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metagenomics of river
compartments reveals viral
community dynamics in an
urban impacted stream
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Although river ecosystems constitute a small fraction of Earth's total area, they are
critical modulators of microbially and virally orchestrated global biogeochemical
cycles. However, most studies either use data that is not spatially resolved or is
collected at timepoints that do not reflect the short life cycles of microorganisms.
To address this gap, we assessed how viral and microbial communities change
over a 48-hour period by sampling surface water and pore water compartments of
the wastewater-impacted River Erpe in Germany. We sampled every 3 hours
resulting in 32 samples for which we obtained metagenomes along with
geochemical and metabolite measurements. From our metagenomes, we
identified 6,500 viral and 1,033 microbial metagenome assembled genomes
(MAGs) and found distinct community membership and abundance associated
with each river compartment (e.g.,, Competibacteraceae in surfacewater and
Sulfurimonadaceae in pore water). We show that 17% of our viral MAGs
clustered to viruses from other ecosystems like wastewater treatment plants and
rivers. Our results also indicated that 70% of the viral community was persistent in
surface waters, whereas only 13% were persistent in the pore waters taken from
the hyporheic zone. Finally, we predicted linkages between 73 viral genomes and
38 microbial genomes. These putatively linked hosts included members of the
Competibacteraceae, which we suggest are potential contributors to river carbon
and nitrogen cycling via denitrification and nitrogen fixation. Together, these
findings demonstrate that members of the surface water microbiome from this
urban river are stable over multiple diurnal cycles. These temporal insights raise
important considerations for ecosystem models attempting to constrain dynamics
of river biogeochemical cycles.
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Introduction

Rivers are key modulators of global biogeochemical cycles and
provide a dynamic, moving passageway between terrestrial and
aquatic ecosystems (Allen and Pavelsky, 2018). Corresponding
to ~7% of global CO, and ~5% of global CH,4 emissions per year,
rivers contribute up to 2,508 Tg yr™'of carbon dioxide (CO,), and
~30.5Tg yr’1 of methane (CH,) (Villa et al., 2020; Rosentreter et al.,
2021; Friedlingstein et al., 2022; Liu et al., 2022). Microbial
communities are key orchestrators of carbon and nitrogen
transformations in rivers, where they contribute between 40-90%
of hyporheic zone respiration (Pusch and Schwoerbel, 1994; Naegeli
and Uehlinger, 1997; Rodriguez-Ramos et al., 2022). Despite a
general understanding of the importance of microbial
metabolism, river viral communities and their impacts on
microbial communities remain poorly described.

Viruses are the most abundant organism on the planet, with
estimates of up to 10°" viral particles worldwide (Hendrix et al.,
1999; Munn, 2006; Bar-On et al., 2018; Mushegian, 2020). These
viral predators are mostly studied in marine ecosystems, where
viruses can lyse 20-40% of bacteria daily (Weinbauer, 2004;
Weinbauer and Rassoulzadegan, 2004; Suttle, 2007; Chow and
Suttle, 2015; Guidi et al., 2016) and play key roles reprogramming
their bacterial hosts with ecosystem-wide consequences (Sullivan
et al., 2006; Anantharaman et al., 2014; Hurwitz and U’Ren, 2016).
Although research has mostly focused on marine ecosystems, recent
efforts have been made to expand our knowledge of natural viral
communities in freshwater aquatic environments like lakes (Roux
et al,, 2017; Berg et al,, 2021) and estuaries (Hewson et al., 2001;
Cissoko et al., 2008). Early studies in these systems have shown viral
like particle (VLP) abundances and viral productivity (i.e., the
number of viruses produced per hour) in rivers can be equivalent,
or higher, than those in marine systems (Peduzzi and Luef, 2008;
Corinaldesi et al.,, 2010; Rowe et al., 2012; Peduzzi, 2016).
Additionally, early river studies found that up to 80% of bacterial
isolate strains from sediments had virulent phage that could be
isolated (Lammers, 1992). Together, these foundational works
highlight the importance of viral predation in regulating
microbial dynamics in river ecosystems.

There are two key reasons why it remains difficult to link viral
communities to river ecosystem function. First, river microbiome
studies are rarely genome-resolved, both from a bacterial and viral
perspective. While there is still much to explore, most information
on aquatic virus dynamics pertains to oceanic studies (Vincent and
Vardi, 2023), and rivers are described as one of the most
underexplored aquatic ecosystem with metagenomics, second
only to glacier microbiomes (Chu et al, 2020). Although the
taxonomic composition of microbial communities in rivers has
been well-described by 16S rRNA gene amplicon surveys (Hou
et al., 2017; Nelson et al., 2019), it remains unclear how microbial
membership relates to relevant ecosystem processes. Likewise, our
ability to link the viral community to their respective microbial
hosts, and subsequently to ecosystem biogeochemistry, remains
hindered by a lack of genome-resolved studies. Second, river
studies are often not temporally constrained. Although significant
changes in river chemistry and hydrology are observed at seasonal
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periods (Tomalski et al., 2021), they are also known to change at
sub-daily scales (Lundquist and Cayan, 2002; Alonso et al., 2017),
particularly in human-impacted rivers affected by wastewater
treatment plant effluent and reservoirs (Luo et al., 2020; Wang
et al,, 2021; Lu et al, 2022). This is particularly important when
considering the microbial component of river systems, as microbial
generations are on the scale of minutes to hours, and microbiomes
can shift metabolically in hours (Wang et al., 2015; Erbilgin et al,
2017; Gibson et al., 2018). Nonetheless, river microbiome time-
series are often resolved at seasonal scales (Kaevska et al., 2016;
Malki et al., 2021), meaning our understanding of viral
and microbial community dynamics across relevant temporal
gradients (i.e. hours) remains poorly understood.

To address these knowledge gaps, we collected a finely resolved
metagenomic time-series at the River Erpe near Berlin, Germany, a
lowland river receiving treated wastewater. Our sampling campaign
included biogeochemical measurements every 3 hours for 48 hours
across both surface water (SW) and pore water (PW) compartments
that were paired to metagenomics and metabolomics (Figures 1A-
D). This study design provided a metagenomically resolved dataset
which enabled us to interrogate how viral and microbial
communities are structured across river compartments, and how
this metabolic potential could modulate biogeochemical processes.
Additionally, the temporal resolution of our dataset allowed us to
analyze both the persistence of viral and microbial communities
across compartments, as well as the individual genome stability
throughout the 48 hours of sampling. Finally, by using genome-
resolved metagenomics, we show that viruses can be linked to hosts
in river ecosystems, and that these linkages can reveal putative
interactions that may be relevant to understanding the temporal
dynamics of ecosystem biogeochemistry.

Methods

Sample collection, DNA isolation, and
chemical characterization

The River Erpe is highly influenced by diurnally fluctuating
effluent volumes of the Miinchehofe wastewater treatment plant
and consists of up to 80% treated wastewater (Mueller et al., 2021).
Our sampling site is in a side channel with a mean discharge of 251/
s (Lewandowski et al., 2011; Mueller et al., 2021) (Figure 1A). For
sample collection, a sampling station was set up ~1m from the
shoreline of the River Erpe side channel “Rechter Randgraben”
(52.476416, 13.625710), 1.6km from the wastewater treatment plant
outlet leading the same water as in the main channel as previously
described (Mueller et al., 2021), and in accordance to the
Worldwide Hydrobiogeochemistry Observation Network for
Dynamic River Systems (WHONDRS) protocol (Stegen and
Goldman, 2018). Samples were collected on September 25, 2018.
More information on the River Erpe sampling methods can be
found in another publication from our team, as well as the original
public data repository (Wells et al, 2019; Mueller et al., 2021).
Briefly, for surface water (SW), 60ml at a time of SW were collected
manually with a syringe and tubing fixed in the water column and
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FIGURE 1
Experimental design enables a genome- and time-resolved view of microbial communities at a finely scaled resolution. (A) River Erpe sampling site that
is located near Berlin, Germany. (B) Conceptual schematic of the surface and pore water compartments that were sampled as part of this research. (C)
Table of data types that were collected as part of this sampling effort. (D) Sampling schematic over 48-hour period with two ecological variables (water
stage, and temperature) shown across the timepoints collected. The colors and icons highlight the hour of the day when samples were collected.
Asterisks (*) denote samples where only pore water metagenomes were collected

then passed through a 0.20um filter until clogged. A cap was then
put on the filter, filled with 3ml RNAlater, and refrigerated until
extraction. For pore water (PW), 60ml of PW from 25cm sediment
depth were collected with a stainless-steel rod in the middle of the
channel. The rods were covered with a filter mesh sock over the
screened area at the tip, pushed into the sediment, and equipped
with a Teflon suction line. Samples were then taken by manually
pulling 60ml of PW with syringes attached to the suction line and
filtering them through a 0.20um filter until clogged. The filter was
then capped, filled with 3ml RNAlater, and refrigerated until
extraction. Each of these processes were repeated every 3 hours
over a period of 48hrs in September of 2018, resulting in 15 SW and
17 PW metagenomes. 2 SW samples failed due to lack of biomass.
For DNA isolation, filters were cut into ~5mm? pieces and added to
the bead bashing tubes of Quick-DNA Soil Microbe Microprep Kit
(Zymo). The nucleic acids were then extracted according to the
manufacturer protocol and sequenced at the Genomics Shared
Resource Anschutz Medical Campus, Colorado. Accession
numbers, total metagenomic reads, and sample sizes can be found
on Supplemental Table 1 and the original data repository (Wells
et al.,, 2019).

Chemical characterization was performed as previously described
(Mueller et al., 2021). Water samples were filtered with 0.2um
polyethersulfone Sterivex for Fourier transform ion cyclotron
resonance mass spectrometer (FTICR-MS) analysis or regenerated
cellulose for all other analytes, then acidified to a pH of 2 with 2M
HCI and stored at -18°C until analysis. Samples were analyzed at the
Leibniz Institute of Freshwater Ecology and Inland Fisheries for nitrate
and sulfate (ion chromatography, Metrohm 930 Compact IC Flex),
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ammonium and soluble reactive phosphorous (SRP) (segmented flow
analyzer Skalar SAN, Skalar Analytical B.V., Netherlands), and
manganese and iron (inductively coupled plasma optical emission
spectrometry (ICP-OES), (ICP iCAP 6000 series, Thermo Fisher
Scientific Inc.). Dissolved organic carbon (DOC) concentrations were
analyzed via infrared gas analyzer (NDIR) after combustion (TOC/TN
Analyzer, Shimadzu). Dissolved organic matter (DOM) data is part of
the WHONDRS dataset (Wells et al., 2019) and was analyzed using a
12T Bruker SolariX FTICR-MS (Bruker, SolariX, Billerica, MA, USA)
at the Environmental Molecular Sciences Laboratory in Richland, WA.
Once peaks were picked using the Bruker data analysis software and
formulas were assigned using Formularity (Tolic et al, 2017), DOM
was classified into seven compound classes based upon hydrogen to
carbon ratio (H:C), and oxygen to carbon (O:C) ratios (Kim et al,
2003). FTICR-MS analysis does not allow for a quantitative approach,
therefore compound class data was analyzed qualitatively, and DOM
composition was evaluated using the number of molecular formulas in
every compound class as described in the original publication (Mueller
etal., 2021). The biogeochemical measurements for this study can all be
found on Supplemental Table 1.

Metagenome data processing
and assembly

Each set of metagenomic reads were trimmed using Sickle v1.33
with default settings (Joshi NA, 2011), and assessed using FastQC
(v0.11.2) (Andrews, n.d.). Trimmed reads were then assembled with
either 1) metaSPAdes BBCMS pipeline (v3.13.0) (Metagenome
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Assembly Workflow (v1.0.1) — NMDC Workflows 0.2a
documentation, n.d.), 2) Megahit (v1.2.9) (Li et al, 2015), or 3)
IDBA UD (v.1.1.0) (Peng et al., 2012). For metaSPAdes pipeline,
reads were merged into a single.fa file using fq2fa (Shen et al., 2016).

»

Then, bbcms was run with flags “mincount = 27, and
“highcountfraction = 0.67, followed by metaSPAdes using kmers
33, 55, 77, 99, 127, and flag “~meta”. For Megahit, reads were
assembled with flags “k-min = 317, “k-max = 1217, “k-step = 107,
and “m = 0.4”. For IDBA_UD, samples were rarefied to 25% of
reads using BBMAP’s reformat.sh (Bushnell, 2014) with flags
“samplerate = 0.25” and “sampleseed = 1234”. These 25% of
subset reads were then merged into a single.fa file using
fq2fa (Shen et al., 2016) and then assembled with default
parameters. Assembly statistics for each sample can be found in
Supplemental Table 1.

Viral identification, taxonomy,
and annotations

Viral metagenome assembled genomes (VMAGs) were
identified from each set of assemblies using Virsorter2 and
CheckV using the established protocols.io methods (Guo et al,
2021a; Guo et al, 2021b). Resulting genomes were then screened
based on VirSorter2 and checkV output for viral and host gene
counts, VirSorter2 viral scores, and hallmark gene counts (Guo
etal, 2021b). Viruses were then annotated with DRAM-v using the
“—use_uniref” flag, and further manually curated according to
the established protocol (Shaffer et al., 2020; Guo et al., 2021b).
The resulting subset of 6,500 viral genomes were clustered at 95%
ANT across 85% of shortest contig per MIUVIG standards (Roux
et al., 2018) resulting in 1,230 viral populations.

Viral taxonomic identification of viral populations was
performed using protein clustering methods with vContact2 using
default methods (Bin Jang et al, 2019). We supplemented the
standard RefSeq v211 database containing 4,533 vMAGs with viral
genomes from an additional 303 river and wastewater treatment
plant metagenomes that were publicly available from 1) JGI IMG/VR
(6,254 vYMAGs 210kb), 2) two previously unpublished anaerobic
digestor metagenomic datasets that were mined in-house (14,436
VMAGs 210kb) (https://doi.org/10.5281/zenodo.7709817), 3) a
previously published wastewater treatment plant sludge database
(7,443 vMAGs 210kb) (Shi et al, 2022), 4) a previously available
reference database that included freshwater ecosystem viruses (2,032
VMAGs 210kb) (Rodriguez-Ramos et al., 2022), and 5) the 43 TARA
Oceans Virome datasets (5,476 vMAGs >10kb) (Brum et al., 2015).
This resulted in an additional 35,641 reference vVMAGs in our
network. Proteins file for all YMAGs used in the network as well as
accession numbers are available on Zenodo (https://doi.org/10.5281/
zen0do.7709817). Results from vContact2 can be found in
Supplemental Table 2.

Viral population genome representatives were annotated using
DRAM-v (Shaffer et al., 2020). To identify putative auxiliary
metabolic genes (AMGs), auxiliary scores were assigned by
DRAM-v to each annotated gene based on the following
previously described ranking system: A gene is given an auxiliary
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score of 1 if there is at least one hallmark gene on both the left and
right flanks, indicating the gene is likely viral. An auxiliary score of 2
is assigned when the gene has a viral hallmark gene on one flank
and a viral-like gene on the other flank. An auxiliary score of 3 is
assigned to genes that have a viral-like gene on both flanks (Shaffer
et al, 2020; Rodriguez-Ramos et al, 2022). Genes identified by
DRAM-v as being high-confidence possible AMGs (auxiliary scores
1-3) were subjected to protein modeling using Protein Homology/
AnalogY Recognition Engine (PHYRE2) (Kelley et al.,, 2015), and
manually verified. All files for YMAG quality and annotations can
be found in Supplemental Table 2.

Bacterial and archaeal metagenomic
binning, quality control, annotation,
and taxonomy

Bacterial and archaeal genomes were binned from each set of
assemblies with MetaBAT v2.12.1 (Kang et al., 2019) as previously
described (Rodriguez-Ramos et al., 2022). Briefly, reads were
mapped to each respective assembly to get coverage information
using BBmap (Bushnell, 2014), and then MetaBAT was run
with default settings on each assembly after filtering for
scaffolds >2,500bp. Quality for each MAG was then assessed
using CheckM (v1.1.2) (Parks et al, 2015). To ensure that only
quality MAGs were utilized for analyses, we discarded all MAGs
that were not medium quality (MQ) to high quality (HQ) according
to MIMAG standards (Bowers et al, 2017), resulting in 1,033
MAGs. These MAGs were dereplicated using dRep (Olm et al,
2017) at 95% identity, resulting in 125 MAGs. These 125 MQHQ
MAGs were annotated using the DRAM pipeline (Shaffer et al,
2020) as previously described (Rodriguez-Ramos et al., 2022). For
taxonomic analyses, MAGs were classified using the Genome
Taxonomy Database (GTDB) Toolkit v1.5.0 on November 2021
using the r202 database (Chaumeil et al., 2019). Genome quality,
annotations, and taxonomy are reported in Supplemental Table 3.

Virus host linkages

To identify virus-host linkages, we used 1) CRASS (Direct
Repeat/Spacer based) v1.0.1 (Skennerton et al., 2013), 2)
VirHostMatcher (alignment-free oligonucleotide frequency based)
v.1.0.0 (Ahlgren et al, 2017), and 3) PHIST (all-versus-all exact
matches based) v.1.0.0 (Zielezinski et al., 2021). CRASS protocol
and scripts used are described in detail on GitHub (see Data
availability). VirHostMatcher was run with default settings, and
the best possible hit for each virus was considered only if it had a
d2* dissimilarity score of < 0.2. PHIST was run with flag “-k = 257,
and a PHIST hit was considered only if it had a significant adjusted
p-value of < 0.05. To be classified as a virus-host linkage, a virus-
host pair had to be predicted by the significant consensus of both
VirHostMatcher and PHIST or a virus-host pair had to have a
CRASS linkage. With this consensus method, CRASS links, which
were always considered good hits, agreed across 60% of predictions
at the Genus level, 80% of predictions at the Order level, and 87% at
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the Class level, suggesting high accuracy of consensus-only, non-
CRASS linked virus-host pairs. All virus-host predictions are in
Supplemental Table 2.

Genome relative abundance
and normalization

To estimate the relative abundance of each vMAG and MAG,
metagenomic reads for each sample were mapped to a database of
VMAGs or MAGs with Bowtie2 (Langmead and Salzberg, 2012) at
an identity of 95%, with minimum contig coverage of 75% and
minimum depth coverage of 3x. To normalize abundances for
known temporal omics data biases (Coenen et al., 2020), we
performed a library size normalization of abundance tables using
TMM (Robinson and Oshlack, 2010). Given that PW and SW
organism abundances were drastically different in magnitude, and
that abundance zeroes across compartments are likely real zeroes,
vMAGs and MAGs were considered to be present if detectable in at
least 10% of samples in either compartment. Organisms detected
in > 10% PW samples were labeled “pore”, organisms detected in >
10% SW samples were labeled “surface”, organisms > 10% PW and
SW samples were labeled “both”, and organisms that were in < 10%
SW and PW samples were removed. Based on these groups, the
TMM abundances file was split into two different files, one for PW
samples (n = 17) including “pore” and “both” organisms, and one
for SW samples (n = 15) including “surface” and “both” organisms.
Abundances for yYMAGs and MAGs can be found in Supplemental
Table 2, 3, and specific commands can be found on GitHub.

Temporal and statistical analyses

Temporal analyses were all performed in R with the TMM
normalized abundances described above. To determine which
environmental parameters were significantly driving differences
across our compartments, we performed multiple regressions
using envfit in the vegan R package (Oksanen et al., 2016) across
multiple types of ordinations. Principal Coordinate Analysis (PCA)
for biogeochemistry were done with vegan in R. Dissimilarities in
community composition were calculated with the Bray-Curtis
metric in vegan (Oksanen et al., 2016) for all YMAGs and MAGs
that were present in >3 samples per each compartment. Nonmetric
multidimensional scaling (NMDS) was then used with k = 2
dimensions for visualization. An analysis of similarity (ANOSIM)
was performed using the base R stats package in order to determine
community similarity between river compartments. PERMANOVA
analyses were done in R using the adonis function from vegan. The
NMDS ordinations of the YMAGs and MAGs were compared using
the PROCRUSTES function in vegan. To visualize the relative
contribution of each biogeochemical variable, we calculated the
envfit vector using function ordiArrowMul and plotted them using
ggplot. Shannon’s H” were done using TMM normalized values with
vegan in R. Species accumulation curves were done using the vegan
function specaccum in R. All R code and files are available
on GitHub.
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To determine the relative stability of surface and pore water
communities, we first calculated the differences in Bray-Curtis
dissimilarity for each sample and its prior timepoint and then ran
an unpaired t test to compare the mean differences across
compartments with the vegan package in R. For assigning the
persistence of the different genomes, we used previously established
metrics to assess persistent (present in > 75% of samples), intermittent
(present > 25% <75% of samples), or ephemeral (present in < 25% of
samples) categories (Chow and Fuhrman, 2012). For establishing the
abundance stability, we assessed the total number of samples in which
each individual persistent genome fluctuated by + 25% of the median
relative abundance value across all samples. Then, using the
established cutoffs by Fuhrman and Chow et al. (Chow and
Fuhrman, 2012)., we categorized our genomes as stable (shifting in
< 25% of samples), intermediately stable (shifting in > 25% < 75% of
samples) and unstable (shifting in > 75% of samples). Fishers exact test
for count data was used for assessing the significance of difference in
stability metrics using fisher.test from R base stats package. The
enrichment analyses for AMGs were performed using a
hypergeometric test between the total AMGs in our dataset and the
individual groups of AMGs present in either compartment. The code
used is available on GitHub. All temporal analyses and results are in
Supplemental Table 4.

To reduce the complexity of our microbial data so we could link
viral and microbial communities more concretely to ecosystem
biogeochemical cycling, we applied a Weighted Gene Correlation
Network Analysis (WGCNA) to identify which groups of organisms
co-occurred using TMM normalized values in R with package
WGCNA (Langfelder and Horvath, 2008; R Core Team, 2018). A
signed hybrid network was performed with a combined dataset of
MAGs and vYMAGs on a per-compartment basis. For SW, we used a
minimum power threshold of 14 and a minimum module size of 20.
For PW, we used a minimum power threshold of 8 with and a
minimum module size of 20. For both networks, a reassign threshold
of 0, and a merge cut height of 0.3 were used.

To link the modules to ecosystem biogeochemistry, we
performed sparse partial least square regressions (sPLS) on the
groups of organisms in each module. sPLS were done using TMM
normalized values of co-occurring communities that resulted from
WGCNA above in R with package PLS (Chung et al, 2012).
Subnetwork membership was related to the overall genome
significance for nitrate as described in the WGCNA tutorials
document (see GitHub code) using R and the WGCNA package
(Langfelder and Horvath, 2008). Full code for WGCNA and SPLS
are available on GitHub along with detailed instructions and input
files. Visualizations for the AMG and WGCNA figures were made
using RawGraphs (Mauri et al.,, 2017).

Results

Metagenomics uncovers viral novelty and
biogeography of River Erpe viruses

We sampled 17 pore water (PW) and 15 surface water (SW)
metagenomes collected over a 48-hour period using a Eulerian
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sampling scheme (i.e., at a fixed location) and collected 565.5Gbp
of paired metagenomic sequencing (10.2-47.9Gbp/sample,
17.7Gbp avg.) (Figure 1 and Supplemental Table 1). Assembly
of these samples revealed 6,861 viral metagenome assembled
genomes (VMAGs), of which 6,500 vMAGs were >10kb in
length and were subsequently clustered into 1,230 species-level
VMAGs (Supplemental Table 2). The average VMAG genome
fragment was 24,164bp (180,216bp max) in the PW, and
19,553bp (153,177bp max) in the SW (Supplemental Table 2).
Viral MAG richness was consistently 8 times higher (p < 0.01) in
the SW (845.0 + 124.4) compared to the PW (108.3 + 49.7) and
likely drove differences (p < 0.01) in Shannon’s diversity (H’)
recorded for the SW (SW = 6.05 + 0.17, PW = 3.67 + 0.49)
(Supplemental Figure 1). In addition to our vMAGs, we identified
1033 metagenome assembled genomes (MAGs) that were
dereplicated at 95% identity into 125 medium and high-quality
genome representatives. Similarly, MAG richness was higher (p <
0.01) in the SW (SW = 62.6 + 7.2, PW = 21.8 + 9.0), and showed
significantly different patterns (p < 0.01) in terms of Shannon’s
(H) (SW =29 £ 0.17, PW = 2.6 £ 0.3) (Supplemental Figure 1).

10.3389/frmbi.2023.1199766

Viruses from freshwater systems are not well sampled in the
databases commonly used for taxonomic assignment in viral studies
(Elbehery and Deng, 2022). To determine the extent of novel viral
diversity recovered, we mined additional set of 21,022 vMAGs from
a variety of freshwater, wastewater, and marine samples and added
this to the original vContact2 database (Supplemental Table 2, see
Materials and Methods). We then performed protein clustering of
our unique 1,230 viruses with this modified aquatic database,
revealing 3,030 viral clusters (VCs). This network was composed
of 19,623 nodes with 679,402 edges, which was simplified to only
show protein clusters that contained at least 1 VMAG from this
study (Figures 2A-C).

Of our 1,230 vVMAGS, 1% clustered to known taxonomic
representatives of the Caudovirales Order (8 Podoviridae, 7
Siphoviridae, 3 Myoviridae). Of the remaining vMAGs, 37%
clustered only to Erpe viruses, constituting 189 novel genera. An
additional 41% did not cluster to any vMAG in our database and
were “singletons” or “outliers”. Interestingly, 17% of our total
VMAGs and nearly half of our novel genera were cosmopolitan in
aquatic ecosystems, meaning that while these VMAGs failed to
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FIGURE 2

vContact?2 reveals Erpe VMAG database constitutes mostly novel genera, and a portion of these are cosmopolitan. (A) vContact2 protein cluster (PC)
similarity network where nodes represent vMAGs and edges show similarity across edges. Only high-confidence genera-level clusters are shown
(n=676) with node color representing whether the vMAG pertains to our input databases (gray) or other categories assigned to vVMAGs recovered
here: orange shows novel genera (clustering only with Erpe genomes), green shows cosmopolitan novel genera (clustering with viruses from
additional input database not from RefSeq), and yellow represents vVMAGs with known taxonomy (clustering with known RefSeq vMAGs). Singletons
(genomes that do not cluster with any other genomes) are excluded from the visualization (n=518). (B) Pie chart shows the distribution of the
different categories from the vContact2 network of vMAGs recovered. “Overlap” refers to a category where vContact2 assigns a vVMAG to more than
one cluster but cannot confidently place in either. (C) Pie chart shows the proportion of vYMAGs from novel genera in this study that were clustering

with vVMAGs from different environmental input databases.
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cluster with taxonomically known strains, they did cluster with
VMAGs recovered from other ecosystems (Figure 2B). Specifically,
our cosmopolitan novel genera clustered with vYMAGs from
wastewater treatment plant sludge or effluent (n=168), other
rivers surface or sediment samples (n=65), and marine samples of
the TARA oceans dataset (n=25) (Figure 2C). Notably, adding these
additional viral genomes reduced the total number of River Erpe
VMAGs that were categorized as singletons or outliers, resulting in

the addition of 49 novel genera.
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Viral and microbial River Erpe microbiomes
are compartment-specific

The collected biogeochemistry was significantly structured
across compartments and explained a large portion of the total
=079, p < 0.01) (Figure 3A). The
surface water compartment was driven mostly by 1) the

o 2
variation in our samples (R

accumulation of alternative terminal electron acceptors (i.e.,
nitrate (NO5"), and sulfate (SO,>)), 2) the availability of nitrogen

VMAG ordination drivers

SW. Drivers PW %
=Y
II 88

00548

0.3

0.2

Avg. DBE *

0.1

Hydrology

Temp
Conductivity
Fex
*
K+
DOCTN *
M
S Mn

9

NMDS2

Compartment: R2=0.67, p =0.001

Q 2
NMDS1

Ordination type

Biogeochemistry PCA

vMAG abundance NMDS

- MAG abundance NMDS

Env.Fit
——» Ordination driver by Env.Fit

—>» # Rankof driver importance

!_II._ Driver relative importance

Compartment

. Surface water

. Pore water

Surface and pore water compartments have distinct viral communities and distributions are driven by biogeochemistry (A) PCA plot of biogeochemical
measurements where loadings and bars show the biogeochemical drivers per compartment. The size of bars represents the distance between the end
of a loading arrow and the center of the plot. Within each bar plot, the drivers are labeled, and asterisks denote significant drivers by env.fit. The top 10
most significant drivers are numbered below each bar and are shown with solid, numbered arrows within the ordination below. (B) NMDS ordination of
river pore water and surface water vMAG abundances with bars and arrows showing the same as in (A). (C) NMDS ordination of river pore water and
surface water MAG abundances with bars and arrows showing the same as in (A). Non-compound abbreviations are: nominal oxidative state of carbon
(NOSC), calcium (Ca), chlorine (Cl), sodium (Na), magnesium (Mg), dissolved organic carbon (DOC), soluble reactive phosphorous (SRP), aromaticity
index (Al), and double bond equivalents (DBE). Note: NOSC values are plotted as the absolute value per value per sample (i.e., a higher SW NOSC driver

value translates to a more negative NOSC measurement).
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compounds (i.e., total nitrogen, avg. N), and 3) a more negative
overall nominal oxidative state of carbon (NOSC) and a higher H:C
ratio. Conversely, the pore water was characterized by 1)
accumulation of NHy, 2) the availability of soluble reactive
phosphorous (SRP), and 3) the overall concentration of carbon
(avg. C), its aromaticity index (AI), and the quantity of double bond
equivalents per molecule (DBE). In summary our data indicated
more oxidative conditions in the SW (Mueller et al., 2021) while the
FTICR-MS data showed that SW carbon was likely more labile,
accessible, and thermodynamically favorable.

To determine how viral and microbial communities were
structured across these biogeochemical gradients, we recruited the
time-series metagenomic reads to our viral database of 1,230
dereplicated vMAGs and 125 MAGs and then performed non-
metric multidimensional scaling (NMDS) ordinations (Figures 3B,
C). Like the geochemical PCA plots, PERMANOVA analyses
showed that river compartment explained 67% (p < 0.01) and
59% (p < 0.01) of the variation in viral and microbial communities,
respectively. The drivers of both viral and microbial communities
were nearly identical in both magnitude and direction. Similarly, a
PROCRUSTES analyses showed that vMAG and MAG ordinations
are highly coordinated with each other (sum of squares = 0.027,
corr. = 0.99, p < 0.01) (Supplemental Figure 2) emphasizing the
expected dependencies between our identified viral and microbial
communities due to our methods. Further highlighting these
compartmental distinctions, the abundances of 85% of VMAGs
(n =1051) and 67% of MAGs (n = 87) were indicators of only one
compartment (Supplemental Table 5). Interestingly, across both
viral and microbial ordinations as well as our PCA, time only
explained an additional 4-5% of the total variation, albeit
significantly (p = 0.03, p = 0.02, and p < 0.01, respectively), likely
due to long travel times and hydrological separation
(Supplemental Table 5).

Temporally resolved metagenomics unveils
compartment-level stability and
persistence of viral and microbial
communities of the River Erpe

SW metagenomic temporal samples for both vVMAGs and
MAGs were on average 2-fold more similar than PW by Bray-
Curtis dissimilarities (BC) (YMAG t = 6.3; MAG t = 6.2, p < 0.01)
(Figures 4A, B). We next evaluated whether the individual temporal
persistence of the viral and microbial genomes shared similar
patterns to the BC across compartments, and categorized
members using persistence metrics that were previously
established (Chow and Fuhrman, 2012). Briefly, if a viral genome
was in more than 75% of the samples it was designated as persistent,
between 25-75% of samples it was intermittent, and in less than 25%
it was ephemeral. Of the 1,035 vMAGs detected in the SW
compartment, 70% were categorized as “persistent”, with the
remainder being 25% intermittent and 5% ephemeral.
Contrastingly, of the 374 VMAGs detected in the PW, only 11%
were categorized as persistent, with the remainder being 26%
intermittent and 63% ephemeral (Figures 4C, D). Similarly, the
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bacterial and archaeal MAGs shared comparable persistence
patterns across the compartments (Figures 4E, F). Combined,
these results showed that SW communities were less temporally
dynamic in terms of BC and had more persistently sampled
genomes than the PW.

We then assessed whether the relative abundance of persistent
genomes was also temporally stable. Based on a prior study (Chow
and Fuhrman, 2012), we tallied the number of samples in which
persistent VMAG and MAG relative abundances exceeded + 25%
of their respective median (Figures 4G, H, Supplementary
Table 4). Our results showed that both the relative abundance
of YMAGs and MAGs in the SW fluctuate less over time than the
PW as shown by Fishers exact t test (p < 0.01). Our persistence
and temporal stability results supplement the observation that
surface water communities in this urban stream change less over
the 48-hour period than pore water communities which are
more dynamic.

Genome-resolved virus-host analyses
demonstrated viruses could infect highly
abundant, phylogenetically diverse
microbial genomes

We were able to predict hosts for 73 vMAGs, matching 30%
(n = 38) of our total microbial genomes to a viral partner (Figure 5).
A majority (62%) of vMAGs with host associations were from the
SW compartment, with 22% of host-associated vMAGs found in the
PW, and around 10% found across both compartments. MAGs that
had viruses linked to them were highly abundant, with 54% of our
linked VMAGs infecting hosts of the top 25% most abundant
MAGs. At the phylum level, 11 of the 20 identified phyla had
evidence for a viral host. Notably, all the phyla that could not be
assigned a viral link had 2 or less MAG representatives, with the
exception of Desulfobacterota which had 6 MAGs. Additionally, of
the 51 Patescibacteria MAGs we recovered in this study, we
uncovered 12 possible viral genome links, which to our
knowledge is one of the few reports of possible infective agents
for members of this phylum (Holmfeldt et al., 2021; Trubl et al,
2021), and is the only one thus far reported in rivers. Ultimately,
nearly a third of the genera from our MAG database as defined by
GTDB were successfully linked to a VMAG, providing further
evidence that viral predation is likely pervasive across these river
microbial communities.

To decipher the potential impacts that viral predation could
have on biogeochemical cycling across the collected timeseries, we
metabolically characterized the 38 viral-linked MAGs from our
genome-resolved database and saw a wide array of metabolisms
spanning ecosystem chemical gradients (Figure 5). Across both
compartments, viruses were inferred to impact hosts that could
modulate both aerobic and microaerophilic metabolism (carbon
respiration), as well as anaerobic metabolisms (nitrate reduction,
fumarate reduction, fermentation, and nitrogen fixation). For
example, VMAGs were predicted to infect hosts with metabolisms
such as methanogenesis (e.g., Methanothrix), and sulfur
metabolisms (e.g., Sulfurimonas), which were encoded more
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Surface water communities are more stable and persistent than pore water communities. (A) Difference in Bray-Curtis dissimilarities between each
sample and its prior timepoint calculated for vMAGs and (B) MAGs per compartment. (C) Bar plots show the number of persistent, intermittent, and
ephemeral vMAGs in the SW and (D) the PW. (E) Bar plots show the number of persistent, intermittent, and ephemeral MAGs in the SW and (F) the
PW. (G) Bar plot where the x-axis shows the number of samples where each vVMAG that fluctuates above or below 25% of their median values and
the y-axis shows the normalized total percentage of persistent genomes per each compartment that are fluctuating. (H) Identical bar plots to those
in (G) but for MAGs.
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FIGURE 5

Viruses infect abundant microorganisms in rivers which can influence aerobic and anaerobic C, N, and S cycling by predation or auxiliary metabolic
genes. MAG families that had a linkage to a virus are shown and split into their compartment-level distributions. From left to right: Colors of each
circle on the leftmost side represent the Phyla, and for each family the total number of MAGs are shown. The presence absence heatmap describes
the metabolisms of each family. Following the heatmap are the number of vMAGs that are linked in each family, whether the virus-host link is
predicted by CRISPR or consensus method, and if at least 1 infecting vMAG with an AMG is reported. Numbers below each bounding box show
totals of above criteria. The overall average rank of each MAG within a family is shown in the rightmost column.

predominantly by MAGs in the PW. vVMAGs were also predicted to
infect members that encoded denitrification pathways which were
prevalent in organisms across both compartments (e.g.,
Nanopelagicales). Interestingly, 20% of the YMAGs that infected
hosts were cosmopolitan, with representatives identified in other
freshwater and wastewater systems (Supplementary Table S2).
Together, our genome-resolved database of microbial
metabolisms and their putatively infecting viruses gives insight
into the underpinnings of River Erpe metabolisms, and show that
genome-resolved, river microbiome studies can provide critical
perspectives for understanding the impact that viruses can have
in river ecosystems.
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Virally encoded auxiliary metabolic genes
can potentially alter host metabolic
machinery in this urban-impacted river

In addition to the impact on microbial communities via
predation, viruses can also mediate biogeochemical cycles through
enhancing host metabolism with Auxiliary Metabolic Genes
(AMGs). We mined our 1,230 vMAGs for putative AMGs and
found 165 unique viral AMG candidates after quality filtering,
which encompassed 65 unique gene IDs. We failed to see a
statistical enrichment for the number of AMGs in either
compartment (Fisher’s exact p = 0.77), suggesting their shared
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Distribution of viral Auxiliary Metabolic Genes (AMGs) and their function reveals key viral interactions that can enhance host metabolism in river
ecosystems. (A) Alluvial plot shows the subset of AMGs (77%, n=165) that had a metabolic function annotated by DRAM-v and were 1) not at the end
of a contig and 2) did not contain a transposon like element. In the first vertical line, colors show the compartments that each vMAG with an AMG
was detected in. The second vertical line shows the different DRAM-v metabolic categories for each AMG. The next vertical line shows the specific
metabolic module name as categorized by DRAM. The final line contains each of the Gene IDs for the detected AMGs. Genes that can have multiple
functions (n = 13) are duplicated and treated as individual genes within each category. (B) Stacked bar charts show the proportion of total AMGs
encoded in VMAGs from different compartments at the scaffold, gene ID, and metabolism header ID level as shown in (A). (C, D) Genome cartoons
of two computationally linked bacterial hosts and their respective metabolisms. Detected viral AMGs are shown as viral icons above each genome
cartoon. Pept., peptidases; HSP, heat shock proteins; SOD, superoxide dismutase; queCD, 7-cyano-7-deazaguanine synthase; 6-carboxy-5,6,7,8-
tetrahydropterin synthase. Asterisks (**) denote AMGs that were encoded within a virus that had a computationally linked host.

importance for the River Erpe. The functionalities of these AMGs at
the gene annotation level (e.g., KO number) were mostly conserved
across compartments, with only 27% of unique gene IDs present in
both compartments. However, at the DRAM-v functional module
level (e.g., amino acid metabolism) 69% of metabolisms were
present across both our ecological gradients (Figure 6B).
Conserved DRAM categories across compartments pertained to
carbon utilization (e.g., CAZyme inferred substrates (cellulases),
glycolysis), energy generation (e.g., CO, fixation (reductive pentose
phosphate pathway)), and other reactions (methionine
degradation). We note that genes necessary for viral replication
like nucleotide biosynthesis, ribosomal proteins, host mimicry,
glycan biosynthesis, cofactor and vitamin metabolism, and
molecular transporters were conserved between compartments.
There were also some unique AMGs that did show
compartment specificity. For example, within the surface water
we exclusively detected AMGs for organic nitrogen mineralization
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and transcriptional regulation (i.e., peptidase M50), sugar
metabolism (i.e., fructose and mannose (mannose-6-phosphate
isomerase)), and motility (i.e., flagellar motor switch protein
FliG). We note that among our putative AMGs, we also identified
several glycosyltransferases (i.e., GT1, GT2, GT17, and a general
sugar binding GT) (Figure 6A). These GT genes are commonly
reported as carbohydrate degradation enzymes in other studies,
particularly those annotated as glycosyltransferase 2 (GT2) because
of the breadth of reactions in their CAZyme families. As such, while
we report these in our figure and supplemental information for
transparency, we urge caution when inferring these activities in
carbon degradation.

We next considered AMGs that either expanded the host
metabolism or that were complementary to the host metabolism
(i.e., Class I AMGs) (Hurwitz and U’Ren, 2016). Of the 12
Patescibacteria MAGs that had possible viral genome links, MAG
representative CSBR16-119 had two possible VMAG linkages. A
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WGCNA co-occurrence networks reveal ecologically similar groups that are related to overall ecosystem biogeochemistry. (A) Voronoi diagram
shows VIP values of predictions for each predictive genome using a hierarchy structure. Each amorphous square within a group represents a single
MAG or VMAG. At the first level (i.e., splitting of the large hexagon into upper and lower groups), SW (top) and PW (bottom) predictions are shown. At
the second level (i.e., grouping of individual chemical variables predicted across each compartment), individual chemical variables are shown, per
each compartment, and how many VMAGs/MAGs were predictive are denoted by numbers next to each variable name. At the third level (i.e
individual amorphous square or genomes), shapes are sized by the VIP score (>1) of genomes that predict that variable and are colored by their
respective WGCNA module. (B) Sunburst diagram shows the predictive WGCNA modules in the innermost level, followed by what chemical values
each module predicts in the middle level. The outer level shows the average variable importance in projection (VIP) score for each genome type
VMAG (black circles) and MAGs (white circles) for that chemical prediction.

comparison of the metabolic capabilities of the host and
viral genomes indicated multiple shared genes (Figure 6C,
Supplemental Table 2). For example, a peptidase-like protein
(M50) that is inferred transcriptional regulator (Rawlings et al,
2018) was present in both the Patescibacteria MAG and its infecting
VMAG. Across the length of the open reading frame, these bacterial
and viral genes shared 77% and 99% nucleotide and amino acid
similarity, respectively (Supplemental Table 2). The microbial host
genome also had a single copy of ribosome 128 encoded, and two
viral genomes putatively infecting this host contained a relevant
homolog to L28 (>93% identity, over 90% query coverage)
(Supplemental Table 2).

A second putatively infected genome was Proteobacteria
UBA2383 (a novel unclassified Competibacteraceae) which had
broad metabolic capabilities and was persistent in our samples
(Figure 6D). This MAG was inferred to be a facultative aerobe
encoding genes for aerobic respiration and for denitrification.
UBA2383 encoded genes supporting a heterotrophic lifestyle
including CAZymes necessary for the degradation of complex
carbon substrates (e.g., chitin, starch, and polyphenol) and the
enzymatic capacity to utilize these substrates for energy (e.g.,
glycolysis, tricarboxylic acid cycle). This MAG also encoded the
ability to fix nitrogen and denitrify. The two VMAGs that were
associated with this genome encoded genes to support host
metabolism (e.g., GTP cyclohydrolase) which generates important
co-factors for bacterial metabolic processes (Supplemental Table 2)
(He and Rosazza, 2003). Additional AMGs encoded by infecting
viruses could potentially enhance nucleotide biosynthesis (dCTP
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deaminase, dUTP pyrophosphatase, thymidylate synthase) as well
as other viral functions like host mimicry genes (i.e., 7-cyano-7-
deazaguanine synthase, 6-carboxy-5,6,7,8-tetrahydropterin
synthase) to avoid the CRISPR defense mechanisms encoded
within the host Proteobacteria. More research using non-
homology based methods, as well as expression patterns of these
AMGs would help confirm their functionality and activity in this
urban-impacted stream.

Co-occurrence networks elucidate
ecological patterns that inform
ecosystem biogeochemistry

To link viral and microbial communities more concretely to
ecosystem biogeochemical cycling, we leveraged our collected
temporal samples and applied a Weighted Gene Correlation
Network Analysis (WGCNA) to identify organismal groups that
co-occurred over the 48-hour sampling time. Highlighting the clear
distinctions in SW and PW compartments, WGCNA analyses could
not be reasonably performed simultaneously on a combined dataset
(scale free topology model fit max = 0.32 at power = 20). As such,
using only microbial and viral genomic abundances from either SW
or PW separately, we identified 15 and 4 co-occurring modules in
the SW and PW, respectively (Supplemental Figure 4). The largest
module in both networks (turquoise module) contained 254
genomes in the SW and 71 in the PW. In the SW compartment,
the overall modules had an average richness of 66 YMAGs and 5
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MAGs, while in the PW they had an average richness of 46 YMAGs
and 10 MAGs.

Both surface and pore water communities had modules of co-
occurring genomes that were significantly related by sparse partial
least square regressions (sPLS) to the collected biogeochemical
measurements (R* > 0.3, p < 0.05) (Figure 7A, Supplemental
Figure 4). Only total Fe concentrations were related to modules in
both the SW (brown, salmon modules) and PW (red module). SW
modules were uniquely related to variables pertinent to nitrogen
(nitrate, average total nitrogen), carbon (average total carbon,
aromaticity index, hydrogen:carbon), as well as physical
(temperature, water stage) and geochemical (magnesium, calcium,
manganese, ammonium, sulfate) features in these samples. Of the
8 modules that were significantly related to ecosystem
hydrobiogeochemical features, viruses had significant variable
importance in projection scores (VIP > 1) in 7 of them, and 70%
of the most significantly related genomes across all regressions were
viral (Figure 7B).

Of the 73 vVMAGs and 38 MAGs that were computationally
linked (Figures 5, 6), nearly a quarter of those VM AGs and a third of
MAGs were grouped into the same co-occurring modules.
Interestingly, the SW brown module was related to the total
nitrate concentrations in our dataset and contained a co-
occurring virus-host link (Figure 8A). The host genome was the
Competibacteraceae genome in Figure 6D and its putatively
infecting a virus, which together could play roles in modulating
the nitrogen cycling through both fixation and denitrification. This
virus and microbial host pair had significant negative correlations to
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nitrate concentrations and were the second and fourth most
significantly related genomes to nitrate within the brown module.
The virus bacterial ratio (VBR) for these two organisms was nearly
1:1 and significantly correlated, which is expected of kill the winner
dynamics (Trubl et al., 2021), and ultimately highlighting the
possible dependency of an infecting VMAG and its host
(Figure 8B). In support of this relationship, the viral genome
coverages were on average 10x more than the putative host MAG
coverage, suggesting a possible lytic infection lifestyle. Further
underlining the importance of these related genomes, both were
designated as persistent (i.e., present in >75% of all collected
timepoints) and were the 1°* (VMAG) and 9™ (MAG) most
abundant genomes detected in the surface waters.

Discussion

Viral reference databases underrepresent
certain habitats, missing cosmopolitan,
ecologically relevant lineages

Nearly a quarter of our Erpe viruses formed genus-level clusters
with viruses from wastewater and freshwater systems, and of those,
11% encoded a putative AMG with functions for metabolisms such
as carbon utilization, organic nitrogen transformations, and
housekeeping functions (i.e., transporters and flagellar assembly).
While the protein clustering of River Erpe vMAGs to wastewater
viruses was not entirely surprising given the sampling location was
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Computationally linked vVMAG and MAG pair that share co-occurrence patterns demonstrate high significance for nitrate, and display kill-the-winner
dynamics. (A) Scatterplot depicts the genomic significance for nitrate of each of the genomes in the brown module in relation to the membership of
those genomes within the WGCNA network modules. Below, bar charts show the VIP score (>1) of the different organisms in the brown module.

(B) A Virus bacteria ratio (VBR) plot of a viral genome within the brown module that was predicted to infect a Proteobacteria genome. Below it, bar
plots show the total coverage across all samples for both the vMAG and the MAG, and a line graph shows the measured nitrate concentrations that

these genomes predict.
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downstream from the wastewater outlet (Mueller et al., 2021), we
note that we also clustered a similar proportion of viruses to other
viral genomes from river systems. Notably, this similar clustering
proportion for River Erpe viruses was not observed with the TARA
ocean viruses (Figure 2C, Supplemental Figure 3). These results hint
at possible ecosystem filtering that may affect the biogeographical
patterns of freshwater viruses. Our results also underscore the
importance of customized, ecosystem relevant databases in
environmental viromics for extending the ecological relevance of
these ecosystem modulators, and further understanding the major
drivers for river microbiomes.

Temporally and spatially resolved
metagenomics coupled to metabolites and
geochemistry enhances our understanding
of river microbiome structure

Sampling with a Eulerian method allowed us to detect
microbiomes passing through the same space over time in the
SW and PW samples. Due to the flow rate of SW, and the
potential that PW communities may be more biofilm impacted,
we might have expected to see greater microbial and viral
changes in the surface compartment than the sediments over
the sampled time period. On the contrary, both vVMAGs and
MAGs were more persistent and had more stable abundance
patterns over time in the SW of the River Erpe (Figures 4A, B).
A possible explanation is that the strong influence of the
wastewater treatment plant, where inputs were relatively
uniform and continuous over time (Mueller et al, 2021),
could contribute to the increased temporal stability we
observed. It is also possible that the mixing in the PW
hyporheic zone was more frequent than the flow rate within
this channel. In support of the former, we did observe strong
clustering between our viral genomes and wastewater treatment
viral genomes throughout the timeseries (Figure 2). Our study is
consistent with previous research showing surface water
microbiomes are not unstable, or intractable (Graham et al,
2017), and could thus be important for the poorly resolved
indices of river health and biogeochemistry that currently exist.

Previous reports using non genome-resolved strategies
highlight that richness in river PW and sediments are generally
higher than those in the SW for bacterial communities (Abia et al,
2018). Contrary to this, our data shows the opposite trends in the
Erpe river for both viral and microbial communities
(Supplementary Figure 1). One possible explanation could be
methodological due to the PW being sampled or assembled less
completely as a result of genomic extraction bias caused by fine
grain sediments, less sampling volume, or strain level complexity.
However, our species area curves did not signify an obvious
difference in sampling exhaustion between these compartments
(Supplemental Figure 1), leaving open the possibility that this
finding may be biological.

A possible biological explanation could be that the effluent of
the Miinchehofe WWTP is altering viral and microbial community
diversity. Our geochemical data showed elevated total nitrogen and
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soluble reactive phosphorous concentrations, which are commonly
reported for WWTP impacted systems (Fox et al., 1989; Effler et al.,
2010). However, the role of these WWTP influences on river
microbiome diversity are variable, with some studies reporting
that WWTPs reduce bacterial diversity and overall nutrient
concentrations (Atashgahi et al., 2015; Carles et al, 2022; Xie
et al,, 2022), and other studies showing increases in diversity
resulting from eutrophication (Garnier et al, 1992; Marti and
Balcazar, 2014).

Our presented and previously published geochemical data
inferred more anoxic conditions in the porewater compared to
the surface water (Mueller et al., 2021), while the FTICR-MS data
indicated a higher concentration of non-labile, microbially
inaccessible carbon in the pore water. Additionally, sediment
profiles for our samples ranged from 85.8%-96.6% clay content
(Mueller et al., 2021), which may impact groundwater and surface
water exchanges, resulting in altered nutrient fluxes to inhibit
microbial growth (Newcomer et al, 2016; Huettel et al., 1998).
Taken together, it is possible that limited nutrient and carbon
accessibility contributes to the decreased microbial and viral
diversity observed in the PW compared to the SW.

Viruses have the potential to regulate river
biogeochemical cycles by predation and
metabolic reprograming of microbial hosts

Although river viral ecology is only recently becoming
appreciated, early works suggested that viruses likely play key
roles in the structuring of river microbial communities (Peduzzi
and Luef, 2009; Peduzzi, 2016). By using a combination of
computational methods, we show viruses infect microorganisms
that encode a wide array of metabolic functionality critical to
river biogeochemistry (e.g., methanogens, denitrifiers, oxygen
respirers). In addition to predation, viral auxiliary metabolic
genes are recognized across aquatic systems to play key roles
in host metabolic reprogramming and can encompass a wide
range of processes from photosynthesis to the oxidation of sulfur
(Sullivan et al.,, 2006; Anantharaman et al., 2014). We add to the
existing literature and show AMGs in urban river systems may
also impact reactions involving nitrogen, carbon, and sulfur
cycling. Additionally, one of the vMAGs that was predicted to
infect a Patescibacteria genome encoded a ribosomal protein, a
finding that has been previously reported in other systems for
different bacteria (Mizuno et al, 2019). Candidate phyla
radiation (CPR) organisms like Patescibacteria are present in
wastewater treatment plants (Wang et al, 2023) and contain
non-redundant, small genomes (Tian et al, 2020; Wang et al,
2023). As such, our results of ribosomal AMGs in
Patescibacteria-infecting viruses hint at the possibility that
viruses may help maintain those small genome sizes by
encoding necessary host genes, a concept previously
demonstrated for the virus-host dependency of cyanobacterial
photosynthesis in oceans (Sullivan et al., 2006).

Other works looking at VMAGs from freshwater lakes and
estuaries have shown that some viruses exhibit endemism for
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certain environments, meaning their distribution is limited to a
small geographic area (Ruiz-Perez et al., 2019). This points to an
interesting idea that perhaps AMGs may also be tuned to the
specific ecological functions of the sampled habitat, and as such
that we could expect some degree of endemism in the AMGs. A
recent study from an estuary identified significant partitioning of
AMG functions between habitat types (water particle and
sediment) (Luo et al, 2022). In support of these findings, we
identified a subset of unique AMGs within the SW (e.g., flagellar
assembly proteins, sugar metabolism) that could potentially be
more associated with a lifestyle supported by favorable carbon,
and aquatic environments that favor mobility. On the other hand,
in the PW we detected AMGs that encoded for plant
hemicellulose degradation (Supplementary Table S2), an
adaptation that could sustain metabolism in a litter impacted,
sediment habitat. However, most AMG functional categories from
our dataset were highly similar across compartments suggesting
some conservation within River Erpe compartments. As such, it is
possible that due to the constant mixing of surface and HZ water
in this river, and possibly others, stratification at the genomic
potential may be less notable, and expression information may be
necessary to capture habitat specific differences. Ultimately, this
study highlights how moving forward annotation resolution and
expanding reference database(s) are important factors to consider
when extrapolating AMG inferences across datasets (Hurwitz and
U’Ren, 2016; Shafter et al., 2020).

In conclusion, our results highlight the power of temporally
resolved metagenomics in understanding river microbiome
dynamics. Leveraging the community-sequenced dataset of the
River Erpe, we provide insights regarding compartment-level
microbiome stability and show surface water microbiomes may
not be as “untraceable” or “unstable” as previously thought. This
stability at a genome-resolved view, suggests microbial content
could add to the growing body of indicators for river wellness.
Ultimately, this research provides a strong scaffolding foundation
for future temporally resolved river studies that couple microbial
omics measurements to biogeochemical rates to bridge the gap in
understand overall ecosystem functionality.
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