(u, v) =
Dx(v) − Dx(u). The updates of Dx are using gradient per-
turbation (Algorithm 1 lines 12-15) to ensure Dx is DP.

Generator Dec and Imitator Deci. The Imitator Deci and
Dec share the same last layer during training. Dec excluding
the last layer is optimized through the back-propagation of
associated discrimination loss and the reconstruction loss.
The discriminator tries to minimize the discrimination loss
while the generator tries to maximize it:

LDec = −Dx(x̂)−Dx(x̃) + Lrec (3)

where Lrec refers to Equation1. Dec excluding the last layer
is updated without gradient perturbation (line 24-25). We
note that Dec except the shared last layer is not DP since
the back propagation uses the real data to compute the gra-
dient for updating those layers.

The loss for Deci consists of two parts, the imitation loss
and the associated discrimination loss. The goal is to gen-
erate x̄ and m̄ that is close to both real data and the other
two sources of synthetic data generated by Dec. The loss in
optimizing Deci can be stated as:





using the same dataset, the overall privacy can be analyzed
under simple composition, and DP guarantee for each part
is analyzed under moment accountant (Algorithm 1). There-
fore, the total privacy of the final generative model (G and
Deci) is (ϵ1+ϵ2+ϵ3, δ1+δ2+δ3)-DP if Dx, Dz and Declast

are (ϵ1, δ1)-DP, (ϵ2, δ2)-DP and (ϵ3, δ3)-DP respectively.

5 Experiments

In this section, we demonstrate the effectiveness of IGAMT*

using synthetic EHRs from two aspects: visual similarity to
real data and downstream applications with comparable per-
formance to real data.

Experimental Setup

Baselines. We compare IGAMT with DAAE, the exist-
ing state-of-the-art generative model for EHR data with
DP. Since it is incapable of capturing non-temporal fea-
tures, missing values, and irregular measures, we slightly
adapt the it to conduct a fair comparison. We also build
four more baselines: VAE (Variational Autoencoder), GAN,
VAE-GAN (Larsen et al. 2016), and AAE (Makhzani et al.
2015) to have a more comprehensive comparison.

EHRs and data preprocessing. We use two EHR datasets
in this work. One is Physionet MIMIC-IV-ED (Goldberger
et al. 2000), which is an open-sourced EHR dataset that en-
compasses over 425,000 ED stays collected from emergency
department (ED) admissions from 2011 to 2019. In the pa-
per, we utilize a subset that covers all vital sign data, which
comprises 14,024 training, 1,753 validation, and 1,754 test-
ing records. The other one is from the Emory Synergy
project, which contains 5,747 training, 718 validation, and
719 testing records.

EHR data is preprocessed before feeding into the model.
For temporal feature preprocessing, we first normalize them
to the range of [0, 1]. Then for the irregular measures in the
time-space (Section 4), we extract the time features and fol-
low a similar process to scale them to [0, 1]. We also pad the
time feature of all the examples to 50. For non-temporal fea-
ture preprocessing (Section 4), we similarly normalize them
to [0, 1]. Then, we transform the discrete features into one-
hot vectors to form the start features, which have the same
size as the temporal features of each timestep.

The preprocessing of missing values (Section 4) is to
generate a mask consisting of 1 and 0s where 0 represents
the missing values. After preprocessing, each record has 50
time steps with each timestep having 10 and 9 features for
MIMIC-IV-ED and Emory Synergy respectively.

Privacy budget. The privacy budgets used in the experi-
ments are (ϵ, δ) = (1.5, 1e − 5). Our experiments currently
use equal budget allocation among the three components.

Experimental Results

Evaluation 1. PCA visulization. We use PCA to reduce the
real and synthetic data to two-dimensional space and visu-
ally show the difference between real and synthetic EHR.
PCA results aim to validate IGAMT’s ability to capture the

*https://github.com/Emory-AIMS/IGAMT

feature distributions of real EHR by measuring subspace
similarity. It reflects whether synthetic data maintains the
underlying structure and correlations present in the real data.
Figure 4 and Figure 5 demonstrate the results on MIMIC-
IV-ED and Emory Synergy datasets. In both figures, the blue
dots represent the real EHR, and the green dots represent the
synthetic EHR from different models. The first row shows
the non-DP results of the baseline model and IGAMT and
the second row shows the results from the DP version of
models corresponding to the first row. From the result, we
can note that after dimension reduction, the synthetic data
generated by IGAMT can fit the real data the best. The simi-
larity in the principal components suggests that the subspace
of the synthetic data closely aligns with that of the real data
in terms of the inherent similarity and underlying structure,
which indicates that IGAMT is well-designed for the synthe-
sization of temporal EHR compared with the baseline archi-
tectures.

In addition, the DP technique applied during training can
degrade the performance of baseline models. This trend is
more notable when the architecture is more complex. How-
ever, for IGAMT, incorporating gradient perturbation does
not compromise the model utility which verifies the effec-
tiveness of the Imitator module. It overcomes the large ran-
domization typically required for the generator and signifi-
cantly enhances privacy utility trade-off.

Evaluation 2. Closer look at the feature similarity. To pro-
vide a more detailed comparison of temporal features be-
tween real and synthetic EHRs, we pick three vital temporal
features (ªtime in yearº, ªheart rateº, ªSBPº), and randomly
sample 100 EHRs from real test data and synthetic data, and
plot the average value of the three selected features over 50
time steps. As shown in Figure 8, the blue curve represents
the real EHRs, and black represents EHRs from IGAMT. For
all three feature plots, black curves partially match the pat-
terns of real features and outperform DAAE, which indicates
that the synthetic temporal features generated from IGAMT
better maintain the characteristics of real temporal features.

We also compare the KL divergence of feature distribu-
tions between real and synthetic data generated by IGAMT
and DAAE. As shown in Table 1, IGAMT dominates on al-
most all features, especially on features #2, #3, #5 #6, #8.

To illustrate the statistics of missing values and irregular
measures in EHRs, we count the mark-off positions per fea-
ture in masks and plot the histogram of counts averaged over
features among 1000 samples, and calculate the elapsed time
between two neighboring time steps and plot the histogram
of the elapsed time averaged over time steps among 1000
samples. The results are shown in Figure 6 and Figure 7 re-
spectively. As can be seen, while all baseline models fail,
IGAMT is able to capture the distributions of missing values
and elapsed time between visits that resemble the real data,
thanks to its time embedding and the missing values masks.

Evaluation 3. Unsupervised downstream application:
clustering. To demonstrate that synthetic data generated
by IGAMT are not only visually similar to the real data
but also maintain the same characteristics of the real data
for downstream tasks, we conduct unsupervised and super-
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