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Let g be a semisimple simply-laced Lie algebra of finite type.
Let C be an abelian categorical representation of the quantum
group U, (g) categorifying an integrable representation V. The
Artin braid group B of g acts on D?(C) by Rickard complexes,
providing a triangulated equivalence

Ouwo : D*(Cu) = DP(Cuny())

where p is a weight of V, and ©,, is a positive lift of the
longest element of the Weyl group.

We prove that this equivalence is t-exact up to shift when V'
is isotypic, generalising a fundamental result of Chuang and
Rouquier in the case g = sly. For general V', we prove that
Oy, is a perverse equivalence with respect to a Jordan-Hélder
filtration of C.

Using these results we construct, from the action of B on
V', an action of the cactus group on the crystal of V. This
recovers the cactus group action on V defined via generalised
Schiitzenberger involutions, and provides a new connection
between categorical representation theory and crystal bases.
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of Berenstein-Zelevinsky, Rhoades, and Stembridge regarding
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the action of symmetric group on the Kazhdan-Lusztig basis
of its Specht modules.
© 2023 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

In their seminal work, Chuang and Rouquier introduced sls categorifications on
abelian categories [16]. Their definition mirrors the notion of an sly representation on a
vector space: weight spaces are replaced by weight categories, Chevalley generators act-
ing on them are replaced by Chevalley functors, and Lie algebra relations are replaced
by isomorphisms of functors. But, crucially, these isomorphisms are part of the “higher
data” of categorification.

The richness of this theory was immediately evident. As a corollary of an sly cate-
gorification on representations of symmetric groups in positive characteristic, Chuang
and Rouquier proved Broue’s abelian defect conjecture in that case. The essential tool
allowing them to do this is the Rickard complex, which is a categorical lifting of the
reflection matrix in SLs, and provides a derived equivalence between opposite weight
categories.

Subsequently, Rouquier and Khovanov-Lauda vastly generalised this theory to quan-
tum symmetrisable Kac-Moody algebras U,(g) [28,29,41]. Let k be any field. A graded
abelian k-linear category C endowed with a categorical representation of U,(g) possesses
a family of Rickard complexes ©;, indexed by the simple roots of g, acting on the derived
category D°(C).

Henceforth let g be a semisimple simply-laced Lie algebra of finite type with Dynkin
diagram I, W its Weyl group, and B its Artin braid group. Let C be a categorical
representation of U,(g) as in the previous paragraph. Cautis and Kamnitzer proved that
Rickard complexes satisfy the braid relations, as conjectured by Rouquier [11]. This
defines an action of B on D®(C), and is our main object of study.

Categorical braid group actions defined via Rickard complexes have many significant
applications. For example, in low dimensional topology, the type A link homology theories
(in particular Khovanov homology) emerge as a byproduct of these types of categorical
braid group actions [9,10,31]. In mirror symmetry, the theory of spherical twists plays
an important role, and these all arise from categorical sly representations [43].

To describe our first theorem, recall that minimal categorifications are certain distin-
guished categorifications of simple representations. On these the Rickard complex ©; is
t-exact up to shift [16, Theorem 6.6]. Notice that this is a result about sls categorifica-
tions, and in fact, this is one of Chuang-Rouquier’s key technical results which they use
to prove the derived equivalence.
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We generalise this result to U,(g), where we show that the composition of Rickard
complexes corresponding to a positive lift of the longest element wg € W is t-exact up
to shift on any isotypic categorification. More precisely:

Theorem A. [Theorem 6.4 & Corollary 6.7] Let C be a categorical representation of Uy(g)
categorifying an isotypic representation of type \, where X is a dominant integral weight.
Let 1 be any weight, and let n be the height of p — wo(X\). Then the derived equivalence

Oy Lp[n] - Db(cu) - Db(cwo(u))
s t-exact.

This theorem is the technical heart of the paper. In order to prove it we introduce a
new combinatorial notion of “marked words” (Section 5). This allows us to use relations
between ©; and Chevalley functors established by Cautis and Kamnitzer to deduce the
commutation relations involving ©,,, (Proposition 5.9). We then use these relations to
prove the theorem by induction on n.

Our second theorem describes ©,,, on an arbitrary categorical representation of Ug(g),
also generalising a result of Chuang-Rouquier in the case g = sly. Indeed, their study
of the Rickard complex on an sly categorification led them to define the notion of a
“perverse equivalence” [15].

Consider an equivalence of triangulated categories F : T — T’ with t-structures [4].
Suppose further that 7 (respectively T”) is filtered by thick triangulated subcategories

0OcToCc-CT, =T, 0CTgC---CT =T,

and F is compatible with these filtrations (cf. Section 4.1 for precise definitions). Then,
roughly speaking, F is a perverse equivalence if on each subquotient F : 7;/7;_1 —
T /T!_, is t-exact up to shift.

Since their introduction, perverse equivalences have proven useful in various contexts
(e.g. representations of finite groups [14], geometric representation theory and mirror
symmetry [1], and algebraic combinatorics [48]). Our second theorem shows that perverse
equivalences are ubiquitous in categorical representation theory:

Theorem B. [Theorem 6.8] Let C be a categorical representation of Uy(g), and let i be any
weight. The derived equivalence O, 1, : D*(C,) = D(Cyy(yy) is a perverse equivalence
with respect to a Jordan-Hélder or isotypic filtration of C.

Note that if J C I is a subdiagram, and wy is corresponding longest element, then this
theorem implies that @w()f 1, is a perverse equivalence for any J. We also remark that our
arguments go through in the ungraded setting, where C is a categorical representation
of g.
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Let us explain the filtration arising in Theorem B more precisely. We apply Rouquier’s
Jordan-Holder theory for representations of 2-Kac-Moody algebras to our setting [41].
We thus obtain a filtration of C by Serre subcategories,

0cCyc---CcCr.=0¢C,

such that each factor C; is a subrepresentation, and each subquotient C;/C;_; categori-
fies either a simple module (Theorem 3.6) or an isotypic component (Remark 3.9). Then
O, 1, is a perverse equivalence with respect to the filtration whose é-th filtered compo-
nent consists of complexes in D*(C,,) with cohomology supported in C;.

We remark that in the case g = sls this gives a more conceptual proof of a result of
Chuang-Rouquier [15, Proposition 8.4]. If C is the tensor product categorification of the
n-fold tensor product of the standard representation of sl,, we recover a theorem of the
third author [33]. We explain this in Example 8.3, where we show how to interpret the
filtration on the principal block of the BGG category O using the Robinson-Schensted
correspondence.

In fact, the third author and Bezrukavnikov formulated a principle that suitable cat-
egorical braid group representations should have a “crystal limit” [5, Section 9]. As an
application of our results we can make this precise in the setting of categorical represen-
tations of U,(g).

Recall that to an integrable representation V of U,(g), Kashiwara associated its crystal
basis By [27], which is closely related to Lusztig’s canonical basis [20]. If V is categorified
by C then there is a natural identification By = Irr(C), the set of isomorphism classes of
simple objects in C up to shift (cf. Proposition 3.4).

One of the most important features of the theory is the existence of a tensor product,
endowing the category of crystals with a monoidal structure. The commutator of crystals
is controlled by a group called the cactus group, just as B controls the commutator in the
category of representations of U,(g) [22]. There is also an internal cactus group action,
mirroring Lusztig’s internal braid group action on V. Indeed, there is a cactus group C'
associated to g (or rather to its Dynkin diagram I'), which can be presented by generators
¢y indexed by connected subdiagrams J C I (cf. Section 7.1). Then C acts on By via
the so-called Schiitzenberger involutions (cf. Theorem 7.3).

So, starting with an integrable representation V' of the quantum group we obtain: an
action of B on V, a g-crystal By, and an action of C' on By,. We schematically picture
this situation as follows:

Ufg) AV ———— S BAV

|

g-crystal By ——  C ~ By

Naturally one asks: can we “crystallise” the braid group action on V directly to obtain
the cactus group action on By 7 Our results allow us to answer this in the affirmative.



I. Halacheva et al. / Advances in Mathematics 429 (2023) 109190 5

The key point is that a perverse equivalence F : 7 — 77 induces a bijection Irr(TV)
lrr((7")Y), where TV denotes the heart of the t-structure. In the setting of Theorem B,
we obtain a bijection ¢y : Irr(C) — lrr(C). In fact, if J C I is a subdiagram and gy C gs
is the corresponding Lie subalgebra, we can regard C as a categorical representation of
U,(gs) by restriction. By Theorem B we also obtain a bijection ¢ : Irr(C) — Irr(C).

Theorem C. [Theorem 7.7 € Theorem 7.12] Let C be a categorical representation of
Uy(9), categorifying the integrable representation V. The assignment cj — @ defines
an action of C on By = Irr(C), and this agrees with the combinatorial action arising
from Schiitzenberger involutions.

We thus obtain the sought-after crystalisation process for braid groups:
BAV ~ BADYC) ~ C~lir(0),

which associates a cactus group set Irr(C) to the braid group representation of B on V.
The first appearance of such a crystalisation process is in the work of the third author,
where a cactus group action on W is constructed [33]. It’s an interesting question to
crystallise the braid group action without appealing to categorical representation theory.

Finally we remark that perversity of Rickard complexes, and more specifically the
t-exactness of ©,,, on isotypic categorifications as in Theorem A, is a fruitful vantage
from which to view results in algebraic combinatorics.

For example, we show in Section 8.2 how to use this to easily recover theorems of
Berenstein-Zelevinsky [3] and Stembridge [46], namely that the action of wg € S,, on the
Kazhdan-Lusztig basis of a Specht module of S, is governed by the evacuation operator
on standard Young tableaux. We note that this theorem was earlier proven by Mathas
in slightly different form (without explicit reference to the evacuation operator, and
credited to J.J. Graham) [37, Theorem 3.1], and a similar result was shown even earlier
by Lusztig in 1990 [35, Corollary 5.9].

As another example, we use our methods to also recover Rhoades’ Theorem that
the Coxeter element (1,2,...,n) € S, acts on the Kazhdan-Lusztig basis of a Specht
module associated to a rectangular partition by the promotion operator. This point of
view led us to generalise Rhoades’ result to arbitrary partitions [19], and isolate the class
of permutations (the separable permutations) for which such results can hold [18].
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2. Background on quantum groups
2.1. The quantum group

In this article we work with a simply-laced quantum group U,(g) of finite type. Recall
that we have an associated Cartan datum and a root datum, which consists of:

e A finite set I,

e a symmetric bilinear form (-, -) on ZI satisfying (i,7) = 2 and (7, j) € {0, —1} for all
i#j €l

e a free Z-module X, called the weight lattice, and

o a choice of simple roots {; };c; C X and simple coroots {h;}ier C XV = Hom(X, Z)
satisfying (h;, «j) = (i, ), where (-,-) : X¥ x X — Z is the natural pairing.

The quantum group U,(g) is the unital, associative, C(g) algebra generated by
E;,F;,Kp, (i € I,h € XV) subject to relations:

(1) Ko =1and KKy = Kpyp for any b,/ € XV,

(2) KpE; = ¢V E,K), for any i € I,h € XV,

(3) KpF; =q ) FK), forany i € I,h € XV,

(4) E;F; —F;E; =9 K;K;l, where we set K; = Kj,,, and
(5)

tj q—q~
5) for all i # j,
SRR =0 wd Y (CUEORE o
a+b=—(hi,aj)+1 a+b=_<h’i10‘j>+1

i

where E{*) = B¢/[all, F{*) = F¢/[a]!, and [a]! = [T, 455

=1 g—q~'"

We let a;; = (4,7), so that (a;;); jer is a Cartan matrix. Given A € X we abbreviate
Ai = (hi, A), and let

Xi={ eX:\>0forallie I}

be the set of dominant weights.

Let R C X be the root lattice, defined as the Z-span of the simple roots, and let
R, C R be the N-span of the simple roots. We define the usual preorder > on X by
A= pif \—p € Ry. For p € Rlet ht(p) denote the height of y, i.e. ht(d ", asas) =, a;.

When convenient, we also view I as the Dynkin diagram of g, and make reference to
subdiagrams or diagram automorphisms of I.
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2.2. Braid group actions on integrable representations of Uy(g)

Given a Uy(g)-module V and p € X we let V,, denote the p weight space of V. For
A € X4 we let L(A) be the irreducible representation of U,(g) of highest weight . Let
Iso) (V) denote the A-isotypic component of V. We say that V is isotypic if there exists
A € X such that V = Isoy (V).

The representation L(A) has a canonical basis, which we denote by B(X) [36]. We
let vy (respectively v{°”) denote the unique highest weight (respectively lowest weight)
element of B(\).

Let B = By denote the braid group of type I, which is generated by 6; (i € I) subject
to the braid relations:

Giﬁj = 9]'92‘, if (Z,j) = O7 and
00,0, = 0;0,0;, if (i,7) = —1.

Let W = W} be the Weyl group of type I, which has generators s; (i € I) subject to
the braid relations, and in addition the quadratic relation s? = 1. Let wg € W be the
longest element. Recall that W acts on X via s;- A = A — (h;, \)a;. We define 7: 1 — I
by the equality o,y = —wo(a;) for any i € I.

To J C I a subdiagram, we associate W; C W the parabolic subgroup, wyj € W its
longest element, and 7; : I — I the bijection given by

B —wy () ifi€J,
@ ; otherwise.

For any w € W we can consider its positive lift 6,, € B, where 6,, = 6;, ---0;, and
w =S, '+ 8;, is any reduced decomposition.

Let V be an integrable representation of Uy(g). A fundamental structure of V, discov-
ered by Lusztig, is that it admits (several) braid group symmetries, sometimes referred
to as the “quantum Weyl group actions” To recall this, let 1,, denote the projection onto
the p weight space. For each i € I we define t; : V — V by:

— a b
til, = Z (—a) bEi( )Fi( )1w (2.1)
b—a=(p,0;)

Note that the indexing set of this sum is infinite, but the sum itself is finite on V. In the
notation of [36], t; =t} _,. (Note that the formula given in [36] is more complicated. This
simpler form was initially observed in [16] in the non-quantum setting, and generalised
in [12] to the quantum setting.). The assignment 6; — t; defines an action of B on V,
and so we can unambiguously write t,, for any w € W.
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3. Categorical representations of Uy, (g)
3.1. Notation

Fix a field k of any characteristic. In this paper we will be concerned mostly with
abelian k-linear categories C. We will assume throughout that each block of C is a finite
abelian category [39, Definition 1.8.6].

Recall that a category A is graded if it is equipped with an auto-equivalence (1) : A —
A called the “shift functor”. We let (£) be the auto-equivalence obtained by applying the
shift functor ¢ times. We denote by Irr(A) the set of equivalence classes of simple objects
of A up to shift.

A functor F : A — A’ between graded categories is graded if it commutes with the
shift functors. We denote by [A]z the Grothendieck group of an abelian category A. If
A is graded we denote by [A]z(, 4-1] the quotient of [A]lz ®z Z[g,q~'] by the additional
relation q[M] = [M(—1)]. This quotient is naturally a Z[q, ¢~ ']-module. Set

[Alc =[A]z ®z C,
[Alc(g) = [Alz(g,4-1] ®z]g,4-1 C(0)-

For a k-algebra A, we let A—mod be the category of finitely generated A-modules,
and if A is Z-graded, we let A—modyz be the category of finitely generated Z-graded
modules. These are naturally k-linear abelian categories.

3.2. Definition

In this section we introduce our main objects of study: representations of the 2-
quantum group on abelian categories, which we refer to as “categorical representations”
of Uy(g). This definition of the categorified quantum groups and their categorical actions
is originally due to Rouquier and Khovanov-Lauda [28,29,41].

In the literature, there are a number of slightly different-looking examples of 2-
representations, depending not just on whether or not one is working with the Khovanov-
Lauda or Rouquier 2-categories, but also depending on whether or not one is interested
in categorifications of representations of Uy(g) or of U(g). At the categorical level, the
difference between Uy,(g) or of U(g) arises from grading considerations; in categorifica-
tions of representations of U,(g), one works with categories enriched in graded vector
spaces, whereas in categorifications of representations of U(g) no such grading is needed.

Fortunately, the different notions of categorical representations - and in particular
relationships between the Rouquier and Khovanov-Lauda frameworks in both graded
and ungraded settings, have been brought in line by work of Cautis-Lauda, who proved
that in the graded setting, integrable 2-representations of the Rouquier 2-category induce
2-representations of the Khovanov-Lauda 2-category [13], and by work of Brundan [6],
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who proved that the underlying ungraded 2-categories of Rouquier and Khovanov-Lauda
are equivalent.

The important point for us is that all our theorems, including our main results (Theo-
rem 6.4 and Theorem 6.8), remain true in any 2-representation of the Khovanov-Lauda-
Rougier 2-category, in either the graded or ungraded setting. Since the compatibility of
the internal grading with the braid group is of some independent combinatorial interest,
we elect to keep track of the gradings in the rest of the paper, and leave it to the reader
to verify that the arguments go through while ignoring the gradings and working in
the setup of, e.g. Brundan [6]. To that end, we have chosen to follow the notation and
conventions of Cautis-Lauda below.

A categorical representation of U,(g) consists of the following data:

o A family of graded abelian k-linear categories C, indexed by p € X. We refer to
each C,, as a weight category.

o Exact graded functors E;1, : C, = Cuqq, and F;l, : C,, — Cyu—q,, for i € I and
u € X. We refer to E;, F; as Chevalley functors.

e A collection of natural transformations between these functors. We won’t be us-
ing directly these natural transformations in this work, so refer the reader to [13,
Definition 1.1] for their definition.

This data is subject to the conditions spelled out in items (1)-(5) of [13, Definition 1.1].
We only record those that are relevant for us:

(1) The functors E;1, and F;1,, are biadjoint up to a specified degree shift (see (3.1)
below).

(2) The powers of E; carry an action of the KLR algebra associated to @, where Q
denotes a choice of units (¢;;)i2jer in k™. These units satisfy some restrictions which
are not relevant for us.

(3) We have the following isomorphisms:

F'LEZIL,U, = Eze]l;L 69[—(’1117#)] ]1#3 if <h7,7M> < 07
EiFil, = FEl, ©yn, ) Ly, if (hiyp) >0,
EiF;1, = FE1,.

This notation is explained as follows: for a Laurent polynomial f =" foq®, ®¢A is
a direct sum over a € Z of f, copies of A(a), and [n] :=¢" 1 +¢" 3+ + g™

Usually we just say that C = €p,C, is a categorical representation of Uy(g) (the
remaining data is implicit). Given an integrable U,(g)-module V, we say that C is a
categorification of V' if C is a categorical representation of U,(g) such that [C]c(y) =V
as Uy(g)-modules.
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An additive categorification is a categorical representation on a graded additive k-
linear category V satisfying the same conditions as above, except the Chevalley functors
are of course only required to be additive. We let V be the idempotent completion of V.

Given an abelian category C, we consider the additive category C—proj defined as the
full subcategory of projective objects in C. Note that if C is a categorical representation
of Uy(g), then C—proj naturally inherits the structure of an additive categorification.

As a consequence of this definition, and in particular condition (2), there exist divided
power functors El(.r) 1, C E[1,, FET)ILA C F} 1, which categorify the usual divided powers
on the level of the quantum group. Again, we refer the reader to [13] and references
therein for further details. We note that their adjoints are related as follows:

(B 1) R 2 F Lyira (r(A + 7)), (3:1)
(Em]l,\)L = F(T)1A+Tai<_r()‘i +7)). (3.2)

(3

3.3. Crystals
We recall the definition of a crystal.
Definition 3.3 (/27]). A g-crystal is a finite set B together with maps:
¢./i: B=>BU{0}, £,0,:B>Z, wt:B—oX
for all 7 € I, such that:

(1) for any b, b’ € B, &(b) = V' if and only if b = f;(V/),

(2) for all b € B, if &(b) € B then wt(& (b)) = wt(b) + o, and if f;(b) € B then
wt(fi(b)) = wt(b) —

(3) for all b € B, &;(b) = max{n € Z : &"(b) £ 0}, p;(b) =max{n € Z : fr(b) # 0},

(4) for all b € B, p;(b) — e;(b) = (wt(b), h;).

Any U,(g)-representation V has a corresponding g-crystal B = By. The underlying
set of B is in natural bijection with a particular basis of V' (the “global crystal basis”
or “canonical basis”). The maps ¢;, ﬁ are related to the raising and lowering Chevalley
operators; vaguely speaking they encode information about the leading terms of the
Chevalley operators acting on this basis. In particular, for an integral dominant weight
A, the canonical basis B(\) of L(\) carries a natural crystal structure [20].

The crystal of V' naturally arises via categorical representation theory. Namely, as
we describe in the next proposition, if C is a categorification of V, then Irr(C) carries a
crystal structure isomorphic to By. This follows from [16, Proposition 5.20] and [32],
and is explained in detail in [7].

Proposition 3.4. ([7, Theorem 4.31]) The set lrr(C) together with:
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e Kashiwara operators defined as E;(X) = socE;(X), Fi(X) = socF;(X) for X €
lrr(C),

o wi(X)=p for X €C,, and

e &(X) = maz{n | E}(X) £0}, and ¢(X) = maz{n | F}(X) £0},

is a g-crystal isomorphic to the crystal B = By .
3.4. Jordan-Hélder series

A categorification of a simple representation (respectively an isotypic representation)
is called a simple categorification (respectively an isotypic categorification). There is a
distinguished categorification of L(\) called the minimal categorification and denoted
L(A) [16,26,28,41,50]. It is characterized by the fact that £(X)x = L(X)y,(n) = k—modz.
We let kiow € L(N)wo(r)> Knigh € L(A)x be the generators.

The Jordan-Hélder Theorem for categorical representations will play an important role
in our work. This was originally developed by Rouquier for additive categorifications [41],
and in this section we transfer these results to the abelian setting. To set this up, recall
that given finite abelian k-linear categories A, B the Deligne tensor product A ®j B
is universal for the functor assigning to every such abelian category C the category
of bilinear bifunctors A x B — C right exact in both variables [39, Definition 1.11.1].
The tensor product is again a finite abelian k-linear category, and there is a bifunctor
AxB— Ak B,(X,Y)— X ®Y. This construction enjoys the following properties:

(1) The tensor product is unique up to unique equivalence,

(2) for finite k-algebras A, B we have that (A—mod) ®j (B—mod) = (A ®x B)—mod,
and

(3) Hom g, 5(X1 ® Y1, X2 ® Y2) 2 Hom4 (X1, Y1) ® Homp(Xa, Ya).

Let C be a categorical representation, and let A be a finite k-linear abelian cate-
gory. We can endow C ®x A with a structure of a categorical representation, by setting
(C ®x A), = C, Qx A, defining Chevalley functors E;1, ® 14, etc. If C is a simple
categorification, then clearly C ®y A is an isotypic categorification. Conversely, we have:

Lemma 3.5. Let C be an isotypic categorification of type A € X .. Then there exists an
abelian category A such that C = L()\) @ A.

Proof. Since C is an isotypic categorification, so is C—proj. By Rouquier’s Jordan-Hélder

series for additive categorifications [41, Theorem 5.8], there exists an additive k-linear
category M such that

C—proj = (L(\)—proj @ M)'.
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Note that no filtration appears here since, in the notation of [41], (C—proj)"™, =
(C—proj)_».

Let {P;} (respectively {Q;}) be a complete list of the projective indecomposable
objects of L(A) (respectively M). Let P = P, ; P; ® Qj, and let B = Endc(P)°. By
Morita theory, B—mod = C. On the other hand,

B = End ) (D P) @ Endm(EP Q)"
i J

Since L£(\) = Endg) (@, Pi)?—mod we have the desired result with A =
Endm(, @;)?—mod. O

Theorem 3.6. Let C be a categorical representation of U,(g). Then there exists a filtration
by Serre subcategories

0=CcC c---cC,=C, (3.7)

such that for each i: C; is a subrepresentation of C, C;/C;—1 is a simple categorification
of type \; € X, and the list of highest weights is weakly increasing so that A\; < \; =
1<7.

Proof. The g-crystal Irr(C) is isomorphic to a finite direct sum of irreducible crystals
B()\) for various A, i.e. we have an isomorphism

Ir(C) = @ BV)®™,

AEX

where my > 0 and only finitely many are nonzero.

Define M = {X € X | my # 0}, and let A € M. We claim that there exists a highest
weight simple object L € Cy. Indeed, otherwise for any simple object L € C, there exists
i € I such that E;(X) # 0. This implies that soc(E;(X)) # 0, and by Proposition 3.4 we
conclude that Irr(C) has no highest weight elements of weight A, a contradiction.

Now take A € M which is minimal with respect to =<, and let L € Cy be a highest
weight object. Let C; be the Serre subcategory of C generated by objects

{Fi, ---Fi (L) | i; € I,£ > 0}. (3.8)

By the exactness and bi-adjunction of the Chevalley functors, C; is a subrepresentation of
C. Moreover it categorifies L(\). Indeed, by our choice of A there cannot be any highest
weight objects with weight < A occurring in C;, and by construction the only simple
object in (C1)y is L.

Next consider the categorical representation C/C; and repeat this construction. This
produces a Serre subcategory C5 C C/C; which is again a simple categorification. Let
7 : C — C/C; be the natural quotient functor, and define Co = 7=1(C). Clearly, we
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have that C; C Cy, Cy is Serre, it is a subrepresentation, and C3/C; = C) is a simple
categorification.

Tterating this process produces a filtration of C such that each composition factor
is a simple categorification, and the highest weights of the subquotients are weakly
increasing. 0O

Remark 3.9. Note that the construction in the proof of Theorem 3.6 can produce also an
isotypic filtration with similar properties. Namely, if A1,..., Ay is a list of the distinct
isotypic types appearing in [C]c(q), and we choose any ordering of this list so that \; <
Aj = i < j, then there is a filtration 0 = Cj C C; C --- C Cy = C such that C; /C}_,
categorifies the isotypic component of [C]c(q) of highest weight Ar. To construct this
isotypic filtration, consider the Jordan-Holder filtration from the theorem. From the
proof of Theorem 3.6, it’s easy to see that one can ensure that the subquotients which
categorify the same simple representations appear in sequence. Assuming then that our
Jordan-Hoélder filtration satisfies this property, a coarsening of it is the desired isotypic
filtration.

Remark 3.10. Note that one can read off the isotypic filtration of C from the crystal
structure on Irr(C). Indeed, suppose that Irr(C) decomposes into components

lrr(C) = X(A\) U -~ UX(Ay),

where Aq,..., Ay € X are distinct dominant integral weights, and X()\;) is a disjoint
union of copies of B(\;). Further, we arrange the weights as above so that \; < \; =
i < j. Let C; be the Serre subcategory of C generated by simple objects L such that [L] €
X(Aj), where j < i. Then it follows from Remark 3.9 that {0} CC; CCy C --- CCn is
an isotypic filtration of C.

3.5. The categorical braid group action

Let C be a categorical representation of Ugy(g), v € X and i € I. We define a complex
of functors ©;1,, supported in nonpositive cohomological degrees, where for r > 0 the
—7r component is

L JETEROL (- if <0,
(0;1,)7" = {quwr)E(rz)]l .
; ;L (—r) if p; > 0.
The differential d” : (©;1,)"" — (0;1,) "' is defined using the counits of the bi-
adjunctions relating E; and F; (see [8, Section 4] for details). This produces a functor
0;1, : D*(C,) — D"(Cy, (), which following Chuang and Rouquier we call the Rickard
complex.
It’s straightforward to verify that the Rickard complex ©;1, categorifies Lusztig’s
braid group operators t;1,, ([8, Section 2]). On the level of categories we have the following
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two theorems of Chuang-Rouquier and Cautis-Kamnitzer, which are the fundamental
results about Rickard complexes. Note that the latter theorem was conjectured in [41,
Conjecture 5.19].

Theorem 3.11. [16, Theorem 6.4] For any p,i, ©;1, : D*(C,) = D"(Cs,(,)) is an equiv-
alence of triangulated categories.

Theorem 3.12. [11, Theorem 6.3] The Rickard complezes satisfy the braid relations:

0,0;1, = 0,0,1, if (i,j) = 0,
©:0,;0;1, = 0,;0,0;1, if (i,j) = -1,

thereby defining a weak action of B on D(C).

This action is “weak” since we don’t make any claim on the canonicity of the functorial

isomorphisms. Nevertheless, for w € W we define ©,1, := ©;, o---00;,1,, where

o
w = s, - -+ 84, is a reduced expression. Thus ©,,1,, is defined up to isomorphism, but not
canonical isomorphism. Luckily, everything we do in this paper only requires ©,,1, to
be defined up to isomorphism.

As a consequence of their proof of Theorem 3.11, Chuang and Rouquier show that
the inverse of ©;1, is its right adjoint. We denote this functor by ©}1, : D*(C,) —
DP(Cy, (1)), so that ©,0]1,, = ©]0,1, = 1,,. As a complex of functors, ©}1,, is supported
in nonnegative cohomological degrees, where for r > 0 the r component is

EVFWTIL (r(—2p; — 2r + 1)) if pg > 0,
Fl(v') Eg—uri+7-)]llt<r(72ui +2r+1)) if u; <0.

(GQﬂM)T = {

4. Perverse equivalences
4.1. General definition

Let T be a triangulated category with shift functor [1] : 7 — T. In the cases of most
interest to us, T is a subcategory of a derived category, in which case [1] is the homological
shift functor. Suppose 7 has a t-structure t = (7=, 729), with heart 7% = 7= 1720
[4]. Recall that a triangulated functor F': T — S between triangulated categories with
t-structure is t-exact if F(7T=%) C =Y and F(T=%) C §2°. We let F[p] : T — S denote
the pre-composition of F' with the p-shift [p].

Now let S C T be a thick triangulated subcategory, and consider the quotient func-
tor @ : T — T/S. Following [15], we say that ¢ is compatible with S if t7,s =
(Q(T=9),Q(T=Y)) is a t-structure on 7/S. By [15, Lemmas 3.3 & 3.9], if ¢ is com-
patible with & then (7/8)Y =TV /TYNS, and ts = (SNT=°,8NT=) is a t-structure
on S such that S¥ =79 nNS.
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Now suppose that 7, 7’ are two triangulated categories with t-structures ¢, t’. Suppose
further that we have filtrations by thick triangulated subcategories:

ocTochc---CcT,=T, 0CcTjcT/C---CT =T,

such that for every 7, t is compatible with 7; and ¢’ is compatible with 7. By [15, Lemma
3.11], t7; is also compatible with 7,1, and hence 7;/7;—1 inherits a natural t-structure.
Let p:{0,...,7} = Z. The data (7., 7., p) is termed a perversity triple.

Although Chuang and Rouquier didn’t formulate perverse equivalences for graded
categories, it is straightforward to extend their definitions to this setting.

Definition 4.1. A graded equivalence of graded triangulated categories F : 7 — 7" is a
(graded) perverse equivalence with respect to (7,77, p) if for every i,

(1) F(T) = 77, and
(2) the induced equivalence F[—p(4)] : 7;/Ti—1 — T;/T;_; is t-exact.

For brevity, we say F is perverse if it is a graded perverse equivalence with respect
to some perversity datum. Since we will be working exclusively in the graded setting, a
perverse equivalence for us will always mean a graded perverse equivalence.

A perverse equivalence F : 7 — T’ induces a bijection ¢f : Irr(T7) — lrr(T'7).
Indeed, by (2) F[—p(i)] induces a bijection Irr(T;7) \ Irr(T,7,) = Ire(T/)\ Irr(77%)), and
these yield @F.

Although the construction of pf depends on a choice of perversity triple, the resulting
bijection does not when 7V, 7’% have finitely many simple objects. This follows from
the following lemma.

Lemma 4.2 ([35], Lemma 2.4). Suppose that TV, T'Y have finitely many simple objects,
and for i =1,2 let F; : T — T’ be a perverse equivalence with respect to the perversity
datum (Ti,e, T} ¢;pi)- If the induced maps [F1],[F2] : [T]z — [T']z coincide then pr, =
PFa-

Corollary 4.3. Suppose that T, T'Y have finitely many simple objects, and F : T — T’
is perverse. Then @f is independent of the choice of perversity triple.

Proof. Suppose F is a graded perverse equivalence with respect to two choices of perver-
sity triples (7i.e, T;s,Pi), i = 1,2. Now apply the lemma. O

The proofs of the following lemmas are straightforward.

Lemma 4.4. Suppose F : T — T’ is perverse. Then for any ¢ € Z, F[{] is also perverse
and Qg = @F-
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Lemma 4.5. Suppose F : T — T is a perverse equivalence with respect to (Te,TJ, D),
and G : T' — T" is a perverse equivalence with respect to (T, T!',q). Then GoF is a
perverse equivalence with respect to (Te, T, 0+ q), and YGor = ©G © Y-

Lemma 4.6. Let 7,7’ be triangulated with t-structures t,t', and let S C T,S8' C T’ be
thick triangulated subcategories such that t is compatible with S and t' is compatible with
S’. Suppose further that F: T — T’ is a perverse equivalence with respect to (Te, TJ, D),
and F(S) = §'.

Define S; =SNT;, S, =8 NT! and (T/S); = Q(T:),(T'/S)i = Q'(T/). Let G: S —
S andH:T/S— T'/S" be the induced equivalences. Then:

(1) G is a perverse equivalence with respect to (Se,S.,p), and ¢ = OF | s -
(2) H is a perverse equivalence with respect to ((T/S)e,(T'/S )e,p), and py =

SOF‘IrrTO\IrrS@ :

Lemma 4.7 ([35], Lemma 2.4). Suppose F : T — T is perverse, and G (respectively G')
is an autoequivalence of T (respectively T') which is t-exact up to shift. Then G oF oG
is perverse, and Q©G oFoG = PG’ © PF O PG -

Note that in [33, Lemma 2.4] is stated for functors which are t-exact. Our formulation
for functors which are t-exact up to shift follows by Lemma 4.4.

4.2. Derived categories of graded abelian categories

We now specialise to the case of derived categories. We recall that if A is an
abelian category, then the bounded derived category D’(A) has a standard t-structure
(D*(A)<", D¥(A)=°%) whose heart is A.

Given a B C A a Serre subcategory, we let D%(A) C D’(A) denote the thick subcat-
egory consisting of complexes with cohomology supported in B. The category D%(A)
inherits a natural t-structure from the standard t-structure on DY(A): D%(A)=0 =
DY%(A) N D*(A)=° and D%(A)=° = DY%(A) N D*(A)=°. The heart of the t-structure
on D%(A) is B. Moreover, if C C B is another Serre subcategory then the ¢-structure on
D% (A) is compatible with D4(A). In particular, the quotient D%(.A)/Dg(A) inherits a
natural t-structure whose heart is B8/C.

For the remainder of this section let A, A’ be graded abelian categories. In the setting
of derived categories of graded abelian categories, a perverse equivalence can be packaged
as follows. We can encode a perversity triple (A,,.A,,p) using filtrations on the abelian
categories: A, and A, are filtrations by shift-invariant Serre subcategories:

0=A CA CAC...CA=A 0=A,CcACAC...CA =A"

Then a graded equivalence F : D*(A) — Db(A’) is a perverse with respect to (A, AL, p)
if conditions (1) and (2) of Definition 4.1 hold for 7; = D% (A) and T = DY, (A’).



I. Halacheva et al. / Advances in Mathematics 429 (2023) 109190 17

As above, a graded perverse equivalence F : D’(A) — DY(A’) induces a bijection
oF = lrr(A) = Trr(A).

The following standard lemma will be useful in the proof of our main result.

Lemma 4.8. Let A, A’ be abelian categories, and B,B’ Serre subcategories. Let a < b be
integers, and F; : A — A’ be exact functors for a <i < b. Suppose these functors fit into
a complex F = (F, = Foy1 — -+ = Fp), defining a functor

F:DY(A) — D°(A).
IfFy(B) C B for all a <i < b, then F(D%(A)) C D%, (A").
5. Some commutation relations

We fix throughout a categorical representation C of U,(g). Recall that wy € W is
the longest word, and let wy = s;,5i, -+ 5;, be a reduced expression. We consider the
composition of Rickard complexes which categorifies the positive lift in B of wy:

@w()]l)\ = @il "'@ir:ﬂ-p : Db(cx) - Db(cwo(x))~

In preparation for the proofs our main results in the next section, we prove some com-
mutation relations between ©,,, and the Chevalley functors.

5.1. Cautis’ relations

To begin, we recall some relations of Cautis (building on work with Kamnitzer [11]).
Although they are stated only for type A, their proofs apply to any simply-laced Lie
algebra.

Lemma 5.1 (Lemma 4.6, [8]). For any i € I,\ € X we have the following relations:

O;E; 1 = F,0,1,[1](\),
OiF i1y = E:O; La[1]{~\s).

Remark 5.2. The careful reader will notice that actually Cautis proves Lemma 5.1 under
certain conditions on A. For instance, the first relation is only proven in the case when
Ai < 0. To deduce the general case from this, one can rewrite the relation as EZ@;l ~
O; 'Fi[1](\;). Now recall that there is an anti-automorphism & on the sly 2-category
which on objects maps n — —n [30, Section 5.6]. This anti-automorphism maps @;1 to
©;, and hence applying it to the relation above we deduce the desired relation in the
case when \; > 0.
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Alternatively, in a recent preprint Vera proves a version of the relation between the
Rickard complex and Chevalley functors in the (bounded homotopy category of the) sly
2-category, which of course implies it also in any 2-representation [49].

Next we recall the categorical analogues of commutators [E;, E;] acting on represen-
tations of U,(g). Given nodes 7, j € I such that (7,j) = —1 and A € X, define complexes
of functors

EijLx: DP(Cx) = D’(Cotarta,)s  Eijla = EE;jIz(—1) — E;E 1,
Fij]l,\ : Db(C,\) — Db(C)\_ai_aj), Fij]lk = FiFj]l)\ — FjFi]l)\<l>.

In both instances the differential is given by the element T;; arising from the KLR
algebra, and the left term of the complex is in homological degree zero [8].

Lemma 5.3 (Lemma 5.2, [8]). Let i,j € I,\ € X and suppose (i,j) = —1. We have the
following isomorphisms:

O,E; if A >0,
Ei;©:1\ = ’ v
O,E; 1{(-1) X\ <0
O,F; if Ai >0,
Fi;©il\ = ! v
O.F, 1) if X <0
E.O, FA; <0,
HA@jEij = J i J
EiO; [1)(-1) 4f A; >0
F,0; if A; <0,
]lz\GjFij = J i 7=
F0,[-1](1)  if \; >0

5.2. Marked words

We now introduce a combinatorial set-up which we’ll use to prove Proposition 5.9
below. A marked word is a word in the elements of I with one letter marked: a =
(41,42, ..., @g, ..., iy ). From a we can define a functor and an element of W:

oy
£
I

92'1 ce Gig,le'ZGiu .0 ]1>\7

in

w(a) =8, -+ 8,

Note that unlike ®(a), w(a) forgets the location of the marked letter. We say that a is
reduced, if the corresponding unmarked word is a reduced expression for w(a).

We will apply braid relations to marked words. Away from the marked letter these
operate as usual, and at the marked letter we have:
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(kb ) (LK, .), if (k0) =0 and, (5.4)
(o kel ) o (kK. ),  if (B 0) = —1. (5.5)

For marked words a, b we write a ~ b if they are related by a sequence of braid relations.

Lemma 5.6. Let a,b be marked words which differ by a single braid relation. Then there
exists k € {0, £1} such that ®(a) = O(b)[k](—k).

Proof. If the relation doesn’t involve the marked letter then ®(a) = ®(b) since Rickard
complexes satisfy the braid relations [11, Theorem 2.10]. Suppose then that the relation
does involve the marked letter. If (j,¢) = 0 the result follows from the fact that ©;F, =
F¢©;. Otherwise (j,¢) = —1. Set u = s¢s;(\) — ;. Applying Lemma 5.3 (twice) we
deduce that

@gFjg@j]l,\, if /\j >0,

1,0.0,F, 1\ = 0,0;F1, =
T T A {@szé@j]lA[lK_l)» it A; <0,

Fj@g@jl)\[—l]<1> if )\j >0, pup >0,
Fj@g@jﬂ)\[].]<—1> if )\j < 0,p <0,
F;i0,0;1, otherwise.

Hence the result follows. O

Corollary 5.7. Let a,b be marked words such that a ~ b. Then there exists an integer k
such that ®(a) = &(b)[k](—k).

Lemma 5.8. Let a = (i1,...,0n,£) and b = (¢,41,...,4,) be reduced marked words such
that w(a) = w(b). Then a ~ b.

Proof. We prove the claim by induction on n. Since w(a) = w(b) there is a Matsumoto
sequence of length M relating the unmarked words a = (i1, ..., i, £) and b = (¢, i1, ..., i).
Let ap = a — a; — -+ — apr = b denote the resulting sequence of unmarked words,
starting at a and ending b. Let a,11 be the first word in this sequence whose last entry
is not £. In other words, the first r steps in the sequence do not involve the last entry of
a, but the (r + 1) step does.

We will now consider the same sequence of steps, but applied to the marked words.
We then obtain a sequence of marked words ag = a — a; — - - -. Further, we know that
a. = (j1,...,Jn, L) for some ji,...,j,, and the next step involves the marked letter.

If the (r + 1)%¢ step is an application of (5.5) then j, 1 = £ and the step is:

a, = (j17~ .. 7jn727£7jna£) — App] = (jla e 7jn727j_’nvajn)~
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Let b’ := (¢, j1, ..., jn—2,%,Jn), i.€. b’ is obtained from b by applying the first r steps to
its (last n) entries as were used for the (first n) entries of a. Note that a,;; and b’ are
reduced marked words such that w(a,+1) = w(b’), and both end in (¢, j,,). Hence, if we
delete these last two entries we obtain two reduced marked words a” = (ji, ..., jn—2, jn)
and b” = (¢, j1, ..., jn—2) such that w(a”) = w(b”). By induction a” ~ b” and therefore
a,11 ~ b’. Since clearly b’ ~ b, we have our desired result:

a~a,~a. 1 ~b ~b
If the (r + 1)%! step is an application of (5.4) then the step is:

a, = (j17"'7jn717jn7£) — App] = (jlv---ajnflaﬁajn)-

Note that a,y; and b’ := (£, j1,...,Jn—1,Jn) are reduced marked words such that
w(ay4+1) = w(b’), and both end in j,. Hence we can delete this last entry and apply a
similar analysis as above. O

5.8. The relation between O,,, and Chevalley functors

We now have the machinery in place to prove our main relation.
Proposition 5.9. For any i € I, € X we have the following relations:

OuoBilx = Fr(i) Ouo LA[1]{As),
OuwoFillx = Er(5)Ouwy In[1]{— ).

Proof. We'll prove the first relation, the second being entirely analogous. For two functors
F,G we write F = G if there exist integers ¢, k such that F = G[¢](k).

We first show that ©,,E; = F.(;)©, by induction on the rank of g. The base case,
when g = sly, follows from Lemma 5.1. For the inductive step let J C I be a strict
subdiagram containing 7. Recall the bijection 7; : I — I induced by the longest element
wi € Wy. Let u = wo(wy)~! and let u = s;, --- s;, be a reduced expression. Define two

marked words:

(il, - ,inaTJ(i))’

b= (7(0), i1, -« - in)-

Note that w(a) = w(b). By the inductive hypothesis we have ©,4E; = F,,;©0,,7, and
therefore

@wo EZ‘ = @“@wb] EZ‘ = @uF.,.J(i)@wa = @(a)@ J.

Wy
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Note that a, b satisfy the hypothesis of Lemma 5.8, so by Lemmas 5.7 and 5.8 we have
that ®(a) = ®(b), and hence ©,,E; = ®(b)O,,; = F1(;)Ou,-

We now know there exist integers k, £ such that ©,,E;1x = F (;yOu, 1x[¢](k), and it
remains to show that ¢ = 1,k = ;. Let u = wos; and let v = s;, -+ s;, be a reduced
expression. Define two marked words:

(ila"',inai)a

a—=
b = (1(i), i1, -, in)-

Note that a, b satisfy the hypothesis of Lemma 5.8, so by Lemmas 5.7 and 5.8 there
exists an integer m such that ®(a) = ®(b)[m]|(—m). Hence we have that

Ou,Eily = 0,0,E;1,
~ 9, F,0,1,[1](\)
= F.,.(i)@wo]l,\[m + 1]<7m + )\z>

showing that £ + k =1+ ;.
On the other hand, we can deduce k by inspecting the relation on the level of
Grothendieck groups. Namely, by [25, Lemma 5.4], we have that

tonil)\ - 7q7>\i T(i)twol)n
showing that k= \;. O
6. On t-exactness and perversity of ©,,,

In this section we will state and prove the central results of the paper. We fix through-
out a categorical representation C of U,(g), and let wy = 4,84, --- 5, be a reduced
expression.

6.1. ©,, on isotypic categorifications

In this section we prove that ©,, is t-exact on any isotypic categorification. Fix
A€ X;. We write © = 0,,,, L = L(\) and L = L(N).

Lemma 6.1. Let k € {2,...,n} and set u = s;, -+ 8;, (wo(A)). The weight space
L(N)p-a,,_, is zero.

Proof. By [24, Proposition 21.3], it suffices to find v € W such that u(u—a;,_,) % wo(N).
Take u = s;,_, and, noting that (u, ;,_,) < 0, the result follows. O
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low

Recall that vy and vy
basis B(A).

are the highest and lowest weight elements of the canonical

Lemma 6.2. [25, Comment 5.10] We have ty, (v}°") = vj.

Proposition 6.3. The equivalence ©1,,,(y) : Db(EwO(A)) — DY(L)) satisfies ki Khigh
where both are considered as complexes concentrated in degree zero. In particular, un-
der the equivalences Lx = L) = k—modz, Ol,,(x) s isomorphic to the identity
autofunctor of D°(k—modz).

Proof. Consider first the case g = sl;. On the minimal categorification of highest weight
m, we have that ©1_,, (Kjow) = Knign (¢) for some ¢ by [16, Theorem 6.6]. Since [O1_,,] =
t11_,,, by Lemma 6.2 we conclude that ¢ = 0, and hence O1_,, (ko) = Kpigh-

For general g, suppose X € £, is simple and F; X = 0 for some i € I. Consider L as
a categorical representation of sl by restriction to the i-th root subalgebra. Then for
some m we have a morphism of categorical sly representations Rx : £(m) — L, such
that Rx (Kiow) = X [16, Theorem 5.24].

The functor Rx is equivariant for the categorical sls action on C determined by E;, F;
(in fact it is strongly equivariant in the sense of [34, Definition 3.1]), and hence commutes
with ©;1,. Therefore we have that

@zlu(X) = @i]lu(RX(]klow))

= RX (G)i]lu(]klow))

= Rx (kpign) € L,
and so ©;1,(X) is in homological degree zero. It follows that in the case when X is
not necessarily simple (but still assume that F; X = 0), ©;1,(X) is still in homological
degree zero. Indeed, by induction on the length of a Jordan-Holder filtration of X one

deduces this since £ C D’(L) is extension closed.
Now we study ©1,,,(x) applied to kjsy. For k =2,...,n, by Lemma 6.1,

Fik—1 (le o ®in1w0(>\) (ﬂ{low» =0.
By the previous paragraph, it follows that ©;,_, -+ ©;, 1,,,(x)(Kkiow) is in homological

degree zero, and in particular, ©1,,,(x)(kiow) is supported in homological degree zero.
Since in addition

[6]1100()\)] = two 171)0()\)’

by Lemma 6.2 we conclude that @leo(,\)(}klow) = Kpigh. O
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Theorem 6.4. Let A € X and set L = L(\). For any u € X,
©1,[-n] : D*(L,) — D*(Lupy()
is t-exact, where n = ht(u — wo(N)).

Proof. Consider P = E;, --- E;,(kiow) € L£,. We will first prove by induction on n that
there exists an integer k such that

O(P)[=n] = Fjy - Fj, (Knign) (k) € Lug(u); (6.5)

where j,. = 7(i,).
The base case when n = 0 follows by Proposition 6.3. For the inductive step write
P =E; (Q). Note that Q € L,,_,, . By Proposition 5.9 we have that

©1,(P)[-n] = ©E; 1,0, (Q)[-n]
= Fr(i)OLya, (Q)[=n + 1 {(1 — aiy; i)

By hypothesis
@ﬂlt—an (Q)[fn + 1] = sz T sz (khigh)<k> € ﬁwo(u—an)

for some k, and hence Equation (6.5) follows.

Since up to grading shift, any projective indecomposable object in L, respec-
tively Loy, is a summand of an object of the form E; ---E;, (kjow) (respectively
Fi, -+ Fj,(Knign)), it follows that ©1,[—n] takes projective objects in £, to projective
objects in L, (. Since ©1,[—n] is a derived equivalence it follows that it is t-exact. O

Remark 6.6. Theorem 6.4 is a generalisation of [16, Theorem 6.6], which covers the sly
case. Note that [16, Theorem 6.6] is crucial in the work of Chuang and Rouquier, since it’s
one of the main technical results needed to prove that Rickard complexes are invertible.
Our proof in the general case follows a completely different approach, but it does not
give a new proof in the case of sly. Indeed we use [16, Theorem 6.6] explicitly in the proof
of Proposition 6.3, and more generally we use the fact the ©; is invertible throughout.

Corollary 6.7. Suppose C is an isotypic categorification of type A, for some A € X,
and let p € X. Then ©1,[—n] : D*(C.) — DP(Cuy(n)) is a t-exact equivalence, where
n = hi(u — wo(A).

Proof. By Lemma 3.5, there exists an abelian k-linear category A such that C & L(\) ®x
A as categorical representations. We have that

OL,[=n](L(N)y @1 A) = OL,[=n)(L(A) ) B1c A = LA )y () D1 A,
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proving that ©1,[—n] : D*(C,) — D"(Cyy(y) is a t-exact equivalence. O
6.2. Oy, on general categorical representations

In this section we prove that ©,,, is a perverse equivalence on an arbitrary categorical
representation. Fix p € X such that C, is nonzero. For ease of notation, set A =C, and
A= Cwo(ll)'

Consider a filtration by Serre subcategories
0=CcC cCc---CC.=C,

which can be either the Jordan-Holder filtration (Theorem 3.6) or the isotypic filtration
(Remark 3.9). So for every i, C; is a subrepresentation of C, and C;/C;_; is either a simple
categorification or an isotypic one. Define A; € X by requiring that [C;/C;_1]c(q) is a
representation of type \;.

Construct filtrations of A and A" by A; = C; N A, A, = C; N A’. These are Serre
subcategories of A and A’ respectively. Let p : {0, ...,7} — Z be given by p(i) = ht(u —
wo(Ai)).

Theorem 6.8. ©,,1, : D°(A) — D"(A’) is a perverse equivalence with respect to
(Ao, AL, p) for either the Jordan-Hélder or the isotypic filtration.

Proof. Since C; C C is a categorical subrepresentation, the terms of the functor ©,,1,
leave C; invariant, and in particular take objects in A; to Aj;. By Lemma 4.8 this implies
that ©,,1,(DY, (4)) C DYy (A).

Now, C;/C;—1 is a simplel or isotypic categorification (of type ;). By Corollary 6.7,
O, 1, [—p(7)] restricts to an abelian equivalence A;/A;—1 — A/ A_,, i.e. the functor

O Lul—p(0)] : Dy, (A)/Dy,,(A) — Dy (A) /DYy ()

is a t-exact equivalence. This shows that ©,,1, is a perverse equivalence with respect

to (As, A,,p). O

Remark 6.9. The sly case of Theorem 6.8 appears as [15, Proposition 8.4], by a different
argument relying on a technical lemma [15, Lemma 4.12].

7. Crystalising the braid group action

Already in the work of Chuang and Rouquier, a close connection is established between
categorical representation theory and the theory of crystals (although it is not phrased
in this language, cf. Proposition 3.4 below). In this section we describe a new component
of this theory. More precisely, let V' be an integrable representation of U,(g). Recall that
Lusztig has defined a braid group action on V' [36]. In this section we explain how to
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use our results to “crystalise” this braid group action to obtain a cactus group action on
the crystal of V', recovering the recently discovered action by generalised Schiitzenberger
involutions.

7.1. Cactus groups

The cactus group associated to the Dynkin diagram I has several incarnations. Ge-
ometrically, it appears as the fundamental group of a space associated to the Cartan
subalgebra § of g. Namely, let h*& C g denote the regular elements of . The cac-
tus group C' = (7 is the W-equivariant fundamental group of the real locus of the de
Concini-Procesi wonderful compactification of h*8 (see [17], [21, Section 2] for further
details):

C =n)"(P(he)(R)).

There is a surjective map C' — W, and the kernel of this map is called the pure cactus
group. In type A it is the fundamental group of the Deligne-Mumford compactification
of the moduli space of real genus 0 curves with n + 1 marked points [22].

The cactus group has a presentation using Dynkin diagram combinatorics. For any
subdiagram J C I, recall that 75 : J — J is the diagram automorphism induced by the
longest element wy € W.

Definition 7.1. The cactus group C' = C7 is generated by ¢y, where J C I is a connected
subdiagram, subject to the following relations:

(i) & =1forall JCI,
(ii) cjex = cxey, if JN K = @ and there are no edges connecting any j € J to any
k € K, and
(iii) cjex = crxcre(y) if J C K.

The surjective map C' — W mentioned above is given by c; — wg. We are interested
in the cactus group in connection to the theory of crystals.

A g-crystal B is called normal if it is isomorphic to a disjoint union LyB(\) for some
collection of highest weights A. The category of normal g-crystals has the structure of
a coboundary category analogous to the braided tensor category structure on Ug,(g)-
representations. It is realized through an “external” cactus group action of C4, , on
n-tensor products of g-crystals, described by Henriques and Kamnitzer [22, Theorems
6,7].

We are interested in the “internal” cactus group action of C' on any g-crystal B. Both
the internal and external actions rely on the following combinatorially defined maps,
which are generalisations of the partial Schiitzenberger involutions in type A.
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Definition 7.2. The generalised Schiitzenberger involution £, on B(\) is the set map
defined uniquely by the following properties. For all b € B(\) and ¢ € I:

(1) wt(€x (b)) = wowt(b),
(2) &ei(d) = Fréa(d),
(3) Exfi(b) = Eiéa(b).

The generalised Schiitzenberger involution £ on B = LI\B(\) is the set map which acts
as &, on each irreducible component B(\).

Note that (1) implies that £, maps the lowest weight element to the highest weight
element (and vice-versa), and then (2) and (3) ensure that it is uniquely defined.

For J C I, denote by B the crystal B restricted to the subdiagram J. We denote
the corresponding Schiitzenberger involution by &.

Theorem 7.3. ([21, Theorem 5.19]) For any g-crystal B, the assignment cj — £ defines
a (set-theoretic) action of C on B.

7.2. The cactus group action arising from Rickard complexes

We now explain how cactus group actions arise from categorical representations, anal-
ogous to the construction of the crystal on Irr(C) in Proposition 3.4.

Let C be a categorical representation of U,(g). For any weight ¢ € X, by Theorem 6.8
Ouyl, : DP(C,) — Db(CwO( 1)) 1s a perverse equivalence, and hence it induces a bijection
@rly lrr(Cy) = Irr(Cogu))- By varying p we obtain a bijection g : Irr(C) — Irr(C).

Now let J C I be a connected subdiagram, and let g; C g be the corresponding
subalgebra. By restriction, C is also a categorical representation of Uy(gs), and hence by
the above discussion we also obtain a bijection ¢ : Irr(C) — lrr(C).

We will prove that this family of bijections defines an action of the cactus group lrr(C).
First we need the following technical result. The important point here is just that there
exists an integer n such that t2, 1, = £¢"1,,.

14

Lemma 7.4. Let A\ € X, € X, and let p — wo(X) = >, _; a;,, where i, € I. Set

jr = 7(ir) and define n(\, pu) € Z by
‘
n) =2 N, +1— > aj+(\p)

r=1 1<r<s<¢{

Then on L(\), we have

t2 1, = (=1)2 ) gru g, (7.5)

Wo
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Proof. We will prove the claim by induction on ht(u — wo(X)). For u = wo(A), we have
that £ = 0 so n(A, u) = (A p). By [25, Equation (7)] ty,(vx) = (—1)<’\’pv>q(’\”’)v§\°w,
which, combined with Lemma 6.2, implies that t2, (vi°") = (—1)<’\7pv>q(’\’p)vf\°w. Since
dim(L(A)w,(n)) = 1, this proves the base case.

Now choose any p and suppose (7.5) holds for any weight ' such that ht(p —wo(X)) <
ht(pn—wo(N)). Consider v = Ej, - -+ E;,v}% € L()\),. First note that by [25, Lemma 5.4]
we have that

t, B ="K °Et], . (7.6)
Setting v' = Ej, - - - Ejevf\ow, by induction we have

2 22 L2
twV = ¢ K “Ejt, v
= (q2Kj:2Ej1)(_1)<>\7pv>qn(>\’u_ah)v/

— (_1)</\,pv>q2+n(/\,u—ah)—2(u,aj1)U
One checks easily that n(\,p) = 2+ n(A\,u — ;) — 2(p, «j,), proving that t2 v =

(=1)»") gy, Since this holds for any vector of the form Ej, --- Ej,v}% in L(\),,
this completes the inductive step. 0O

Theorem 7.7. The assignment cj — @ ; defines an action of C on lrr(C).

Proof. We need to show that the bijections ¢ satisfy the cactus group relations.
Relation (i): Without loss of generality we may assume J = I. Fix a weight p. Our
aim is to show that

SDISOI]-,U, = Idlrr(CM)' (78)

Since the filtration of C
the filtration of C,(,)
the composition ©,,0,,1, is a perverse autoequivalence of D*(C,,).

wo(n) Which we use in the perversity data of ©,,,1,, agrees with

which we use in the perversity data of ©,,1,(u), by Lemma 4.5

The functor [(2X, pV)](n(A, 1)) is also a perverse autoequivalence of D®(C,). By
Lemma 7.4 these two perverse equivalences induce the same map on Grothendieck groups,
and hence by Lemma 4.2 they also induce the same bijection. Since the bijection induced
by [(2X, p¥)]{n(), 1)) is the identity, this proves relation (i).

Relation (%): Let J, K C I be disjoint subdiagrams with no connecting edges. Our
aim is to show that

ererly = orprly. (7.9)

We prove a slightly more general statement, namely that for any categorical representa-
tion C of Uy(gs X gk ), relation (7.9) holds.
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Note that ©;0K1, = OO 1, are isomorphic perverse equivalences, so they induce
the same bijections. It remains to show that

PO ,0K1, = PJO YKl (7.10)

Consider first the case when C categorifies an simple representation of Uy(gs X gk ).
A minimal categorification of U,(gs x gk) is of the form £(\) ®x L£(n), where A is a
highest weight for g; and p is a highest weight for gx. Hence by Lemma 3.5, a simple
categorification of U,(gs X gk ) is of the form L£()\) Qk L(u) ®x A for some abelian
category A.

This implies that as a categorical representation of Uy(gs) (respectively Uy(gx)), C
categorifies an isotypic representation. By Corollary 6.7 © gLy () and O©k1, are t-exact
up shift on isotypics categorifications. Hence Equation (7.10) follows by Lemma 4.5.

Now consider a Jordan-Hoélder filtration (Theorem 3.6):

0=CcC---CC,=C,

where for every ¢, C; is a subrepresentation of C, and C;/C;_1 is a simple categorification
of Uy(gs X gk ). Equation (7.10) now follows by an easy induction on i. Indeed the base
case when ¢ = 1 holds by the paragraph above, and the inductive step by Lemma 4.6.
Relation (iii): We need to show that ¢ orl, = ©0r@r.(nly, where J C K. Again,
we may assume that K = I. Note that we have an isomorphism at the level of functors:

O 0, Oy 1, = 0,7 L,
which lifts the corresponding relation in B. Since this is an isomorphism of perverse

equivalences, they must induce the same bijections by Lemma 4.2.
It remains to show that

Poule. ;0u 1, = prlopropr (7.11)
wo
When C is a simple categorification, by Corollary 6.7 ©,,1, is t-exact (up to shift).
Hence Equation (7.11) follows by Lemma 4.7. Now apply the same reasoning as in the
proof of Relation (ii) to deduce equation (7.11) in the general case. O
7.8. Reconciling the two cactus group actions
Let C be a categorical representation of Uy(g), and consider the g-crystal B = Irr(C).
There are two actions of the cactus group on B, the first arising combinatorially via

Schiitzenberger involutions (Theorem 7.3) and the other categorically via Theorem 7.7.

Theorem 7.12. The two actions of the cactus group on B agree.
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Proof. It suffices to show that ¢; = &;. First, suppose C is a simple categorification of
type A € X,. In this case B = B(\), and £ = &1 is determined by:

E(uy) = fuf\o“’, and

£(&;(v) = fr(i)(E(v)) for all v € B,

so we need to show that ¢ satisfies these properties as well.

The first is an immediate consequence of Corollary 6.7. To show that ¢ satisfies the
second property, fix 4 € X and i € I. We set n = ht(u — wo(N)),j = 7(¢), and write
O = Oy,

Consider the following diagram:

OLu[—n](u:)

Db(cﬂ> Db(cwo(u))
lm“ [Fstuocn (7.13)
®1u+&i [_n_l]
Db(cu+0ﬁ) Db(cﬂlo(#)—aj)
By Proposition 5.9 this diagram commutes (note that we shifted both sides of the equa-

tion by —n — 1). By Theorem 6.4 both horizontal arrows are in fact t-exact equivalences
so this restricts to a diagram of abelian categories:

o1, [—n](us)
Cu CUJO(M)
lEiﬂu J/Fj]lwo(u) (7'14)
@1H+C¥ri [7717 1]
Cutas CU}O(H)—aj

Let L € C, be a simple object, and let L' = ©1,,(L)[—n](u;). Note that L' € C
is simple and ¢;(L) = L’. By the above diagram we have an isomorphism

wo(u)

Ol ,u1a,(Ei(L))[—n — 1] = F;(L).

Now, Fj(L’) C F;(L') is the unique simple subobject. On the other hand, since
©1,,4q,[—n—1] is an abelian equivalence, O1,,4q, (Ei(L))[—n—1] C ©1,1q,(E;(L))[-n—
1] is a simple subobject. Therefore

OL,i 1, (Ei(L))[-n — 1] 2 F;(L).

Since the equivalence class of the left hand side is ¢ o ¢€;(L), this shows that ¢; satisfies
the second defining property, and hence the two cactus group actions agree in the case
of a simple categorification.

The general case when C is not necessarily a simple categorification follows easily
using the Jordan-Holder filtration (Theorem 3.6) and Lemma 4.6. O
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8. Examples and applications
8.1. Ezxamples

We now examine three examples. The first two consider minimal categorifications
of the adjoint representation, while the third studies the categorification of the n-fold
tensor product of the standard representation of sl,,. For ease of presentation, we ignore
gradings and consider non-quantum categorical representations.

Example 8.1. Let’s consider the first non-trivial example of Theorem 6.4: the minimal
categorification of the adjoint representation of sls. We can model this as follows:

ind res
A /\
k—mod R—mod k—mod
\/ \_/
res ind

where R = k[z]/(2?) [16, Example 5.17]. Here k—mod is the 42 weight category, and
R—mod is the zero weight category. The arrows describe the E, F functors (we omit the
higher structure).

Consider the Rickard complex © = O1, : D’(R—mod) — D’(R—mod). For M €
R—mod, we have:

O(M)=R®x M — M,

where the differential is given by the action map, and M is in cohomological degree 0.
It’s an exercise to verify that ©(M) is quasi-isomorphic to M'[1], where M’ is the twist
of M by the automorphism of R given by a + bz — a — bz. This shows that ©[—1] is the
t-exact equivalence M — M'. 0O

Example 8.2. More generally, one can consider the minimal categorification of the adjoint
representation of a simple simply-laced Lie algebra g. This was studied by Khovanov and
Huerfano in [23], who used zigzag algebras to model this category.

For a weight « of the adjoint representation of g, the weight category C, is taken
to be k—mod as long as o # 0. However, the zero weight category is more interesting:
Cop := A—mod, where A is the zigzag algebra associated to the Dynkin diagram I of g
(cf. [23] for the precise definition).

The isomorphism classes of indecomposable projective left A-modules {P;} and the
isomorphism classes of indecomposable projective right A-modules {Q;} are both indexed
by i € I. Tensoring with these modules defines functors

EiZCO—>CQi, M'—)QZ®AM,
Eichai —Cy, V=P V.
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The functors F; are defined analogously and are biadjoint to the E;.
The Rickard complex ©;1 is given by tensoring with the complex

PokQ; — A

of (A, A)-bimodules, where the differential is given by the multiplication in A, and A
sits in cohomological degree zero. These functors are autoequivalences of the derived
category D(Cy).

By Theorem 6.4 ©,,,1o[—n]| is t-exact, where n + 1 is the Coxeter number of g. This
auto-equivalence can be explicitly described as follows: the automorphism of the Dynkin
diagram 7 : I — I induces an automorphism ¢ of A. Then we claim that ©,,, 1o[—n] is the
abelian autoequivalence of A—mod defined by twisting with 1. Indeed, since O,,,1o[—n]
is an abelian autoequivalence, it is determined up to isomorphism by its action on simple
objects. Moreover, the action on simple objects can be read off from the action of W on
the Grothendieck group of A—mod as follows: [A—mod]z is isomorphic to the Cartain
subalgebra by mapping [L;] (L; is the simple head of P;) to the simple root vector H;.
And on the root vectors we have that wo - H; = —H, ;. O

Example 8.3. Let g = sl,, and consider the n-fold tensor power of the standard repre-
sentation V", Categorifications of V®" have been well-studied, and a model C for this
categorical representation can be constructed using the BGG category O of g [38,47]. In
this model, the principal block Oy C O appears as the zero weight category of C, and
the Rickard complexes acting on D®(Op) are the well-known shuffling functors.

By Theorem 6.8 ©,,10 : D*(Og) — D”(Oy) is a perverse equivalence with respect
to an isotypic filtration. In fact, this recovers the type A case of a theorem of the third
named author [33], using completely different methods (in [33] the perversity of 0, is
proved using the theory of W-algebras). We can interpret the filtration of O arising
from our perspective concretely using the Robinson-Schensted correspondence.

Recall that the simple objects in Oy are the irreducible highest weight representations
L(w),w € Sy, where L(w) has highest weight wp — p (p is the half-sum of positive roots
of sl,).

We view a partition A of n simultaneously as a dominant integral weight for sl,,, and
as an index for the irreducible Specht module S* of the symmetric group S,,. Let SYT ()
denote the set of standard Young tableau of shape A, and let d(A\) = |SYT(A)|. Recall
that d()\) = dim S*.

Choose an ordering of the partitions of 7, A1, ..., A, so that if A; < A; in the domi-
nance order, then i < j. Note that the dominance order on partitions of n is equivalent
to the positive root ordering on partitions (thought of as weights for sl,,). By Remark 3.9
there is an isotypic filtration on C, 0 C C; C --- C Cy = C, where C;/C;—1 is an iso-
typic categorification of type A;. Then ©,,, is a perverse equivalence with respect to the
filtration Oy, = Op NC; and the perversity function p(i) = ht(\;).
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We would like now to define the categories Oy ; more explicitly using the Robinson-
Schensted correspondence, which recall is a bijection [42]:

RS : 5, — | JSYT(A,) x SYT(A,), w = (P(w), Q(w).

j=1

We will use a crystal analogue of classical Schur-Weyl duality. This is given by a crystal
isomorphism:

B(@)®" — |i| B(\;) x SYT();). (8.4)

Jj=1

Now, recall that for a partition A of n, the underlying set of the crystal B(\) can be
chosen to be the set of semistandard Young tableaux of shape A with entries 1,...,n,
and the weight zero subset of B(\) is precisely SYT(A). The essential point is that the
isomorphism (8.4) can be chosen so that it restricts to the map RS on the elements of
weight zero ([44, Theorem 3.5]). (Note that the elements of weight zero in B(zw)®" are
naturally identified with permutations of 1,...,n.)

This shows that as an element of the crystal B(w;)®", [L(w)] is in a connected
component whose highest weight is the shape of @Q(w) (or equivalently P(w)). Therefore,
following Remark 3.10, we can construct the isotypic filtration by defining Op; to be
the Serre subcategory of Oy generated by L(w) such that the shape of Q(w) is among
Ayeey A O

8.2. Type A combinatorics

In this final section, we specialise to type A and discuss the combinatorics of Kazhdan-
Lusztig bases and standard Young tableaux from the vantage of perverse equivalences.

Set I = A,_1 = {1,...,n — 1}. We continue with the notation in Example 8.3 and
view a partition A F n simultaneously as a dominant integral highest weight for sl,,
and as an index of the Specht module S*. Recall that by Schur-Weyl duality, L(\)g is
isomorphic to S*. The Kazhdan-Lusztig basis of the Hecke algebra naturally descends
to a basis of S*, which we denote {C7} indexed by T' € SYT(A). For further details we
recommend the exposition in [40].

Consider the minimal categorification £(\), and in particular its zero weight category
L(N)o. For convenience, we forget the grading and work in the non-quantum setting.
The simple objects L(T) € L£(\)o are indexed by T' € SYT(A), and hence a perverse
equivalence F : D*(L(\)g) — D®(L())g) induces a bijection ¢ : SYT(\) — SYT()).

The bijection 7 studied in the previous section specialises to the well-known
Schiitzenberger involution on standard Young tableau, otherwise known as the “evac-
uation operator” e [42]. Indeed, by Theorem 7.12 ¢y recovers the cactus group action on
the crystal Irr(C) by generalised Schiitzenberger involutions. The Schiitzenberger involu-
tion is well-known to agree with the evacuation operator [45, Theorem A1.2.10]). Note
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that this is elementary: it follows directly from the fact that the evacuation operator
satisfies the properties of Definition 7.2 on standard Young tableaux.

The promotion operator j : SYT(A\) — SYT(A) is another important function in alge-
braic combinatorics, which is closely connected to the RSK correspondence and related
ideas such as jeu de taquin. Letting J = {1,...,n — 2} C I, we can express promotion
in terms of the Schiitzenberger involution: j = ¢ ;. We refer the reader to [42] for a
detailed exposition. We can now see easily that promotion also arises from a perverse
equivalence:

Proposition 8.5. Let ¢, = (1,2,...,n) € S, be the long cycle. Then
Oc, : D*(L(A)o) — D*(L(A)o)
is a perverse equivalence whose associated bijection is the promotion operator: po. = j.

Proof. Notice that ¢, = wowg for J as above. Now recall that ©,,, is (up to shift) a
t-exact autoequivalence of D?(L£(\)g) (Theorem 6.4). Since O, Is a perverse equivalence
(Theorem 6.8), its inverse is too. Therefore ©., = O,,, 6;;’ is also a perverse autoequiv-
alence. By Lemma 4.7 we have that 9o, = ¢rps, and hence we recover the promotion
operator. 0O

We can also use this set-up to extract information about the action of S;, on the
Kazhdan-Lusztig basis of S()\). This is based on the following elementary lemma:

Lemma 8.6. Let w € S,,, A = n and suppose ©,, : D*(L(\)g) — D°(L(N)o) is t-ezact up
to shift. Then for any T € SYT(\), w- Cp = £Cg, where S = ¢o,, (T).

w

Proof. Since ©,, is t-exact up to shift, we have:

The result now follows since the isomorphism [L(A)o]c =& S*, L(T) + Cr, is S,-
equivariant, and by [2, Proposition 10], the action of the braid group B = B,, on L(\)g
factors through S,,. O

Applying this lemma to Theorem 6.4 we obtain a result of Berenstein-Zelevinsky and
Stembridge:

Corollary 8.7. [3,/6] The action of the longest element on the Kazhdan-Lusztig basis
recovers the Schiitzenberger evacuation operator, i.e. forwg € Sy, A\ n andT € SYT(N),
we have that wo - Cr = £Cy(r).

Similarly we can prove a result of Rhoades regarding the action of the long cycle
en = (1,2,...,n) on the Kazhdan-Lusztig basis. Note that in the statement below the
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significance of A\ being rectangular is that the restriction of S(\) to S,,—1 in this case
remains irreducible.

Proposition 8.8. (cf. [/0, Proposition 3.5]) Let A = (a®) - n be a rectangular partition.
Then for any T € SYT(X), the action of the long cycle on the Kazhdan-Lusztig basis
element Cr recovers the promotion operator:

Cp * CT = :ECj(T).

Proof. As above, set J = {1,...,n — 2} C I. Recall that, since £(\) is a simple
categorification, we know O, : D”(L(\)o) — DP®(L()\)g) is t-exact up to shift by
Theorem 6.4. However, L(\)|sr,_, is no longer simple, so a priori we only know that
O DP(L()\)g) — DP(L(X)o) is perverse, but not necessarily t-exact up to shift. We
first prove that @wg is indeed t-exact up to shift.

Consider the set of functors which are monomials in the Chevalley functors indexed
by J:

M = {Gj, ---G;, | Ge {E,F}, jr € J}.

Let C be the abelian category generated by {M(X) | X € L(\)o,M € M}, that is, C is
the category closed under subobjects and quotients of objects of the form M(X). Since
the Chevalley functors are exact, it is easy to see that C is a categorical representation
of Ug(slp—1).

Let v = (n — 1) be the (unique) partition obtained from A\ by removing a box. We
claim that C is a categorification of L(r). Note that this is a categorification of the fact
that L(v) = Uy(sl,—1) - L(\)o. Indeed, it is clear that [C]c contains L(r). On the other
hand, if C, # 0 then p is in the root lattice of sl,,_1, and L(v) is the unique constituent
of L(\)]|s1,_, whose weights are in the root lattice.

Now observe that Co = L(A)o. Hence, by Corollary 6.7 it follows that ©,,
DP(L(N)g) — DP(L()\)o) is t-exact up to shift. Since ©,, is also t-exact up to shift,
it follows that ©,,, is too. The result now follows by Proposition 8.5 and Lemma 8.6. O
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