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Machine learning at the extreme edge has enabled a plethora of intelligent, time-critical, and remote applications. However,

deploying interpretable artiicial intelligence systems that can perform high-level symbolic reasoning and satisfy the underlying

system rules and physics within the tight platform resource constraints is challenging. In this paper, we introduce TinyNS, the

irst platform-aware neurosymbolic architecture search framework for joint optimization of symbolic and neural operators.

TinyNS provides recipes and parsers to automatically write microcontroller code for ive types of neurosymbolic models,

combining the context awareness and integrity of symbolic techniques with the robustness and performance of machine

learning models. TinyNS uses a fast, gradient-free, black-box Bayesian optimizer over discontinuous, conditional, numeric,

and categorical search spaces to ind the best synergy of symbolic code and neural networks within the hardware resource

budget. To guarantee deployability, TinyNS talks to the target hardware during the optimization process. We showcase the

utility of TinyNS by deploying microcontroller-class neurosymbolic models through several case studies. In all use cases,

TinyNS outperforms purely neural or purely symbolic approaches while guaranteeing execution on real hardware.

CCS Concepts: · Computing methodologies → Machine learning.

Additional Key Words and Phrases: neurosymbolic, neural architecture search, TinyML, AutoML, Bayesian, platform-aware

1 INTRODUCTION

Tiny machine learning (TinyML) refers to hardware and software suites that enable always-on, ultra-low-
power (≤ 1 mW), and on-device sensor data analytics on low-end (≤ 1-2 MB of SRAM and eFlash) Internet
of Things (IoT) platforms [51, 126, 136, 148]. TinyML holds the key to making on-board intelligent inferences
from unstructured data for time-critical and remote applications, such as aerial robotics [127], underwater
navigation [134], picosatellite machine inference [45], and wildlife monitoring [47]. 2.5 billion TinyML platforms
are expected to ship in 2030 [4].
An integral component in the TinyML worklow is neural architecture search (NAS) or AutoML, which

automatically constructs the most performant neural network (NN) from a set of lightweight ML blocks [79, 81,
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94, 162, 167, 173] and connection rules given target platform SRAM, eFlash, energy, and latency constraints [14,
60, 101, 103, 136, 139]. The NAS-generated model is compiled to the target device using TinyML compiler
suites [30, 43, 65, 67, 95, 103], which perform operator and inference engine optimizations [27, 42, 103, 177], model
compression [76], and code generation [136, 171]. After deployment, periodic ine-tuning of the model accounts
for feature distribution shifts using on-device training [24, 100, 129] and federated learning [89, 110]. AutoML is
preceded by data acquisition and analytics [131], and feature projection for dimensionality reduction [164] in the
TinyML worklow [136].

The irst generation eforts in TinyML focused on the exploration (lightweight model blocks), optimization
(NAS, AutoML), and integration (compiler suites) of standalone NNs within the device platform constraints [136].
However, IoT applications in the wild need to obey speciic rules, physics, and heuristics for provably correct
operation, context awareness, and explainability [106, 136, 142, 174]. Examples include:

• A localization ML model regressing position from motion sensor data should not output displacements
when rotational artifacts dominate translational movements [134].

• An aerial vehicle should not exceed a certain bank angle to remain stable [44].
• In nurse care settings, certain atomic events (e.g., washing hands) must precede other events (e.g., adminis-
tering medicine to a patient) to comply with sanitary protocols [174] and not vice-versa.

• Certain spectral features (e.g., peak frequency) in the embedding manifold improve the accuracy and
interpretability of wearable human activity recognition models [8].

While ML models have achieved superior performance on unstructured, multimodal, and noisy sensor inputs
over human-engineered symbolic techniques, three issues plague the deployment of standalone ML models for
context-aware sensor data analytics. Firstly, even with large datasets, ML models cannot guarantee the learned
feature representations obey all the rules, symmetries, and physics of the underlying system [37, 85, 134, 152].
Secondly, the contextual ield ofMLmodels (even transformers) is limited to a fewminutes, making them unsuitable
for high-level reasoning on atomic events that can span several hours (if not days) with spatial and temporal
constraints [7, 114, 128, 166, 174]. Thirdly, ML models lack transparency and interpretability, with the decision
trace (e.g., causation versus correlation) and learned features diicult to understand [63, 109, 114, 121, 147, 176].
Neurosymbolic artiicial intelligence (AI) is a potential bridge to connect the interpretability, veriiability,

data eiciency, and context awareness of symbolic techniques with the scalability, lexibility, robustness, and
performance of NNs [64, 70, 106, 108, 109, 118, 142, 146, 149, 174, 175]. Neurosymbolic AI integrates NNs
with expert principles expressed as probabilistic reasoning modules, logical reasoning modules, knowledge
graphs, question/answering engines, and constraint satisfaction functions [64, 142]. Concatenation of neural and
symbolic reasoning has been successful in a broad spectrum of challenging problems. These include complex
event recognition [7, 128, 166, 169, 174], commonsense reasoning [20, 141], visual question answering [109,
176], oceanographic forecasting [35, 58], autonomous driving [71, 150, 157], business management [19, 36],
and bioinformatics [5, 92]. Thereby, neurosymbolic AI can enable rich, complex, and intelligent inferences
at the extreme edge beyond the perception of atomic events [128, 136, 165]. However, real-time adoption of
neurosymbolic frameworks on extremely resource-constrained platforms such as microcontrollers is challenging,
as discussed next.

1.1 Challenges

Given the ultra-resource constraints of TinyML platforms, manually inding the optimal synergy between the
hyperparameters of the NN and the symbolic program is arduous and challenging [128]. Deployment of hybrid
programs requires AutoML platforms that can perform neurosymbolic optimization.

• Absence of Platform-Aware AutoML Tools for Neurosymbolic Optimization: While AutoML and
NAS frameworks have been proposed for optimizing NNs for TinyML platforms [14, 60, 83, 101, 103, 123,
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124, 139], existing AutoML tools are not designed to perform platform-aware joint optimization of neural
and symbolic components [136]. Platform-aware neurosymbolic optimization is necessary to not only it
the highest-performing program within the platform resource constraints but also discover previously
unknown high-utility symbolic subroutines as seen in AlphaTensor [57].

• FittingNeural and Symbolic ComponentsWithin PlatformConstraints: TinyML hardware platforms
have tight memory, power, and compute budget [103]. A typical ARM Cortex-M4 microcontroller has only
128 kB of SRAM and 1 MB of eFlash, while a smartphone or cloud server can have RAM and storage in
the order of tens of gigabytes and terabytes, respectively [14, 136]. While standalone NNs and standalone
symbolic logic are capable of running on TinyML platforms [136], directly porting existing neurosymbolic
frameworks on microcontrollers, in-sensor processors [31], and ield-programmable gate arrays [83] is not
computationally tractable.

1.2 Contributions

We introduce TinyNS, a platform-in-the-loop framework for automatic optimization and deployment of neu-
rosymbolic programs on commodity microcontrollers. Given a search space containing the hyperparameters,
logical association rules, and constraints of symbolic and ML (neural or non-neural) model operators, TinyNS
automatically inds the best combination of symbolic and ML operators and hyperparameters within the target
device memory, latency, and energy constraints. The ML models may be feedforward, residual, or recurrent. The
framework provides recipes to map neurosymbolic program atoms from a prototyping language (e.g., Python)
to a deployment language (e.g., C). To guarantee program deployability, TinyNS communicates with the target
hardware during the optimization process to receive hardware and program runtime metrics instead of relying on
proxies. The framework builds on top of a state-of-the-art, gradient-free, black-box Bayesian optimizer [138, 139]
designed to optimize non-gradient-friendly and expensive objective functions within a few iterations. Using
TinyNS, we showcase several previously unseen applications on microcontrollers. These include physics-aware
inertial navigation [134], yielding adversarially robust TinyML models, picking the best model from a zoo of
neural and non-neural models [135], and co-optimizing features, Kalman ilters and NNs [50]. Our contributions
are summarized as follows:

• Fast, Gradient-Free, and Black-Box Bayesian Optimizer: We present a fast, parallel, gradient-free, and
application-agnostic Bayesian optimizer that can handle non-gradient friendly objectives, categorical and
conditional search spaces, and expensive objective functions, all while converging to near-global optima
within few iterations [138, 139]. The optimizer forms the basis for our search algorithm.

• Platform-in-the-Loop Neurosymbolic Architecture Search: To the best of our knowledge, we are the
irst to showcase a platform-in-the-loop neurosymbolic architecture search framework for microcontrollers.
Our framework automatically synthesizes the most performant neurosymbolic program from a symbolic
and ML operator search space within the target platform constraints.

• Recipes for Deploying Neurosymbolic Programs on Microcontrollers: Using case studies, we show-
case recipes for deining the neurosymbolic program synthesis search space for all ive neurosymbolic
program categories [142]. Our framework includes parsers that automatically write microcontroller code
according to these recipes.

• Pushing the Boundaries of Handcrafted Neurosymbolic Programs: We showcase several unseen
TinyML applications made possible by joint optimization of neural and symbolic components.

TinyNS is available open-source at: https://github.com/nesl/neurosymbolic-tinyml.
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1.3 Organization

The rest of the paper is organized as follows: Section 2 presents related work and background on porting ML
models onto microcontrollers and neurosymbolic AI. Section 3 describes the Bayesian optimization algorithm.
Section 4 details the platform-in-the-loop neurosymbolic architecture search space formulation and the recipes
for deploying neurosymbolic programs. Afterward, Section 5 presents extensive experimental evaluations of our
framework through six case studies. Finally, Section 6 provides concluding remarks and future directions.

2 BACKGROUND AND RELATED WORK

In this section, we irst discuss the worklow for porting ML models onto microcontrollers [136], which we
modify to realize neurosymbolic TinyML (Section 2.1). Next, we discuss the features of existing NAS frameworks
and their shortcomings in performing joint optimization of ML and symbolic operators (Section 2.2). Afterward,
we provide a brief overview of the taxonomy, languages, and recent trends in neurosymbolic AI (Section 2.3).
Finally, we provide a brief overview of existing Python to microcontroller code parsers (Section 2.4).

2.1 Machine Learning on Microcontrollers

Fig. 1 illustrates the typical worklow for porting ML models to commodity microcontrollers [136]. First, in the
model development phase, data engineering frameworks collect, analyze, clean, label, and store raw sensor
data to produce an application-speciic dataset suitable for training ML models [131]. These frameworks also
include tools for targetted augmentation, outlier identiication, unit tests, class balancing, and heuristic-assisted
automated labeling. The additional tools ensure the trained models are free from bias and shortcuts while
generalizing well on edge cases and unseen scenarios [111, 136]. Afterward, optional feature projection applies

Fig. 1. Closed loop workflow for deploying neural

networks on microcontrollers [136].

linear methods, non-linear methods, or domain-speciic feature
extraction for dimensionality reductionwhile preserving data vari-
ance [56]. Linearmethods includematrix factorization [46, 99] and
principal component analysis (PCA) [12, 34]. Non-linear methods
are suitable for minimizing the distance between non-linear high-
dimensional input space and the prototype manifold. Common
non-linear methods include autoencoders [132], t-distributed sto-
chastic neighbor embedding [163], and kernel PCA [144]. Domain-
speciic feature extraction applies signal processing, statistical,
and time-series functions to the input data depending on the ap-
plication area [75]. Next, a model backbone is picked from a zoo
of lightweight models geared towards embedded deployment,
based on application and platform speciications. Examples in-
clude decision trees and k-nearest neighbor blocks with sparse
projection matrices [74, 93], lightweight spatial convolution (e.g.,
squeeze and excitationmodules [81] and depthwise-separable con-
volution [79]), low rank, stabilized, and quantized recurrent net-
works [94, 158, 167], temporal convolutional networks [97, 162],
and attention condensers [173]. The hyperparameters of the back-
bone are optimized using neural architecture search given
a cost function and the hyperparameter search space based on
target device constraints [11, 130, 180]. Search space representation includes layer-wise, cell-wise, and hierar-
chical [130]. Search strategies include reinforcement learning (RL), diferentiable NAS, evolutionary algorithms

ACM Trans. Embedd. Comput. Syst.
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Table 1. ualitative comparison of existing NAS frameworks for microcontrollers versus TinyNS

Method Search Strategy Proiler Search Space Cost Function
Parameters

Inference
Engine

Compression
Awareness

Open
Source

SpArSe [59] Gradient-driven Bayesian Analytical Conv2D (regular, depthwise,
downsampled)

Error, SRAM, Flash uTensor Pruning (structured,
unstructured)

No

MCUNet [102, 103] Evolutionary
(with weight sharing)

Lookup tables,
prediction models

Conv2D (elastic) Error, SRAM, Flash,
Latency

TinyEngine [103] None No

MicroNets [14] One-shot DNAS Analytical Conv2D (MbNetv2, DS-CNN) Error, SRAM, Flash,
Latency

TFLite Micro [43],
CMix-NN [26]

Quantization
(sub-byte)

No

�NAS [101] Evolutionary
(no weight sharing)

Analytical Conv2D (regular, depthwise) Error, SRAM, Flash,
Latency

TFLite Micro [43] Structured Pruning Yes

iNAS [112]∧ Reinforcement Learning Lookup tables,
analytical

Conv2D, tile size, loop order,
preservation batch size

Error, Flash, Latency*,
Volatile Bufer, Power-

Cycle Energy@

Accelerated
intermittent

Quantization (2 bytes) Yes

UDC [60] DNAS with exploration
and exploitation

Analytical Conv2D, sparsity, bitwidth Error, Flash Vela NPU Unstructured
pruning, quantization
(sub-byte)

No

TinyNS Gradient-free Bayesian
with exploration and
exploitation

Real measurements,
analytical

Any supported ML operator
and symbolic program atoms

Any scalar term TFLite Micro [43] Quantization (1 byte) Yes

∧ intermittent-aware NAS
* sum of progress preservation, progress recovery, battery recharge, and compute cost
@ sum of progress preservation, progress recovery, and compute cost

(with or without weight sharing), or Bayesian optimization [54]. The hardware metrics can come from real
measurements (slowest), lookup tables, prediction models, or analytical proxies (fastest) [54, 130].

The model deployment phase begins by generating embedded code to run the best-performing candidate model
from the NAS algorithm on the device. This is done by compiler suites, some of which provide inference
engines for resource management and model graph realization during execution [43, 103]. Compiler suites also
perform operator fusion [30, 103], loop transformations [27, 42], data reuse [95], and model compression (pruning,
quantization and encoding) [76] to improve memory usage and runtime latency [136]. Afterward, the model ile
system is lashed onto the microcontroller and occasionally ine-tuned to account for data distribution shifts
using on-device training (e.g., transfer learning, incremental training, or continual learning) [24, 100, 129] or
federated learning techniques [110].
Variations of the closed loop worklow have been applied to varying applications domains, including image

recognition, audio keyword spotting, visual wake words, anomaly detection, navigation, gesture recognition,
mHealth, and face recognition [13, 136]. However, these applications assume decisions being made by a standalone
ML model, with no symbolic programs (apart from optional feature projection) present on the microcontroller for
high-level reasoning [136]. TinyNS modiies the worklow to incorporate symbolic atoms from which programs
can be constructed and optimized jointly with the model backbones.

2.2 Neural Architecture Search for Microcontrollers

Table 1 compares prominent NAS frameworks for microcontrollers against TinyNS. In particular, TinyNS adopts a
black-box, Bayesian, gradient-free, and platform-in-the-loop search strategy to balance training infrastructure cost,
NAS convergence time, guaranteed execution, application support, and neurosymbolic search space characteristics.
iNAS [112] uses RL to formulate the NAS multi-objective optimization process as a Markov decision process, with
the ability to support complex and discontinuous search spaces with thousands of dimensions [136]. However, RL
has a long convergence time (e.g., 5 GPU years) with additional ine-tuning costs [23, 136]. MCUNet [102, 103] and
�NAS [101] use evolutionary search on RL search spaces to achieve faster convergence. In particular, MCUNet uses
weight-sharing to decouple training from search, mutating, and crossing Pareto-optimal sub-network populations
from a "once-for-all" supernetwork [23]. This allows networks for several target hardware to be optimized together.
Nevertheless, evolutionary NAS with weight sharing requires GPU infrastructure capable of supernetwork
training, sufers from ine-tuning costs, and has a convergence time of 3-8 GPU weeks [23, 136]. MicroNets [14]
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Fig. 2. The five categories of neurosymbolic artificial intelligence [86, 142].

and UDC [60] use diferentiable NAS (DNAS), which performs continuous gradient descent relaxation of weights
and architectural encodings jointly with approximate gradients via path binarization [25, 104]. This reduces the
convergence time to 1-3 GPU weeks [23]. However, DNAS cannot directly model loss contour discontinuities (e.g.,
categorical or conditional hyperparameters) and have high GPU memory usage owing to the over-parametrized
network formulation [112, 136]. Bayesian optimization can handle discontinuous search spaces and cost functions
while being executable on commodity GPU workstations [134, 135], further reducing the convergence time
to 1-10 GPU days [59]. However, vanilla Bayesian optimization struggles in search spaces beyond a dozen
hyperparameters and assumes dense distribution of performant models in the search space [41, 60]. Since
neurosymbolic search space dimensions can be orders of magnitude higher than NN search spaces, TinyNS uses
Monte Carlo sampling with Upper Conidence Bound (UCB) as the acquisition function instead of the gradient-
based approach of SpArSe [59] to perform exploration and exploitation similar to UDC [60]. This prevents TinyNS
from being stuck to local optima or evaluating invalid conigurations [134, 138] even in complex RL search spaces.
Moreover, TinyNS adopts a black-box approach similar to RL or evolutionary NAS. The black-box approach
allows optimization of any scalar term beyond model performance and hardware metrics in the cost function and
eventually permits the inclusion of both symbolic and any Tensorlow Lite Micro supported ML operators in the
search space beyond convolutional operators. Further, TinyNS talks to the target hardware during the NAS process
to get resource metrics instead of relying on proxies. Platform-in-the-loop not only guarantees the deployability
of the neurosymbolic code, but also allows TinyNS to ignore neurosymbolic programs that induce faults, runtime
errors, compilation errors, or lash overlow, saving on convergence time. In fact, TinyNS automatically writes
the C code of the neurosymbolic program from Python constructs using proposed neurosymbolic recipes without
user intervention.

2.3 Neurosymbolic Artificial Intelligence

Over the past decade, deep learning (DL) has been extensively used to make complex inferences from unstructured,
noisy, and high-dimensional data, such as in computer vision, LIDAR point clouds, speech processing, drug
discovery, time-series processing and genetics [98]. However, traditional DL is data-hungry even for simple tasks,
lacks interpretability and explainability, does not guarantee to follow rules, physics, and constraints, fails on
feature distribution shifts, and struggles to learn long-range temporal patterns [37, 63, 64, 121, 147]. The lipside
is symbolic AI, which was once the dominant trend of AI research several decades ago before the prevalence of
DL [116, 153]. Symbolic programs are data eicient, interpretable, and good at reasoning over the long-term, but
sufer when solving NP-hard problems and dealing with spatial and temporal uncertainties in the input data [142].

ACM Trans. Embedd. Comput. Syst.
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Neurosymbolic AI couples DL with symbolic methods to have fast computation time, deal with unstructured data
and uncertainty efortlessly, maintain explainable models, and capture complex relations [64, 70, 86, 108, 118, 142].
Neurosymbolic learning is analogous to the two types of human reasoning [84]: type 1 reasoning is fast and
intuitive, corresponding to pattern recognition in DL, and type 2 is slower and logical, corresponding to symbolic
algorithms and logical reasoning.

2.3.1 Taxonomy of Neurosymbolic AI. Neurosymbolic AI systems are categorized into ive groups [86, 142], as
illustrated in Fig. 2:

• Symbolic Neuro Symbolic or Neural-after-Symbolic: This is the most common paradigm [86]. The
inputs are symbolic, while the processing is purely neural. The neural component either learns the relations
between the symbols or learns to focus on some speciic symbols based on needs. Examples include inference
over human-engineered features [87] and graph NN inference with pre-processed graph nodes [143]. While
this technique allows applying human-engineered functions on the inputs, the synergy between neural
and symbolic components is weak, with no high-level reasoning possible over the outputs.

• Neuro→Symbol or Symbolic-after-Neural: In this approach, NNs process raw inputs and output
structured data, which are fed to symbolic programs for further reasoning. Examples include DUA [114]
and DeepProbLog [108]. In DUA, a symbolic meta-policy learning module with common sense background
knowledge combines primitive actions from a deep RL agent. In DeepProbLog, NNs are trained to output
probabilistic predicates, which are fed to a logic program to evaluate user-deined logic rules. The technique
allows the low of gradients from the symbolic output through the network but sufers from the high
compute cost of the reasoning module.

• Neuro ∪ Compile (Symbolic) or Symbolically-constrained Neural: This technique adds a symbolic
component to the learning process of a neural model to follow constraints, norms, or rules, which are
compiled away during training [96]. An example includes Pylon [3], where user-deined constraints on the
output are converted to an additional loss added to the traditional error cost. While constraints are simple
to express using this method, the network is not guaranteed to satisfy hard thresholds.

• Symbolic[Neuro] orNeurosymbolic Aggregation: In this method, a neural model and symbolic program
aggregate their results to achieve more robust inference. The neural component models errors resulting from
uncertainties of the symbolic program, or the symbolic program forces the NN to follow some constraints
or rules. In STLnet [106], a neural student model learns to predict succeeding output sequences by learning
temporal logic relations, while a symbolic teacher model generates an output sequence most similar to that
prediction within the given relational constraints.

• Neuro[Symbolic] or Neurally-accelerated Symbolic or Symbolically-structured Neural: This is
the preferred neurosymbolic paradigm [86], where the NN architecture is generated using (or has layers
embedded with) symbolic reasoning. A neural model replaces slow or non-diferentiable symbolic programs
while keeping the latter’s functionality. Examples include logic Tensor Networks [146], which generates a
irst-order logic language into TensorFlow computational graphs. Pix2rule [33] embeds a diferentiable
linear layer in a deep NN, which is biased to capture the semantics of AND and OR to extract spatial
symbolic rules. Neuroplex [174] adopts a knowledge distillation approach to train a neural model that can
replace the logic reasoner for complex event pattern detection. While allowing pure type 2 reasoning, this
method may include special ML operators unsupported on TinyML hardware.

2.3.2 Neurosymbolic Language Tools. Neurosymbolic language tools synthesize programs from user-deined
rules. DeepProbLog [108] is a probabilistic logic programming language where users can deine logical rules
and network architectures. The symbolic reasoning module is diferentiable, allowing backpropagation of target
labels at the output of the logic program through the NN. Pylon [3] is a PyTorch framework that learns deep
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NNs with constraints. It automatically converts constraints deined by users into a constraint loss, and the NN
is trained using the summation of this constraint loss and a regular loss function. Gen [40] is a probabilistic
programming language designed for general-purpose neurosymbolic program synthesis. It can build generative
models to represent data-generating processes, supports lexible DL and diferentiable programming, and can
make probabilistic inferences.

2.3.3 Recent Trends in Neurosymbolic Artificial Intelligence. Recent research in neurosymbolic AI focuses on
handling domain shifts, performing error correction, increasing data eiciency, and improving the interpretabil-
ity of ML systems [64, 142]. Symbolic background knowledge allows extrapolation when dealing with input
distribution diferent from training data [105]. Error correction designs robust ML systems enabling streamlined
recovery from wrong outputs without retraining on new data [18]. Symbolic reasoning allows NNs to be trainable
with less data [142]. Improving the interpretability of ML systems makes NN decisions more transparent and
explainable [115]. Unfortunately, the deployment of neurosymbolic programs on IoT platforms or for real-time
inference has received little attention. �CEP [128] is the only framework that allows complex event processing
on neural outputs using logical rules on commodity microcontrollers. However, �CEP is hard-coded for a single
application (complex activity detection), few network architectures (fully-connected and convolutional), and a
speciic neurosymbolic AI category (Neuro→Symbol), with no notion of co-optimization of neural and symbolic
components or platform-awareness. In contrast, our framework allows platform-aware automatic co-design of
ML (neural or non-neural) and symbolic components regardless of application, choosing the best synergy of ML
operators and symbolic hyperparameters within the tight resource bounds of TinyML platforms.

2.4 Python to Microcontroller Code Parsers

Parsers automate the porting of code written in a high-level language (e.g., Python) to a deployment-time language
(e.g., C). There are two kinds of parsers relevant to this work.

2.4.1 TinyML Compiler Suites. These software suites take an ML model trained in a high-level ML framework
to generate embedded code and perform operator optimizations, model compression, and inference engine
optimizations. The embedded ile system is then lashed onto the microcontroller for inference. Some of these
frameworks provide memory planners, intermittent computing, runtime interpreters, and operator resolver
functionalities in the form of inference engines [136]. The frameworks use a template ile system to map tensor
manipulation operations, logging, and input/output handling from the high-level model schema to objects.
TensorFlow Lite Micro (TFLM) [43], uTVM [30], Microsoft EdgeML [68, 69, 74, 93, 94, 133], CMSIS-NN [95], and
EON compiler [80] are popular frameworks that automatically parse TensorFlow [1] and PyTorch [120] neural
networks to C code mainly for deploying on ARM Cortex-M processors. STM32Cube.AI 1, Eloquent ML 2, and
Sklearn Porter 3 parse support vector machines, decision trees, naive Bayes, k-nearest neighbors, random forest,
XGBoost, and regressors from Scikit-Learn [122] to C [136]. For model parsing, we adopt and modify TFLM for
parsing neural networks to C. Firstly, we add scripts to check for use of unsupported ML operators and detect
compilation and memory overlow faults during neurosymbolic program optimization by talking to the target
hardware. Secondly, our parser can automatically modify the TFLM ile system to invoke only the necessary
operators, take care of quantization and dequantization, assign appropriate arena and bufer sizes, and place .c
and .h iles in the appropriate directories. Thirdly, our parser invokes the embedded C compiler directly from
Python and lashes the compiled program on the target hardware.

1https://www.st.com/en/embedded-software/x-cube-ai.html
2https://eloquentarduino.com/
3https://github.com/nok/sklearn-porter
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2.4.2 General Purpose Parsers. These parsers convert general-purpose Python code to C. Shed Skin 4, Nuitka 5,
Pyrex 6, Cython [16], SWIG [15], and BoostPython [90] are popular Python-to-C source-to-source translators. Most
of these frameworks convert implicitly statically typed Python programs to C/C++, write boilerplate code using
interface iles through a shared library, perform compiler optimizations, and transmute data structures and types.
However, these parsers lack support for runtime-interpreted program aspects and functions, cross-compilation,
standard library, and unrestricted function deinitions. Recently, large conversational language models such as
ChatGPT 7 are being used as code translation assistants [172]. The generated code is not error-free most of the
time but helps save manual code conversion time for programmers. MicroPython [161] and Zerynth 8 are software
implementations of Python written in C for 32-bit microcontrollers. MicroPython supports features in the most
popular Python modules, allows code portability due to the use of the hardware abstraction layer, ofers modular
programming, provides access to low-level hardware, and immediately executes commands. Similar to TFLM,
MicroPython includes a runtime interpreter to interpret the bytecode. Unfortunately, MicroPython is 101 − 102

orders of magnitude slower than pure C/C++ [82], preventing its adoption in time-critical systems. In contrast,
instead of providing direct source-to-source translation, TinyNS provides recipes to map the symbolic component
for 4 of the 5 neurosymbolic paradigms from Python to pure C/C++. We assume the user has implemented the
symbolic code in C either manually or using an existing source-to-source translator, and instead focuses on
activating and passing arguments to the C objects from Python. For symbolic neuro symbolic, we use the concept
of an array of over-parametrized function pointers selected using a binary mask. For neuro→ symbol, we use
ANTLR to port program trees from Python to C. For neuro ∪ compile (symbolic), a physics extraction function is
activated. For symbolic [neuro], the function arguments are sent to a Kalman update step. The recipes call for the
use of CMSIS libraries for mathematical, tensor, and signal processing operations.

3 MANGO: FAST, PARALLEL AND GRADIENT-FREE BAYESIAN OPTIMIZER

TinyNS adoptsMango [138, 139], which is an eicient realization of Bayesian optimization. Bayesian optimization
provides a state-of-the-art approach to optimize expensive objective functions in a few iterations, approximated
by a surrogate model.

3.1 Surrogate Model

Typical surrogate models used in Bayesian optimization libraries are Gaussian processes (GP), tree-structured
Parzen estimators, and random forests. Among the available surrogate models, Mango uses the GP surrogate
(GP) over the search space (Ω) due to its ability to provide a tractable assessment of prediction uncertainty
incorporating the efect of data scarcity [154]. The GP is a non-parametric machine learning model speciied
using a mean (�) and a kernel function (�).

�̂ (Ω) ∼ GP(� (Ω), � (Ω,Ω’)) (1)

Vanilla GP models work well on continuous search spaces but struggle to deal with the discontinuity in
the search spaces induced by categorical, mixed, and hierarchical search spaces. Naive rounding or one-hot
encoding causes the GP to get stuck to the same candidate model. Thereby, Mango adopts the solution proposed
by Garrido-Merchan et al. [66], which modiies the GP covariance function to account for regions in the search
space where the objective function becomes constant due to one-hot encoding or rounding inside the objective
function evaluator wrapper. The constant behavior cannot be modeled by GP. We use a transformation of the

4https://shedskin.github.io/
5https://www.nuitka.net/
6https://www.csse.canterbury.ac.nz/greg.ewing/python/Pyrex/
7https://openai.com/blog/chatgpt
8https://zerynth.com/blog/python-and-c-hybrid-programming-on-a-microcontroller-with-zerynth/
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input variables that rounds real-valued hyperparameters and performs one-hot encoding of categorical variables,
causing the Cartesian distance between the sample points with the same coniguration becoming 0. This allows
the GP to indirectly model the expected constant behavior, as the transformation enforces maximum correlation
between the function evaluations at the sample points with the same coniguration under the GP.

3.2 Acquisition Function

The exploration-exploitation is handled using the UCB [155, 156] as the acquisition function. In UCB the next
sample (Ω� ) at iteration � is sampled from the search space (Ω) using the predicted mean (��−1) and the corre-
sponding variance (�2

�−1) at iteration � − 1. The exploration factor (�) balances the contributions of the mean and
variance.

Ω� = argmax
Ω

(��−1 (Ω) + �0.5��−1 (Ω)) (2)

The irst term (mean) in the acquisition function refers to the goodness of the current sampled point (exploita-
tion), while the second term refers to the uncertainty of the sampled point (exploration). Mango adopts UCB
because of four reasons. Firstly, UCB is robust to uncertainty and noise in the function evaluations without
pre-processing. . Secondly, UCB allows eicient sampling for cases where picking a suboptimal point may cause
a time-consuming and expensive function evaluation. Thirdly, UCB balances exploration and exploitation by
sampling points that are not just likely to improve the inal score (exploitation), but also sampling points that
have high uncertainty (exploration). This not only prevents the optimizer from getting stuck in a local optimum
but also provides both a coarse and a ine-grained view of the objective plane, allowing the score to achieve
theoretical optimal values at the boundary of violating deployability constraints. Lastly, UCB uses of an adaptive �
with theoretical convergence guarantees within 90% of the optimal value [48, 155, 156]. � is heuristically decided
based on the complexity of the search space (domain size) |Ω|, the current iteration count � , and the variance
(uncertainty) �2

�−1 (Ω) at iteration � − 1.

� = � · exp(2 ·�), � =

︁
2 log(0.6 · |Ω| · �2 · �2), � =

8

log(1 + 1
�+��−1 (Ω) )

, � = 1�−6 (3)

Firstly, if the search space is bigger, � will increase logarithmically, leading to a bigger � . This will cause the
acquisition function to be dominated by exploration. Secondly, as the search progresses, � increases logarithmically.
This impels the acquisition function to be exploration dominant in the later iterations. Thirdly, sample points near
already explored regions will return a lower value of �2

�−1 (Ω), leading to a lower value of � . Lastly, if a region
is invalid or bad, then ��−1 (Ω) will be higher, causing the acquisition function to be dominated by exploration.
If a region is valid or good or near the theoretical optimal boundary, then ��−1 (Ω) will be lower, causing the
acquisition function to be dominated by exploitation. The four factors cause Mango to perform what is known as
sampling to ind the boundaries in the objective plane. � ensures that exploration never stops in case Mango has
not found a łhiddenž region where global optima may reside. However, exploration dependent on � is logarithmic,
leading to only a small increase in the � with each passing iteration. �2

�−1 (Ω) ensures that as more regions of the
objective plane are explored, Mango moves from primarily exploration-driven to exploitation-driven sampling,
which allows Mango to perform ine-grained sampling at later iterations. ��−1 (Ω) ensures that this ine-grained
sampling is being performed at the boundaries close to the theoretical optimal value with 90% probability. The
entire formulation makes Mango explore all unexplored boundaries (coarse-grained sampling), and then ind the
points close to the theoretical optimal value (ine-grained sampling).

3.3 Handling Mixed Search Spaces

Traditionally, gradient-driven optimizers (e.g., GpyOpt [9] and Skopt [10]) are used to ind the next promising
sample, such as in SpArSe [59]. Sandha et al. [138, 139] showed that gradient-driven optimization in complex search
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spaces having discrete or categorical values can provide sub-optimal solutions by evaluating gradients at invalid
conigurations of the search space. Mango realizes a gradient-free optimizer for handling non-gradient-friendly
values. Mango directly supports discrete integer values and continuous values and converts pure categorical
to the one-hot encoding. However, this comes with the challenge that the decision boundary of the acquisition
function becomes discontinuous due to the discrete values. Further, one-hot encoding of categorical variables
increases the dimensionality of the search. To handle the discontinuous decision boundary, Mango adopts a
gradient-free optimizer that doesn’t assume the continuity of gradient in the acquisition function search space.
This is based on the Monte Carlo optimization of the acquisition function. Since the evaluation of the acquisition
function is very cheap, this approach is scalable to search decision boundaries extensively to parallelly select
the next optimal points. The acquisition function is evaluated at thousands of valid samples in the search space;
thus, there is no mismatch between the proposed and actual evaluations. This approach also works directly for
the one-hot encoded spaces by doing evaluations only at the valid regions of the one-hot encoding without
sampling the intermediate regions between 1 and 0 where no valid real sample exists. It is to be noted that in a
gradient driven approach, the optimal point is inally converted to the correct sample either by rounding-of that
can degrade the search results, which is not the case in Mango. This sampling-based approach also reduces the
computational complexity [139] of the optimizer compared to the gradient-based methods used in other Bayesian
optimization libraries [9, 10, 59].

To reduce the search space complexity even further, TinyNS proposes the use of slider matrices, enumerated
trees, and ordinal masks. Instead of exposing Mango directly to the heterogeneous variables, for high-dimensional
search spaces, TinyNS exposes Mango to the normalized slider matrix, inspired by the wrapper-based approach
proposed in Garrido-Merchanet al. [66]. The slider matrix is a continuous formulation of the mixed parameter
space normalized between 0 and 1. The one-hot encoding or rounding is performed inside the objective function
evaluator wrapper as proposed in [66] via a mapping that maps the terms in the slider matrix to the mixed
parameter space. For even more complicated search spaces, TinyNS uses tree enumeration algorithms to generate
program tree candidates and exposes TinyNS to an ordinal mask that selects one of the trees.

3.4 Parallelization

Another challenge in solving Eq. 2 is parallelizing the sequential search process, selecting a batch of values to
ensure exploration or diversity in the batch. The straightforward approach of ranking the search choices according
to the acquisition function and then selecting the top picks is sub-optimal due to limited exploration [48]. To
enable parallel search, Mango provides a clustering search algorithm on the samples drawn from the acquisition
function. The clustering search selects promising domain samples from diferent clusters based on their distance in
the search space. The diferent clusters are far from each other in the hyperparameter space to enable exploration
or diversity. The number of clusters is equal to the batch size and is lexible.

3.5 Addition to Mango

TinyNS expands the state-of-the-art Bayesian optimizer to perform neurosymbolic architecture search in three
ways. Firstly, while Mango internally handles categorical and continuous variables, the optimizer alone cannot
deal with complex neurosymbolic search spaces on its own. We provide recipes to show how Mango can deal
with neurosymbolic search spaces through the intelligent use of slider matrices, Boolean masks, and enumerated
trees. This signiicantly increases the types of problems Mango can handle. Secondly, to prevent wasting valuable
GPU hours and improve convergence time, we use a guided optimization strategy. Speciically, we do not train
programs that violate deployability constraints or induce faults. We penalize Mango by a constant number when
it makes wrong choices. Yet, we design the optimization function in such a way that Mango is still able to ind the
boundaries in the objective plane even in complex search spaces and achieve near-optimal results. Thirdly, we
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makeMango platform-aware by allowing it to talk to the target hardware during deployment time. This allows
guaranteed program deployment and accurate proiling. We discuss these additions in more detail in Section 4.

3.6 Evaluation: Parallel Search in Mango

We visualize the parallel search enabled byMango in Fig. 3 (Left). Four iterations of the clustering search algorithm
are shown for a 1-D function having multiple optimal points. The ground-truth function is represented by
objective. The samples are the points that have been evaluated, and hence the true objective function values are
known. A batch size of 3 is used, representing the parallel evaluation of 3 samples in each iteration. The Surrogate
function shows the internal approximation of the ground-truth objective based on the evaluated samples. The
acquisition function is based on the UCB. The three clusters created in diferent regions of the acquisition function

are shown. The next sampling locations represent the points selected from each cluster for evaluation in the next
iteration. We observe that the ground-truth max optimal is found by Mango in the fourth iteration, which occurs
at -1.0 and has a value of 4.72.

3.7 Evaluation: Comparison Against Other Bayesian Optimizers

We compareMango for hyperparameter tuning with existing state-of-the-art Bayesian optimization libraries using
the multiple criteria methodology proposed by Dewancker et al. [49]. Speciically, we measure the performance
of an optimizer by considering the solution’s proximity to the optimal point (accuracy) and the number of
iterations required to reach the optima (speed). We compared the performance for hyperparameter tuning of
three ML classiiers: Xgboost, K-Nearest Neighbor (KNN), Support Vector Machines (SVM) to maximize the
3-way cross-validation accuracy for the iris plants dataset, wine recognition dataset, and breast cancer Wisconsin
(diagnostic) dataset taken from Scikit-learn [122], i.e., a total of 9 tuning tasks (three classiiers trained using

Fig. 3. (Let) Visualizing parallel optimization in Mango. (Right) Sequential optimization performance of Mango on 9 ML

classification tasks versus 5 other state-of-the-art Bayesian optimizers.
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three datasets). The search space includes continuous, integer, and categorical hyperparameters with the exact
deinitions available [137]. We tune each classiier for 80 iterations and repeat each tuning experiment 30 times.
Results are shown in Fig. 3 (Right). Mango performs better than all other libraries in 6 or more tasks out of 9 in
hyperparameter tuning for classiiers with mixed hyperparameters (continuous, integer, and categorical) spaces.
Speciically, Mango outperforms HyperOpt (TPE surrogate), SMAC (random forest surrogate), Optuna (TPE
surrogate), and GPyOpT (vanilla GP surrogate). Overall, Mango ofers state-of-the-art optimization capabilities
for handling complex search spaces.

4 PLATFORM-AWARE NEUROSYMBOLIC OPTIMIZATION

TinyNS treats neurosymbolic architecture search as nonlinear programming [17] over the search space Ω:

min f(Ω), s.t. f(Ω) ≤ b (4)

where

f(·) = ��

︁
�

�� (Ω), Ω = {{� , �}, [��,�,�], [�� , �, �]},
︁
�

�� = 1, � ∈ [1, �] (5)

Ω contains both ML components and symbolic components. The ML components include the ML hyperparameters
�� , trainable ML parameters � (e.g., NN weights and biases), and ML operators� (e.g., convolution, pooling,
support vector kernel, fully connected, etc.). The ML operators may be feedforward, residual, or recurrent. The
symbolic components include the symbolic hyperparameters �� , numerical parameters to be optimized � (e.g.,
Kalman ilter gain), and symbolic program atoms � (e.g., predicates, terms, features, etc.). Candidate neurosymbolic
programs constructed from Ω can be thought of as directed acyclic graphs �Ω (X) with edges �, vertices � and
input tensor X. The goal is to ind a neurosymbolic program that satisies the aggregate constraint f(Ω) ≤ b. In
other words, the objective function seeks a Pareto-frontier coniguration Ω

∗ under competing objectives [59]
such that:

f� (Ω
∗) <= f� (Ω) ∀�,Ω ∧ ∃ � : f� (Ω

∗) < f� (Ω) ∀Ω ≠ Ω
∗ (6)

The aggregate constraint function f(·) is a linear combination of individual objectives �(·) weighted by random
scalarizers �. Let A be a complete Boolean algebra, �� be the ordinal set, and A be a ixed set of names. Then,
�(·) and Ω have the following properties:

• � ∨ ¬�, � = (∃�� (·) ∧ ∃� ∈ Ω) ⇒
(
� lim

�→�
�� (�) ∨ ��(�) ∨ lim

�→�
�� (�) ≠ �(�)

)
︸                                                                                       ︷︷                                                                                       ︸

discontinuity condition

•
∃� ∈ Ω ⇒

[
� ∈ R︸︷︷︸

continuous,
numeric

∨ [� ∈ B,B ⊆ R, � : B → N]︸                            ︷︷                            ︸
discrete, numeric

∨ [((∀� ∈ �̄)�� = �) ⇒ � · � = �, � ∈ Perm A]︸                                                      ︷︷                                                      ︸
categorical, nominal

∨ � ∈ ��︸ ︷︷ ︸
categorical,
ordinal

]

•
∃� |� ∈ X, � ∈ Ω, �, � ∈ A ⇒

[
(� = � ⇒ � |� = � |�) ∧ (� |� = � |� ⇒ � |� = � |�)∧(

∀(�� )�∈� ∈ A,∀(�� )�∈� ∈ � ,∀� ∈ � ⇒ ∃!� (� |�� = �� |�� )
) ]

︸                                                                                                       ︷︷                                                                                                       ︸
conditional inclusion

The base formulation of Eq. 4 and Eq. 5 is given as:

min �opt, �opt = �1 �error (Ω) + �2 �lash (Ω) + �3 �SRAM (Ω) + �4 �latency (Ω) (7)
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where,

�lash(Ω) =




�� ⇔
©­­­«
|�� | < 1 ∧ �lag = 0︸   ︷︷   ︸

fault lag

ª®®®¬
, �� =

©­­­­­«
−
||ℎFB (�, {� , �}) | |0

lashmax︸                    ︷︷                    ︸
model proxy

+ � �︸︷︷︸
slack for
symbolic

∨−
Compiler-reported lash

lashmax︸                             ︷︷                             ︸
real measurement

ª®®®®®¬
� � , � � ≫ lashmax

(8)

�SRAM(Ω) =




�� ⇔
©­­­
«
|�� | < 1 ∧ �lag = 0︸   ︷︷   ︸

fault lag

ª®®®
¬
, �� =

©­­­­­
«
−
max�∈[1,�]{| |�� | |0 + ||�� | |0}

SRAMmax︸                               ︷︷                               ︸
model proxy

+ ��︸︷︷︸
slack for
symbolic

∨−
Compiler-reported SRAM

SRAMmax︸                               ︷︷                               ︸
real measurement

ª®®®®®
¬

�� , �� ≫ SRAMmax

(9)

�latency (Ω) =




FLOPS

FLOPStarget︸        ︷︷        ︸
model proxy

∨
RTOS-reported latency

latencytarget︸                         ︷︷                         ︸
real measurement

⇔ �lag = 0︸   ︷︷   ︸
fault lag

�� , �� ≫ FLOPStarget ∨ latencytarget

(10)

The goal of the base formulation is to ind a Pareto-optimal neurosymbolic program with the lowest possible
runtime latency but maximizes the device’s full SRAM and lash capacity without inducing overlow or faults.
The performance of a candidate neurosymbolic program on the validation dataset at each iteration in the search
provides �error (Ω). When the target hardware is connected to the training server, the compiler provides the
program SRAM consumption �SRAM (Ω) and lash consumption�lash (Ω), while the onboard real-time operating
system (RTOS) reports the program runtime latency �latency (Ω). The measurements are conditioned on the absence
of faults, indicated by �lag. Based on prior work [134, 135], we set �1 to 1.0, �2 to 0.01, �3 to 0.01, and �4 to 0.05.
TinyNS has the following fault detection capabilities:

• Flash, SRAM, or model arena bufer overlow (the program is too big to it).
• Use of unsupported ML operators.
• Compilation errors.
• Runtime RTOS faults.

If �lag = 0, the hardware metrics are normalized by the device SRAM and lash capacities (SRAMmax, lashmax),
and target latency (latencytarget) to a common scale. If �lag ≠ 0, the hardware metrics are set to a value much

larger than the device capacity or target latency. We set � � = 125, �� = 125, �� = 50, resulting in �opt being 5.0
whenever deployability constraints are violated. This policy, called hard thresholding, achieves full device capability
exploitation. Since violating deployability constraints always returns an �opt of 5, after suicient iterations, TinyNS
can observe and exploit the small but valid linear region of SRAM and lash usage between -1 and 0 (�� and ��
are valid between -1 and 0), striving to move �� and �� towards -1. Yet, TinyNS is aware that certain choices of
ML operators and symbolic atoms would make �� and �� more negative (hence the objective should ideally be
minimized even further) but are invalid. In other words, the optimizer is penalized by a large constant number
when it picks candidate models that do not it within the device or induce faults and instead encourages the
acquisition function to not pick too many points in the regime where the violation may occur. After sampling
suicient points in the small but valid linear region and the invalid regions, the surrogate function smooths out
suiciently to match the linear region in the objective plane where the accuracy improvement is proportional
to memory usage without inducing faults. Hard thresholding is possible thanks to the adoption of parallel
version [48] of GP-UCB [155, 156]. During exploitation, GP-UCB picks candidate models which are likely to
minimize �opt. The sample points in this phase will be close to one or more of the łsuccessfulž points in the
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linear/valid region found during previous iterations. Exploitation, thereby, provides a iner-grained view of the
objective plane. During exploration, GP-UCB will either pick points in the valid or invalid region to make sure
the optimizer is not stuck in local optima. Exploration, thereby, provides a coarse-grained view of the objective
plane. With suicient iterations, the acquisition function moves from being exploration driven to exploitation
driven, converging near theoretical optimal value at the boundary of violating deployability constraints. The
parallel implementation allows the optimizer to have access to more łbatches of sample points" at each iteration.
The policy of hard thresholding is not possible to implement with gradient-based optimizers due to discontinuous
penalization. For those optimizers, one would have to train the model to get the accuracy even if GPU hours
are wasted, calculate the memory usage, and penalize in a continuous fashion proportional to the memory
usage (referred to as coupling of deployability and performances). Since we do not train a candidate model once
deployability constraints have been violated, hard thresholding (combined with fault detection) also prevents
TinyNS from training a candidate model that does not satisfy all the constraints, saving valuable GPU hours by
as much as 50% over gradient-based optimizers.
Note that SpArSe [59] treats � as a super-hyperparameter bring drawn from a random distribution at each

iteration. However, realizing � as a super-hyperparameter in complex neurosymbolic search spaces with a gradient-
free and black-box optimizer is challenging as compared to the gradient-based optimizer in SpArSe. For the same
program candidate, diferent values of � will yield diferent values of �opt at each iteration, resulting in a large
number of iterations needed to achieve acceptable performance. We are aware that our choices of � and � may
not provide the most optimal neurosymbolic program for each application, but, as we will showcase, are able to
guarantee high-utility and deployable neurosymbolic programs that signiicantly outperform the state-of-the-art.

When the target device is absent, TinyNS relies on well-known analytical proxies to provide device resource
usage estimates. �lash (Ω) is given by the size of the latbufer model schema ℎFB (·) [43]. �SRAM (Ω) is given by
the standard NN SRAM usage model, with intermediate layer-wise activation maps and tensors stored in the
SRAM [59]. �latency (Ω) is provided by the FLOPS count [14]. Assuming the ML component dominates resource
usage over symbolic components, a static slack constant � is added to the SRAM and lash proxies to account for
SRAM and lash usage by the symbolic program. There are, however, several issues with this proiling approach:

• Proxies are inaccurate and do not work for a wide variety of ML operators (e.g., well-known proxies were
developed only for convolutional models) [134, 135]. Proxies do not even exist for symbolic programs.

• Model proxies tend to overestimate device capabilities without considering overhead from symbolic
programs, runtime inference engines, RTOS, or data stacks [134, 135].

• Proxies cannot capture all the faults that the platform-in-the-loop approach can. Hence, the correctness of
the neurosymbolic program is not guaranteed.

• Proxies cannot take into account compiler suite optimizations at the execution level, often yielding sub-
optimal models compared to the platform-in-the-loop approach.

For each candidate neurosymbolic program, TinyNS automatically writes embedded C code for microcontrollers
from Python constructs using parsers. The recipes used by the parsers are discussed next.

4.1 Symbolic Neuro Symbolic

Problem Formulation (Symbolic). Consider a vector of independent domain-engineered functions z(·) con-
structed from � in Ω that operate on X. During the search process, each function in z(·) can be accessed through
a binary mask � , signifying the activation and deactivation of a collection of elements of z(·).

Xfeat
� = �U�

� (X) ⇔ �� = 1, � ∈ [1, �], �� ∈ 0 ∨ 1 (11)

U is a 2D hyperparameter data structure for z(·). �th row of U correspond to the hyperparameters for �� . The
number of columns of U is the number of optimization hyperparameters for that �� which takes the maximum
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number of hyperparameter arguments, � . Each element in U corresponds to the range of possible loating point
numbers in the search space for the (�, �)th hyperparameters, expressed as a list. Boolean hyperparameters are
converted to (0.0, 1.0), and nominal variables are converted to ordinal choices (e.g, 1.0, 2.0, 3.0, 4.0, 5.0). The length
of each element in U varies.

U =



[�1,1
1 , �1,1

2 , ..., �1,1

�1
1

] [�1,2
1 , �1,2

2 , ..., �1,2

�1
2

] ... [�1,�
1 , �1,�

2 , ..., �1,�

�1
�
]

[�2,1
1 , �2,1

2 , ..., �2,1

�2
1

] [�2,2
1 , �2,2

2 , ..., �2,2

�2
2

] ... [�2,�
1 , �2,�

2 , ..., �2,�

�2
�
]

. . ... .

. . ... .

. . ... .

[��,11 , ��,12 , ..., ��,1
��1

] [��,21 , ��,22 , ..., ��,2
��2

] ... [��,�1 , ��,�2 , ..., ��,�
���

]



(12)

An example of U is shown below. There are 3 feature functions in z. The irst feature takes 4 hyperparameter
arguments, the second feature takes 1 hyperparameter argument, and the third feature takes 2 hyperparameter
arguments. All the functions are programmed to accept 4 arguments, but each function may not use all 4
arguments. The arguments are internally processed by each function to the correct form.

Usample =


[0.0, 1.0] range(3.0, 64.0) uniform(−5.0, 10.0) [1.2, 5.2]

[0.2, 0.5, 0.8, 1.5, 2.3] [0.0] [0.0] [0.0]
[1.0, 2.0, 3.0, 4.0] linspace(−22.0, 22.0, 100) [0.0] [0.0]


(13)

To normalize each element in U to the same scale and make the search tractable, TinyNS uses a slider matrix

Uslider during the search process instead of being directly exposed to U.

Uslider =



�1,1 �1,1 ... �1,�
�2,1 �2,2 ... �2,�
. . ... .

. . ... .

. . ... .

��,1 ��,2 ... ��,�


, ��, � =



linspace(0, 1, �) ⇔

����[��, �1 , �
�, �
2 , ..., �

�, �

���
]

���� ≠ 1

0

(14)

� represents the granularity factor, which controls how inely each element in U can be chosen. Ideally, � should
be equal to the length of the largest array in U. Let ��, � be a value in an array element in U. The mapping between
��, � and ��, � is:

��, � = �
�, �
� , � = round

(
��, � ·

����[��, �1 , �
�, �
2 , ..., �

�, �

���
]

����
)
, ��, � ∈ [0, 1] (15)

The search space for the symbolic components, thereby, is composed of the binary mask � and Uslider.

Problem Formulation (Neural). Consider a collection of � model backbones � constructed from� in Ω. During
each iteration in the search process, only one of the models is considered via an ordinal mask � .

modeliteration� = �� , � ∈ �, � = [1, 2, ..., �] (16)

Each model will have its own optimization hyperparameters (e.g., number of convolutional layers, kernel size,
support vector kernel type, etc.). We modify the concept of hyperparameter data structure and slider matrix from
the symbolic search space to account for ordinal model choice. Let V be the 2D hyperparameter data structure
for � . The structure of V remains the same as that of U, now with � rows of hyperparameters. The number of
columns of V is equal to the number of optimization hyperparameters for that �� which takes the maximum
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number of arguments � .

V =



[�1,11 , �1,12 , ..., �1,1
�1
1

] [�1,21 , �1,22 , ..., �1,2
�1
2

] ... [�
1,�
1 , �

1,�
2 , ..., �

1,�

�1
�

]

[�2,11 , �2,12 , ..., �2,1
�2
1

] [�2,21 , �2,22 , ..., �2,2
�2
2

] ... [�
2,�
1 , �

2,�
2 , ..., �

2,�

�2
�

]

. . ... .

. . ... .

. . ... .

[��,11 , ��,12 , ..., ��,1
��1

] [��,21 , ��,22 , ..., ��,2
��2

] ... [�
�,�
1 , �

�,�
2 , ..., �

�,�

��
�

]



(17)

An example of V is shown below. The irst row corresponds to the hyperparameters for a temporal convolutional
network (TCN) [162], and the second row corresponds to the hyperparameters for Bonsai [93].

Vsample =



range(2, 64)︸         ︷︷         ︸
kernel size

[1.0, 2.0, 5.0]︸         ︷︷         ︸
stack count

[[1, 2, 4], [1, 2, 4, 8], [1, 4, 8, 32]]︸                                   ︷︷                                   ︸
dilation factors

uniform(0.0, 1.0)︸               ︷︷               ︸
dropout

range(40, 60)︸          ︷︷          ︸
prototype count

range(1, 4)︸       ︷︷       ︸
sigmoid parameter

range(1, 6)︸       ︷︷       ︸
depth

[0.0]


(18)

Since � is ordinal, Vslider takes a vector form:

Vslider =
[
�1,1 �1,2 ... �1,�

]
, ��, � =



linspace(0, 1, �) ⇔

����[��, �1 , �
�, �
2 , ..., �

�, �

���
]

���� ≠ 1

0

(19)

The search space for the neural components, thereby, is composed of the ordinal mask � and Vslider. Note that
when � = 1, the elements in V are directly fed to the search algorithm.

Parsing (Symbolic). The python constructs for each function in z(·) have equivalent C constructs, declared in a
.h ile and deined in a .cc ile. The .cc ile also includes an extract_symbolic(raw_data[], output_feat[],

mask[], params[]) function, which takes the windowed and raw sensor data as input (raw_data[]), picks
functions according to a binary mask array (mask[]), applies the corresponding hyperparameters to the chosen
functions (params[]), and outputs the processed data (output_feat[]). TinyNS writes the Pareto-optimal mask
�∗ as mask[], the Pareto-optimal values in the 2D hyperparameter data structure U∗ as lattened array params[],
and the maximum number of arguments each function can take MAX_PARAM_COUNT to the .cc ile. Algorithm 1
provides example implementation for the extract_symbolic() function. All of the functions are programmed to
take a hyperparameter array of length MAX_PARAM_COUNT, internally processing the arguments to the correct form
like in Python. An array of function pointers of type f allows lexible addition, removal, and access to functions,
retaining the same order of functions from Python and allowing sequential application of each function to the
raw input data. The output channel count for each function is variable and deined in func_output_size[].

Parsing (Neural). TinyNS uses the TensorFlow Lite Micro (TFLM) [43] Mbed RTOS C ile system for real-time
model inference on microcontrollers. Algorithm 2 shows the main.cc ile of the ile system. We choose TFLM as
the runtime inference engine due to its widespread public use, portable design philosophy, heterogenous hardware
support, memory eicient paradigms, staticmemory allocation, and pathways for easymodel replacement [43, 136].
First, the model backbone in Python is constructed using Keras [72] or Keras/TensorFlow wrappers for Scikit-
learn [122] with TensorFlow backend [1]. Next, the Keras model is converted to a .tflitemodel, with appropriate
quantization schemes applied during conversion (e.g., no quantization or full integer quantization using a
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Algorithm 1 Example of extract_symbolic() for

Symbolic Neuro Symbolic parsing

#include "_____.h"

.

.

#define MAX_PARAM_COUNT 3 //written by parser

#define MAX_NUMBER_OF_FUNC 4

const int func_output_size[MAX_NUMBER_OF_FUNC] = {1,1,1,4};

int mask_array[MAX_NUMBER_OF_FUNC] = {1,1,0,1}; //written by parser

float params_array[MAX_NUMBER_OF_FUNC*MAX_PARAM_COUNT] =

{2.2,39,-23,1.2,0.0,0.0,23.5,2.2,0.0,-5.1,0.95,0.0}; //written by parser

void func_1(float* input_ar, float* output_ar, float* param_ar){

}

void func_2(float* input_ar, float* output_ar, float* param_ar){

}

void func_3(float* input_ar, float* output_ar, float* param_ar){

}

void func_4(float* input_ar, float* output_ar, float* param_ar){

}

void extract_symbolic(float *raw_data, float *output_feat,

int *mask, float* params){

typedef void (*f)(float[], float[], float[]);

int j = 0;

float param_ar[MAX_PARAM_COUNT] = {0.0};

f func[MAX_NUMBER_OF_FUNC] = {&func_1, &func_2, &func_3, &func_4};

for(int i = 0; i < MAX_NUMBER_OF_FUNC; i++){

for (int k = 0; k<MAX_PARAM_COUNT; k++){

param_ar[k] = params[i*MAX_PARAM_COUNT + k];

}

if (mask[i] == 1){

float temp_buff[func_output_size[i]];

func[i](raw_data, temp_buff, param_ar);

for (int k = 0; k < func_output_size[i]; k++){

output_feat[j] = temp_buff[k];

k = k+1;

j = j+1;

}

}

}

}

Algorithm 2 Example of main.cc for Symbolic Neuro
Symbolic parsing

#include "_____.h"

.

.

Timer t;

constexpr int kTensorArenaSize = 500 * 1024; //written by parser

alignas(16) uint8_t tensor_arena[kTensorArenaSize];

tflite::MicroModelRunner<float, float, 13> *runner; //written by parser

float raw_data[kInputSize]; //written by parser

float input_model[kModelInputSize]; //written by parser

int main() {

static tflite::MicroMutableOpResolver<13> resolver; //written by parser

resolver.AddShape(); //written by parser

resolver.AddStridedSlice(); //written by parser

.

.

static tflite::MicroModelRunner<float, float, 13>model_runner(

g_featnn_model_data, resolver, tensor_arena,

kTensorArenaSize); //written by parser

runner = &model_runner;

get_sensor_data(raw_data);

extract_symbolic(raw_data, input_model, mask_array, params_array);

t.start();

runner->SetInput(input_model);

runner->Invoke();

t.stop();

for (size_t i = 0; i < kCategoryCount; i++) {

float converted = runner->GetOutput()[i]; //written by parser

printf("%0.3f", converted);

if (i < (kCategoryCount - 1)) {

printf(",");

}

}

printf("\n");

printf("timer output: %f\n", t.read());

t.reset();

}

representative dataset). The parser now needs to check if the operators in the .tflite ile are present in the
TFLM operator resolver list. The steps are:

• Read the .tflite ile as a latbufer byte array.
• Decode the value at the start of the latbufer using packer type flatbuffers.packer.uoffset to create
a model object.

• Unpack the model object into a graph of latbufer objects.
• Convert the hierarchy of latbufer objects to a nested opcode dictionary.
• Match the opcode keys in the model to the opcode names in the BUILTIN_OPCODE2NAME dictionary provided
with the TFLite API.

• Check if the resulting set of names is present in the AVAILABLE_TFLM_OPS list.

If all the operators in the model are supported by TFLM, then, the .tflite ile is converted to a latbufer model
schema using Linux hex dump, generating .cc ile of the model. The parser opens the main.cc ile and makes
the following changes:

• Declare the TFLM arena size depending on target hardware constraints. The arena is a stack in the SRAM
used for initialization and runtime variable storage.
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Fig. 4. Architecture of automated neurosymbolic parsing for Symbolic Neuro Symbolic.

• Declare the arrays for storing raw data and processed output from extract_symbolic, which is also the
input to the model. The arrays can be loat or int depending on model quantization. In TFLM, lattened
input arrays are internally reshaped to match the input tensor shape of the model.

• Declare a TFLM interpreter instance (MicroModelRunner), which resolves the model graph during runtime.
The data types should be the input and output data types of the model, and the last number indicates the
number of unique ML operators that need to be called by the operator resolver.

• Declare the TFLM operator resolver instance (MicroMutableOpResolver), which links only the essential
ML operators to the model graph.

• Add the operators necessary to resolve the graph from the intersection of the set of model opcode names
and the AVAILABLE_TFLM_OPS list.

• Pass the latbufer model schema, the operator resolver, and the arena to the interpreter.
• Dequantize the outputs if the model output is quantized.

Fig. 4 summarizes the parser operation between the Python ile system and the TFLM Mbed RTOS C ile system.

Examples.An example includes inding the best set of features for on-device wearable human activity recognition.
Another example includes inding the best model among a set of models for on-device wearable fall detection
under 2 kB of memory. We showcase the examples in Section 5.2 and Section 5.3. In the irst example, the search
algorithm is given a model backbone and several temporal, statistical, and spectral features that can operate on
the raw, windowed data. The goal is to ind the best model hyperparameters and features that work well to give
maximal activity detection accuracy within the hardware constraints. In the second example, the goal is to ind
the best model and its corresponding hyperparameters that can detect falls within a tight memory budget.

4.2 Neuro→Symbol

Problem Formulation. There are two ways to realize this paradigm. Firstly, if a static domain-engineered
function � (·) with hyperparameter data vector u operates on the output of the model to produce high-level
reasoning, then the symbolic search space only contains u.

u =

[
[�1,1

1 , �1,1
2 , ..., �1,1

�1
1

] [�1,2
1 , �1,2

2 , ..., �1,2

�1
2

] ... [�1,�
1 , �1,�

2 , ..., �1,�

�1
�
]
]

(20)
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Fig. 5. Sample program supergraph generated from the DSL operator space for Neuro → Symbol [118, 149, 160]. Green

nodes represent non-terminal nodes and purple nodes represent goal nodes.

u is similar in form as U from Section 4.1, but only corresponds to the optimization hyperparameter space for a
single function. The neural search space is the same as that shown in Section 4.1.
Secondly, consider a collection of logical (e.g., AND, OR, NOT) operators Λ, relational (e.g., equivalence, less

than or equal to, greater than or equal to) operatorsℜ, arithmetic (e.g., add, multiply) operators Ξ, and conditional
(e.g., if else then) operators Υ, expressed in a Domain-Speciic Language (DSL) [118]. Given maximum tree depth
℘ and a inite number of trees � , the symbolic atoms can be combined to synthesize candidate program graphs
(or program decision trees) that can perform high-level reasoning over several neural output timesteps.

G = GenerateProgramTree({Λ,ℜ,Ξ, Υ}, ℘, � ) (21)

Fig. 5 shows an example program supergraph generated from the DSL operator space, from which candidate
trees can be extracted. The GenerateProgramTree() is an enumeration algorithm [118, 160] that generates all
possible combinations of program graphs G given ℘ and � using context-free grammar. The rules of connection
are ixed by the DSL. Ideally, the path cost of the program graph should be low for interpretability and resource
savings, yet have high accuracy. In other words, in Fig. 5, the goal is to ind the top-performing shortest path to
Decision A and Decision B. The symbolic search space is an ordinal mask � that represents one of � program
subgraphs extracted from the program supergraph.

programiteration�
= �� , �� ∈ G, � ∈ �, � = [1, 2, ..., � ] (22)

The neural search space is the same as that shown in Section 4.1.

Parsing.Neuro→Symbol follows the same model parsing strategy discussed in Section 4.1, Algorithm 2 and Fig. 4.
For symbolic parsing, in the irst case, the symbolic parser passes the Pareto-optimalu∗ as hyperparameter_vector[]
to the main.cc ile, where the function � (·) is deined as symbolic_function(). This function operates on the
output of the model. An example of this case is shown in Algorithm 3. In the second case, the program decision
tree along with the grammar and the parser runtime are ported as header iles. The steps to port a program tree
generated using ANTLR [119] are:

• Port the graph as a .txt or .h ile, expressed in DSL.
• Deine the lexer rules in a .g4 iles. The lexer rules are necessary to tokenize the DSL program tree.
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Algorithm 3 Example of main.cc for the irst case of

Neuro→Symbol

SAME AS ALGORITHM 2

.

.

float hyperparameter_vector[3] = [-2.4, 1.1, 2.0]; //written by parser

void symbolic_function(float* inp, float* out, float* params){

}

float raw_data[kInputSize]; //written by parser

float model_output[kOutputSize]; //written by parser

float symbolic_output[kSymbolicSize]; //written by parser

int main() {

SAME AS ALGORITHM 2

.

.

runner = &model_runner;

get_sensor_data(raw_data);

t.start();

runner->SetInput(raw_data);

runner->Invoke()

for(size_t i = 0; i< kCategoryCount; i++){

model_output[i] = runner->GetOutput()[i]; //written by parser

}

symbolic_function(model_output, symbolic_output, hyperparameter_vector);

t.stop();

for(size_t i = 0; i< kSymbolicSize; i++){

printf("%0.3f\n", symbolic_output[i]);

}

printf("\n");

printf("timer output: %f\n", t.read());

t.reset();

}

Algorithm 4 Example of main.cc for the second case
of Neuro→Symbol

SAME AS ALGORITHM 2

.

.

INCLUDE TREE, PARSER RUNTIME AND GRAMMAR HEADER FILES HERE

float raw_data[kInputSize]; //written by parser

float model_output[kOutputSize]; //written by parser

float symbolic_output[kSymbolicSize]; //written by parser

int main() {

SAME AS ALGORITHM 2

.

.

runner = &model_runner;

get_sensor_data(raw_data);

t.start();

runner->SetInput(raw_data);

runner->Invoke()

for(size_t i = 0; i< kCategoryCount; i++){

model_output[i] = runner->GetOutput()[i]; //written by parser

}

program_graph_runtime(model_output, symbolic_output); //lexer->parser->visitor

t.stop();

for(size_t i = 0; i< kSymbolicSize; i++){

printf("%0.3f\n", symbolic_output[i]);

}

printf("\n");

printf("timer output: %f\n", t.read());

t.reset();

}

• Run the ANTLR runtime engine with the lexer.g4 ile in the target language (Python or C) to create the
necessary lexer iles.

• Deine the grammar in another .g4 ile. The grammar deines the relations between the class of tokens,
assigning labels using the DSL operator space.

• Run the ANTLR runtime engine again, but with the grammar.g4 ile to create the parser iles, which
processes the program graph to create a hierarchical abstract syntax tree. Specify the -visitor lag when
running the engine to have control over the query traversal.

• Create a visitor, which will traverse the tree according to the parser grammar.
• Pass the DSL graph from the .txt or .h ile to the lexer as a string argument. The tokenized tree is passed
to the parser to generate the syntax tree, which is inally passed to the visitor for traversal.

Examples. An example of the irst approach includes joint optimization of a symbolic object tracker with a neural
object detector using the CenterNet algorithm [179]. We showcase this example in Section 5.4. The object detector
backbone is a ResNet-34 + Deformable Convolutional Network, with the optimization hyperparameters being
the number of convolutional stacks, the kernel size, whether to use layer-wise activations or not and the head

convolutional value. Given an input image � � ∈ R� ×�×3, themodel outputs the center points �̂p� and bounding box

dimensions �̂p� of the detected objects, as well as a heatmap of the centroid of the objects �̂��� , �̂ ∈ [0, 1]
�
� × �

� ×� )
based on the rendering function R with Gaussian Kernel �� for each class � ∈ {0, 1, ...,� − 1}.

R� ({p0, p1, ...}) = max
�

exp

(
(p� − q)2

2�2
�

)
, q ∈ R2, p ∈ R2 (23)
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q is a position on the image. To track and associate objects across frames, the network is also fed the previous
frame � �−1 and prior detection heatmaps R(p�−1). The network then outputs the 2D ofset of the object d� , with
associations performed using greedy matching. Thus, the network is trained via a weighted sum of the focal loss

L� (based on ground truth heatmap ���� , � ∈ [0, 1]
�
� × �

� ×� ), the size Lsize (based on ground truth bounding box
dimensions s), and the local location regression Lof (based on ground truth object positions p� ).

L� =
1

�

︁
���

{
(1 − �̂��� )

2 log(�̂��� ) ⇔ ���� = 1

(1 − ���� )
4 (�̂��� )

2 log(1 − �̂��� )
(24)

Lsize =
1

�

�︁

�=1

|�̂p� − s� | (25)

Lof =
1

�

�︁

�=1

����̂p��
− (p�−1� − p�� )

��� (26)

A ilter is used to discard heatmaps below a certain rendering threshold � or objects whose detection conidence
scores�,� ∈ [0, 1] are below a certain threshold � . These thresholds form the optimization hyperparameters for
the symbolic component (the ilter). The error metric is the sum of the multi-object tracking accuracy (MOTA)
and the minimal cost change from the predicted identiication of objects to the correct identiication (IDF1) [179].

4.3 Neuro ∪ Compile (Symbolic)

Problem Formulation. There are two ways to realize this paradigm. Firstly, if the rules are non-diferentiable,
the rules are characteristic of certain architectural encodings post-training, or the rules cannot be explicitly
expressed in the model learning algorithm, then the constraints can be expressed as regularizer terms in Eq. 7:

min �opt, �opt = �1 �error(Ω
′) + �2 �lash (Ω

′) + �3 �SRAM (Ω
′) + �4 �latency (Ω

′) + �5 �rule 1(Ω
′) + �6 �rule 2(Ω

′) + ... (27)

Ω
′ contains only the ML components (i.e., Ω′

= {{� , �}, ��,�,�}), reducing the neurosymbolic architecture
search to a NAS problem, regularized by additional scalar rules. The rules can form soft constraints that do not
form piecewise penalization functions, or hard constraints like SRAM and lash consumption to strongly penalize
the search algorithm beyond a small, valid region of Ω′. Secondly, if the rules are diferentiable, or the rules can
be compiled away during training as input-output pairs, then the constraints can be included as physics metadata
channels in the learning algorithm as inputs to the model graph �:

min �opt, �opt = �1 �error (Ω
′) + �2 �lash (Ω

′) + �3 �SRAM (Ω
′) + �4 �latency (Ω

′) (28)

where,

�error (Ω
′) = Lvalidation(Y

′,Y), Y′
= �Ω

′
(X, xphysics metadata channel) (29)

Parsing. In the irst case, the parsers only need to map the model from Python to C, following the recipe of model
parsing in Section 4.1, Algorithm 2 and Fig. 4. In the second case, since the rules and hyperparameters are static
and operate on the input data, there is no concept of symbolic optimization or symbolic parsing. Rather, there
exists a function called extract_physics() in main.cc that operates on the raw data to generate the physics
metadata channel, shown in Algorithm 5. The channel is appended to the end of the raw data, which is then fed
to the model as an input tensor.
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Algorithm 5 Example of main.cc for the second case of Neuro ∪ Compile (Symbolic)

SAME AS ALGORITHM 2

.

.

float raw_data[kInputSize]; //written by parser

float physics_channel[kPhysicsSize];

float input_model[kInputSize + kPhysicsSize]; //written by parser

int main() {

SAME AS ALGORITHM 2

.

.

runner = &model_runner;

get_sensor_data(raw_data);

extract_physics(raw_data, physics_channel);

for (int i = 0; i < kInputSize; i++){

input_model[i] = raw_data[i];

}

int j = 0;

for (int i = kInputSize; i < kInputSize + kPhysicsSize; i++){

input_model[i] = physics_channel[j];

j = j+1;

}

t.start();

.

.

SAME AS ALGORITHM 2

}

Examples. An example of the irst technique includes inding adversarially robust TinyML models, where
�rule 1(Ω

′) denotes the white-box adversarial robustness score from RobustBench [38] or AutoAttack [39] bench-
marks on a perturbed validation set (e.g., perturbed using fast gradient sign method (FGSM) or projected gradient
descent (PGD)) versus the clean validation set.

�rule 1(Ω
′) = 1 −

1

�

�︁

�=0

�� , �� =

{
1 ⇔ �′�� = �′�� ,perturbed

0
(30)

where,

��,perturbed =
[
�� + � · sign

(
∇��Lvalidation (�

Ω
′
(�� ), �

� )
)]

︸                                                 ︷︷                                                 ︸
FGSM

∨
[
clip�

(
��� + � · sign

(
∇��Lvalidation (�

Ω
′
(�� )

� , �� )
))]

︸                                                              ︷︷                                                              ︸
PGD

(31)
� and � are attack strength hyperparameters in Eq. 31. An example of the second technique includes supplying
a neural inertial navigation model with local-variance step detector binary mask or mean Fourier transform
coeicients of accelerometer readings � â, signifying transportation modes. The goal is to prevent the network
from outputting invalid displacements when the object is static [134].

xphysics metadata channel = � (� â), � � (
� â) =



1 ⇔ â��,Δ� > � ·

︂∑
�∈Δ�

(
â�
�,�

−â��,Δ�

)2
�

0︸                                              ︷︷                                              ︸
step detector

∨ |FFT( |â�
Δ� |) | |︸         ︷︷         ︸

Fourier transform

(32)

where, � is the measurement epoch, Δ� is the length of current time window, â��,Δ� = �5,�� ( |â
�
Δ� |) −�5,�� (|â

�
Δ� |), �

is a tunable parameter and �5,�� (·) represents a 5th order low-pass ilter with cutof �� . The model is expected to
output zero displacements when the physics metadata channel value drops below a threshold � .

E(�′� ) → 0 | � �,physics metadata channel < � (33)
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We showcase the examples in Section 5.5 and Section 5.6.

4.4 Symbolic[Neuro]

Problem Formulation. Consider a dynamical system such that � : x̂�+1 |� → u�+1, x̂� | � is non-linear. x̂�+1 |�
represents the state at epoch � + 1, x̂� represents the state at epoch � , �(·) is a neural network backbone, and
u�+1 represents the control input (sensor measurements) at epoch � + 1. The neural system evolution is given as
follows:

x̂�+1 |� = �� (x̂� ,u�+1,w�+1) (34)

w�+1 is the additive White Gaussian process noise with covariance Q. Now, consider measurement updates z�+1
coming from a symbolic observation model ℎ(·) via complementary sensor measurements.

x̂�+1 |�+1 = x̂�+1 |� + K�+1

©­­­«
z�+1 − ℎ� (x̂�+1 |� , v�︸                   ︷︷                   ︸
measurement residual

)
ª®®®¬

(35)

v� is the additive White Gaussian measurement noise with covariance R and K�+1 is a gain factor. The goal is
to optimally fuse the neural system model and the symbolic measurement model. Assuming Markov property,
modeling the uncertainty in �(·) and ℎ(·) using Kalman ilter theory allows optimal fusion [50].

P�+1 |� = AP�A
� + B�+1U�B

�
�+1 + Q� , A�+1 =

��

��

����
x̂� ,u�+1,w�+1

, B�+1 =
��

��

����
x̂� ,u�+1,w�+1

(36)

P�+1 |�+1 = (I − K�+1H�+1) P�+1 |� , H�+1 =
�ℎ

��

����
x̂�+1|� ,v�

(37)

where,

K�+1 = P�+1 |�H
�
�+1

©­­­«
H�+1P�+1 |�H

�
�+1 + R�+1︸                        ︷︷                        ︸

innovation covariance

ª®®®¬

−1

(38)

A�+1 and B�+1 represents the linearized Jacobian of the neural network w.r.t. the past state and control inputs,
whileH�+1 represents the linearized partial derivative of the observation model w.r.t. the past state. The predicted

process covariance P̂ is given by the Lyapunov equation and updated during measurements using algebraic
Riccati recursion [151]. The goal of the search algorithm is to ind the optimal hyperparameters of �(·) and ℎ(·),
given by hyperparameter vectors v and u, respectively:

u =

[
[�1,1

1 , �1,1
2 , ..., �1,1

�1
1

] [�1,2
1 , �1,2

2 , ..., �1,2

�1
2

] ... [�1,�
1 , �1,�

2 , ..., �1,�

�1
�
]
]

(39)

v =

[
[�1,11 , �1,12 , ..., �1,1

�1
1

] [�1,21 , �1,22 , ..., �1,2
�1
2

] ... [�
1,�
1 , �

1,�
2 , ..., �

1,�

�1
�

]
]

(40)

Parsing. The model parsing follows the same recipe shown in Section 4.1, Algorithm 2, and Fig. 4. The sym-
bolic parser sends the optimal u∗ to main.cc. Algorithm 6 shows an example of the main.cc. The program
extensively uses matrix operations (obtainable through CMSIS-NN library [95] available through TFLM) to
compute the Kalman hyperparameters. CMSIS-NN matrix operation constructs are used in reshape_jacobian(),
lyapunov_eq(), measurement_update(), get_pd(), compute_kalman_gain(), and ricatti() functions to ac-
celerate matrix operations through vector processors found in some Cortex-M microcontrollers. However, a
key challenge in realizing the Symbolic[Neuro] form is the lack of on-board Jacobian computation support
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(GetJacobian()).

Examples.We showcase a Neural-Kalman ilter that fuses GPS measurements with a neural inertial odometry
model to regress an object’s position [50]. The example is shown in Section 5.7. The neural network regresses the

Algorithm 6 Example of main.cc for Symbolic[Neuro]

SAME AS ALGORITHM 2

.

INCLUDE CMSIS_NN HEADERS HERE

#define STATE_SIZE 3

float raw_data[kRawData];

float input_model[kRawData + STATE_SIZE];

float obs_model_params[4] = {-2.0, 1.0, 0.0, 37.5}; //written by parser

cur_state[3] = {0.0,0.0,0.0}

float jacobian[kJacobianSize] = {0.0};

float reshaped_jacobian[kA][kB];

float P[kC][kD];

float K[kE][kF];

float H[kG][kH];

float out[koutsize] = {0.0};

void reshape_jacobian(float* flattened_jacobian[], float* 2D_jacobian[][]){

}

void lyapunov_eq(float* covariance_mat[][], float* 2D_jacobian[][], float* sensor_data[]){

}

void measurement_update(float* state[], float* gain_matrix[][], float* sensor_data[]){

}

void get_pd(float* obs_model[][], float* output_obs_model[]){

}

void obs_model(float* out[], float* state[], float* params[]){

}

void compute_kalman_gain(float* gain_matrix[][], float* covariance_mat[][], float* out[]){

}

void ricatti(float* covariance_mat[][], float* gain_matrix[][], float* out[]){

}

int main() {

SAME AS ALGORITHM 2

.

//////////////////////LOOP/////////////////////////

get_sensor_data(raw_data);

for(int i = 0; i < kRawData; i++){

input_model[i] = raw_data[i]

}

for(int i = kRawData; i < kRawData + STATE_SIZE; i++){

input_model[i] = cur_state[i];

}

t.start();

runner->SetInput(input_model);

runner->Invoke();

for (size_t i = 0; i < STATE_SIZE; i++) {

cur_state[i] = runner->GetOutput()[i]; //neural system model

}

for (size_t i = 0; i < STATE_SIZE; i++) {

jacob[i] = runner->GetJacobian()[i];

}

reshape_jacobian(jacob,reshaped_jacobian); //reshape flattened Jacobian to 2D matrix

lyapunov_eq(P, reshaped_jacobian, raw_data); //compute P for neural system model

get_comp_sensor_data(raw_data);

measurement_update(cur_state, K, raw_data); //update state

for (size_t i = 0; i < STATE_SIZE; i++) {

printf("%f", cur_state[i]);

}

obs_model(out, cur_state, obs_model_params); //get observations

get_pd(H,out); //compute partial derivative

compute_kalman_gain(K, P, H) //compute the gain matrix

ricatti(P, K, H); //update P during measurement update

t.stop();

printf("\n");

printf("timer output: %f\n", t.read());

t.reset();

//////////////////////LOOP/////////////////////////

}

ACM Trans. Embedd. Comput. Syst.



26 • Saha and Sandha, et al.

object’s 2D velocity �� , �� from accelerometer â� , gyroscope ŵ� and magnetometer m̂� readings:

(��,� , ��,� ) = �
(
v� (0), g�0,N

�
0, â

�
�:�+�, ŵ

�
�:�+�, m̂

�
�:�+�, �� (

� â)
)
, �� (

� â) =
���|FFT( |â��:�+� |) |��� . (41)

The system propagation is given as follows:

x̂�+1 |� = Ax̂� + � (u�+1) (42)

P�+1 |� = AP�A
� + B�+1U�B

�
�+1, B�+1 =

��

��

����
x̂� ,u�+1

where,

x̂ =



�̂�
�̂�
��
��


, u =



a��:�+�
w�

�:�+�

m�
�:�+�

� (a��:�+�)


, A =

[
I2×2 02×2
02×2 02×2

]
, B�+1 =



Δ���� ( ·)�
�a��:�+�

Δ���� ( ·)�
�w�

�:�+�

Δ���� ( ·)�
�m�

�:�+�

Δ���� ( ·)�
�� (a��:�+� )

Δ���� ( ·)�

�a��:�+�
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�m�
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��� ( ·)�
�� (a��:�+� )
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��� ( ·)�

�w�
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�:�+�

��� ( ·)�

�� (a��:�+� )


(43)

� (·) =

[
Δ� · I2×2
I2×2

]
· �� (·), Δ� =

�

� − �
, � = stride, � = window size (44)

U consists of Allan variance parameters [52] of the inertial measurement unit. The measurement updates z come
from the GPS module. ℎ denotes the inverse mapping from longitude-latitude to 2D Cartesian coordinates. The
hyperparameters of the neural network and the Kalman ilter are optimized jointly.

4.5 Neuro[Symbolic]

Problem Formulation and Parsing. This paradigm is equivalent to a model with special operators or layers.
The search space, therefore, contains the hyperparameters of the model backbone to be optimized. The model
parsing follows the same recipe shown in Section 4.1, Algorithm 2, and Fig. 4, with no symbolic parsing. However,
the special layers must be added as custom operators irst to TFLite, and then to TFLM. The steps are as follows:

• Create the custom operator in TensorFlow.
• Clone Tensorlow repository.
• Deine the init(), free(), prepare(), and eval() functions for the operator in the OPERATOR_NAME.cc
ile in tensorflow/lite/kernels/ directory.

• Register the operator in tensorflow/lite/kernels/register.cc and register_ref.cc. Add the reg-
istration under namespace custom and BuiltinRefOpResolver::BuiltinRefOpResolver(). In the
BUILD ile, under cc_library( name = "builtin_op_kernels", add the operator .cc ile names under
srcs. Add the dependencies under deps.

• Conigure, build, and install the modiied TensorFlow. Load the model with the custom operator in the
TFLite interpreter in Python to verify the correct operation.

• From tensorflow/lite/core/api/flatbuffer_conversions.cc, under ParseOpDataTfLite, extract
the code for parsing the operator into a function.

• Extract the reference for the operator to a standalone header from tensorflow/lite/kernels/internal/

reference/. Add the new header to tensorflow/lite/kernels/internal/BUILD.
• Copy the operator code from tensorflow/lite/kernels/OPERATOR_NAME.cc to tensorflow/lite/micro/
kernels/OPERATOR_NAME.cc. Remove TFLite-speciic code. Add the operator registrations in micro_ops.h,
micro_mutable_op_resolver.h, and all_op_resolver.cc.
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5 EVALUATION

In this section, we evaluate the performance of TinyNS on six diferent case studies resembling four neurosymbolic
architecture search recipes (Section 5.2 to Section 5.7). We also validate the viability of TinyNS for generating
performant microcontroller-class models on the industry-standard MLPerf Tiny v0.5 Inference Benchmark [13]
in Section 5.1.

5.1 MLPerf Tiny v0.5 Inference Benchmark

The MLPerf Tiny v0.5 Benchmark Suite contains four classiication tasks and quality target metrics representing
a wide array of TinyML applications [13, 136]. The tasks include image classiication (CIFAR10 dataset [91]),
unsupervised anomaly detection (ToyADMOS dataset [88]), keyword spotting (Google Speech Commands
dataset [170]), and visual wake words detection (Visual Wake Words dataset [32]). We benchmark TinyNS on the
irst three tasks.

5.1.1 Dataset Splits and Pre-processing. We use the standard dataset splits and pre-processing functions provided
by the benchmark suite. For CIFAR10, 50000 32×32×3 images are used for training, and 10000 images are used
for testing. The dataset has 10 output classes. For ToyADMOS, 3600 and 400 non-anomalous sound samples from
4 toy cars mixed with ambient noise are used for training and validation, respectively, and 2500 anomalous and
non-anomalous sound samples from the same 4 toy cars are used for testing. The pre-processor extracts the
Mel-scaled power spectrogram from the raw WAVE iles using 128 Mel bands, 5 frames, an FFT window length of
1024, and a hop length of 512. The spectrogram is converted to log Mel energy, clipped to keep the central portion,
and concatenated with other frames to generate features. Each input tensor is a vector of length 640. For Google
Speech Commands, the 100503 1-second keywords from 2618 speakers are divided into 85511, 10102, and 4890
utterances for training, validation, and testing, respectively. The dataset has 12 output classes. The pre-processor
extracts the log Mel-frequency cepstral coeicient (MFCC) ingerprints from the raw 16 KHz WAVE iles after
decoding, volume scaling, random time-shifting (100 mS), and adding background noise to the raw audio data.
The window size is 30 mS and the stride is 20 mS. 10 MFCC coeicients are used, resulting in each model input
being a 49×10×1 tensor.

5.1.2 Model Backbones, Training Details, and Search Space Definition. For image recognition, we optimize
the ResNet [77] backbone provided in the benchmark suite. Following the settings in the MLPerf Tiny v0.5
Benchmark [13] and state-of-the-art NAS frameworks for microcontrollers [14, 54, 60, 101, 103, 124], we train
each candidate model for a ixed number of epochs of 500. While green AI advocates for training epochs to be
considered as a hyperparameter [145] to be optimized, the additional hyperparameter may lead to a longer NAS
convergence time from more candidate models being trained to achieve acceptable accuracy, minimizing the
reduction in the total number of training epochs. In addition, TinyML neural architectures are either well-known
(e.g., ResNet [77], MobileNets [79], or SqueezeNet [81]) or compact (e.g., FastGRNN [94], Bonsai [93], ProtoNN [74]
or temporal CNN [97]), allowing the use of known and ixed training epochs or a small number of training epochs
to achieve acceptable performance [136]. We use the Adam optimizer with a learning rate scheduler having an
initial learning rate of 0.001 and decaying by a factor of 0.99 with each passing epoch. The batch size is 32, the loss
is categorical cross-entropy, and the NAS error metric is training accuracy. The optimization hyperparameters
include:

• Number of convolutional stacks: range (1, 5)
• Kernel size: [1, 3, 5, 7]
• Number of ilters (initial layer): [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24]
• Use batch normalization: [True, False]
• Use activations: [True, False]
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Fig. 6. (Let) Test accuracy versus model size of CIFAR10 ResNet models found by TinyNS versus competing CIFAR10 models

designed for microcontrollers. (Right) NAS convergence time for TinyNS and competing microcontroller NAS frameworks on

the CIFAR10 dataset.

For anomaly detection, we optimize a temporal convolutional autoencoder (denoted as 1D-CNN in the rest of the
paper) backbone inspired by Thill et al. [159]. The encoder is a TCN [97, 162] without dilated kernels, followed by
a 1D convolutional layer (linear activation) with a quarter and one-third of the number of ilters and a kernel size
of the TCN layer, respectively. The decoder includes the same layers but in reverse, followed by a fully-connected
layer with 640 units and linear activation. Each candidate model is trained for 350 epochs, using the AMSGrad
variant of the Adam optimizer with a learning rate of 0.001, �1 of 0.9, �2 of 0.999, and � of 1e-8. The batch size
is 1024, the loss is the mean squared error, and the NAS error metric is validation loss. The search space is as
follows:

• Number of layers per stack: range (3, 8)
• Number of TCN stacks: [1, 2, 3]
• Number of ilters in the TCN layers: range (3, 64)

Fig. 7. (Let) Test AUC versus the model size of anomaly detection models (1D-CNN) found by TinyNS versus competing

anomaly detection models designed for microcontrollers on the ToyADMOS dataset. (Right) Test accuracy versus the

model size of keyword spoting models (TCN) found by TinyNS versus competing keyword spoting models designed for

microcontrollers on the Google Speech Commands dataset.

ACM Trans. Embedd. Comput. Syst.



TinyNS: Platform-Aware Neurosymbolic Auto Tiny Machine Learning • 29

Table 2. Chosen ResNet model hyperparameters for each target hardware by TinyNS on the CIFAR10 dataset. The SRAM

and flash limits of the hardware are given in parenthesis in kB in the form (SRAM, Flash).

Device Proiling SRAM Usage (kB) Latency (s) or FLOPS Number of ilters Kernel size Number of stacks Batch normalization Activations

F446RE (128, 512)
Real 107 0.58 (L) 10 5 4 True True
Proxy 95.8 12.9M (F) 4 7 4 True True

L476RG (128, 1024)
Real 87.8 3.13 (L) 24 5 2 True True
Proxy 56.5 3.82M (F) 6 3 3 True True

F746ZG (320, 1024)
Real 308 1.39 (L) 22 7 2 True True
Proxy 286 55.9M (F) 24 3 3 True True

L4R5ZI_P (640, 2048)
Real 608 1.13 (L) 20 3 4 True True
Proxy 309 40.9M (F) 18 3 4 False True

• Kernel size in the TCN layers: range (3, 16)
• Skip connections in TCN: [True, False]

For keyword spotting, we optimize a TCN, which can handle spatial and temporal features hierarchically without
the explosion of hyperparameter count [97, 162]. The TCN layer is followed by a dense layer with 12 units and
softmax activation. Each candidate model is trained for 60 epochs, using the Adam optimizer with a step function
learning rate scheduler. The batch size is 1000, the loss is sparse categorical cross-entropy, and the NAS error
metric is sparse categorical accuracy. The search space is as follows:

• Number of layers per stack: range (3, 8)
• Number of TCN stacks: [1, 2, 3]
• Number of ilters in the TCN layers: range (2, 64)
• Kernel size in the TCN layers: range( 2, 16)
• Skip connections in TCN: [True, False]
• Dilation factor choices: [1, 2, 4, 8, 16, 32, 64, 128, 256]

5.1.3 Overall Performance. Fig. 6 (Left) and Fig. 7 showcases the Pareto-optimal frontier generated by TinyNS

versus competing frontiers and microcontroller models. TinyNS exceeds the benchmark accuracy by 4.3% and
5.5% for image recognition and anomaly detection, respectively, while consuming 1.14×-3.09× lower lash. For
image recognition, TinyNS outperforms models generated SpArSe [59] and �NAS [101] by 4.5%-17.5% while
taking 1.7×-7.7× lower convergence time (shown in Fig. 6 (Right)). Compared to LEMONADE [53], TinyNS
provides 2.2× smaller models at the cost of 1.3% accuracy loss. TinyNS converges faster than gradient-based or
evolutionary NAS due to two key properties. Firstly, TinyNS can eliminate infeasible candidate models in the
search space without training, thanks to accurate hardware proiling using real microcontrollers during the search
process. Proxies are unable to take into account the compiler runtime optimizations, and the dynamic overhead
from RTOS, data stacks, and model interpreters. For all three tasks, the models generated by proxied TinyNS not
only have sub-optimal accuracy (1.6%-5.5% lower) and lash usage (4.2× higher) compared to proxy less TinyNS
but also have higher convergence time (2.3× higher). Secondly, the exploration-exploitation philosophy of the

Table 3. Chosen 1D-CNN model hyperparameters for each target hardware by TinyNS on the ToyADMOS dataset. The

SRAM and flash limits of the hardware are given in parenthesis in kB in the form (SRAM, Flash).

Device Proiling SRAM Usage (kB) Latency (s) or FLOPS No. of ilters Kernel size No. of layers per stack No. of stacks Skip connections

F446RE (128, 512)
Real 87.8 0.01 (L) 50 3 5 1 True
Proxy 81.3 0.32M (F) 16 10 4 1 True

L476RG (128, 1024)
Real 88.2 0.06 (L) 38 10 6 1 True
Proxy 62.0 0.24M (F) 26 3 5 1 True

F746ZG (320, 1024)
Real 288 0.01 (L) 42 4 4 3 True
Proxy 78.1 0.31M (F) 30 4 3 1 True

L4R5ZI_P (640, 2048)
Real 608 0.03 (L) 63 3 5 1 True
Proxy 444 1.77M (F) 57 6 4 2 True
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Table 4. Chosen TCN model hyperparameters for each target hardware by TinyNS on the Google Speech Commands dataset.

The SRAM and flash limits of the hardware are given in parenthesis in kB in the form (SRAM, Flash).

Device Proiling SRAM Usage (kB) Latency (s) or FLOPS No. of ilters Kernel size Dilations, no. of layers per stack No. of stacks Skip connections

F446RE (128, 512)
Real 106 0.31 (L) 51 9 [1,8,64,128], 4 2 True
Proxy 77.8 21.6M (F) 27 9 [1,2,16,32,64,128], 6 2 True

L476RG (128, 1024)
Real 95.4 0.65 (L) 44 7 [1,2,4,8,16,128], 6 2 True
Proxy 79.4 22.0M (F) 30 9 [1,2,8,16,128], 5 2 True

F746ZG (320, 1024)
Real 286 0.04 (L) 45 4 [1,4,16,64,128], 5 1 True
Proxy 147 32.4M (F) 56 4 [1,4,8,64], 4 3 True

L4R5ZI_P (640, 2048)
Real 606 1.66 (L) 63 8 [1,4,8,16,32,64,128,256], 8 3 True
Proxy 210 68.2M (F) 55 8 [1,16,128], 3 3 True

acquisition function, coupled with parallel search capabilities and the computationally-tractable sampling-based
approach allows TinyNS to approach the global optimum without requiring evaluation of thousands of candidate
architectures. Each model in the Pareto-frontier is generated within 10-50 iterations. For anomaly detection,
TinyNS outperforms attention-based OutlierNets [2] by 6.3% and guarantees deployability overMobileNetv2 [140],
but underperforms over MicroNets [14] models. We hypothesize that lattening the log MFCC in the 1D-CNN
backbone loses spatial correlation across the feature coeicients. This phenomenon also generates sub-optimal
TinyNS models for keyword spotting, failing to cross the benchmark accuracy of 90% as shown in Fig. 7 (Right).
This showcases the importance of performing NAS not just over a single model backbone, but over multiple
model backbones. In Section 5.3, we showcase how TinyNS operating on a search space with multiple models can
generate models with the lowest lash usage and highest accuracy. Regardless, given an ideal model backbone,
TinyNS can generate models with the highest accuracy and guaranteed deployability within a few evaluations
without requiring expensive training infrastructure.

5.1.4 Architectural Adaptation Based on Resource Availability. Table 2, Table 3, and Table 4 show the hyperparam-
eters of the model backbones for the three tasks generated by TinyNS for four diferent STM32 microcontrollers

Fig. 8. Architectural adaptation and device capability exploitation by TinyNS on the ToyADMOS dataset. The SRAM and

flash limits of the hardware are given in parenthesis in kB in the form (SRAM, Flash). ��� refers to �
th layer of the 1D-CNN in

the ��ℎ stack.
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Fig. 9. Architectural adaptation and device capability exploitation by TinyNS on the Speech Commands dataset. The SRAM

and flash limits of the hardware are given in parenthesis in kB in the form (SRAM, Flash). ��� refers to �
th layer of the TCN

in the ��ℎ stack.

with varying SRAM and lash limits. In general, as the device capabilities increase, TinyNS generates models
that have higher FLOPS, and higher SRAM and lash usage. Instead of providing the smallest model with the
highest accuracy, TinyNS adapts hyperparameters such as the number of kernels, size of kernels, and the number
of convolutional stacks with increasing device capabilities to maximize accuracy. Fig. 8 and Fig. 9 show visual
examples of such architectural adaptation for three of the four microcontrollers. As the SRAM and lash capacity
increases, TinyNS automatically adjusts the number of layers per stack, the number of stacks, the kernel size, and
the number of ilters depending on an increase in SRAM or lash. For example, a model with more parameters
but a smaller kernel size and ilter count are likely to beneit from an increase in lash but no change in SRAM.
Likewise, when dilated convolutions are used, TinyNS assigns a small dilation factor to earlier layers and a large
dilation factor in later layers when it cannot increase the number of layers due to resource limits. This allows a
TCN with a limited layer count to have the same receptive ield (albeit less ine-grained) as a TCN with more
layer count, capturing both short-term local context and long-term global time-series inter-dependencies. Table 2,
Table 3, and Table 4 further showcase the problem with proxies as opposed to real-hardware proiling. These
models have a higher number of parameters but a lower number of ilters and kernel size than proxy-less models.
Since proxies are unable to take into account compiler optimizations, the generated models underestimate the
available SRAM and overestimate the lash usage, yielding models with poor accuracy.

5.1.5 Convergence Time of Proxyless versus Proxied TinyNS. Fig. 10 shows the number of iterations needed to
reach the best optimization score for proxy less and proxied TinyNS for all three tasks. Mango allows both random
initialization and an initial set of evaluation points to warm up the optimizer. The user can either customize the
initial evaluation points to guide the optimization process or choose random sampling to mitigate randomness
efects [138]. We showcase the results for an average from 3 independent runs for each algorithm to account for
the efect of randomness. For both proiling techniques, tighter hardware constraints (lower SRAM and lash
capacities) equate to more iterations required for convergence. However, proxy less TinyNS converges 3.2×-12.6×
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Fig. 10. Convergence iterations required for proxy less and proxied TinyNS. (Let) CIFAR10, (Center) ToyADMOS, (Right)

Google Speech Commands. The SRAM and flash limits of the hardware are given in parenthesis in kB in the form (SRAM,

Flash). Note that a higher score for proxied TinyNS does not necessarily guarantee deployability, while the highest score for

proxy less TinyNS guarantees deployability on the target microcontroller.

faster to the highest performing model compared to proxied TinyNS. Intuitively, platform-in-the-loop should
be slow while analytical proxies should be fast, as real measurements have compilation time and proiling time
overhead and are not immediate. However, since proxies are inaccurate and do not relect the execution level
dynamics, more infeasible model candidates are trained rather than discarded, wasting valuable computing time
and increasing the search completion time. In our evaluation, we found the platform-in-the-loop approach to be
50% faster than using proxies for hardware proiling. Even though proxied TinyNS achieves a higher score than
proxy less TinyNS, the deployability of models generated by proxied TinyNS is not guaranteed due to high lash
consumption. Further, we have seen earlier that these models do not fully exploit the SRAM capabilities and have
lower accuracy than proxy-less models. The increased score achieved by proxied TinyNS is contributed by model
candidates with a high lash footprint.

5.2 Optimization of Features and Neural Weights (Symbolic Neuro Symbolic)

In this case study, we showcase how TinyNS provides the best combination of features and neural network
hyperparameters for various target hardware.

5.2.1 Dataset and Task Description. We use the UCI-HAR dataset [6] for this case study. The task is to classify
6 human activities (walking, walking upstairs, walking downstairs, sitting, laying, and standing) from a single
waist-mounted x-axis accelerometer data sampled at 50 Hz from 30 volunteers. The dataset is split with leave-7
out, i.e., data from 21 volunteers are in the training set, and data from the rest 7 volunteers are in the test set. As
suggested by the dataset authors, we use a window size of 128 (2.56 s) with a stride of 64. 10% of the training data
is used for validation.

Table 5. Chosen features (shaded) for each target hardware for neurosymbolic optimization of input feature choices and

model backbone. The SRAM and flash limits of the hardware are given in parenthesis in kB in the form (SRAM, Flash).

Device Features

ISPU
(8, 32)

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-Peak FFT Mean Coef. Fundamental Frequency Max. Power Spectrum

F446RE
(128, 512)

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-Peak FFT Mean Coef. Fundamental Frequency Max. Power Spectrum

L476RG
(128, 1024)

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-Peak FFT Mean Coef. Fundamental Frequency Max. Power Spectrum

F746ZG
(320, 1024)

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-Peak FFT Mean Coef. Fundamental Frequency Max. Power Spectrum

L4R5ZI_P
(640, 2048)

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-Peak FFT Mean Coef. Fundamental Frequency Max. Power Spectrum
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Table 6. Chosen model hyperparameters for each target hardware for neurosymbolic optimization of input feature choices

and model backbone. The SRAM and flash limits of the hardware are given in parenthesis in kB in the form (SRAM, Flash).

Device Number of ilters Kernel size Number of stacks Dilations, number of layers per stack Skip connections

ISPU (8, 32) 3 5 1 [1,2,4,32,64,128], 6 False

F446RE(128, 512) 5 3 3 [1,2,16,32,128], 5 False

L476RG (128, 1024) 7 7 2 [1,2,4,32,128], 5 False

F746ZG (320, 1024) 3 10 3 [1,2,8,16,32], 5 True

L4R5ZI_P (640, 2048) 29 6 1 [1,4,16,64,128], 5 True

5.2.2 Model Backbones, Training Details, and Search Space Definition. The model backbone consists of a TCN.
The TCN layer is followed by a dense layer with 6 units and softmax activation. Each candidate model is trained
for 150 epochs, using the Adam optimizer with default parameters. The loss is categorical cross-entropy, and the
NAS error metric is validation accuracy. The search space for the model is as follows:

• Number of layers per stack: range (3, 8)
• Number of TCN stacks: [1, 2, 3]
• Number of ilters in the TCN layers: range (3, 64)
• Kernel size in the TCN layers: range(3, 16)
• Skip connections in TCN: [True, False]
• Dilation factor choices: [1, 2, 4, 8, 16, 32, 64, 128]

The feature space consists of 12 features listed in Table 5. There are 6 statistical features, 3 temporal features, and
3 spectral features to choose from. The search space for the features is deined using the binary mask technique
shown in Section 4.1.

5.2.3 Target Hardware. We perform neurosymbolic optimization for the same four microcontrollers from Sec-
tion 5.1. In addition, we also perform optimization for an integrated sensor processing unit (ISPU) from STMi-
croelectronics. The ISPU is an ultra-low-power 10 MHz 32-bit RISC processor (architecture: STRED) embedded
within the LSM6DSOIS and ISM330IS 6DoF MEMS inertial sensor. The processor uses a proprietary version
of TFLM (called q2c) to run on-chip neural networks without needing a power-hungry microcontroller in the
loop and uses the STRED/ISPU toolchain to compile C++ programs. The processor has 8kB SRAM and 32kB
lash [107].

5.2.4 Overall Performance. Fig. 11 (Left) shows the Pareto-frontier generated by TinyNS versus using all the
features and directly operating on the raw accelerometer data. On average, TinyNS provides up to 2% improvement
in accuracy over the same model operating on raw data or operating on all the features. Extracting all the features
is computationally intensive (especially for the ISPU) while operating on raw data without a gyroscope or
magnetometer or other axes of the accelerometer results in performance degradation. Table 5 and Table 6
show the chosen features and model hyperparameters for each target hardware. Surprisingly, TinyNS learns
to pick only the most important features (e.g., peak-to-peak, FFT mean coeicients, entropy, and variance) for
the ISPU and the microcontrollers with the lowest SRAM and lash capacities. These features are well-known
to have the highest efect on classiier performance in human activity recognition literature [8, 168]. As the
device capabilities increase, TinyNS selects other features in the feature set. TinyNS also performs architectural
adaptation and device capability exploitation seen in Section 5.1, increasing the number of ilters, the kernel size,
and the number of stacks of the model candidates. To prevent exploding and vanishing gradient problem, TinyNS
learns to add skip connections to deeper TCN models. The SRAM usage and FLOPS count of the models steadily
increase with increasing device capabilities as shown in Fig. 11 (Center) and Fig. 11 (Right). The median SRAM
saturation is around 20%, with the saturation being higher for devices with higher lash availability, showing full
resource exploitation by TinyNS for each target hardware. Overall, choosing the best synergy of features and
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Fig. 11. (Let) Flash usage of models found via neurosymbolic optimization of features and model hyperparameters. The

accuracy of the said models operating on all features and directly on the raw data is also shown. Flash limits of the target

hardware are shown in parentheses. (Center) SRAM usage of models found via neurosymbolic optimization of features and

model hyperparameters. SRAM limits of the target hardware are shown in parentheses. (Right) FLOPS count of models

found via neurosymbolic optimization of features and model hyperparameters.

model hyperparameters makes it possible to run models on extremely resource-constrained platforms beyond
microcontrollers like the ISPU.

5.3 Fall Detection under 2 kB and Activity Recognition (Symbolic Neuro Symbolic)

In this case study, we showcase how TinyNS picks the best model backbone (neural or non-neural) and its
hyperparameters out of a zoo of TinyML model backbones.

5.3.1 Dataset and Task Description. We use the Auritus dataset [135] for this case study. There are two tasks.
The irst task is to distinguish between fall and non-fall activities under a 2 kB memory constraint (suitable
for ISPU) using an ear-mounted 6DoF inertial measurement unit called earable. The second task is to classify 9
human activities (walking, jogging, standing, sitting, laying, turning left, turning right, jumping, and falling).
The dataset is sampled at 100 Hz from 45 volunteers. We split the dataset in two ways: split with no unseen
participants and split with leave-1 out. In the irst splitting technique, we use 80% of the data for training, 10% for
validation, and 10% for testing. In the second splitting technique, we perform 10-way cross-validation by leaving
a random participant out of the training set. The data from the chosen 44 participants are split 90:10 for training:
validation. The stride was set to 0.5 seconds and the window size was optimized as a hyperparameter.

Fig. 12. (Let) Highest performing models found by TinyNS for earable fall detection under 2 kB memory constraint when

optimizing several model backbones. (Center and Right) Test accuracy and leave 1-out test accuracy of highest performing

models found by TinyNS versus state-of-the-art earable activity detection classifiers when optimizing several model backbones.

The TCN backbone is optimized for 5 diferent target hardware (eSense earable, F446RE, L476RG, F407VET6, and F746ZG).
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Table 7. Chosen model hyperparameters for each backbone found by TinyNS when optimizing several model backbones for

earable activity detection. The SRAM and flash limits of the hardware are given in parenthesis in kB in the form (SRAM,

Flash).

Model Backbone Device
Hyperparameters

Number of ilters Kernel size Dilations, number of layers per stack Skip connections

TCN

F446RE (128, 512) 18 2 [2, 4, 8, 16, 32, 64, 128, 256], 8 Yes
L476RG (128, 1024) 13 7 [1, 4, 16, 32], 4 No

eSense earable (128, 16000) 15 2 [1, 2, 4, 8, 32, 128, 256], 7 Yes
F407VET6 (192, 512) 17 3 [2, 4, 32, 128, 256], 5 No
F746ZG (320, 1024) 21 2 [2, 8, 16, 64, 128, 256], 6 Yes

None (hardware-agnostic)

Hidden Units
FastGRNN 50
FastRNN 32

Projection Dimension Sigmoid Parameter Depth
Bonsai 22 1.0 3

Projection Dimension Prototypes �
ProtoNN 70 70 0.004

5.3.2 Model Backbones, Training Details, Target Hardware, and Search Space Definition. We set 5 diferent model
backbones (3 neural, 2 non-neural) in the search space, each with its own set of optimization hyperparameters:

• TCN (neural) [97, 162] - number of ilters in the TCN layers: range (2, 64); kernel size in the TCN layers:
range (2, 16); skip connections in TCN: [True, False]; the number of layers per stack: range (3,8); dilation
factor choices: [1,2,4,8,16,32,64,128,256].

• FastGRNN (neural) [94] - number of hidden units: range (20, 60).
• FastRNN (neural) [94] - number of hidden units: range (20, 60).
• Bonsai (non-neural) [93] - projection dimension: range (10, 70); sigmoid parameter: uniform (1.0, 4.0); depth:
range(1, 6).

• ProtoNN (non-neural) [74] - projection dimension: range (10, 70); � : uniform (0.0015, 0.05); the number of
prototypes: range (10, 70).

In addition, for all the models, the search space for the window size is [1, 2, 3, 5] seconds. For TCN, we generate
Pareto-frontier for 4 diferent STM32 microcontrollers (F446RE, L476RG, F407VET6, and F746ZG) and the
Qualcomm CSR8670 microcontroller found inside the earable. We use proxies for proiling the CSR processor
as it does not support irmware modiication. For the STM32 microcontrollers, we use platform-in-the-loop
proiling. For Bonsai and ProtoNN, we apply ive features on the accelerometer and gyroscope vector sums:
maxima, minima, range, variance, and standard deviation. The rest of the models operate directly on the raw
data. The loss is categorical cross-entropy for all the models, except for Bonsai, which uses multi-class hinge loss.
The NAS error metric is validation accuracy for TCN and training accuracy for the rest of the classiiers.

5.3.3 Overall Results. Fig. 12 summarizes the accuracy and model size for the highest performing models for
each of the 5 backbones against competing models, while Table 7 shows the hyperparameters of the said models.
TinyNS achieves state-of-the-art improvement in both accuracy and model size reduction, providing earable
activity detection models that are 98×-740× smaller yet 3%-6% more accurate than competing models. The activity
recognition models are as small as 6-13 kB. Further, TinyNS achieves 98% earable fall detection accuracy with
a model as small as 2.3 kB. The case study illustrates the importance of optimizing several model backbones
rather than a single backbone, particularly in unseen domains void of expert knowledge. Notably, models with
more parameters do not necessarily provide higher accuracies. Appropriate architectural encodings make it
possible to achieve the same or better accuracy with a lower parameter count (e.g., a CNN is likely to outperform
a fully-connected neural network due to the ability to extract spatial relations, even though the latter may have
more parameters). Even if one architecture performs poorly, the search algorithm would have other architectures
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Table 8. Chosen object detector and tracking filter hyperparameters for CenterNet algorithm under diferent size limits.

Constraint Flash Usage (MB)
Performance Model hyperparameters Filter hyperparameters (thresholds)
MOTA IDF1 Kernel size Stack count Head convolution value Activations Rendering Conidence

Handcrafted (none) 238 36.5 55.0 1 1 128 True 0.4 0.5

250 MB limit 238 36.1 54.6 1 1 150 True 0.3 0.4

500 MB limit 270 38.0 57.2 9 1 100 False 0.7 0.5

to choose from. Thereby, exploring various architectures is important for squeezing highly performant models
beyond microcontrollers, such as the ISPU.

5.4 Optimization of Neural Detector Weights and Symbolic Object Tracker (Neuro→Symbol)

In this case study, we show the ability of TinyNS to jointly optimize neural and symbolic modules, where the
symbolic module makes high-level reasoning over the neural outputs.

5.4.1 Dataset and Task Description. We use the MOT17 dataset [113] for this case study. The goal is to develop
multiple people tracking algorithms from a single camera feed under model size constraints. The dataset is
pre-processed using the ByteTrack library [178].

5.4.2 Model Backbones and Search Space Definition. We use the ByteTrack library [178] to implement the
CenterNet algorithm [179], which was discussed in Section 4.2. Each candidate model is trained for 70 epochs
with a batch size of 16. The search space for the ResNet + Deformable Convolutional Network and the tracking
ilter are:

• Number of convolutional stacks: range (1, 5)
• Kernel size: [1, 3, 5, 7, 9,..., 23]
• Layer-wise activations: [True, False]
• Head convolutional value: [50, 100, 150,..., 300]
• Rendering threshold: linspace (0.1, 0.9, 9)
• Conidence threshold: linspace (0.1, 0.9, 9)

5.4.3 Overall Results. Table 8 shows the performance, resource usage, and hyperparameters of the CenterNet
algorithm under hard memory constraints compared to the handcrafted algorithm with default hyperparameters.
Note that the MOTA and IDF1 for all the models are low as no pre-training or ine-tuning on additional data
is performed. The 250 MB model achieves MOTA and IDFf within 1% of the handcrafted model, while the
500 MB model exceeds the MOTA and IDF by 4.5%. The case study showcases that TinyNS can achieve the
performance of neurosymbolic models hand-tuned using hundreds of human hours automatically, and even
exceed the performance when device constraints relax. Compared to a human designer, TinyNS can ind models
whose hyperparameters may be counter-intuitive (e.g., reducing the head convolutional value from 150 to 100
and removing layer-wise activations for the 500 MB model) but provide superior performance.

5.5 Improving Adversarial Robustness of TinyML Models (Neuro ∪ Compile (Symbolic))

In this case study, we showcase how TinyNS can ind model architectures that follow some coveted architecture-
dependent constraints.

5.5.1 Dataset and Task Description. We use the Auritus dataset in this case study (the same dataset used in
Section 5.3). The goal and the dataset splits are the same as that in Section 5.3, except that now we want TinyML
models that not only have the highest accuracy within the device constraints but are also adversarially robust to
white-box attacks (discussed in Section 4.3).
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Fig. 13. (Let) Test accuracy, adversarial accuracy, and model size of TCN backbones for three diferent target hardware

(F446RE, L476RG, and F746ZG). (Right) Test accuracy, adversarial accuracy, and model size for ProtoNN and Bonsai backbones.

For all three model backbones, the results are shown for NAS with adversarial robustness term, NAS without adversarial

robustness term, and handcrated models.

5.5.2 Model Backbones, Training Details, Target Hardware, and Search Space Definition. We use the TCN, Bonsai,
and ProtoNN backbones using the same model search space deined in Section 5.3. The window size is ixed to 5
seconds. For the TCN, we generate Pareto-frontier for F446RE, L476RG, and F746ZG. The rest of the training
details are the same as Section 5.3.

5.5.3 Overall Results. Fig. 13 shows the test accuracy, adversarial accuracy, and the model size of TinyNS
generated models with adversarial robustness optimization, versus handcrafted models and models generated by
TinyNS with no adversarial robustness optimization. TinyNS generates models that are 1%-26% (9% on average
more adversarially robust than competing models while maintaining or exceeding the accuracy on the main task.
This comes at the cost of increased model size, albeit well within the lash constraints of the target hardware.
This is because larger models have more parameters and are therefore more robust to small input perturbations.
In addition, models generated by TinyNS without adversarial robustness optimization are more sensitive to small
perturbations compared to handcrafted models. This is probably due to high loss smoothness and low gradient
variance in the loss contour of NAS-generated models [117].

5.6 Physics-Aware Neural Inertial Localization (Neuro ∪ Compile (Symbolic))

In this case study, we showcase how TinyNS can force models to follow some coveted constraints via the inclusion
of physics channels.

5.6.1 Dataset and Task Description. We use 5 inertial odometry datasets spanning 4 applications for this case
study. These include two datasets for human tracking namely OxIOD [29] and RoNIN [78], AQUALOC [61]
unmanned underwater vehicle (UUV) tracking, EuRoC MAV [22] undermanned aerial vehicle (UAV) tracking,
and the GunDog [73] animal tracking. The split information for all the datasets is shown in Table 9. The goal is to

Table 9. Window size, stride, training-validation-test splits, and training epochs used in the inertial odometry datasets

Dataset Sampling Rate (Hz) Window Size Stride Splits (Tr, Val, Te) (%) Model Epochs

OxIOD 100 200 10 85, 5, 10 900

RoNIN 200 400 20 70, 5, 25 900

AQUALOC 200 400 20 80, 5, 15 300

EuRoC MAV 200 50 5 80, 10, 10 300

GunDog 40 10 10 45*, 5*, 50 300

* Training trajectory split into 2 parts for train and validation splits.
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Fig. 14. Odometric resolution of physics-aware neurosymbolic-inertial odometrymodels (TinyOdom) found via neurosymbolic

architecture search, versus state-of-the-art handcrated neural and symbolic models for tracking humans, animals, unmanned

underwater vehicles (UUV), and unmanned aerial vehicles (UAV).

train a model to predict the position of an object using inertial sensor data without GPS updates while mitigating
position explosion error innate in inertial sensors due to bias and drift. The model must be able to detect when
suicient translational movement has not happened, thereby not updating the position (physics-aware).

5.6.2 Model Backbones, Training Details, Target Hardware, and Search Space Definition. We use a TCN backbone.
The outputs of the TCN are reshaped, pooled, and lattened, and then fed to a 32-unit dense layer with linear
activations. The loss is a mean-squared error, the optimizer is Adam with a learning rate of 0.001, and the NAS
error metric is validation loss. The search space for the model is as follows:

• Number of layers per stack: range (3, 8)
• Dropout: uniform (0.0, 1.0)
• Normalization: [Weight, Layer, Batch]
• Number of ilters in the TCN layers: range (2, 64)
• Kernel size in the TCN layers: range (2, 16)
• Skip connections in TCN: [True, False]
• Dilation factor choices: [1, 2, 4, 8, 16, 32, 64, 128, 256]

We generate the Pareto-frontier for the 4 STM32 microcontrollers outlined in Section 5.3.

5.6.3 Overall Results. Fig. 14 shows the odometric resolution of models found by TinyNS (called TinyOdom)
versus handcrafted state-of-the-art neural and symbolic models. TinyNS models outperform purely neural and
purely symbolic models on all four applications by 1.15× while being 31×-134× smaller. In other words, TinyNS
not only exceeds the resolution of human-designed neural and symbolic models but also ensures the deployability
of the models on microcontrollers. The superior performance is possible partly due to the inclusion of the physics
channel, which improves the resolution by 1.1× on average, as showcased in Table 10. The physics channel ensures
that lightweight and under-parameterized models such as those generated by TinyNS are able to follow the
underlying system physics as well as over-parametrized baselines. Fig. 15 visualizes the architectural adaptation
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Table 10. Efect of removing the physics channel of proposed neural-inertial odometry models on 3 inertial odometry datasets.

Dataset
Absolute Trajectory Error (m) Relative Trajectory Error (m)
With Physics Without Physics With Physics Without Physics

OxIOD 3.35 3.86 0.90 1.24

AQUALOC 3.36 3.71 2.44 2.53

Agrobot (Phase 1) 7.85 9.13 1.10 1.33

and device capability exploitation by TinyNS when generating the Pareto-frontier. As observed in previous
sections, TinyNS changes the appropriate hyperparameters to improve device resource usage and resolution.

5.7 Neural-Kalman Sensor Fusion (Symbolic[Neuro])

In this case study, we showcase how TinyNS can optimally combine a neural system model with a symbolic
measurement model using Kalman ilter theory.

5.7.1 Dataset and Task Description. We use the AgroBot dataset [50] in this case study. The goal is to perform
precision localization of an agricultural robot using neural inertial localization, with intermittent GPS updates.
The underlying system must fuse the smoothness and short-term resolution of neural inertial localization with
the long-term precision of GPS. The dataset contains 6.5 hours and 4.5 km of inertial and GPS data. We used 80%
of the dataset for training and 20% for testing.

5.7.2 Model Backbones, Training Details, Target Hardware, and Search Space Definition. We used the same model
backbone and search space outlined in Section 5.6. In addition, we optimize noise hyperparameters in the Kalman
ilter Allan variance matrix:

• accelerometer noise variance: linspace (0, 1, 10000)
• gyroscope noise variance: linspace (0, 1, 10000)

Fig. 15. Architectural adaptation and device capability exploitation by TinyNS on the AQUALOC dataset. The SRAM and

flash limits of the hardware are given in parenthesis in kB in the form (SRAM, Flash). �� refers to �
th layer of the TCN.
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Table 11. Odometric resolution and flash usage of proposed neural-Kalman GPS-INS fusion for locating precision agricultural

robots versus state-of-the-art neural and symbolic approaches.

Paradigm Method Code Size (MB) Absolute Trajectory Error (m) Relative Trajectory Error (m)

Neural

IONet [28] 1.71 5.58 | 10.1 0.92 | 0.57
L-IONet [29] 0.55 8.11 | 18.6 0.91 | 1.40
AbolDeepIO [55] 12.5 7.24 | 20.5 0.96 | 0.93
VeTorch [62] 29.6 2.86 | 15.6 0.44 | 0.84

Symbolic
UKF-M INS+GPS [21] 0.192 5.50 0.49
EKF INS+GPS [125] 0.077 3.31 0.58
GPS only - 1.89 0.42

Neurosymbolic
Ours (no GPS, w physics) 1.10 1.76 | 9.12 0.28 | 1.55
Ours (w GPS, w physics) 1.12 1.02 | 1.81 0.28 | 0.64

irst term in the error is on seen trajectory, second term is on unseen trajectory; single term is on unseen trajectory

• magnetometer noise variance: linspace (0, 1, 10000)

The batch size, optimizer, and training epochs were set to 256, Adam (learning rate: 0.001), and 3000, respectively.
The NAS error metric is the absolute trajectory error during training. The model size constraint is set to 2 MB.

5.7.3 Overall Results. Table 11 outlines the performance of TinyNS generated neurosymbolic model versus
human-engineered state-of-the-art neural and symbolic approaches of localization. Compared to competing
neural models, TinyNS model without GPS lowers model size and absolute trajectory error by 1.5× - 27× and
1.4× - 5.8×, respectively. Compared to competing symbolic models, TinyNS model with GPS lowers absolute
trajectory error and relative trajectory error by 1.2× - 11× and 1.1× - 3.8×. The neural-Kalman fusion exploited
by TinyNS combines the long-term precision of symbolic models with the short-term robustness and resolution
of neural networks within the 2 MB limit set forth in this case study.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Neurosymbolic AI provides a pathway for making context-aware, physics-aware, robust, interpretable, and
performant AI systems. TinyNS provides a stepping stone in automating the deployment of neurosymbolic
frameworks onto ultra resource-constrained IoT devices like microcontrollers and ISPUs. The Bayesian opti-
mization formulation provides an inexpensive method to iterate over complex neurosymbolic search spaces,
providing Pareto-optimal models depending upon resource availability. GP-UCB and hard thresholding policy
allow ine-grained search space exploration and exploitation and improved convergence time. Through TinyNS,
we have showcased state-of-the-art performance in various unseen applications. Several lessons, limitations, and
directions for future work for our framework are as follows:

• There is an absence of general-purpose parsers, lexers, and visitors needed to realize symbolic program
graphs on microcontrollers. We need tools that are similar to TFLM but for parsing program decision trees.

• The process of porting a custom symbolic layer from TF to TFLM is convoluted, with support for mostly
the layers available in TFL. To run such custom layers, a user-friendly framework for the automatic porting
of custom TF operators to TFLM is necessary.

• Our framework only supports TFLM so far for model parsing. However, there are other inference engines
for which support must be added.

ACKNOWLEDGMENTS

The research reported in this paper was sponsored in part by the Air Force Oice of Scientiic Research (AFOSR)
under Cooperative Agreement FA9550-22-1-0193; the IoBT REIGN Collaborative Research Alliance funded by
the Army Research Laboratory (ARL) under Cooperative Agreement W911NF-17-2-0196; the NIH mHealth
Center for Discovery, Optimization and Translation of Temporally-Precise Interventions (mDOT) under award

ACM Trans. Embedd. Comput. Syst.



TinyNS: Platform-Aware Neurosymbolic Auto Tiny Machine Learning • 41

1P41EB028242; the National Science Foundation (NSF) under awards # 1705135 and 1822935. and, the CONIX
Research Center, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored
by DARPA. The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the oicial policies, either expressed or implied, of the AFOSR, ARL, DARPA, NIH,
NSF, SRC, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation here on.

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jefrey Dean, Matthieu Devin, Sanjay Ghemawat, Geofrey

Irving, Michael Isard, et al. 2016. {TensorFlow}: a system for {Large-Scale} machine learning. In 12th USENIX symposium on operating

systems design and implementation (OSDI 16). 265ś283.

[2] Saad Abbasi, Mahmoud Famouri, Mohammad Javad Shaiee, and Alexander Wong. 2021. OutlierNets: highly compact deep autoencoder

network architectures for on-device acoustic anomaly detection. Sensors 21, 14 (2021), 4805.

[3] Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy Van den Broeck, and Sameer

Singh. 2022. PYLON: A PyTorch framework for learning with constraints. In NeurIPS 2021 Competitions and Demonstrations Track.

PMLR, 319ś324.

[4] Norah N Alajlan and Dina M Ibrahim. 2022. TinyML: Enabling of Inference Deep Learning Models on Ultra-Low-Power IoT Edge

Devices for AI Applications. Micromachines 13, 6 (2022), 851.

[5] Mona Alshahrani, Mohammad Asif Khan, Omar Maddouri, Akira R Kinjo, Núria Queralt-Rosinach, and Robert Hoehndorf. 2017.

Neuro-symbolic representation learning on biological knowledge graphs. Bioinformatics 33, 17 (2017), 2723ś2730.

[6] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra Perez, and Jorge Luis Reyes Ortiz. 2013. A public domain dataset for

human activity recognition using smartphones. In Proceedings of the 21th international European symposium on artiicial neural networks,

computational intelligence and machine learning. 437ś442.

[7] Gianluca Apriceno, Andrea Passerini, and Luciano Seraini. 2021. A Neuro-Symbolic Approach to Structured Event Recognition. In

28th International Symposium on Temporal Representation and Reasoning (TIME 2021).

[8] Ferhat Attal, Samer Mohammed, Mariam Dedabrishvili, Faicel Chamroukhi, Latifa Oukhellou, and Yacine Amirat. 2015. Physical

human activity recognition using wearable sensors. Sensors 15, 12 (2015), 31314ś31338.

[9] The GPyOpt authors. 2016. GPyOpt: A Bayesian Optimization framework in python. http://github.com/SheieldML/GPyOpt.

[10] The Skopt authors. 2016. Skopt: scikit-optimize. https://scikit-optimize.github.io/.

[11] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. 2017. Designing neural network architectures using reinforcement

learning. International Conference on Learning Representations (ICLR) (2017).

[12] Suresh Balakrishnama and Aravind Ganapathiraju. 1998. Linear discriminant analysis-a brief tutorial. Institute for Signal and Information

Processing 18, 1998 (1998), 1ś8.

[13] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jefries, Csaba Kiraly, Pietro Montino, David Kanter, Sebastian

Ahmed, Danilo Pau, et al. 2021. MLPerf Tiny Benchmark. Advances in Neural Information Processing Systems (2021).

[14] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish Thakker, Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina, and

Paul Whatmough. 2021. Micronets: Neural network architectures for deploying tinyml applications on commodity microcontrollers.

Proceedings of Machine Learning and Systems 3 (2021), 517ś532.

[15] David M Beazley. 1996. SWIG: an easy to use tool for integrating scripting languages with C and C++. In Proceedings of the 4th

conference on USENIX Tcl/Tk Workshop, 1996-Volume 4. 15ś15.

[16] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn, and Kurt Smith. 2010. Cython: The best of both

worlds. Computing in Science & Engineering 13, 2 (2010), 31ś39.

[17] Dimitri Bertsekas. 2016. Nonlinear Programming. Vol. 4. Athena Scientiic.

[18] Sahil Bhatia, Pushmeet Kohli, and Rishabh Singh. 2018. Neuro-symbolic program corrector for introductory programming assignments.

In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE, 60ś70.

[19] M Lourdes Borrajo, Bruno Baruque, Emilio Corchado, Javier Bajo, and Juan M Corchado. 2011. Hybrid neural intelligent system to

predict business failure in small-to-medium-size enterprises. International journal of neural systems 21, 04 (2011), 277ś296.

[20] Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, and Yejin Choi. 2019. COMET: Common-

sense Transformers for Automatic Knowledge Graph Construction. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics. 4762ś4779.

[21] Martin Brossard, Silvere Bonnabel, and Jean-Philippe Condomines. 2017. Unscented Kalman iltering on Lie groups. In 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE, 2485ś2491.

ACM Trans. Embedd. Comput. Syst.

http://github.com/SheffieldML/GPyOpt
https://scikit-optimize.github.io/


42 • Saha and Sandha, et al.

[22] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder, Sammy Omari, Markus W Achtelik, and Roland Siegwart.

2016. The EuRoC micro aerial vehicle datasets. The International Journal of Robotics Research 35, 10 (2016), 1157ś1163.

[23] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2019. Once-for-All: Train One Network and Specialize it for

Eicient Deployment. In International Conference on Learning Representations.

[24] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. 2020. Tinytl: Reduce memory, not parameters for eicient on-device learning.

Advances in Neural Information Processing Systems 33 (2020), 11285ś11297.

[25] Han Cai, Ligeng Zhu, and Song Han. 2018. ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware. In

International Conference on Learning Representations.

[26] Alessandro Capotondi, Manuele Rusci, Marco Fariselli, and Luca Benini. 2020. Cmix-nn: Mixed low-precision cnn library for memory-

constrained edge devices. IEEE Transactions on Circuits and Systems II: Express Briefs 67, 5 (2020), 871ś875.

[27] Steve Carr, Kathryn S McKinley, and Chau-Wen Tseng. 1994. Compiler optimizations for improving data locality. ACM SIGPLAN

Notices 29, 11 (1994), 252ś262.

[28] Changhao Chen, Xiaoxuan Lu, Andrew Markham, and Niki Trigoni. 2018. Ionet: Learning to cure the curse of drift in inertial odometry.

In Proceedings of the AAAI Conference on Artiicial Intelligence, Vol. 32.

[29] Changhao Chen, Peijun Zhao, Chris Xiaoxuan Lu, Wei Wang, Andrew Markham, and Niki Trigoni. 2020. Deep-learning-based

pedestrian inertial navigation: Methods, data set, and on-device inference. IEEE Internet of Things Journal 7, 5 (2020), 4431ś4441.

[30] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu,

Luis Ceze, et al. 2018. {TVM}: An automated {End-to-End} optimizing compiler for deep learning. In 13th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 18). 578ś594.

[31] Mahesh Chowdhary and Sankalp Dayal. 2018. Reconigurable sensor unit for electronic device. US Patent 10,142,789.

[32] Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, and Rocky Rhodes. 2019. Visual wake words dataset. arXiv

preprint arXiv:1906.05721 (2019).

[33] Nuri Cingillioglu and Alessandra Russo. 2022. pix2rule: End-to-end Neuro-symbolic Rule Learning. 15th International Workshop on

Neural-Symbolic Learning and Reasoning (NeSy) (2022).

[34] Pierre Comon. 1994. Independent component analysis, a new concept? Signal Proceedings 36, 3 (1994), 287ś314.

[35] JM Corchado and J Aiken. 1998. Neuro-symbolic reasoning for real time oceanographic problems. In Conference On Data Mining. IEE,

Savoy Place, London.

[36] Juan M Corchado, M Lourdes Borrajo, María A Pellicer, and J Carlos Yáñez. 2004. Neuro-symbolic system for business internal control.

In Industrial conference on data mining. Springer, 1ś10.

[37] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho. 2020. Lagrangian Neural Networks. In

ICLR 2020 Workshop on Integration of Deep Neural Models and Diferential Equations.

[38] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flammarion, Mung Chiang, Prateek

Mittal, and Matthias Hein. 2021. RobustBench: a standardized adversarial robustness benchmark. In Thirty-ifth Conference on Neural

Information Processing Systems Datasets and Benchmarks Track (Round 2).

[39] Francesco Croce and Matthias Hein. 2020. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free

attacks. In International conference on machine learning. PMLR, 2206ś2216.

[40] Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and Vikash K Mansinghka. 2019. Gen: a general-purpose probabilistic

programming system with programmable inference. In Proceedings of the 40th acm sigplan conference on programming language design

and implementation. 221ś236.

[41] Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. 2022. Multi-Objective Bayesian Optimization over High-

Dimensional Search Spaces. In The 38th Conference on Uncertainty in Artiicial Intelligence.

[42] Shail Dave, Youngbin Kim, Sasikanth Avancha, Kyoungwoo Lee, and Aviral Shrivastava. 2019. Dmazerunner: Executing perfectly

nested loops on datalow accelerators. ACM Transactions on Embedded Computing Systems (TECS) 18, 5s (2019), 1ś27.

[43] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jefries, Jian Li, Nick Kreeger, Ian Nappier, Meghna Natraj, Tiezhen

Wang, et al. 2021. Tensorlow lite micro: Embedded machine learning for tinyml systems. Proceedings of Machine Learning and Systems

3 (2021), 800ś811.

[44] Markus Deittert, Arthur Richards, Chris A Toomer, and Anthony Pipe. 2009. Engineless unmanned aerial vehicle propulsion by

dynamic soaring. Journal of guidance, control, and dynamics 32, 5 (2009), 1446ś1457.

[45] Bradley Denby and Brandon Lucia. 2019. Orbital edge computing: Machine inference in space. IEEE Computer Architecture Letters 18, 1

(2019), 59ś62.

[46] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. 2014. Exploiting linear structure within convolutional

networks for eicient evaluation. In Advances in Neural Information Processing Systems. 1269ś1277.

[47] Harsh Desai, Matteo Nardello, Davide Brunelli, and Brandon Lucia. 2022. Camaroptera: A Long-Range Image Sensor with Local

Inference for Remote Sensing Applications. ACM Transactions on Embedded Computing Systems (TECS) (2022).

ACM Trans. Embedd. Comput. Syst.



TinyNS: Platform-Aware Neurosymbolic Auto Tiny Machine Learning • 43

[48] Thomas Desautels, Andreas Krause, and Joel W Burdick. 2014. Parallelizing exploration-exploitation tradeofs in Gaussian process

bandit optimization. The Journal of Machine Learning Research 15, 1 (2014), 3873ś3923.

[49] Ian Dewancker, Michael McCourt, Scott Clark, Patrick Hayes, Alexandra Johnson, and George Ke. 2016. A strategy for ranking

optimization methods using multiple criteria. In Workshop on Automatic Machine Learning. PMLR, 11ś20.

[50] Yayun Du, Swapnil Sayan Saha, Sandeep Singh Sandha, Arthur Lovekin, JasonWu, S. Siddharth, Mahesh Chowdhary, Mohammad Khalid

Jawed, and Mani Srivastava. 2023. Neural-Kalman GNSS/INS Navigation for Precision Agriculture. International Conference on Robotics

and Automation (ICRA) (2023).

[51] Lachit Dutta and Swapna Bharali. 2021. Tinyml meets iot: A comprehensive survey. Internet of Things 16 (2021), 100461.

[52] Naser El-Sheimy, Haiying Hou, and Xiaoji Niu. 2007. Analysis and modeling of inertial sensors using Allan variance. IEEE Transactions

on instrumentation and measurement 57, 1 (2007), 140ś149.

[53] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Eicient Multi-Objective Neural Architecture Search via Lamarckian

Evolution. In International Conference on Learning Representations.

[54] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture search: A survey. Journal of Machine Learning

Research 20, 1 (2019), 1997ś2017.

[55] Mahdi Abolfazli Esfahani, Han Wang, Keyu Wu, and Shenghai Yuan. 2019. AbolDeepIO: A novel deep inertial odometry network for

autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems 21, 5 (2019), 1941ś1950.

[56] Mateus Espadoto, Rafael M Martins, Andreas Kerren, Nina ST Hirata, and Alexandru C Telea. 2019. Toward a quantitative survey of

dimension reduction techniques. IEEE Transactions on visualization and Computer graphics 27, 3 (2019), 2153ś2173.

[57] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander

Novikov, Francisco J R Ruiz, Julian Schrittwieser, Grzegorz Swirszcz, et al. 2022. Discovering faster matrix multiplication algorithms

with reinforcement learning. Nature 610, 7930 (2022), 47ś53.

[58] F Fdez-Riverola and Juan M Corchado. 2003. Forecasting red tides using an hybrid neuro-symbolic system. AI Communications 16, 4

(2003), 221ś233.

[59] Igor Fedorov, Ryan P Adams, Matthew Mattina, and Paul N Whatmough. 2019. SpArSe: Sparse architecture search for CNNs on

resource-constrained microcontrollers. Advances in Neural Information Processing Systems 32 (2019).

[60] Igor Fedorov, Ramon Matas, Hokchhay Tann, Chuteng Zhou, Matthew Mattina, and Paul Whatmough. 2022. UDC: Uniied DNAS for

Compressible TinyML Models. Advances in Neural Information Processing Systems 35 (2022).

[61] Maxime Ferrera, Vincent Creuze, Julien Moras, and Pauline Trouvé-Peloux. 2019. AQUALOC: An underwater dataset for visualś

inertialśpressure localization. The International Journal of Robotics Research 38, 14 (2019), 1549ś1559.

[62] Ruipeng Gao, Xuan Xiao, Shuli Zhu, Weiwei Xing, Chi Li, Lei Liu, Li Ma, and Hua Chai. 2021. Glow in the Dark: Smartphone Inertial

Odometry for Vehicle Tracking in GPS Blocked Environments. IEEE Internet of Things Journal 8, 16 (2021), 12955ś12967.

[63] A Garcez, M Gori, LC Lamb, L Seraini, M Spranger, and SN Tran. 2019. Neural-symbolic computing: An efective methodology for

principled integration of machine learning and reasoning. Journal of Applied Logics 6, 4 (2019), 611ś632.

[64] Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Luis C Lamb, Leo de Penning, BV Illuminoo, Hoifung Poon, and Coppe

Gerson Zaverucha. 2022. Neural-symbolic learning and reasoning: A survey and interpretation. Neuro-Symbolic Artiicial Intelligence:

The State of the Art 342 (2022), 1.

[65] Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and Luca Benini. 2020. PULP-NN: accelerating quantized neural

networks on parallel ultra-low-power RISC-V processors. Philosophical Transactions of the Royal Society A 378, 2164 (2020), 20190155.

[66] Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. 2020. Dealing with categorical and integer-valued variables in bayesian

optimization with gaussian processes. Neurocomputing 380 (2020), 20ś35.

[67] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelligence beyond the edge: Inference on intermittent embedded

systems. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating

Systems. 199ś213.

[68] Sridhar Gopinath, Nikhil Ghanathe, Vivek Seshadri, and Rahul Sharma. 2019. Compiling KB-sized machine learning models to tiny IoT

devices. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. 79ś95.

[69] Sachin Goyal, Aditi Raghunathan, Moksh Jain, Harsha Vardhan Simhadri, and Prateek Jain. 2020. DROCC: Deep robust one-class

classiication. In International conference on machine learning. PMLR, 3711ś3721.

[70] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. 2019. Hamiltonian neural networks. Advances in neural information processing

systems 32 (2019).

[71] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. 2020. A survey of deep learning techniques for autonomous

driving. Journal of Field Robotics 37, 3 (2020), 362ś386.

[72] Antonio Gulli and Sujit Pal. 2017. Deep learning with Keras. Packt Publishing Ltd.

[73] Richard M Gunner, Mark D Holton, Mike D Scantlebury, O Louis van Schalkwyk, Holly M English, Hannah J Williams, Phil Hopkins,

Flavio Quintana, Agustina Gómez-Laich, Luca Börger, et al. 2021. Dead-reckoning animal movements in R: a reappraisal using Gundog.

Tracks. Animal Biotelemetry 9, 1 (2021), 1ś37.

ACM Trans. Embedd. Comput. Syst.



44 • Saha and Sandha, et al.

[74] Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi Paranjape, Ashish Kumar, Saurabh Goyal, Raghaven-

dra Udupa, Manik Varma, and Prateek Jain. 2017. Protonn: Compressed and accurate knn for resource-scarce devices. In International

Conference on Machine Learning. PMLR, 1331ś1340.

[75] Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti A Zadeh. 2008. Feature extraction: foundations and applications. Vol. 207.

Springer.

[76] Song Han, Huizi Mao, and William J Dally. 2016. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained

Quantization and Hufman Coding. International Conference on Learning Representations (ICLR) (2016).

[77] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition. 770ś778.

[78] Sachini Herath, Hang Yan, and Yasutaka Furukawa. 2020. Ronin: Robust neural inertial navigation in the wild: Benchmark, evaluations,

& new methods. In 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 3146ś3152.

[79] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig

Adam. 2017. Mobilenets: Eicient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).

[80] Shawn Hymel, Colby Banbury, Daniel Situnayake, Alex Elium, Carl Ward, Mat Kelcey, Mathijs Baaijens, Mateusz Majchrzycki, Jenny

Plunkett, David Tischler, et al. 2022. Edge Impulse: An MLOps Platform for Tiny Machine Learning. arXiv preprint arXiv:2212.03332

(2022).

[81] Forrest N Iandola, Song Han, MatthewWMoskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level

accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016).

[82] Valeriu Manuel Ionescu and Florentina Magda Enescu. 2020. Investigating the performance of MicroPython and C on ESP32 and STM32

microcontrollers. In 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE, 234ś237.

[83] Weiwen Jiang, Xinyi Zhang, Edwin H-M Sha, Lei Yang, Qingfeng Zhuge, Yiyu Shi, and Jingtong Hu. 2019. Accuracy vs. eiciency:

Achieving both through fpga-implementation aware neural architecture search. In Proceedings of the 56th Annual Design Automation

Conference 2019. 1ś6.

[84] Daniel Kahneman. 2011. Thinking, fast and slow. Macmillan.

[85] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. 2021. Physics-informed machine

learning. Nature Reviews Physics 3, 6 (2021), 422ś440.

[86] Henry Kautz. 2022. The third AI summer: AAAI Robert S. Engelmore Memorial Lecture. AI Magazine 43, 1 (2022), 93ś104.

[87] Samina Khalid, Tehmina Khalil, and Shamila Nasreen. 2014. A survey of feature selection and feature extraction techniques in machine

learning. In 2014 science and information conference. IEEE, 372ś378.

[88] Yuma Koizumi, Shoichiro Saito, Hisashi Uematsu, Noboru Harada, and Keisuke Imoto. 2019. ToyADMOS: A dataset of miniature-

machine operating sounds for anomalous sound detection. In 2019 IEEE WKSH on Applications of Signal Proceedings to Audio and

Acoustics (WASPAA). IEEE, 313ś317.

[89] Kavya Kopparapu, Eric Lin, John G Breslin, and Bharath Sudharsan. 2022. TinyFedTL: Federated Transfer Learning on Ubiquitous Tiny

IoT Devices. In 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Ailiated Events

(PerCom Workshops). IEEE, 79ś81.

[90] Sandeep Koranne. 2011. Boost c++ libraries. Handbook of open source tools (2011), 127ś143.

[91] A Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. Master’s thesis, University of Tront (2009).

[92] Maxat Kulmanov, Mohammed Asif Khan, and Robert Hoehndorf. 2018. DeepGO: predicting protein functions from sequence and

interactions using a deep ontology-aware classiier. Bioinformatics 34, 4 (2018), 660ś668.

[93] Ashish Kumar, Saurabh Goyal, and Manik Varma. 2017. Resource-eicient machine learning in 2 kb ram for the internet of things. In

International Conference on Machine Learning. PMLR, 1935ś1944.

[94] Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain, and Manik Varma. 2018. Fastgrnn: A fast, accurate, stable

and tiny kilobyte sized gated recurrent neural network. Advances in neural information processing systems 31 (2018).

[95] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2018. Cmsis-nn: Eicient neural network kernels for arm cortex-m cpus. arXiv

preprint arXiv:1801.06601 (2018).

[96] Guillaume Lample and François Charton. 2019. Deep Learning For Symbolic Mathematics. In International Conference on Learning

Representations.

[97] Colin Lea, Rene Vidal, Austin Reiter, and Gregory D Hager. 2016. Temporal convolutional networks: A uniied approach to action

segmentation. In European Conference on Computer Vision. Springer, 47ś54.

[98] Yann LeCun, Yoshua Bengio, and Geofrey Hinton. 2015. Deep learning. nature 521, 7553 (2015), 436ś444.

[99] Daniel D Lee and H Sebastian Seung. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401, 6755 (1999),

788ś791.

[100] Seulki Lee and Shahriar Nirjon. 2020. Learning in the wild: When, how, and what to learn for on-device dataset adaptation. In

Proceedings of the 2nd International Workshop on Challenges in Artiicial Intelligence and Machine Learning for Internet of Things. 34ś40.

ACM Trans. Embedd. Comput. Syst.



TinyNS: Platform-Aware Neurosymbolic Auto Tiny Machine Learning • 45

[101] Edgar Liberis, Łukasz Dudziak, and Nicholas D Lane. 2021. �NAS: Constrained Neural Architecture Search for Microcontrollers. In

Proceedings of the 1st Workshop on Machine Learning and Systems. 70ś79.

[102] Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and Song Han. 2021. Memory-eicient Patch-based Inference for Tiny Deep Learning.

Advances in Neural Information Processing Systems 34 (2021), 2346ś2358.

[103] Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. 2020. Mcunet: Tiny deep learning on iot devices. Advances in Neural

Information Processing Systems 33 (2020), 11711ś11722.

[104] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Diferentiable Architecture Search. In International Conference on

Learning Representations.

[105] Kaixin Ma, Jonathan Francis, Quanyang Lu, Eric Nyberg, and Alessandro Oltramari. 2019. Towards Generalizable Neuro-Symbolic

Systems for Commonsense Question Answering. In Proceedings of the First Workshop on Commonsense Inference in Natural Language

Processing. 22ś32.

[106] Meiyi Ma, Ji Gao, Lu Feng, and John Stankovic. 2020. STLnet: Signal temporal logic enforced multivariate recurrent neural networks.

Advances in Neural Information Processing Systems 33 (2020), 14604ś14614.

[107] Michele Magno, Andrea Ronco, and Lukas Schulthess. 2022. On-Sensors AI with Novel ST Sensors: Performance and Evaluation in a

Real Application Scenario. TinyML Summit 2022 (2022).

[108] RobinManhaeve, Sebastijan Dumancic, Angelika Kimmig, ThomasDemeester, and LucDe Raedt. 2018. Deepproblog: Neural probabilistic

logic programming. Advances in Neural Information Processing Systems 31 (2018).

[109] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu. 2018. The Neuro-Symbolic Concept Learner:

Interpreting Scenes, Words, and Sentences From Natural Supervision. In International Conference on Learning Representations.

[110] Akhil Mathur, Daniel J Beutel, Pedro Porto Buarque de Gusmao, Javier Fernandez-Marques, Taner Topal, Xinchi Qiu, Titouan Parcollet,

Yan Gao, and Nicholas D Lane. 2021. On-device federated learning with lower. On-Device Intelligence Workshop at MLSys (2021).

[111] Mark Mazumder, Sharad Chitlangia, Colby Banbury, Yiping Kang, Juan Manuel Ciro, Keith Achorn, Daniel Galvez, Mark Sabini, Peter

Mattson, David Kanter, et al. 2021. Multilingual Spoken Words Corpus. In Thirty-ifth Conference on Neural Information Processing

Systems Datasets and Benchmarks Track (Round 2).

[112] Hashan Roshantha Mendis, Chih-Kai Kang, and Pi-cheng Hsiu. 2021. Intermittent-Aware Neural Architecture Search. ACM Transactions

on Embedded Computing Systems (TECS) 20, 5s (2021), 1ś27.

[113] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler. 2016. MOT16: A benchmark for multi-object tracking.

arXiv preprint arXiv:1603.00831 (2016).

[114] Ludovico Mitchener, David Tuckey, Matthew Crosby, and Alessandra Russo. 2022. Detect, Understand, Act: A Neuro-symbolic

Hierarchical Reinforcement Learning Framework. Machine Learning 111, 4 (2022), 1523ś1549.

[115] Jesse Mu and Jacob Andreas. 2020. Compositional explanations of neurons. Advances in Neural Information Processing Systems 33

(2020), 17153ś17163.

[116] Allen Newell. 1980. Physical symbol systems. Cognitive science 4, 2 (1980), 135ś183.

[117] Ren Pang, Zhaohan Xi, Shouling Ji, Xiapu Luo, and Ting Wang. 2022. On the Security Risks of {AutoML}. In 31st USENIX Security

Symposium (USENIX Security 22). 3953ś3970.

[118] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet Kohli. 2017. Neuro-Symbolic

Program Synthesis. In International Conference on Learning Representations.

[119] Terence Parr. 2013. The Deinitive ANTLR 4 Reference. Pragmatic Bookshelf.

[120] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. Advances in neural

information processing systems 32 (2019).

[121] Judea Pearl. 2019. The seven tools of causal inference, with relections on machine learning. Commun. ACM 62, 3 (2019), 54ś60.

[122] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter

Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning

research 12 (2011), 2825ś2830.

[123] Riccardo Perego, Antonio Candelieri, Francesco Archetti, and Danilo Pau. 2020. Tuning deep neural network’s hyperparameters

constrained to deployability on tiny systems. In International Conference on Artiicial Neural Networks. Springer, 92ś103.

[124] Riccardo Perego, Antonio Candelieri, Francesco Archetti, and Danilo Pau. 2022. AutoTinyML for microcontrollers: Dealing with

black-box deployability. Expert Systems with Applications 207 (2022), 117876.

[125] Honghui Qi and John B Moore. 2002. Direct Kalman iltering approach for GPS/INS integration. IEEE Trans. Aerospace Electron. Systems

38, 2 (2002), 687ś693.

[126] Partha Pratim Ray. 2021. A review on TinyML: State-of-the-art and prospects. Journal of King Saud University-Computer and Information

Sciences (2021).

[127] Wamiq Raza, Anas Osman, Francesco Ferrini, and Francesco De Natale. 2021. Energy-Eicient Inference on the Edge Exploiting

TinyML Capabilities for UAVs. Drones 5, 4 (2021), 127.

ACM Trans. Embedd. Comput. Syst.



46 • Saha and Sandha, et al.

[128] Haoyu Ren, Darko Anicic, and Thomas A Runkler. 2021. The synergy of complex event processing and tiny machine learning in

industrial IoT. In Proceedings of the 15th ACM International Conference on Distributed and Event-based Systems. 126ś135.

[129] Haoyu Ren, Darko Anicic, and Thomas A Runkler. 2021. Tinyol: Tinyml with online-learning on microcontrollers. In 2021 International

Joint Conference on Neural Networks (IJCNN). IEEE, 1ś8.

[130] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang. 2021. A comprehensive survey of

neural architecture search: Challenges and solutions. ACM Computing Surveys (CSUR) 54, 4 (2021), 1ś34.

[131] Yuji Roh, Geon Heo, and Steven Euijong Whang. 2019. A survey on data collection for machine learning: a big data-ai integration

perspective. IEEE Transactions on Knowledge and Data Engineering 33, 4 (2019), 1328ś1347.

[132] David E Rumelhart, Geofrey E Hinton, and Ronald J Williams. 1985. Learning internal representations by error propagation. Technical

Report. California Univ San Diego La Jolla Inst for Cognitive Science.

[133] Oindrila Saha, Aditya Kusupati, Harsha Vardhan Simhadri, Manik Varma, and Prateek Jain. 2020. RNNPool: Eicient non-linear pooling

for RAM constrained inference. Advances in Neural Information Processing Systems 33 (2020), 20473ś20484.

[134] Swapnil Sayan Saha, Sandeep Singh Sandha, Luis Antonio Garcia, and Mani Srivastava. 2022. Tinyodom: Hardware-aware eicient

neural inertial navigation. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 2 (2022), 1ś32.

[135] Swapnil Sayan Saha, Sandeep Singh Sandha, Siyou Pei, Vivek Jain, Ziqi Wang, Yuchen Li, Ankur Sarker, and Mani Srivastava. 2022.

Auritus: An Open-Source Optimization Toolkit for Training and Development of Human Movement Models and Filters Using Earables.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 2 (2022), 1ś34.

[136] Swapnil Sayan Saha, Sandeep Singh Sandha, and Mani Srivastava. 2022. Machine Learning for Microcontroller-Class Hardware - A

Review. IEEE Sensors Journal (2022).

[137] Sandeep Singh Sandha. 2021. Parameter search spaces use to evaluate Mango on classiiers. https://github.com/ARM-software/mango/

blob/master/benchmarking/Parameter_Spaces_Evaluated.ipynb.

[138] Sandeep Singh Sandha, Mohit Aggarwal, Igor Fedorov, and Mani Srivastava. 2020. Mango: A python library for parallel hyperparameter

tuning. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 3987ś3991.

[139] Sandeep Singh Sandha, Mohit Aggarwal, Swapnil Sayan Saha, and Mani Srivastava. 2021. Enabling Hyperparameter Tuning of Machine

Learning Classiiers in Production. In 2021 IEEE Third International Conference on Cognitive Machine Intelligence (CogMI). IEEE, 262ś271.

[140] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and

linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 4510ś4520.

[141] Maarten Sap, Ronan Le Bras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A Smith,

and Yejin Choi. 2019. Atomic: An atlas of machine commonsense for if-then reasoning. In Proceedings of the AAAI conference on

artiicial intelligence, Vol. 33. 3027ś3035.

[142] Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, and Pascal Hitzler. 2021. Neuro-symbolic artiicial intelligence. AI Communications

(2021), 1ś13.

[143] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2008. The graph neural network model.

IEEE transactions on neural networks 20, 1 (2008), 61ś80.

[144] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. 1997. Kernel principal component analysis. In International Conference

on Artiicial Neural Networks. Springer, 583ś588.

[145] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. 2020. Green ai. Commun. ACM 63, 12 (2020), 54ś63.

[146] Luciano Seraini and Artur S d’Avila Garcez. 2016. Learning and reasoning with logic tensor networks. In Conference of the Italian

Association for Artiicial Intelligence. Springer, 334ś348.

[147] Sanjit A Seshia, Dorsa Sadigh, and S Shankar Sastry. 2022. Toward veriied artiicial intelligence. Commun. ACM 65, 7 (2022), 46ś55.

[148] Muhammad Shaique, Theocharis Theocharides, Vijay Janapa Reddy, and Boris Murmann. 2021. TinyML: Current Progress, Research

Challenges, and Future Roadmap. In 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 1303ś1306.

[149] Ameesh Shah, Eric Zhan, Jennifer Sun, Abhinav Verma, Yisong Yue, and Swarat Chaudhuri. 2020. Learning diferentiable programs

with admissible neural heuristics. Advances in neural information processing systems 33 (2020), 4940ś4952.

[150] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2017. On a formal model of safe and scalable self-driving cars. arXiv

preprint arXiv:1708.06374 (2017).

[151] Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla, Michael I Jordan, and Shankar S Sastry. 2004. Kalman

iltering with intermittent observations. IEEE transactions on Automatic Control 49, 9 (2004), 1453ś1464.

[152] Aishwarya Sivaraman, Golnoosh Farnadi, ToddMillstein, and Guy Van den Broeck. 2020. Counterexample-guided learning of monotonic

neural networks. Advances in Neural Information Processing Systems 33 (2020), 11936ś11948.

[153] Paul Smolensky. 1987. Connectionist AI, symbolic AI, and the brain. Artiicial Intelligence Review 1, 2 (1987), 95ś109.

[154] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian optimization of machine learning algorithms. Advances in

neural information processing systems 25 (2012), 2951ś2959.

[155] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. 2010. Gaussian Process Optimization in the Bandit Setting: No

Regret and Experimental Design. In Proceedings of the 27th International Conference on Machine Learning. 1015ś1022.

ACM Trans. Embedd. Comput. Syst.

https://github.com/ARM-software/mango/blob/master/benchmarking/Parameter_Spaces_Evaluated.ipynb 
https://github.com/ARM-software/mango/blob/master/benchmarking/Parameter_Spaces_Evaluated.ipynb 


TinyNS: Platform-Aware Neurosymbolic Auto Tiny Machine Learning • 47

[156] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias W Seeger. 2012. Information-theoretic regret bounds for gaussian

process optimization in the bandit setting. IEEE transactions on information theory 58, 5 (2012), 3250ś3265.

[157] Jiankai Sun, Hao Sun, Tian Han, and Bolei Zhou. 2021. Neuro-Symbolic Program Search for Autonomous Driving Decision Module

Design. In Conference on Robot Learning. PMLR, 21ś30.

[158] Urmish Thakker, Igor Fedorov, Chu Zhou, Dibakar Gope, Matthew Mattina, Ganesh Dasika, and Jesse Beu. 2021. Compressing RNNs to

Kilobyte Budget for IoT Devices Using Kronecker Products. ACM Journal on Emerging Technologies in Computing Systems (JETC) 17, 4

(2021), 1ś18.

[159] Markus Thill, Wolfgang Konen, and Thomas Bäck. 2020. Time series encodings with temporal convolutional networks. In International

Conference on Bioinspired Methods and Their Applications. Springer, 161ś173.

[160] Megan Tjandrasuwita, Jennifer J Sun, Ann Kennedy, and Yisong Yue. 2021. Interpreting Expert Annotation Diferences in Animal

Behavior. In CVPR 2021 Workshop on CV4Animation.

[161] Nicholas H Tollervey. 2017. Programming with MicroPython: embedded programming with microcontrollers and Python. " O’Reilly Media,

Inc.".

[162] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior,

and Koray Kavukcuoglu. 2016. WaveNet: A Generative Model for Raw Audio. In 9th ISCA WKSH on Speech Synthesis WKSH (SSW 9).

[163] Laurens Van der Maaten and Geofrey Hinton. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research 9, 11 (2008).

[164] Laurens Van Der Maaten, Eric Postma, Jaap Van den Herik, et al. 2009. Dimensionality reduction: a comparative. J Mach Learn Res 10,

66-71 (2009), 13.

[165] Dinesh C Verma, Archit Verma, and Utpal Mangla. 2021. Addressing the Limitations of AI/ML in creating Cognitive Solutions. In 2021

IEEE Third International Conference on Cognitive Machine Intelligence (CogMI). IEEE, 189ś196.

[166] Marc Roig Vilamala, Tianwei Xing, Harrison Taylor, Luis Garcia, Mani Srivastava, Lance Kaplan, Alun Preece, Angelika Kimmig, and

Federico Cerutti. 2021. Using DeepProbLog to perform Complex Event Processing on an Audio Stream. In Tenth International Workshop

on Statistical Relational AI.

[167] Aaron Voelker, Ivana Kajić, and Chris Eliasmith. 2019. Legendre Memory Units: Continuous-Time Representation in Recurrent Neural

Networks. Advances in Neural Information Processing Systems 32 (2019), 15570ś15579.

[168] Yan Wang, Shuang Cang, and Hongnian Yu. 2019. A survey on wearable sensor modality centred human activity recognition in health

care. Expert Systems with Applications 137 (2019), 167ś190.

[169] Ziqi Wang, Ankur Sarker, Jason Wu, Derek Hua, Gaofeng Dong, Akash Deep Singh, and Mani B Srivastava. 2022. Capricorn: Towards

Real-time Rich Scene Analysis Using RF-Vision Sensor Fusion. In Proceedings of the 20th Conference on Embedded Networked Sensor

Systems.

[170] Pete Warden. 2018. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv preprint arXiv:1804.03209 (2018).

[171] Pete Warden and Daniel Situnayake. 2019. Tinyml: Machine learning with tensorlow lite on arduino and ultra-low-power microcontrollers.

O’Reilly Media.

[172] Justin D Weisz, Michael Muller, Steven I Ross, Fernando Martinez, Stephanie Houde, Mayank Agarwal, Kartik Talamadupula, and

John T Richards. 2022. Better together? an evaluation of ai-supported code translation. In 27th International Conference on Intelligent

User Interfaces. 369ś391.

[173] Alexander Wong, Mahmoud Famouri, and Mohammad Javad Shaiee. 2020. AttendNets: Tiny Deep Image Recognition Neural Networks

for the Edge via Visual Attention Condensers. 6th WKSH on Energy Eicient Machine Learning and Cognitive Computer (EMC2 2020)

(2020).

[174] Tianwei Xing, Luis Garcia, Marc Roig Vilamala, Federico Cerutti, Lance Kaplan, Alun Preece, and Mani Srivastava. 2020. Neuroplex:

learning to detect complex events in sensor networks through knowledge injection. In Proceedings of the 18th Conference on Embedded

Networked Sensor Systems. 489ś502.

[175] Shuochao Yao, Ailing Piao, Wenjun Jiang, Yiran Zhao, Huajie Shao, Shengzhong Liu, Dongxin Liu, Jinyang Li, Tianshi Wang, Shaohan

Hu, et al. 2019. Stfnets: Learning sensing signals from the time-frequency perspective with short-time fourier neural networks. In The

World Wide Web Conference. 2192ś2202.

[176] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum. 2018. Neural-symbolic vqa: Disentangling

reasoning from vision and language understanding. Advances in neural information processing systems 31 (2018).

[177] Jiecao Yu, Andrew Lukefahr, Reetuparna Das, and Scott Mahlke. 2019. Tf-net: Deploying sub-byte deep neural networks on microcon-

trollers. ACM Transactions on Embedded Computing Systems (TECS) 18, 5s (2019), 1ś21.

[178] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan Yuan, Ping Luo, Wenyu Liu, and Xinggang Wang. 2022.

Bytetrack: Multi-object tracking by associating every detection box. In European Conference on Computer Vision. Springer, 1ś21.

[179] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. 2020. Tracking objects as points. In European Conference on Computer Vision.

Springer, 474ś490.

[180] Barret Zoph and Quoc V Le. 2017. Neural architecture search with reinforcement learning. International Conference on Learning

Representations (ICLR) (2017).

ACM Trans. Embedd. Comput. Syst.


	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Contributions
	1.3 Organization

	2 Background and Related Work
	2.1 Machine Learning on Microcontrollers
	2.2 Neural Architecture Search for Microcontrollers
	2.3 Neurosymbolic Artificial Intelligence
	2.4 Python to Microcontroller Code Parsers

	3 Mango: Fast, Parallel and Gradient-free Bayesian Optimizer
	3.1 Surrogate Model
	3.2 Acquisition Function
	3.3 Handling Mixed Search Spaces
	3.4 Parallelization
	3.5 Addition to Mango
	3.6 Evaluation: Parallel Search in Mango
	3.7 Evaluation: Comparison Against Other Bayesian Optimizers

	4 Platform-Aware Neurosymbolic Optimization
	4.1 Symbolic Neuro Symbolic
	4.2 NeuroSymbol
	4.3 Neuro  Compile (Symbolic)
	4.4 Symbolic[Neuro]
	4.5 Neuro[Symbolic]

	5 Evaluation
	5.1 MLPerf Tiny v0.5 Inference Benchmark
	5.2 Optimization of Features and Neural Weights (Symbolic Neuro Symbolic)
	5.3 Fall Detection under 2 kB and Activity Recognition (Symbolic Neuro Symbolic)
	5.4 Optimization of Neural Detector Weights and Symbolic Object Tracker (NeuroSymbol)
	5.5 Improving Adversarial Robustness of TinyML Models (Neuro  Compile (Symbolic))
	5.6 Physics-Aware Neural Inertial Localization (Neuro  Compile (Symbolic))
	5.7 Neural-Kalman Sensor Fusion (Symbolic[Neuro])

	6 Conclusion, Limitations, and Future Work
	References

