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Let g be a semisimple simply-laced Lie algebra of finite type. 
Let C be an abelian categorical representation of the quantum 
group Uq(g) categorifying an integrable representation V . The 
Artin braid group B of g acts on Db(C) by Rickard complexes, 
providing a triangulated equivalence

Θw0 : Db(Cµ) → Db(Cw0(µ))

where µ is a weight of V , and Θw0 is a positive lift of the 
longest element of the Weyl group.
We prove that this equivalence is t-exact up to shift when V
is isotypic, generalising a fundamental result of Chuang and 
Rouquier in the case g = sl2. For general V , we prove that 
Θw0 is a perverse equivalence with respect to a Jordan-Hölder 
filtration of C.
Using these results we construct, from the action of B on 
V , an action of the cactus group on the crystal of V . This 
recovers the cactus group action on V defined via generalised 
Schützenberger involutions, and provides a new connection 
between categorical representation theory and crystal bases. 
We also use these results to give new proofs of theorems 
of Berenstein-Zelevinsky, Rhoades, and Stembridge regarding 
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the action of symmetric group on the Kazhdan-Lusztig basis 
of its Specht modules.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

In their seminal work, Chuang and Rouquier introduced sl2 categorifications on 
abelian categories [16]. Their definition mirrors the notion of an sl2 representation on a 
vector space: weight spaces are replaced by weight categories, Chevalley generators act-
ing on them are replaced by Chevalley functors, and Lie algebra relations are replaced 
by isomorphisms of functors. But, crucially, these isomorphisms are part of the “higher 
data” of categorification.

The richness of this theory was immediately evident. As a corollary of an sl2 cate-
gorification on representations of symmetric groups in positive characteristic, Chuang 
and Rouquier proved Broue’s abelian defect conjecture in that case. The essential tool 
allowing them to do this is the Rickard complex, which is a categorical lifting of the 
reflection matrix in SL2, and provides a derived equivalence between opposite weight 
categories.

Subsequently, Rouquier and Khovanov-Lauda vastly generalised this theory to quan-
tum symmetrisable Kac-Moody algebras Uq(g) [28,29,41]. Let k be any field. A graded 
abelian k-linear category C endowed with a categorical representation of Uq(g) possesses 
a family of Rickard complexes Θi, indexed by the simple roots of g, acting on the derived 
category Db(C).

Henceforth let g be a semisimple simply-laced Lie algebra of finite type with Dynkin 
diagram I, W its Weyl group, and B its Artin braid group. Let C be a categorical 
representation of Uq(g) as in the previous paragraph. Cautis and Kamnitzer proved that 
Rickard complexes satisfy the braid relations, as conjectured by Rouquier [11]. This 
defines an action of B on Db(C), and is our main object of study.

Categorical braid group actions defined via Rickard complexes have many significant 
applications. For example, in low dimensional topology, the type A link homology theories 
(in particular Khovanov homology) emerge as a byproduct of these types of categorical 
braid group actions [9,10,31]. In mirror symmetry, the theory of spherical twists plays 
an important role, and these all arise from categorical sl2 representations [43].

To describe our first theorem, recall that minimal categorifications are certain distin-
guished categorifications of simple representations. On these the Rickard complex Θi is 
t-exact up to shift [16, Theorem 6.6]. Notice that this is a result about sl2 categorifica-
tions, and in fact, this is one of Chuang-Rouquier’s key technical results which they use 
to prove the derived equivalence.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


I. Halacheva et al. / Advances in Mathematics 429 (2023) 109190 3

We generalise this result to Uq(g), where we show that the composition of Rickard 
complexes corresponding to a positive lift of the longest element w0 ∈ W is t-exact up 
to shift on any isotypic categorification. More precisely:

Theorem A. [Theorem 6.4 & Corollary 6.7] Let C be a categorical representation of Uq(g)
categorifying an isotypic representation of type λ, where λ is a dominant integral weight. 
Let µ be any weight, and let n be the height of µ −w0(λ). Then the derived equivalence

Θw01µ[n] : Db(Cµ) → Db(Cw0(µ))

is t-exact.

This theorem is the technical heart of the paper. In order to prove it we introduce a 
new combinatorial notion of “marked words” (Section 5). This allows us to use relations 
between Θi and Chevalley functors established by Cautis and Kamnitzer to deduce the 
commutation relations involving Θw0 (Proposition 5.9). We then use these relations to 
prove the theorem by induction on n.

Our second theorem describes Θw0 on an arbitrary categorical representation of Uq(g), 
also generalising a result of Chuang-Rouquier in the case g = sl2. Indeed, their study 
of the Rickard complex on an sl2 categorification led them to define the notion of a 
“perverse equivalence” [15].

Consider an equivalence of triangulated categories F : T → T ′ with t-structures [4]. 
Suppose further that T (respectively T ′) is filtered by thick triangulated subcategories

0 ⊂ T0 ⊂ · · · ⊂ Tr = T , 0 ⊂ T ′
0 ⊂ · · · ⊂ T ′

r = T ′,

and F is compatible with these filtrations (cf. Section 4.1 for precise definitions). Then, 
roughly speaking, F is a perverse equivalence if on each subquotient F : Ti/Ti−1 →
T ′
i /T ′

i−1 is t-exact up to shift.
Since their introduction, perverse equivalences have proven useful in various contexts 

(e.g. representations of finite groups [14], geometric representation theory and mirror 
symmetry [1], and algebraic combinatorics [48]). Our second theorem shows that perverse 
equivalences are ubiquitous in categorical representation theory:

Theorem B. [Theorem 6.8] Let C be a categorical representation of Uq(g), and let µ be any 
weight. The derived equivalence Θw01µ : Db(Cµ) → Db(Cw0(µ)) is a perverse equivalence 
with respect to a Jordan-Hölder or isotypic filtration of C.

Note that if J ⊆ I is a subdiagram, and wJ
0 is corresponding longest element, then this 

theorem implies that ΘwJ
0
1µ is a perverse equivalence for any J . We also remark that our 

arguments go through in the ungraded setting, where C is a categorical representation 
of g.
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Let us explain the filtration arising in Theorem B more precisely. We apply Rouquier’s 
Jordan-Hölder theory for representations of 2-Kac-Moody algebras to our setting [41]. 
We thus obtain a filtration of C by Serre subcategories,

0 ⊂ C0 ⊂ · · · ⊂ Cr = C,

such that each factor Ci is a subrepresentation, and each subquotient Ci/Ci−1 categori-
fies either a simple module (Theorem 3.6) or an isotypic component (Remark 3.9). Then 
Θw01µ is a perverse equivalence with respect to the filtration whose i-th filtered compo-
nent consists of complexes in Db(Cµ) with cohomology supported in Ci.

We remark that in the case g = sl2 this gives a more conceptual proof of a result of 
Chuang-Rouquier [15, Proposition 8.4]. If C is the tensor product categorification of the 
n-fold tensor product of the standard representation of sln, we recover a theorem of the 
third author [33]. We explain this in Example 8.3, where we show how to interpret the 
filtration on the principal block of the BGG category O using the Robinson-Schensted 
correspondence.

In fact, the third author and Bezrukavnikov formulated a principle that suitable cat-
egorical braid group representations should have a “crystal limit” [5, Section 9]. As an 
application of our results we can make this precise in the setting of categorical represen-
tations of Uq(g).

Recall that to an integrable representation V of Uq(g), Kashiwara associated its crystal 
basis BV [27], which is closely related to Lusztig’s canonical basis [20]. If V is categorified 
by C then there is a natural identification BV = Irr(C), the set of isomorphism classes of 
simple objects in C up to shift (cf. Proposition 3.4).

One of the most important features of the theory is the existence of a tensor product, 
endowing the category of crystals with a monoidal structure. The commutator of crystals 
is controlled by a group called the cactus group, just as B controls the commutator in the 
category of representations of Uq(g) [22]. There is also an internal cactus group action, 
mirroring Lusztig’s internal braid group action on V . Indeed, there is a cactus group C
associated to g (or rather to its Dynkin diagram I), which can be presented by generators 
cJ indexed by connected subdiagrams J ⊆ I (cf. Section 7.1). Then C acts on BV via 
the so-called Schützenberger involutions (cf. Theorem 7.3).

So, starting with an integrable representation V of the quantum group we obtain: an 
action of B on V, a g-crystal BV , and an action of C on BV . We schematically picture 
this situation as follows:

Uq(g) ! V B ! V

g-crystal BV C ! BV

?

Naturally one asks: can we “crystallise” the braid group action on V directly to obtain 
the cactus group action on BV ? Our results allow us to answer this in the affirmative.
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The key point is that a perverse equivalence F : T → T ′ induces a bijection Irr(T ♥) ↔
Irr((T ′)♥), where T ♥ denotes the heart of the t-structure. In the setting of Theorem B, 
we obtain a bijection ϕI : Irr(C) → Irr(C). In fact, if J ⊆ I is a subdiagram and gJ ⊆ gI
is the corresponding Lie subalgebra, we can regard C as a categorical representation of 
Uq(gJ) by restriction. By Theorem B we also obtain a bijection ϕJ : Irr(C) → Irr(C).

Theorem C. [Theorem 7.7 & Theorem 7.12] Let C be a categorical representation of 
Uq(g), categorifying the integrable representation V . The assignment cJ '→ ϕJ defines 
an action of C on BV = Irr(C), and this agrees with the combinatorial action arising 
from Schützenberger involutions.

We thus obtain the sought-after crystalisation process for braid groups:

B ! V ! B ! Db(C) ! C ! Irr(C),

which associates a cactus group set Irr(C) to the braid group representation of B on V . 
The first appearance of such a crystalisation process is in the work of the third author, 
where a cactus group action on W is constructed [33]. It’s an interesting question to 
crystallise the braid group action without appealing to categorical representation theory.

Finally we remark that perversity of Rickard complexes, and more specifically the 
t-exactness of Θw0 on isotypic categorifications as in Theorem A, is a fruitful vantage 
from which to view results in algebraic combinatorics.

For example, we show in Section 8.2 how to use this to easily recover theorems of 
Berenstein-Zelevinsky [3] and Stembridge [46], namely that the action of w0 ∈ Sn on the 
Kazhdan-Lusztig basis of a Specht module of Sn is governed by the evacuation operator 
on standard Young tableaux. We note that this theorem was earlier proven by Mathas 
in slightly different form (without explicit reference to the evacuation operator, and 
credited to J.J. Graham) [37, Theorem 3.1], and a similar result was shown even earlier 
by Lusztig in 1990 [35, Corollary 5.9].

As another example, we use our methods to also recover Rhoades’ Theorem that 
the Coxeter element (1, 2, . . . , n) ∈ Sn acts on the Kazhdan-Lusztig basis of a Specht 
module associated to a rectangular partition by the promotion operator. This point of 
view led us to generalise Rhoades’ result to arbitrary partitions [19], and isolate the class 
of permutations (the separable permutations) for which such results can hold [18].
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2. Background on quantum groups

2.1. The quantum group

In this article we work with a simply-laced quantum group Uq(g) of finite type. Recall 
that we have an associated Cartan datum and a root datum, which consists of:

• A finite set I,
• a symmetric bilinear form (·, ·) on ZI satisfying (i, i) = 2 and (i, j) ∈ {0, −1} for all 

i (= j ∈ I,
• a free Z-module X, called the weight lattice, and
• a choice of simple roots {αi}i∈I ⊂ X and simple coroots {hi}i∈I ⊂ X∨ = Hom(X, Z)

satisfying 〈hi, αj〉 = (i, j), where 〈·, ·〉 : X∨ ×X → Z is the natural pairing.

The quantum group Uq(g) is the unital, associative, C(q) algebra generated by 
Ei, Fi, Kh, (i ∈ I, h ∈ X∨) subject to relations:

(1) K0 = 1 and KhKh′ = Kh+h′ for any h, h′ ∈ X∨,
(2) KhEi = q〈h,αi〉EiKh for any i ∈ I, h ∈ X∨,
(3) KhFi = q−〈h,αi〉FiKh for any i ∈ I, h ∈ X∨,
(4) EiFj − FjEi = δij

Ki−K−1
i

q−q−1 , where we set Ki = Khi , and
(5) for all i (= j,

∑

a+b=−〈hi,αj〉+1
(−1)aE(a)

i EjE
(b)
i = 0 and

∑

a+b=−〈hi,αj〉+1
(−1)aF (a)

i FjF
(b)
i = 0,

where E(a)
i = Ea

i /[a]!, F
(a)
i = F a

i /[a]!, and [a]! =
∏a

i=1
qi−q−i

q−q−1 .

We let aij = (i, j), so that (aij)i,j∈I is a Cartan matrix. Given λ ∈ X we abbreviate 
λi = 〈hi, λ〉, and let

X+ = {λ ∈ X : λi ≥ 0 for all i ∈ I}

be the set of dominant weights.
Let R ⊂ X be the root lattice, defined as the Z-span of the simple roots, and let 

R+ ⊂ R be the N-span of the simple roots. We define the usual preorder - on X by 
λ . µ if λ −µ ∈ R+. For µ ∈ R let ht(µ) denote the height of µ, i.e. ht(

∑
i aiαi) =

∑
i ai.

When convenient, we also view I as the Dynkin diagram of g, and make reference to 
subdiagrams or diagram automorphisms of I.
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2.2. Braid group actions on integrable representations of Uq(g)

Given a Uq(g)-module V and µ ∈ X we let Vµ denote the µ weight space of V . For 
λ ∈ X+ we let L(λ) be the irreducible representation of Uq(g) of highest weight λ. Let 
Isoλ(V ) denote the λ-isotypic component of V . We say that V is isotypic if there exists 
λ ∈ X+ such that V = Isoλ(V ).

The representation L(λ) has a canonical basis, which we denote by B(λ) [36]. We 
let vλ (respectively vlowλ ) denote the unique highest weight (respectively lowest weight) 
element of B(λ).

Let B = BI denote the braid group of type I, which is generated by θi (i ∈ I) subject 
to the braid relations:

θiθj = θjθi, if (i, j) = 0, and

θiθjθi = θjθiθj , if (i, j) = −1.

Let W = WI be the Weyl group of type I, which has generators si (i ∈ I) subject to 
the braid relations, and in addition the quadratic relation s2

i = 1. Let w0 ∈ W be the 
longest element. Recall that W acts on X via si · λ = λ − 〈hi, λ〉αi. We define τ : I → I

by the equality ατ(i) = −w0(αi) for any i ∈ I.
To J ⊂ I a subdiagram, we associate WJ ⊂ W the parabolic subgroup, wJ

0 ∈ WJ its 
longest element, and τJ : I → I the bijection given by

ατJ (i) =
{
−wJ

0 (αi) if i ∈ J,

αi otherwise.

For any w ∈ W we can consider its positive lift θw ∈ B, where θw = θi1 · · · θi! and 
w = si1 · · · si! is any reduced decomposition.

Let V be an integrable representation of Uq(g). A fundamental structure of V , discov-
ered by Lusztig, is that it admits (several) braid group symmetries, sometimes referred 
to as the “quantum Weyl group actions”. To recall this, let 1µ denote the projection onto 
the µ weight space. For each i ∈ I we define ti : V → V by:

ti1µ =
∑

b−a=(µ,αi)
(−q)−bE(a)

i F (b)
i 1µ. (2.1)

Note that the indexing set of this sum is infinite, but the sum itself is finite on V . In the 
notation of [36], ti = t′′i,−1. (Note that the formula given in [36] is more complicated. This 
simpler form was initially observed in [16] in the non-quantum setting, and generalised 
in [12] to the quantum setting.). The assignment θi '→ ti defines an action of B on V , 
and so we can unambiguously write tw for any w ∈ W .
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3. Categorical representations of Uq(g)

3.1. Notation

Fix a field k of any characteristic. In this paper we will be concerned mostly with 
abelian k-linear categories C. We will assume throughout that each block of C is a finite 
abelian category [39, Definition 1.8.6].

Recall that a category A is graded if it is equipped with an auto-equivalence 〈1〉 : A →
A called the “shift functor”. We let 〈'〉 be the auto-equivalence obtained by applying the 
shift functor ' times. We denote by Irr(A) the set of equivalence classes of simple objects 
of A up to shift.

A functor F : A → A′ between graded categories is graded if it commutes with the 
shift functors. We denote by [A]Z the Grothendieck group of an abelian category A. If 
A is graded we denote by [A]Z[q,q−1] the quotient of [A]Z ⊗Z Z[q, q−1] by the additional 
relation q[M ] = [M〈−1〉]. This quotient is naturally a Z[q, q−1]-module. Set

[A]C = [A]Z ⊗Z C,

[A]C(q) = [A]Z[q,q−1] ⊗Z[q,q−1] C(q).

For a k-algebra A, we let A−mod be the category of finitely generated A-modules, 
and if A is Z-graded, we let A−modZ be the category of finitely generated Z-graded 
modules. These are naturally k-linear abelian categories.

3.2. Definition

In this section we introduce our main objects of study: representations of the 2-
quantum group on abelian categories, which we refer to as “categorical representations” 
of Uq(g). This definition of the categorified quantum groups and their categorical actions 
is originally due to Rouquier and Khovanov-Lauda [28,29,41].

In the literature, there are a number of slightly different-looking examples of 2-
representations, depending not just on whether or not one is working with the Khovanov-
Lauda or Rouquier 2-categories, but also depending on whether or not one is interested 
in categorifications of representations of Uq(g) or of U(g). At the categorical level, the 
difference between Uq(g) or of U(g) arises from grading considerations; in categorifica-
tions of representations of Uq(g), one works with categories enriched in graded vector 
spaces, whereas in categorifications of representations of U(g) no such grading is needed.

Fortunately, the different notions of categorical representations - and in particular 
relationships between the Rouquier and Khovanov-Lauda frameworks in both graded 
and ungraded settings, have been brought in line by work of Cautis-Lauda, who proved 
that in the graded setting, integrable 2-representations of the Rouquier 2-category induce 
2-representations of the Khovanov-Lauda 2-category [13], and by work of Brundan [6], 
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who proved that the underlying ungraded 2-categories of Rouquier and Khovanov-Lauda 
are equivalent.

The important point for us is that all our theorems, including our main results (Theo-
rem 6.4 and Theorem 6.8), remain true in any 2-representation of the Khovanov-Lauda-
Rouqier 2-category, in either the graded or ungraded setting. Since the compatibility of 
the internal grading with the braid group is of some independent combinatorial interest, 
we elect to keep track of the gradings in the rest of the paper, and leave it to the reader 
to verify that the arguments go through while ignoring the gradings and working in 
the setup of, e.g. Brundan [6]. To that end, we have chosen to follow the notation and 
conventions of Cautis-Lauda below.

A categorical representation of Uq(g) consists of the following data:

• A family of graded abelian k-linear categories Cµ indexed by µ ∈ X. We refer to 
each Cµ as a weight category.

• Exact graded functors Ei1µ : Cµ → Cµ+αi and Fi1µ : Cµ → Cµ−αi , for i ∈ I and 
µ ∈ X. We refer to Ei, Fi as Chevalley functors.

• A collection of natural transformations between these functors. We won’t be us-
ing directly these natural transformations in this work, so refer the reader to [13, 
Definition 1.1] for their definition.

This data is subject to the conditions spelled out in items (1)-(5) of [13, Definition 1.1]. 
We only record those that are relevant for us:

(1) The functors Ei1µ and Fi1µ are biadjoint up to a specified degree shift (see (3.1)
below).

(2) The powers of Ei carry an action of the KLR algebra associated to Q, where Q
denotes a choice of units (tij)i(=j∈I in k×. These units satisfy some restrictions which 
are not relevant for us.

(3) We have the following isomorphisms:

FiEi1µ ∼= EiFi1µ ⊕[−〈hi,µ〉] 1µ, if 〈hi, µ〉 ≤ 0,

EiFi1µ ∼= FiEi1µ ⊕[〈hi,µ〉] 1µ, if 〈hi, µ〉 ≥ 0,

EiFj1µ ∼= FjEi1µ.

This notation is explained as follows: for a Laurent polynomial f =
∑

faqa, ⊕fA is 
a direct sum over a ∈ Z of fa copies of A〈a〉, and [n] := qn−1 + qn−3 + · · · + q1−n.

Usually we just say that C =
⊕

µ Cµ is a categorical representation of Uq(g) (the 
remaining data is implicit). Given an integrable Uq(g)-module V , we say that C is a 
categorification of V if C is a categorical representation of Uq(g) such that [C]C(q) ∼= V

as Uq(g)-modules.
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An additive categorification is a categorical representation on a graded additive k-
linear category V satisfying the same conditions as above, except the Chevalley functors 
are of course only required to be additive. We let Vi be the idempotent completion of V.

Given an abelian category C, we consider the additive category C−proj defined as the 
full subcategory of projective objects in C. Note that if C is a categorical representation 
of Uq(g), then C−proj naturally inherits the structure of an additive categorification.

As a consequence of this definition, and in particular condition (2), there exist divided 
power functors E(r)

i 1λ ⊂ Er
i1λ, F

(r)
i 1λ ⊂ Fr

i1λ which categorify the usual divided powers 
on the level of the quantum group. Again, we refer the reader to [13] and references 
therein for further details. We note that their adjoints are related as follows:

(E(r)
i 1λ)R ∼= F(r)

i 1λ+rαi〈r(λi + r)〉, (3.1)

(E(r)
i 1λ)L ∼= F(r)

i 1λ+rαi〈−r(λi + r)〉. (3.2)

3.3. Crystals

We recall the definition of a crystal.

Definition 3.3 ([27]). A g-crystal is a finite set B together with maps:

ẽi, f̃i : B → B 3 {0}, εi,ϕi : B → Z, wt : B → X

for all i ∈ I, such that:

(1) for any b, b′ ∈ B, ẽi(b) = b′ if and only if b = f̃i(b′),
(2) for all b ∈ B, if ẽi(b) ∈ B then wt(ẽi(b)) = wt(b) + αi, and if f̃i(b) ∈ B then 

wt(f̃i(b)) = wt(b) − αi,
(3) for all b ∈ B, εi(b) = max{n ∈ Z : ẽni (b) (= 0}, ϕi(b) = max{n ∈ Z : f̃n

i (b) (= 0},
(4) for all b ∈ B, ϕi(b) − εi(b) = 〈wt(b), hi〉.

Any Uq(g)-representation V has a corresponding g-crystal B = BV . The underlying 
set of B is in natural bijection with a particular basis of V (the “global crystal basis” 
or “canonical basis”). The maps ẽi, f̃i are related to the raising and lowering Chevalley 
operators; vaguely speaking they encode information about the leading terms of the 
Chevalley operators acting on this basis. In particular, for an integral dominant weight 
λ, the canonical basis B(λ) of L(λ) carries a natural crystal structure [20].

The crystal of V naturally arises via categorical representation theory. Namely, as 
we describe in the next proposition, if C is a categorification of V , then Irr(C) carries a 
crystal structure isomorphic to BV . This follows from [16, Proposition 5.20] and [32], 
and is explained in detail in [7].

Proposition 3.4. ([7, Theorem 4.31]) The set Irr(C) together with:
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• Kashiwara operators defined as Ẽi(X) = socEi(X), F̃i(X) = soc Fi(X) for X ∈
Irr(C),

• wt(X) = µ for X ∈ Cµ, and
• ε(X) = max{n | En

i (X) (= 0}, and ϕ(X) = max{n | Fn
i (X) (= 0},

is a g-crystal isomorphic to the crystal B = BV .

3.4. Jordan-Hölder series

A categorification of a simple representation (respectively an isotypic representation) 
is called a simple categorification (respectively an isotypic categorification). There is a 
distinguished categorification of L(λ) called the minimal categorification and denoted 
L(λ) [16,26,28,41,50]. It is characterized by the fact that L(λ)λ ∼= L(λ)w0(λ) ∼= k−modZ. 
We let klow ∈ L(λ)w0(λ), khigh ∈ L(λ)λ be the generators.

The Jordan-Hölder Theorem for categorical representations will play an important role 
in our work. This was originally developed by Rouquier for additive categorifications [41], 
and in this section we transfer these results to the abelian setting. To set this up, recall 
that given finite abelian k-linear categories A, B the Deligne tensor product A ⊗k B
is universal for the functor assigning to every such abelian category C the category 
of bilinear bifunctors A × B → C right exact in both variables [39, Definition 1.11.1]. 
The tensor product is again a finite abelian k-linear category, and there is a bifunctor 
A × B → A ⊗k B, (X, Y ) '→ X ⊗ Y . This construction enjoys the following properties:

(1) The tensor product is unique up to unique equivalence,
(2) for finite k-algebras A, B we have that (A−mod) ⊗k (B−mod) ∼= (A ⊗k B)−mod, 

and
(3) HomA⊗kB(X1 ⊗ Y1, X2 ⊗ Y2) ∼= HomA(X1, Y1) ⊗ HomB(X2, Y2).

Let C be a categorical representation, and let A be a finite k-linear abelian cate-
gory. We can endow C ⊗k A with a structure of a categorical representation, by setting 
(C ⊗k A)µ = Cµ ⊗k A, defining Chevalley functors Ei1µ ⊗ 1A, etc. If C is a simple 
categorification, then clearly C⊗kA is an isotypic categorification. Conversely, we have:

Lemma 3.5. Let C be an isotypic categorification of type λ ∈ X+. Then there exists an 
abelian category A such that C ∼= L(λ) ⊗k A.

Proof. Since C is an isotypic categorification, so is C−proj. By Rouquier’s Jordan-Hölder 
series for additive categorifications [41, Theorem 5.8], there exists an additive k-linear 
category M such that

C−proj ∼= (L(λ)−proj ⊗k M)i.
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Note that no filtration appears here since, in the notation of [41], (C−proj)lw−λ =
(C−proj)−λ.

Let {Pi} (respectively {Qj}) be a complete list of the projective indecomposable 
objects of L(λ) (respectively M). Let P =

⊕
i,j Pi ⊗ Qj , and let B = EndC(P )op. By 

Morita theory, B−mod ∼= C. On the other hand,

B ∼= EndL(λ)(
⊕

i

Pi)op ⊗ EndM(
⊕

j

Qj)op.

Since L(λ) ∼= EndL(λ)(
⊕

i Pi)op−mod we have the desired result with A =
EndM(

⊕
j Qj)op−mod. !

Theorem 3.6. Let C be a categorical representation of Uq(g). Then there exists a filtration 
by Serre subcategories

0 = C0 ⊂ C1 ⊂ · · · ⊂ Cn = C, (3.7)

such that for each i: Ci is a subrepresentation of C, Ci/Ci−1 is a simple categorification 
of type λi ∈ X+, and the list of highest weights is weakly increasing so that λi ≺ λj =⇒
i < j.

Proof. The g-crystal Irr(C) is isomorphic to a finite direct sum of irreducible crystals 
B(λ) for various λ, i.e. we have an isomorphism

Irr(C) ∼=
⊕

λ∈X+

B(λ)⊕mλ ,

where mλ ≥ 0 and only finitely many are nonzero.
Define M = {λ ∈ X+ | mλ (= 0}, and let λ ∈ M . We claim that there exists a highest 

weight simple object L ∈ Cλ. Indeed, otherwise for any simple object L ∈ Cλ there exists 
i ∈ I such that Ei(X) (= 0. This implies that soc(Ei(X)) (= 0, and by Proposition 3.4 we 
conclude that Irr(C) has no highest weight elements of weight λ, a contradiction.

Now take λ ∈ M which is minimal with respect to 6, and let L ∈ Cλ be a highest 
weight object. Let C1 be the Serre subcategory of C generated by objects

{Fi1 · · ·Fi!(L) | ij ∈ I, ' ≥ 0}. (3.8)

By the exactness and bi-adjunction of the Chevalley functors, C1 is a subrepresentation of 
C. Moreover it categorifies L(λ). Indeed, by our choice of λ there cannot be any highest 
weight objects with weight ≺ λ occurring in C1, and by construction the only simple 
object in (C1)λ is L.

Next consider the categorical representation C/C1 and repeat this construction. This 
produces a Serre subcategory C′

2 ⊂ C/C1 which is again a simple categorification. Let 
π : C → C/C1 be the natural quotient functor, and define C2 = π−1(C′

2). Clearly, we 



I. Halacheva et al. / Advances in Mathematics 429 (2023) 109190 13

have that C1 ⊂ C2, C2 is Serre, it is a subrepresentation, and C2/C1 ∼= C′
2 is a simple 

categorification.
Iterating this process produces a filtration of C such that each composition factor 

is a simple categorification, and the highest weights of the subquotients are weakly 
increasing. !

Remark 3.9. Note that the construction in the proof of Theorem 3.6 can produce also an 
isotypic filtration with similar properties. Namely, if λ1, . . . , λN is a list of the distinct
isotypic types appearing in [C]C(q), and we choose any ordering of this list so that λi ≺
λj =⇒ i < j, then there is a filtration 0 = C′

0 ⊂ C′
1 ⊂ · · · ⊂ C′

N = C such that C′
k/C′

k−1
categorifies the isotypic component of [C]C(q) of highest weight λk. To construct this 
isotypic filtration, consider the Jordan-Hölder filtration from the theorem. From the 
proof of Theorem 3.6, it’s easy to see that one can ensure that the subquotients which 
categorify the same simple representations appear in sequence. Assuming then that our 
Jordan-Hölder filtration satisfies this property, a coarsening of it is the desired isotypic 
filtration.

Remark 3.10. Note that one can read off the isotypic filtration of C from the crystal 
structure on Irr(C). Indeed, suppose that Irr(C) decomposes into components

Irr(C) = X(λ1) 3 · · · 3 X(λN ),

where λ1, . . . , λN ∈ X+ are distinct dominant integral weights, and X(λi) is a disjoint 
union of copies of B(λi). Further, we arrange the weights as above so that λi ≺ λj =⇒
i < j. Let Ci be the Serre subcategory of C generated by simple objects L such that [L] ∈
X(λj), where j ≤ i. Then it follows from Remark 3.9 that {0} ⊂ C1 ⊂ C2 ⊂ · · · ⊂ CN is 
an isotypic filtration of C.

3.5. The categorical braid group action

Let C be a categorical representation of Uq(g), µ ∈ X and i ∈ I. We define a complex 
of functors Θi1µ, supported in nonpositive cohomological degrees, where for r ≥ 0 the 
−r component is

(Θi1µ)−r =
{

E(−µi+r)
i F(r)

i 1µ〈−s〉 if µi ≤ 0,
F(µi+r)
i E(r)

i 1µ〈−r〉 if µi ≥ 0.

The differential dr : (Θi1µ)−r → (Θi1µ)−r+1 is defined using the counits of the bi-
adjunctions relating Ei and Fi (see [8, Section 4] for details). This produces a functor 
Θi1µ : Db(Cµ) → Db(Csi(µ)), which following Chuang and Rouquier we call the Rickard 
complex.

It’s straightforward to verify that the Rickard complex Θi1µ categorifies Lusztig’s 
braid group operators ti1µ ([8, Section 2]). On the level of categories we have the following 
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two theorems of Chuang-Rouquier and Cautis-Kamnitzer, which are the fundamental 
results about Rickard complexes. Note that the latter theorem was conjectured in [41, 
Conjecture 5.19].

Theorem 3.11. [16, Theorem 6.4] For any µ, i, Θi1µ : Db(Cµ) → Db(Csi(µ)) is an equiv-
alence of triangulated categories.

Theorem 3.12. [11, Theorem 6.3] The Rickard complexes satisfy the braid relations:

ΘiΘj1µ ∼= ΘjΘi1µ if (i, j) = 0,
ΘiΘjΘi1µ ∼= ΘjΘiΘj1µ if (i, j) = −1,

thereby defining a weak action of B on Db(C).

This action is “weak” since we don’t make any claim on the canonicity of the functorial 
isomorphisms. Nevertheless, for w ∈ W we define Θw1µ := Θi1 ◦ · · · ◦ Θi!1µ, where 
w = si1 · · · si! is a reduced expression. Thus Θw1µ is defined up to isomorphism, but not 
canonical isomorphism. Luckily, everything we do in this paper only requires Θw1µ to 
be defined up to isomorphism.

As a consequence of their proof of Theorem 3.11, Chuang and Rouquier show that 
the inverse of Θi1µ is its right adjoint. We denote this functor by Θ′

i1µ : Db(Cµ) →
Db(Csi(µ)), so that ΘiΘ′

i1µ
∼= Θ′

iΘi1µ ∼= 1µ. As a complex of functors, Θ′
i1µ is supported 

in nonnegative cohomological degrees, where for r ≥ 0 the r component is

(Θ′
i1µ)r =

{
E(r)
i F(µi+r)

i 1µ〈r(−2µi − 2r + 1)〉 if µi ≥ 0,
F(r)
i E(−µi+r)

i 1µ〈r(−2µi + 2r + 1)〉 if µi ≤ 0.

4. Perverse equivalences

4.1. General definition

Let T be a triangulated category with shift functor [1] : T → T . In the cases of most 
interest to us, T is a subcategory of a derived category, in which case [1] is the homological 
shift functor. Suppose T has a t-structure t = (T ≤0, T ≥0), with heart T ♥ = T ≤0 ∩ T ≥0

[4]. Recall that a triangulated functor F : T → S between triangulated categories with 
t-structure is t-exact if F (T ≤0) ⊆ S≤0 and F (T ≥0) ⊆ S≥0. We let F [p] : T → S denote 
the pre-composition of F with the p-shift [p].

Now let S ⊂ T be a thick triangulated subcategory, and consider the quotient func-
tor Q : T → T /S. Following [15], we say that t is compatible with S if tT /S =
(Q(T ≤0), Q(T ≥0)) is a t-structure on T /S. By [15, Lemmas 3.3 & 3.9], if t is com-
patible with S then (T /S)♥ = T ♥/T ♥∩S, and tS = (S ∩T ≤0, S ∩T ≥0) is a t-structure 
on S such that S♥ = T ♥ ∩ S.
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Now suppose that T , T ′ are two triangulated categories with t-structures t, t′. Suppose 
further that we have filtrations by thick triangulated subcategories:

0 ⊂ T0 ⊂ T1 ⊂ · · · ⊂ Tr = T , 0 ⊂ T ′
0 ⊂ T ′

1 ⊂ · · · ⊂ T ′
r = T ′,

such that for every i, t is compatible with Ti and t′ is compatible with T ′
i . By [15, Lemma 

3.11], tTi is also compatible with Ti−1, and hence Ti/Ti−1 inherits a natural t-structure. 
Let p : {0, . . . , r} → Z. The data (T•, T ′

• , p) is termed a perversity triple.
Although Chuang and Rouquier didn’t formulate perverse equivalences for graded 

categories, it is straightforward to extend their definitions to this setting.

Definition 4.1. A graded equivalence of graded triangulated categories F : T → T ′ is a
(graded) perverse equivalence with respect to (T•, T ′

• , p) if for every i,

(1) F(Ti) = T ′
i , and

(2) the induced equivalence F[−p(i)] : Ti/Ti−1 → T ′
i /T ′

i−1 is t-exact.

For brevity, we say F is perverse if it is a graded perverse equivalence with respect 
to some perversity datum. Since we will be working exclusively in the graded setting, a 
perverse equivalence for us will always mean a graded perverse equivalence.

A perverse equivalence F : T → T ′ induces a bijection ϕF : Irr(T ♥) → Irr(T ′♥). 
Indeed, by (2) F[−p(i)] induces a bijection Irr(T ♥

i ) \ Irr(T ♥
i−1) → Irr(T ′♥

i ) \ Irr(T ′♥
i−1), and 

these yield ϕF.
Although the construction of ϕF depends on a choice of perversity triple, the resulting 

bijection does not when T ♥, T ′♥ have finitely many simple objects. This follows from 
the following lemma.

Lemma 4.2 ([33], Lemma 2.4). Suppose that T ♥, T ′♥ have finitely many simple objects, 
and for i = 1, 2 let Fi : T → T ′ be a perverse equivalence with respect to the perversity 
datum (Ti,•, T ′

i,•, pi). If the induced maps [F1], [F2] : [T ]Z → [T ′]Z coincide then ϕF1 =
ϕF2 .

Corollary 4.3. Suppose that T ♥, T ′♥ have finitely many simple objects, and F : T → T ′

is perverse. Then ϕF is independent of the choice of perversity triple.

Proof. Suppose F is a graded perverse equivalence with respect to two choices of perver-
sity triples (Ti,•, T ′

i,•, pi), i = 1, 2. Now apply the lemma. !

The proofs of the following lemmas are straightforward.

Lemma 4.4. Suppose F : T → T ′ is perverse. Then for any ' ∈ Z, F['] is also perverse 
and ϕF[$] = ϕF.
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Lemma 4.5. Suppose F : T → T ′ is a perverse equivalence with respect to (T•, T ′
• , p), 

and G : T ′ → T ′′ is a perverse equivalence with respect to (T ′
• , T ′′

• , q). Then G ◦ F is a 
perverse equivalence with respect to (T•, T ′′

• , p + q), and ϕG◦F = ϕG ◦ ϕF.

Lemma 4.6. Let T , T ′ be triangulated with t-structures t, t′, and let S ⊂ T , S ′ ⊂ T ′ be 
thick triangulated subcategories such that t is compatible with S and t′ is compatible with 
S ′. Suppose further that F : T → T ′ is a perverse equivalence with respect to (T•, T ′

• , p), 
and F(S) = S ′.

Define Si = S ∩ Ti, S ′
i = S ′ ∩ T ′

i and (T /S)i = Q(Ti), (T ′/S ′)i = Q′(T ′
i ). Let G : S →

S ′ and H : T /S → T ′/S ′ be the induced equivalences. Then:

(1) G is a perverse equivalence with respect to (S•, S ′
•, p), and ϕG = ϕF|IrrS♥ .

(2) H is a perverse equivalence with respect to ((T /S)•, (T ′/S ′)•, p), and ϕH =
ϕF|IrrT ♥\IrrS♥ .

Lemma 4.7 ([33], Lemma 2.4). Suppose F : T → T ′ is perverse, and G (respectively G′) 
is an autoequivalence of T (respectively T ′) which is t-exact up to shift. Then G′ ◦ F ◦ G
is perverse, and ϕG′◦F◦G = ϕG′ ◦ ϕF ◦ ϕG′ .

Note that in [33, Lemma 2.4] is stated for functors which are t-exact. Our formulation 
for functors which are t-exact up to shift follows by Lemma 4.4.

4.2. Derived categories of graded abelian categories

We now specialise to the case of derived categories. We recall that if A is an 
abelian category, then the bounded derived category Db(A) has a standard t-structure 
(Db(A)≤0, Db(A)≥0) whose heart is A.

Given a B ⊂ A a Serre subcategory, we let Db
B(A) ⊂ Db(A) denote the thick subcat-

egory consisting of complexes with cohomology supported in B. The category Db
B(A)

inherits a natural t-structure from the standard t-structure on Db(A): Db
B(A)≤0 =

Db
B(A) ∩ Db(A)≤0 and Db

B(A)≥0 = Db
B(A) ∩ Db(A)≥0. The heart of the t-structure 

on Db
B(A) is B. Moreover, if C ⊂ B is another Serre subcategory then the t-structure on 

Db
B(A) is compatible with Db

C(A). In particular, the quotient Db
B(A)/Db

C(A) inherits a 
natural t-structure whose heart is B/C.

For the remainder of this section let A, A′ be graded abelian categories. In the setting 
of derived categories of graded abelian categories, a perverse equivalence can be packaged 
as follows. We can encode a perversity triple (A•, A′

•, p) using filtrations on the abelian 
categories: A• and A′

• are filtrations by shift-invariant Serre subcategories:

0 = A−1 ⊂ A0 ⊂ A1 ⊂ . . . ⊂ Ar = A, 0 = A′
−1 ⊂ A′

0 ⊂ A′
1 ⊂ . . . ⊂ A′

r = A′.

Then a graded equivalence F : Db(A) → Db(A′) is a perverse with respect to (A•, A′
•, p)

if conditions (1) and (2) of Definition 4.1 hold for Ti = Db
Ai

(A) and T ′
i = Db

A′
i
(A′).
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As above, a graded perverse equivalence F : Db(A) → Db(A′) induces a bijection 
ϕF : Irr(A) → Irr(A′).

The following standard lemma will be useful in the proof of our main result.

Lemma 4.8. Let A, A′ be abelian categories, and B, B′ Serre subcategories. Let a ≤ b be 
integers, and Fi : A → A′ be exact functors for a ≤ i ≤ b. Suppose these functors fit into 
a complex F = (Fa → Fa+1 → · · · → Fb), defining a functor

F : Db(A) → Db(A′).

If Fi(B) ⊂ B′ for all a ≤ i ≤ b, then F(Db
B(A)) ⊆ Db

B′(A′).

5. Some commutation relations

We fix throughout a categorical representation C of Uq(g). Recall that w0 ∈ W is 
the longest word, and let w0 = si1si2 · · · sir be a reduced expression. We consider the 
composition of Rickard complexes which categorifies the positive lift in B of w0:

Θw01λ = Θi1 · · ·Θir1µ : Db(Cλ) → Db(Cw0(λ)).

In preparation for the proofs our main results in the next section, we prove some com-
mutation relations between Θw0 and the Chevalley functors.

5.1. Cautis’ relations

To begin, we recall some relations of Cautis (building on work with Kamnitzer [11]). 
Although they are stated only for type A, their proofs apply to any simply-laced Lie 
algebra.

Lemma 5.1 (Lemma 4.6, [8]). For any i ∈ I, λ ∈ X we have the following relations:

ΘiEi1λ ∼= FiΘi1λ[1]〈λi〉,

ΘiFi1λ ∼= EiΘi1λ[1]〈−λi〉.

Remark 5.2. The careful reader will notice that actually Cautis proves Lemma 5.1 under 
certain conditions on λ. For instance, the first relation is only proven in the case when 
λi ≤ 0. To deduce the general case from this, one can rewrite the relation as EiΘ−1

i
∼=

Θ−1
i Fi[1]〈λi〉. Now recall that there is an anti-automorphism σ̃ on the sl2 2-category 

which on objects maps n '→ −n [30, Section 5.6]. This anti-automorphism maps Θ−1
i to 

Θi, and hence applying it to the relation above we deduce the desired relation in the 
case when λi ≥ 0.
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Alternatively, in a recent preprint Vera proves a version of the relation between the 
Rickard complex and Chevalley functors in the (bounded homotopy category of the) sl2
2-category, which of course implies it also in any 2-representation [49].

Next we recall the categorical analogues of commutators [Ei, Ej ] acting on represen-
tations of Uq(g). Given nodes i, j ∈ I such that (i, j) = −1 and λ ∈ X, define complexes 
of functors

Eij1λ : Db(Cλ) → Db(Cλ+αi+αj ), Eij1λ = EiEj1λ〈−1〉 → EjEi1λ,

Fij1λ : Db(Cλ) → Db(Cλ−αi−αj ), Fij1λ = FiFj1λ → FjFi1λ〈1〉.

In both instances the differential is given by the element Tij arising from the KLR 
algebra, and the left term of the complex is in homological degree zero [8].

Lemma 5.3 (Lemma 5.2, [8]). Let i, j ∈ I, λ ∈ X and suppose (i, j) = −1. We have the 
following isomorphisms:

EijΘi1λ ∼=
{

ΘiEj if λi > 0,
ΘiEj [1]〈−1〉 if λi ≤ 0

FijΘi1λ ∼=
{

ΘiFj if λi ≥ 0,
ΘiFj [−1]〈1〉 if λi < 0

1λΘjEij
∼=

{
EiΘj if λj < 0,
EiΘj [1]〈−1〉 if λj ≥ 0

1λΘjFij
∼=

{
FiΘj if λj ≤ 0,
FiΘj [−1]〈1〉 if λj > 0

5.2. Marked words

We now introduce a combinatorial set-up which we’ll use to prove Proposition 5.9
below. A marked word is a word in the elements of I with one letter marked: a =
(i1, i2, ..., i$, ..., in). From a we can define a functor and an element of W :

Φ(a) = Θi1 · · ·Θi!−1Fi!Θi!1 · · ·Θin1λ,

w(a) = si1 · · · sin .

Note that unlike Φ(a), w(a) forgets the location of the marked letter. We say that a is
reduced, if the corresponding unmarked word is a reduced expression for w(a).

We will apply braid relations to marked words. Away from the marked letter these 
operate as usual, and at the marked letter we have:
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(. . . , k, ', . . .) ↔ (. . . , ', k, . . .), if (k, ') = 0 and, (5.4)

(. . . , ', k, ', . . .) ↔ (. . . , k, ', k, . . .), if (k, ') = −1. (5.5)

For marked words a, b we write a ∼ b if they are related by a sequence of braid relations.

Lemma 5.6. Let a, b be marked words which differ by a single braid relation. Then there 
exists k ∈ {0, ±1} such that Φ(a) ∼= Φ(b)[k]〈−k〉.

Proof. If the relation doesn’t involve the marked letter then Φ(a) ∼= Φ(b) since Rickard 
complexes satisfy the braid relations [11, Theorem 2.10]. Suppose then that the relation 
does involve the marked letter. If (j, ') = 0 the result follows from the fact that ΘjF$

∼=
F$Θj . Otherwise (j, ') = −1. Set µ = s$sj(λ) − αj . Applying Lemma 5.3 (twice) we 
deduce that

1µΘ$ΘjF$1λ = Θ$ΘjF$1λ ∼=
{

Θ$Fj$Θj1λ, if λj ≥ 0,
Θ$Fj$Θj1λ[1]〈−1〉, if λj < 0,

∼=






FjΘ$Θj1λ[−1]〈1〉 if λj ≥ 0, µ$ > 0,
FjΘ$Θj1λ[1]〈−1〉 if λj < 0, µ$ ≤ 0,
FjΘ$Θj1λ otherwise.

Hence the result follows. !

Corollary 5.7. Let a, b be marked words such that a ∼ b. Then there exists an integer k
such that Φ(a) ∼= Φ(b)[k]〈−k〉.

Lemma 5.8. Let a = (i1, ..., in, ') and b = ('′, i1, ..., in) be reduced marked words such 
that w(a) = w(b). Then a ∼ b.

Proof. We prove the claim by induction on n. Since w(a) = w(b) there is a Matsumoto 
sequence of length M relating the unmarked words a = (i1, ..., in, ') and b = ('′, i1, ..., in). 
Let a0 = a → a1 → · · · → aM = b denote the resulting sequence of unmarked words, 
starting at a and ending b. Let ar+1 be the first word in this sequence whose last entry 
is not '. In other words, the first r steps in the sequence do not involve the last entry of 
a, but the (r + 1)st step does.

We will now consider the same sequence of steps, but applied to the marked words. 
We then obtain a sequence of marked words a0 = a → a1 → · · · . Further, we know that 
ar = (j1, . . . , jn, ') for some j1, . . . , jn, and the next step involves the marked letter.

If the (r + 1)st step is an application of (5.5) then jn−1 = ' and the step is:

ar = (j1, . . . , jn−2, ', jn, ') → ar+1 = (j1, . . . , jn−2, jn, ', jn).
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Let b′ := ('′, j1, ..., jn−2, ', jn), i.e. b′ is obtained from b by applying the first r steps to 
its (last n) entries as were used for the (first n) entries of a. Note that ar+1 and b′ are 
reduced marked words such that w(ar+1) = w(b′), and both end in (', jn). Hence, if we 
delete these last two entries we obtain two reduced marked words a′′ = (j1, ..., jn−2, jn)
and b′′ = ('′, j1, ..., jn−2) such that w(a′′) = w(b′′). By induction a′′ ∼ b′′ and therefore 
ar+1 ∼ b′. Since clearly b′ ∼ b, we have our desired result:

a ∼ ar ∼ ar+1 ∼ b′ ∼ b.

If the (r + 1)st step is an application of (5.4) then the step is:

ar = (j1, . . . , jn−1, jn, ') → ar+1 = (j1, . . . , jn−1, ', jn).

Note that ar+1 and b′ := ('′, j1, ..., jn−1, jn) are reduced marked words such that 
w(ar+1) = w(b′), and both end in jn. Hence we can delete this last entry and apply a 
similar analysis as above. !

5.3. The relation between Θw0 and Chevalley functors

We now have the machinery in place to prove our main relation.

Proposition 5.9. For any i ∈ I, λ ∈ X we have the following relations:

Θw0Ei1λ ∼= Fτ(i)Θw01λ[1]〈λi〉,

Θw0Fi1λ ∼= Eτ(i)Θw01λ[1]〈−λi〉.

Proof. We’ll prove the first relation, the second being entirely analogous. For two functors 
F, G we write F ≡ G if there exist integers ', k such that F ∼= G[']〈k〉.

We first show that Θw0Ei ≡ Fτ(i)Θw0 by induction on the rank of g. The base case, 
when g = sl2, follows from Lemma 5.1. For the inductive step let J ⊂ I be a strict 
subdiagram containing i. Recall the bijection τJ : I → I induced by the longest element 
wJ

0 ∈ WJ . Let u = w0(wJ
0 )−1 and let u = si1 · · · sin be a reduced expression. Define two 

marked words:

a = (i1, . . . , in, τJ(i)),
b = (τ(i), i1, . . . , in).

Note that w(a) = w(b). By the inductive hypothesis we have ΘwJ
0
Ei ≡ FτJ (i)ΘwJ

0
, and 

therefore

Θw0Ei ≡ ΘuΘwJ
0
Ei ≡ ΘuFτJ (i)ΘwJ

0
≡ Φ(a)ΘwJ

0
.
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Note that a, b satisfy the hypothesis of Lemma 5.8, so by Lemmas 5.7 and 5.8 we have 
that Φ(a) ≡ Φ(b), and hence Θw0Ei ≡ Φ(b)ΘwJ

0
≡ Fτ(i)Θw0 .

We now know there exist integers k, ' such that Θw0Ei1λ ∼= Fτ(i)Θw01λ[']〈k〉, and it 
remains to show that ' = 1, k = λi. Let u = w0si and let u = si1 · · · sin be a reduced 
expression. Define two marked words:

a = (i1, . . . , in, i),
b = (τ(i), i1, . . . , in).

Note that a, b satisfy the hypothesis of Lemma 5.8, so by Lemmas 5.7 and 5.8 there 
exists an integer m such that Φ(a) ∼= Φ(b)[m]〈−m〉. Hence we have that

Θw0Ei1λ ∼= ΘuΘiEi1λ

∼= ΘuFiΘi1λ[1]〈λi〉
∼= Fτ(i)ΘuΘi1λ[m + 1]〈−m + λi〉
∼= Fτ(i)Θw01λ[m + 1]〈−m + λi〉

showing that ' + k = 1 + λi.
On the other hand, we can deduce k by inspecting the relation on the level of 

Grothendieck groups. Namely, by [25, Lemma 5.4], we have that

tw0Ei1λ = −q−λiFτ(i)tw01λ,

showing that k = λi. !

6. On t-exactness and perversity of Θw0

In this section we will state and prove the central results of the paper. We fix through-
out a categorical representation C of Uq(g), and let w0 = si1si2 · · · sin be a reduced 
expression.

6.1. Θw0 on isotypic categorifications

In this section we prove that Θw0 is t-exact on any isotypic categorification. Fix 
λ ∈ X+. We write Θ = Θw0 , L = L(λ) and L = L(λ).

Lemma 6.1. Let k ∈ {2, . . . , n} and set µ = sik · · · sin(w0(λ)). The weight space 
L(λ)µ−αik−1

is zero.

Proof. By [24, Proposition 21.3], it suffices to find u ∈ W such that u(µ −αik−1) " w0(λ). 
Take u = sik−1 and, noting that (µ, αik−1) < 0, the result follows. !
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Recall that vλ and vlowλ are the highest and lowest weight elements of the canonical 
basis B(λ).

Lemma 6.2. [25, Comment 5.10] We have tw0(vlowλ ) = vλ.

Proposition 6.3. The equivalence Θ1w0(λ) : Db(Lw0(λ)) → Db(Lλ) satisfies klow '→ khigh, 
where both are considered as complexes concentrated in degree zero. In particular, un-
der the equivalences Lλ

∼= Lw0(λ) ∼= k−modZ, Θ1w0(λ) is isomorphic to the identity 
autofunctor of Db(k−modZ).

Proof. Consider first the case g = sl2. On the minimal categorification of highest weight 
m, we have that Θ1−m(klow) = khigh〈'〉 for some ' by [16, Theorem 6.6]. Since [Θ1−m] =
t11−m, by Lemma 6.2 we conclude that ' = 0, and hence Θ1−m(klow) = khigh.

For general g, suppose X ∈ Lν is simple and FiX = 0 for some i ∈ I. Consider L as 
a categorical representation of sl2 by restriction to the i-th root subalgebra. Then for 
some m we have a morphism of categorical sl2 representations RX : L(m) → L, such 
that RX(klow) = X [16, Theorem 5.24].

The functor RX is equivariant for the categorical sl2 action on C determined by Ei, Fi

(in fact it is strongly equivariant in the sense of [34, Definition 3.1]), and hence commutes 
with Θi1ν . Therefore we have that

Θi1ν(X) ∼= Θi1ν(RX(klow))
∼= RX(Θi1ν(klow))
∼= RX(khigh) ∈ L,

and so Θi1ν(X) is in homological degree zero. It follows that in the case when X is 
not necessarily simple (but still assume that FiX = 0), Θi1ν(X) is still in homological 
degree zero. Indeed, by induction on the length of a Jordan-Hölder filtration of X one 
deduces this since L ⊂ Db(L) is extension closed.

Now we study Θ1w0(λ) applied to klow. For k = 2, . . . , n, by Lemma 6.1,

Fik−1(Θik · · ·Θin1w0(λ)(klow)) = 0.

By the previous paragraph, it follows that Θik−1 · · ·Θin1w0(λ)(klow) is in homological 
degree zero, and in particular, Θ1w0(λ)(klow) is supported in homological degree zero. 
Since in addition

[Θ1w0(λ)] = tw01w0(λ),

by Lemma 6.2 we conclude that Θ1w0(λ)(klow) ∼= khigh. !
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Theorem 6.4. Let λ ∈ X+ and set L = L(λ). For any µ ∈ X,

Θ1µ[−n] : Db(Lµ) → Db(Lw0(µ))

is t-exact, where n = ht(µ − w0(λ)).

Proof. Consider P = Ei1 · · ·Ei!(klow) ∈ Lµ. We will first prove by induction on n that 
there exists an integer k such that

Θ(P )[−n] ∼= Fj1 · · ·Fj!(khigh)〈k〉 ∈ Lw0(µ), (6.5)

where jr = τ(ir).
The base case when n = 0 follows by Proposition 6.3. For the inductive step write 

P = Ei1(Q). Note that Q ∈ Lµ−αi1
. By Proposition 5.9 we have that

Θ1µ(P )[−n] = ΘEi11µ−αi1
(Q)[−n]

∼= Fτ(i1)Θ1µ−αi1
(Q)[−n + 1]〈(µ− αi1 ,αi1)〉.

By hypothesis

Θ1µ−αi1
(Q)[−n + 1] ∼= Fj2 · · ·Fj!(khigh)〈k〉 ∈ Lw0(µ−αi1 )

for some k, and hence Equation (6.5) follows.
Since up to grading shift, any projective indecomposable object in Lµ, respec-

tively Lw0(µ), is a summand of an object of the form Ei1 · · ·Ei!(klow) (respectively 
Fj1 · · ·Fj!(khigh)), it follows that Θ1µ[−n] takes projective objects in Lµ to projective 
objects in Lw0(µ). Since Θ1µ[−n] is a derived equivalence it follows that it is t-exact. !

Remark 6.6. Theorem 6.4 is a generalisation of [16, Theorem 6.6], which covers the sl2
case. Note that [16, Theorem 6.6] is crucial in the work of Chuang and Rouquier, since it’s 
one of the main technical results needed to prove that Rickard complexes are invertible. 
Our proof in the general case follows a completely different approach, but it does not 
give a new proof in the case of sl2. Indeed we use [16, Theorem 6.6] explicitly in the proof 
of Proposition 6.3, and more generally we use the fact the Θi is invertible throughout.

Corollary 6.7. Suppose C is an isotypic categorification of type λ, for some λ ∈ X+, 
and let µ ∈ X. Then Θ1µ[−n] : Db(Cµ) → Db(Cw0(µ)) is a t-exact equivalence, where 
n = ht(µ − w0(λ)).

Proof. By Lemma 3.5, there exists an abelian k-linear category A such that C ∼= L(λ) ⊗k
A as categorical representations. We have that

Θ1µ[−n](L(λ)µ ⊗k A) ∼= Θ1µ[−n](L(λ)µ) ⊗k A ∼= L(λ)w0(µ) ⊗k A,
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proving that Θ1µ[−n] : Db(Cµ) → Db(Cw0(µ)) is a t-exact equivalence. !

6.2. Θw0 on general categorical representations

In this section we prove that Θw0 is a perverse equivalence on an arbitrary categorical 
representation. Fix µ ∈ X such that Cµ is nonzero. For ease of notation, set A = Cµ and 
A′ = Cw0(µ).

Consider a filtration by Serre subcategories

0 = C0 ⊂ C1 ⊂ · · · ⊂ Cr = C,

which can be either the Jordan-Hölder filtration (Theorem 3.6) or the isotypic filtration 
(Remark 3.9). So for every i, Ci is a subrepresentation of C, and Ci/Ci−1 is either a simple 
categorification or an isotypic one. Define λi ∈ X+ by requiring that [Ci/Ci−1]C(q) is a 
representation of type λi.

Construct filtrations of A and A′ by Ai = Ci ∩ A, A′
i = Ci ∩ A′. These are Serre 

subcategories of A and A′ respectively. Let p : {0, ..., r} → Z be given by p(i) = ht(µ −
w0(λi)).

Theorem 6.8. Θw01µ : Db(A) → Db(A′) is a perverse equivalence with respect to 
(A•, A′

•, p) for either the Jordan-Hölder or the isotypic filtration.

Proof. Since Ci ⊂ C is a categorical subrepresentation, the terms of the functor Θw01µ
leave Ci invariant, and in particular take objects in Ai to A′

i. By Lemma 4.8 this implies 
that Θw01µ(Db

Ai
(A)) ⊆ Db

A′
i
(A′).

Now, Ci/Ci−1 is a simple or isotypic categorification (of type λi). By Corollary 6.7, 
Θw01µ[−p(i)] restricts to an abelian equivalence Ai/Ai−1 → A′

i/A′
i−1, i.e. the functor

Θw01µ[−p(i)] : Db
Ai

(A)/Db
Ai−1(A) → Db

A′
i
(A′)/Db

A′
i−1

(A′)

is a t-exact equivalence. This shows that Θw01µ is a perverse equivalence with respect 
to (A•, A′

•, p). !

Remark 6.9. The sl2 case of Theorem 6.8 appears as [15, Proposition 8.4], by a different 
argument relying on a technical lemma [15, Lemma 4.12].

7. Crystalising the braid group action

Already in the work of Chuang and Rouquier, a close connection is established between 
categorical representation theory and the theory of crystals (although it is not phrased 
in this language, cf. Proposition 3.4 below). In this section we describe a new component 
of this theory. More precisely, let V be an integrable representation of Uq(g). Recall that 
Lusztig has defined a braid group action on V [36]. In this section we explain how to 
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use our results to “crystalise” this braid group action to obtain a cactus group action on 
the crystal of V , recovering the recently discovered action by generalised Schützenberger 
involutions.

7.1. Cactus groups

The cactus group associated to the Dynkin diagram I has several incarnations. Ge-
ometrically, it appears as the fundamental group of a space associated to the Cartan 
subalgebra h of g. Namely, let hreg ⊆ g denote the regular elements of h. The cac-
tus group C = CI is the W -equivariant fundamental group of the real locus of the de 
Concini-Procesi wonderful compactification of hreg (see [17], [21, Section 2] for further 
details):

C = πW
1 (P (hreg)(R)).

There is a surjective map C → W , and the kernel of this map is called the pure cactus 
group. In type A it is the fundamental group of the Deligne-Mumford compactification 
of the moduli space of real genus 0 curves with n + 1 marked points [22].

The cactus group has a presentation using Dynkin diagram combinatorics. For any 
subdiagram J ⊆ I, recall that τJ : J → J is the diagram automorphism induced by the 
longest element wJ

0 ∈ WJ .

Definition 7.1. The cactus group C = CI is generated by cJ , where J ⊆ I is a connected 
subdiagram, subject to the following relations:

(i) c2J = 1 for all J ⊆ I,
(ii) cJcK = cKcJ , if J ∩ K = ∅ and there are no edges connecting any j ∈ J to any 

k ∈ K, and
(iii) cJcK = cKcτK(J) if J ⊆ K.

The surjective map C → W mentioned above is given by cJ '→ wJ
0 . We are interested 

in the cactus group in connection to the theory of crystals.
A g-crystal B is called normal if it is isomorphic to a disjoint union 3λB(λ) for some 

collection of highest weights λ. The category of normal g-crystals has the structure of 
a coboundary category analogous to the braided tensor category structure on Uq(g)-
representations. It is realized through an “external” cactus group action of CAn−1 on 
n-tensor products of g-crystals, described by Henriques and Kamnitzer [22, Theorems 
6,7].

We are interested in the “internal” cactus group action of C on any g-crystal B. Both 
the internal and external actions rely on the following combinatorially defined maps, 
which are generalisations of the partial Schützenberger involutions in type A.



26 I. Halacheva et al. / Advances in Mathematics 429 (2023) 109190

Definition 7.2. The generalised Schützenberger involution ξλ on B(λ) is the set map 
defined uniquely by the following properties. For all b ∈ B(λ) and i ∈ I:

(1) wt(ξλ(b)) = w0wt(b),
(2) ξλẽi(b) = f̃τ(i)ξλ(b),
(3) ξλf̃i(b) = ẽτ(i)ξλ(b).

The generalised Schützenberger involution ξ on B = 3λB(λ) is the set map which acts 
as ξλ on each irreducible component B(λ).

Note that (1) implies that ξλ maps the lowest weight element to the highest weight 
element (and vice-versa), and then (2) and (3) ensure that it is uniquely defined.

For J ⊆ I, denote by BJ the crystal B restricted to the subdiagram J . We denote 
the corresponding Schützenberger involution by ξJ .

Theorem 7.3. ([21, Theorem 5.19]) For any g-crystal B, the assignment cJ '→ ξJ defines 
a (set-theoretic) action of C on B.

7.2. The cactus group action arising from Rickard complexes

We now explain how cactus group actions arise from categorical representations, anal-
ogous to the construction of the crystal on Irr(C) in Proposition 3.4.

Let C be a categorical representation of Uq(g). For any weight µ ∈ X, by Theorem 6.8
Θw01µ : Db(Cµ) → Db(Cw0(µ)) is a perverse equivalence, and hence it induces a bijection 
ϕI1µ : Irr(Cµ) → Irr(Cw0(µ)). By varying µ we obtain a bijection ϕI : Irr(C) → Irr(C).

Now let J ⊆ I be a connected subdiagram, and let gJ ⊂ g be the corresponding 
subalgebra. By restriction, C is also a categorical representation of Uq(gJ), and hence by 
the above discussion we also obtain a bijection ϕJ : Irr(C) → Irr(C).

We will prove that this family of bijections defines an action of the cactus group Irr(C). 
First we need the following technical result. The important point here is just that there 
exists an integer n such that t2w01µ = ±qn1µ.

Lemma 7.4. Let λ ∈ X+, µ ∈ X, and let µ − w0(λ) =
∑$

r=1 αir , where ir ∈ I. Set 
jr = τ(ir) and define n(λ, µ) ∈ Z by

n(λ, µ) = 2




$∑

r=1
λjr + 1 −

∑

1≤r≤s≤$

ajrjs + (λ, ρ)





Then on L(λ)µ we have

t2w01µ = (−1)〈2λ,ρ∨〉qn(λ,µ)1µ. (7.5)
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Proof. We will prove the claim by induction on ht(µ −w0(λ)). For µ = w0(λ), we have 
that ' = 0 so n(λ, µ) = (λ, ρ). By [25, Equation (7)] tw0(vλ) = (−1)〈λ,ρ∨〉q(λ,ρ)vlowλ , 
which, combined with Lemma 6.2, implies that t2w0(vlowλ ) = (−1)〈λ,ρ∨〉q(λ,ρ)vlowλ . Since 
dim(L(λ)w0(λ)) = 1, this proves the base case.

Now choose any µ and suppose (7.5) holds for any weight µ′ such that ht(µ′−w0(λ)) <
ht(µ −w0(λ)). Consider v = Ej1 · · ·Ej!v

low
λ ∈ L(λ)µ. First note that by [25, Lemma 5.4]

we have that

t2w0Ei = q2K−2
i Eit2w0 . (7.6)

Setting v′ = Ej2 · · ·Ej!v
low
λ , by induction we have

t2w0v = q2K−2
j1

Ej1t2w0v
′

= (q2K−2
j1

Ej1)(−1)〈λ,ρ∨〉qn(λ,µ−αj1 )v′

= (−1)〈λ,ρ∨〉q2+n(λ,µ−αj1 )−2(µ,αj1 )v

One checks easily that n(λ, µ) = 2 + n(λ, µ − αj1) − 2(µ, αj1), proving that t2w0v =
(−1)〈λ,ρ∨〉qn(λ,µ)v. Since this holds for any vector of the form Ej1 · · ·Ej!v

low
λ in L(λ)µ, 

this completes the inductive step. !

Theorem 7.7. The assignment cJ '→ ϕJ defines an action of C on Irr(C).

Proof. We need to show that the bijections ϕJ satisfy the cactus group relations.
Relation (i): Without loss of generality we may assume J = I. Fix a weight µ. Our 

aim is to show that

ϕIϕI1µ = IdIrr(Cµ). (7.8)

Since the filtration of Cw0(µ) which we use in the perversity data of Θw01µ, agrees with 
the filtration of Cw0(µ) which we use in the perversity data of Θw01w0(µ), by Lemma 4.5
the composition Θw0Θw01µ is a perverse autoequivalence of Db(Cµ).

The functor [〈2λ, ρ∨〉]〈n(λ, µ)〉 is also a perverse autoequivalence of Db(Cµ). By 
Lemma 7.4 these two perverse equivalences induce the same map on Grothendieck groups, 
and hence by Lemma 4.2 they also induce the same bijection. Since the bijection induced 
by [〈2λ, ρ∨〉]〈n(λ, µ)〉 is the identity, this proves relation (i).

Relation (ii): Let J, K ⊂ I be disjoint subdiagrams with no connecting edges. Our 
aim is to show that

ϕJϕK1µ = ϕKϕJ1µ. (7.9)

We prove a slightly more general statement, namely that for any categorical representa-
tion C of Uq(gJ × gK), relation (7.9) holds.
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Note that ΘJΘK1µ ∼= ΘKΘJ1µ are isomorphic perverse equivalences, so they induce 
the same bijections. It remains to show that

ϕΘJΘK1µ = ϕJ ◦ ϕK1µ. (7.10)

Consider first the case when C categorifies an simple representation of Uq(gJ × gK). 
A minimal categorification of Uq(gJ × gK) is of the form L(λ) ⊗k L(µ), where λ is a 
highest weight for gJ and µ is a highest weight for gK . Hence by Lemma 3.5, a simple 
categorification of Uq(gJ × gK) is of the form L(λ) ⊗k L(µ) ⊗k A for some abelian 
category A.

This implies that as a categorical representation of Uq(gJ) (respectively Uq(gK)), C
categorifies an isotypic representation. By Corollary 6.7 ΘJ1wK

0 (µ) and ΘK1µ are t-exact 
up shift on isotypics categorifications. Hence Equation (7.10) follows by Lemma 4.5.

Now consider a Jordan-Hölder filtration (Theorem 3.6):

0 = C0 ⊂ · · · ⊂ Cn = C,

where for every i, Ci is a subrepresentation of C, and Ci/Ci−1 is a simple categorification 
of Uq(gJ × gK). Equation (7.10) now follows by an easy induction on i. Indeed the base 
case when i = 1 holds by the paragraph above, and the inductive step by Lemma 4.6.

Relation (iii): We need to show that ϕJϕK1µ = ϕKϕτK(J)1µ, where J ⊂ K. Again, 
we may assume that K = I. Note that we have an isomorphism at the level of functors:

Θ−1
w0 ΘwJ

0
Θw01µ

∼= Θ
w

τK (J)
0

1µ,

which lifts the corresponding relation in B. Since this is an isomorphism of perverse 
equivalences, they must induce the same bijections by Lemma 4.2.

It remains to show that

ϕΘ−1
w0Θ

wJ
0

Θw01µ
= ϕ−1

I ◦ ϕJ ◦ ϕI . (7.11)

When C is a simple categorification, by Corollary 6.7 Θw01µ is t-exact (up to shift). 
Hence Equation (7.11) follows by Lemma 4.7. Now apply the same reasoning as in the 
proof of Relation (ii) to deduce equation (7.11) in the general case. !

7.3. Reconciling the two cactus group actions

Let C be a categorical representation of Uq(g), and consider the g-crystal B = Irr(C). 
There are two actions of the cactus group on B, the first arising combinatorially via 
Schützenberger involutions (Theorem 7.3) and the other categorically via Theorem 7.7.

Theorem 7.12. The two actions of the cactus group on B agree.
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Proof. It suffices to show that ϕI = ξI . First, suppose C is a simple categorification of 
type λ ∈ X+. In this case B = B(λ), and ξ = ξI is determined by:

ξ(vλ) = vlowλ , and
ξ(ẽi(v)) = f̃τ(i)(ξ(v)) for all v ∈ B,

so we need to show that ϕI satisfies these properties as well.
The first is an immediate consequence of Corollary 6.7. To show that ϕI satisfies the 

second property, fix µ ∈ X and i ∈ I. We set n = ht(µ − w0(λ)), j = τ(i), and write 
Θ = Θw0 .

Consider the following diagram:

Db(Cµ) Db(Cw0(µ))

Db(Cµ+αi) Db(Cw0(µ)−αj
)

Θ1µ[−n]〈µi〉

Ei1µ Fj1w0(µ)

Θ1µ+αi [−n−1]

(7.13)

By Proposition 5.9 this diagram commutes (note that we shifted both sides of the equa-
tion by −n − 1). By Theorem 6.4 both horizontal arrows are in fact t-exact equivalences 
so this restricts to a diagram of abelian categories:

Cµ Cw0(µ)

Cµ+αi Cw0(µ)−αj

Θ1µ[−n]〈µi〉

Ei1µ Fj1w0(µ)

Θ1µ+αi [−n−1]
(7.14)

Let L ∈ Cµ be a simple object, and let L′ = Θ1µ(L)[−n]〈µi〉. Note that L′ ∈ Cw0(µ)
is simple and ϕI(L) = L′. By the above diagram we have an isomorphism

Θ1µ+αi(Ei(L))[−n− 1] ∼= Fj(L′).

Now, F̃j(L′) ⊂ Fj(L′) is the unique simple subobject. On the other hand, since 
Θ1µ+αi [−n −1] is an abelian equivalence, Θ1µ+αi(Ẽi(L))[−n −1] ⊂ Θ1µ+αi(Ei(L))[−n −
1] is a simple subobject. Therefore

Θ1µ+αi(Ẽi(L))[−n− 1] ∼= F̃j(L′).

Since the equivalence class of the left hand side is ϕI ◦ ẽi(L), this shows that ϕI satisfies 
the second defining property, and hence the two cactus group actions agree in the case 
of a simple categorification.

The general case when C is not necessarily a simple categorification follows easily 
using the Jordan-Hölder filtration (Theorem 3.6) and Lemma 4.6. !
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8. Examples and applications

8.1. Examples

We now examine three examples. The first two consider minimal categorifications 
of the adjoint representation, while the third studies the categorification of the n-fold 
tensor product of the standard representation of sln. For ease of presentation, we ignore 
gradings and consider non-quantum categorical representations.

Example 8.1. Let’s consider the first non-trivial example of Theorem 6.4: the minimal 
categorification of the adjoint representation of sl2. We can model this as follows:

k−mod R−mod k−mod

ind res

res ind

where R = k[x]/(x2) [16, Example 5.17]. Here k−mod is the ±2 weight category, and 
R−mod is the zero weight category. The arrows describe the E, F functors (we omit the 
higher structure).

Consider the Rickard complex Θ = Θ10 : Db(R−mod) → Db(R−mod). For M ∈
R−mod, we have:

Θ(M) = R⊗k M → M,

where the differential is given by the action map, and M is in cohomological degree 0. 
It’s an exercise to verify that Θ(M) is quasi-isomorphic to M ′[1], where M ′ is the twist 
of M by the automorphism of R given by a + bx '→ a − bx. This shows that Θ[−1] is the 
t-exact equivalence M '→ M ′. !

Example 8.2. More generally, one can consider the minimal categorification of the adjoint 
representation of a simple simply-laced Lie algebra g. This was studied by Khovanov and 
Huerfano in [23], who used zigzag algebras to model this category.

For a weight α of the adjoint representation of g, the weight category Cα is taken 
to be k−mod as long as α (= 0. However, the zero weight category is more interesting: 
C0 := A−mod, where A is the zigzag algebra associated to the Dynkin diagram I of g
(cf. [23] for the precise definition).

The isomorphism classes of indecomposable projective left A-modules {Pi} and the 
isomorphism classes of indecomposable projective right A-modules {Qi} are both indexed 
by i ∈ I. Tensoring with these modules defines functors

Ei : C0 −→ Cαi , M '→ Qi ⊗A M,

Ei : C−αi −→ C0, V '→ Pi ⊗k V.
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The functors Fi are defined analogously and are biadjoint to the Ei.
The Rickard complex Θi10 is given by tensoring with the complex

Pi ⊗k Qi → A

of (A, A)-bimodules, where the differential is given by the multiplication in A, and A
sits in cohomological degree zero. These functors are autoequivalences of the derived 
category Db(C0).

By Theorem 6.4 Θw010[−n] is t-exact, where n + 1 is the Coxeter number of g. This 
auto-equivalence can be explicitly described as follows: the automorphism of the Dynkin 
diagram τ : I → I induces an automorphism ψ of A. Then we claim that Θw010[−n] is the 
abelian autoequivalence of A−mod defined by twisting with ψ. Indeed, since Θw010[−n]
is an abelian autoequivalence, it is determined up to isomorphism by its action on simple 
objects. Moreover, the action on simple objects can be read off from the action of W on 
the Grothendieck group of A−mod as follows: [A−mod]Z is isomorphic to the Cartain 
subalgebra by mapping [Li] (Li is the simple head of Pi) to the simple root vector Hi. 
And on the root vectors we have that w0 ·Hi = −Hτ(i). !

Example 8.3. Let g = sln and consider the n-fold tensor power of the standard repre-
sentation V ⊗n. Categorifications of V ⊗n have been well-studied, and a model C for this 
categorical representation can be constructed using the BGG category O of g [38,47]. In 
this model, the principal block O0 ⊂ O appears as the zero weight category of C, and 
the Rickard complexes acting on Db(O0) are the well-known shuffling functors.

By Theorem 6.8 Θw010 : Db(O0) → Db(O0) is a perverse equivalence with respect 
to an isotypic filtration. In fact, this recovers the type A case of a theorem of the third 
named author [33], using completely different methods (in [33] the perversity of Θw0 is 
proved using the theory of W-algebras). We can interpret the filtration of O0 arising 
from our perspective concretely using the Robinson-Schensted correspondence.

Recall that the simple objects in O0 are the irreducible highest weight representations 
L(w), w ∈ Sn, where L(w) has highest weight wρ − ρ (ρ is the half-sum of positive roots 
of sln).

We view a partition λ of n simultaneously as a dominant integral weight for sln, and 
as an index for the irreducible Specht module Sλ of the symmetric group Sn. Let SYT(λ)
denote the set of standard Young tableau of shape λ, and let d(λ) = | SYT(λ)|. Recall 
that d(λ) = dimSλ.

Choose an ordering of the partitions of n, λ1, . . . , λr, so that if λi ≺ λj in the domi-
nance order, then i < j. Note that the dominance order on partitions of n is equivalent 
to the positive root ordering on partitions (thought of as weights for sln). By Remark 3.9
there is an isotypic filtration on C, 0 ⊂ C1 ⊂ · · · ⊂ CN = C, where Ci/Ci−1 is an iso-
typic categorification of type λi. Then Θw0 is a perverse equivalence with respect to the 
filtration O0,i = O0 ∩ Ci and the perversity function p(i) = ht(λi).
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We would like now to define the categories O0,i more explicitly using the Robinson-
Schensted correspondence, which recall is a bijection [42]:

RS : Sn −→
r3

j=1
SYT(λj) × SYT(λj), w '→ (P (w), Q(w)).

We will use a crystal analogue of classical Schur-Weyl duality. This is given by a crystal 
isomorphism:

B(.1)⊗n −→
r3

j=1
B(λj) × SYT(λj). (8.4)

Now, recall that for a partition λ of n, the underlying set of the crystal B(λ) can be 
chosen to be the set of semistandard Young tableaux of shape λ with entries 1, . . . , n, 
and the weight zero subset of B(λ) is precisely SYT(λ). The essential point is that the 
isomorphism (8.4) can be chosen so that it restricts to the map RS on the elements of 
weight zero ([44, Theorem 3.5]). (Note that the elements of weight zero in B(.1)⊗n are 
naturally identified with permutations of 1, . . . , n.)

This shows that as an element of the crystal B(.1)⊗n, [L(w)] is in a connected 
component whose highest weight is the shape of Q(w) (or equivalently P (w)). Therefore, 
following Remark 3.10, we can construct the isotypic filtration by defining O0,i to be 
the Serre subcategory of O0 generated by L(w) such that the shape of Q(w) is among 
λ1, . . . , λi. !

8.2. Type A combinatorics

In this final section, we specialise to type A and discuss the combinatorics of Kazhdan-
Lusztig bases and standard Young tableaux from the vantage of perverse equivalences.

Set I = An−1 = {1, . . . , n − 1}. We continue with the notation in Example 8.3 and 
view a partition λ : n simultaneously as a dominant integral highest weight for sln, 
and as an index of the Specht module Sλ. Recall that by Schur-Weyl duality, L(λ)0 is 
isomorphic to Sλ. The Kazhdan-Lusztig basis of the Hecke algebra naturally descends 
to a basis of Sλ, which we denote {CT } indexed by T ∈ SYT(λ). For further details we 
recommend the exposition in [40].

Consider the minimal categorification L(λ), and in particular its zero weight category 
L(λ)0. For convenience, we forget the grading and work in the non-quantum setting. 
The simple objects L(T ) ∈ L(λ)0 are indexed by T ∈ SYT(λ), and hence a perverse 
equivalence F : Db(L(λ)0) → Db(L(λ)0) induces a bijection ϕF : SYT(λ) → SYT(λ).

The bijection ϕI studied in the previous section specialises to the well-known 
Schützenberger involution on standard Young tableau, otherwise known as the “evac-
uation operator” e [42]. Indeed, by Theorem 7.12 ϕI recovers the cactus group action on 
the crystal Irr(C) by generalised Schützenberger involutions. The Schützenberger involu-
tion is well-known to agree with the evacuation operator [45, Theorem A1.2.10]). Note 
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that this is elementary: it follows directly from the fact that the evacuation operator 
satisfies the properties of Definition 7.2 on standard Young tableaux.

The promotion operator j : SYT(λ) → SYT(λ) is another important function in alge-
braic combinatorics, which is closely connected to the RSK correspondence and related 
ideas such as jeu de taquin. Letting J = {1, . . . , n − 2} ⊂ I, we can express promotion 
in terms of the Schützenberger involution: j = ϕIϕJ . We refer the reader to [42] for a 
detailed exposition. We can now see easily that promotion also arises from a perverse 
equivalence:

Proposition 8.5. Let cn = (1, 2, . . . , n) ∈ Sn be the long cycle. Then

Θcn : Db(L(λ)0) → Db(L(λ)0)

is a perverse equivalence whose associated bijection is the promotion operator: ϕΘcn
= j.

Proof. Notice that cn = w0wJ
0 for J as above. Now recall that Θw0 is (up to shift) a 

t-exact autoequivalence of Db(L(λ)0) (Theorem 6.4). Since ΘwJ
0

is a perverse equivalence 
(Theorem 6.8), its inverse is too. Therefore Θcn

∼= Θw0Θ−1
wJ

0
is also a perverse autoequiv-

alence. By Lemma 4.7 we have that ϕΘcn
= ϕIϕJ , and hence we recover the promotion 

operator. !

We can also use this set-up to extract information about the action of Sn on the 
Kazhdan-Lusztig basis of S(λ). This is based on the following elementary lemma:

Lemma 8.6. Let w ∈ Sn, λ : n and suppose Θw : Db(L(λ)0) → Db(L(λ)0) is t-exact up 
to shift. Then for any T ∈ SYT(λ), w · CT = ±CS, where S = ϕΘw(T ).

Proof. Since Θw is t-exact up to shift, we have:

[Θw(L(T ))] = ±[L(S)].

The result now follows since the isomorphism [L(λ)0]C ∼= Sλ, L(T ) '→ CT , is Sn-
equivariant, and by [2, Proposition 10], the action of the braid group B = Bn on L(λ)0
factors through Sn. !

Applying this lemma to Theorem 6.4 we obtain a result of Berenstein-Zelevinsky and 
Stembridge:

Corollary 8.7. [3,46] The action of the longest element on the Kazhdan-Lusztig basis 
recovers the Schützenberger evacuation operator, i.e. for w0 ∈ Sn, λ : n and T ∈ SYT(λ), 
we have that w0 · CT = ±Ce(T ).

Similarly we can prove a result of Rhoades regarding the action of the long cycle 
cn = (1, 2, . . . , n) on the Kazhdan-Lusztig basis. Note that in the statement below the 
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significance of λ being rectangular is that the restriction of S(λ) to Sn−1 in this case 
remains irreducible.

Proposition 8.8. (cf. [40, Proposition 3.5]) Let λ = (ab) : n be a rectangular partition. 
Then for any T ∈ SYT(λ), the action of the long cycle on the Kazhdan-Lusztig basis 
element CT recovers the promotion operator:

cn · CT = ±Cj(T ).

Proof. As above, set J = {1, . . . , n − 2} ⊂ I. Recall that, since L(λ) is a simple 
categorification, we know Θw0 : Db(L(λ)0) → Db(L(λ)0) is t-exact up to shift by 
Theorem 6.4. However, L(λ)|sln−1 is no longer simple, so a priori we only know that 
ΘwJ

0
: Db(L(λ)0) → Db(L(λ)0) is perverse, but not necessarily t-exact up to shift. We 

first prove that ΘwJ
0

is indeed t-exact up to shift.
Consider the set of functors which are monomials in the Chevalley functors indexed 

by J :

M = {Gj1 · · ·Gjs | G ∈ {E,F}, j$ ∈ J}.

Let C be the abelian category generated by {M(X) | X ∈ L(λ)0, M ∈ M}, that is, C is 
the category closed under subobjects and quotients of objects of the form M(X). Since 
the Chevalley functors are exact, it is easy to see that C is a categorical representation 
of Uq(sln−1).

Let ν : (n − 1) be the (unique) partition obtained from λ by removing a box. We 
claim that C is a categorification of L(ν). Note that this is a categorification of the fact 
that L(ν) ∼= Uq(sln−1) · L(λ)0. Indeed, it is clear that [C]C contains L(ν). On the other 
hand, if Cµ (= 0 then µ is in the root lattice of sln−1, and L(ν) is the unique constituent 
of L(λ)|sln−1 whose weights are in the root lattice.

Now observe that C0 = L(λ)0. Hence, by Corollary 6.7 it follows that ΘwJ
0

:
Db(L(λ)0) → Db(L(λ)0) is t-exact up to shift. Since Θw0 is also t-exact up to shift, 
it follows that Θcn is too. The result now follows by Proposition 8.5 and Lemma 8.6. !
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