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ABSTRACT

Fire can play an important role in peatlands by
modifying plant communities and carbon (C)
stocks. However, baseline disturbance data on
peatland fire history are lacking in the hemi-boreal
region. We sampled 29 peatlands in northern
Michigan, Wisconsin, and Minnesota and used peat
core records, radiocarbon dating, and infrared
spectrometry to identify and date past fire events in
4 major hemi-boreal peatland ecotypes including
open poor fens, treed poor fens, forested poor fens,
and forested rich fens. In this region all types of
poor fens had widely variable fire frequencies be-
tween sites. The poor fens experienced 2.1 fires per
thousand years, or once every 476 years, on aver-
age, while the rich fens experienced almost no fire.
Overall C stocks ranged from 10.1 to
263.3 kg C m~? with a mean of 94.6 and median of
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90.5 kg C m~2. The long-term apparent rate of
carbon accumulation (LARCA) varied between 10-
45 ¢ m~? y~ ! with an average of 28 gm %y~ '. We
found a significant negative relationship between
fire frequency and LARCA. Our research indicates
that fire frequency is not consistent across peatland
types and increases in fire frequency will likely
diminish peat C stocks. These findings provide a
historical context for management decisions con-
cerning wildland fires and their consequences for
ecosystem C storage in hemi-boreal peatlands.

Key words: long-term apparent rate of carbon
accumulation; LARCA; radiocarbon; disturbance;
carbon cycle; histosol; wildfire; infrared spectrom-
etry.

HIGHLIGHTS

e We analyzed the fire history of 29 peatlands in
hemi-boreal North America

e Poor fens had a fire return interval of 476 years,
rich fens had almost no fire

e Poor fens exhibited a negative relationship
between LARCA and fire frequency
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INTRODUCTION

Fire is a significant ecological driver in many
peatland types (Turetsky and St. Louis 2006). Fire
influences hydrology through consumption of peat
layers, reducing depth to the water table and
driving changes in vegetation community compo-
sition (Benscoter and Vitt 2008; Sillasoo and others
2011; Benscoter and others 2015; Rowe and others
2017). While much has been done to understand
how fire disturbances reset ecological trajectories in
upland boreal forests (Johnson 1992; Johnstone
and others 2010, 2016; Baltzer and others 2021),
our understanding of how changes in fire fre-
quency affect peatland structure and function is
incipient (Loisel and others 2021). Fire has been
shown to enhance microtopographic heterogeneity
in peatlands (Benscoter and others 2015), which in
turn enhances ecological diversity by maintaining
niches for various Sphagnum species, among other
mosses, sedges, shrubs, and trees. Collectively,
these changes in ecosystem properties with fire
frequency and time since fire have strong controls
over the persistence of peatland soils (Wieder and
others 2009; Kolka and others 2016).

Changes in fire frequency in peatland ecosystems
exert considerable control over many ecosystem
processes, which ultimately govern peatland soil C
storage (Turetsky and others 2002, 2015; Loisel and
others 2021). This is an important consideration
because peatlands serve as long-term carbon (C)
sinks, containing vast amounts of C, between 545
to 1055 Pg C globally (Nichols and Peteet 2019).
Peat fires can, in extreme hydrological conditions,
burn meters deep into organic soils but boreal
peatlands typically burn up to 13 cm, releas-
ing ~ 3.3-3.6 kg C m 2 of C (Turetsky and others
2011; Dieleman and others 2020; Walker and
others 2020a). This has at least a transient negative
impact on C storage which is incurred by each fire,
so determining fire frequency is important for
understanding the C sink strength of peatlands.

The long-term apparent rate of carbon accumu-
lation (LARCA) in peatlands generally ranges from
0to60gCm 2y ' (Clymo and others 1998; Pit-
kdnen and others 1999; Loisel and others 2014),
but is typically around 20 g C m %y~ ' (Kolka and
others 2018). Pitkdnen and others noted a positive
relationship between the spacing of char layers
(implicitly related to fire frequency) and LARCA in
Finland (Pitkdnen and others 1999), a pattern
which was also shown in a discontinuous per-
mafrost region in Northwest Territories, Canada
(Robinson and Moore 2000). Together, these
findings agree with research in upland boreal sys-

tems suggesting that an increased fire return
interval reduces long-term C accumulation (Bond-
Lamberty and others 2007; Walker and others
2019), but to our knowledge this has not been
examined in the hemi-boreal peatlands of North
America.

Few studies in boreal or hemi-boreal regions
have quantitatively estimated peatland fire fre-
quency, often finding wide ranges even within the
same soil profile. Within North America, a few
studies suggest a wide range between 0 and 13 fires
per thousand years (ka~') (Kuhry 1994; Wieder
and Vitt 2010), with large variation across ecore-
gions (Walker and others 2020b). Studies in Fin-
nish peatlands have also produced wide ranges
from 2.3-33.3 fires ka~' (Pitkdnen and others
2001), 1.7-10 fires ka~' (Pitkdnen and others
1999), and a narrower estimate of 11.9-12.5 fires
ka~' (Tolonen 1985). The use of upland proxies,
dendrochronological records from uplands adjacent
to or even within peatland complexes, can provide
another perspective on peatland fire regimes,
hopefully capturing higher frequency, lower
severity fires. Two studies that are particularly
informative on this topic focus on a northern
Michigan peatland complex (Drobyshev and others
2008) and on the hemi-boreal Great Lakes region
(USA), which was in coordination with the present
study sites (Sutheimer and others 2021). Droby-
shev and others estimate long-term fire frequencies
from 30.6-87.0 fires ka—' depending on landform
(Drobyshev and others 2008). Sutheimer and oth-
ers estimate fire frequencies between 37.0 fires ka™
"in the central Upper Peninsula of Michigan and
142.9 fires ka~ ! in Northern Wisconsin (Sutheimer
and others 2021). Both studies employed den-
drochronological techniques in wetland-adjacent
ecosystems to estimate fire return intervals. How-
ever, as Kasin and others conclude, ‘‘den-
drochronological and charcoal-based approaches
complement each other, and cannot substitute one
for another” (Kasin and others 2013). Direct den-
drochronology is not possible in peatlands due to a
lack of fire-resistant trees, and paleo-ecological
microscopy is typically limited to 1-3 cores owing
to the effort required by the method (Tolonen
1985; Markgraf and Huber 2010; Sillasoo and oth-
ers 2011; Marcisz and others 2015; Pérez-Obiol and
others 2016), with some notable exceptions (Kasin
and others 2013), limiting the extent and quality of
our collective understanding of peatland fire. As
such, high-quality, peatland-specific measure-
ments of fire history are still needed to compliment
other approaches and improve our overall grasp of
peatland fire ecology.
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There are several types of peatlands present in
the hemi-boreal zone, each of which, due to dif-
ferences in hydrology, vegetation, or other factors,
could have distinct fire regimes and C accumula-
tion rates. Our goal was to quantify the fire regimes
of some of the most numerous hemi-boreal peat-
land ecotypes: poor fens and rich conifer swamps.
Specifically, we hypothesized that, (1) the forested
rich fens would experience significantly lower
wildfire frequency than other peatland ecotypes,
due to a fire-resistant overstory, relative lack of
understory, and consistent water table. (2) LARCA
would be negatively related to fire frequency, as
indicated by Pitkdnen and others (1999) because of
the consumption of sequestered C during com-
bustion, and (3) that LARCA would be higher in
poor fens than rich fens overall (Robinson and
Moore 1999), due to relatively lower decomposi-
tion rate in poor fens compared to rich fens, though
LARCA may be curtailed by fire.

METHODS
Sample Locations

We analyzed 29 soil cores from peatlands across the
Upper Peninsula of Michigan, northern Wisconsin,
and northern Minnesota (Figure 1). The boreal
zone of North America is typically considered to
reach its southernmost extent along the north
shore of Lake Superior, with a hemi-boreal zone
that encompasses the Upper Peninsula, a small part
of northern Wisconsin, and much of northern
Minnesota (Langor and others 2014). Our sampling
locations were all within this hemi-boreal zone. All

sites also fell within the Northern Lakes and Forests
(II) Ecoregion as defined by the US EPA (U.S.
Environmental Protection Agency 2013). This
ecoregion is described as ““humid continental,
marked by warm summers and severe winters,
with no pronounced dry season,” with a mean
annual temperature ranging from ~ 2 °C to ~ 6 °
C, and mean annual precipitation ranging from 500
to 960 mm (Wiken and others 2011).

The hemi-boreal peatlands that we sampled were
all fens. Both the poor fens and forested rich fens
sampled are peat bearing and groundwater fed.
These fen ecotypes are common and may be iso-
lated, coastal, or part of large upland-peatland
complexes (Bourgeau-Chavez and others 2017).
The poor fens are dominated by typical vegetation
such as Sphagnum (L.) mosses, black spruce (Picea
mariana (Mill.) Britton, Sterns & Poggenb.), tama-
rack (Larix laricina (Du Roi) K. Koch), sedges (Carex
spp. L.), Labrador tea (Rhododendron groenlandicum
(Oeder) Kron & Judd), bog rosemary (Andromeda
polifolia L.) and leatherleaf (Chamaedaphne calyculata
L.) (Kost and others 2007). The forested rich fens
that we sampled were dominated by northern
white cedar (Thuja occidentalis L.) with the presence
of balsam fir (Abies balsamea (L.) Mill.), white
spruce (Picea glauca (Moench) Voss), hemlock
(Tsuga canadensis L.) and a sparse understory due to
heavy shading and deer herbivory (Kost and others
2007). Both the forested poor and forested rich fens
featured more exposed muck due to shading from
the forest canopy limiting moss cover. All soils
sampled were Histosols ranging from terric to typic.
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Figure 1. This map indicates the locations and ecotypes of all sampling locations used in this study. FPF = forested poor
fen, OPF = open poor fens, FRF = forested rich fens, TPF = treed poor fens. Inset depicts study area in North America.
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Sampling

We avoided coring in laggs or ecotones which have
variable hydrology. At each site we collected one
peat profile by the following method. If a moss
layer was present, we inserted a 15.2 cm diameter
PVC tubes into the peat to a depth of 50 cm to
collect the low bulk density surficial moss and peat.
The surficial sample was carefully removed and cut
into 10 cm depth increments. We then used a
Russian peat corer to sample the peat profile down
to the mineral soil. We immediately froze all sam-
ples upon return to the lab. We logged location data
on a per site basis, using a Garmin eTrex 20. We
classified our sample sites by peatland ecotype fol-
lowing the method used in the Hiawatha National
Forest where many of our core samples were taken
(Kudray 2019). This resulted in 4 classes: open poor
fens (< 10% tree cover, acidic) (n = 16), treed
poor fens (> 10% tree cover with mean
height < 10 m, acidic) (n = 6), forested poor fens
(> 10% tree cover with mean height > 10 m,
acidic) (n = 1), and forested rich fens (> 10% tree
cover, circumneutral) (n = 6).

Sample Processing

In the lab, for each peat profile, we cut the still-
frozen peat 2 cm continuous increments before
drying at 60 °C to constant mass, and then weighed
the samples to determine bulk density. We ground
and homogenized the samples using a Wiley mill
equipped with a 40-mesh screen. This resulted in a
powdered sample with a maximum particle size of
425 microns. We combusted one subsample of each
peat sample at 500 °C for 12 h to establish the
fraction organic matter (OM) by mass. We applied a
conversion factor of 0.53 to estimate C mass from
bulk density and % OM, chosen as a midpoint along
the range of published values (Bhatti and Bauer
2002; Watmough and others 2022). We calculated
the LARCA for each core by dividing the total C
stock by the basal age (Clymo and others 1998). For
open poor fens and treed poor fens, we eliminated
the top 50 cm from the C stock to avoid bias from
to more rapid and variable accumulation of unde-
composed C in surficial moss (Clymo and others
1998; Young and others 2021).

Spectrometry

We followed the methodology outlined in Uhelski
and others (2022a) to prepare our peat samples for
Fourier-transform infrared (FTIR) spectrometry. In
brief, we diluted one subsample of each dried and
ground peat sample with KBr to 10% peat by mass.

We then collected the FTIR spectra of the samples
using a Thermo Scientific Nicolet iS5 spectrometer,
equipped with a standard fast recovery deuterated
triglycine sulfate (DTGS) detector, and an iD
Foundation—Diffuse accessory (Thermo Fisher
Scientificc, Ann Arbor, MI). Following the
methodology of Uhelski and others (2022b), we
baseline corrected and standardized each spectrum
before using the peak fitting function in Origin
(Origin 2019b 64-bit, OriginLab Corporation,
Northhampton, MA) to condense the volume of
data per sample by fitting 15 Gaussian peaks to the
spectral features.

We used the peak areas fitted using this method
as inputs to a char prediction model built using the
methodology outlined in Uhelski and others
(2022b). This model was optimally suited for the
samples in this study because we developed them
in parallel using peat samples and chars originating
from the same region and even some of the same
cores. In brief, we isolated 3 different chars
indigenous to 3 separate North American boreal
and hemi-boreal peatlands, produced admixtures
of these chars and indigenous Sphagnum peat, and
validated the char contents of these admixtures and
several additional natural peat samples using Nu-
clear Magnetic Resonance (NMR) spectroscopy.
Using this char content data and FTIR spectra of
each sample, we built a model that predicts the
mass fraction of char in each sample from the peak
areas identified from its unique FTIR spectrum
(Uhelski and others 2022b). The char concentra-
tion was validated by direct polarization NMR using
the molecular mixing model (Baldock and others
2004). Using this model, we can make good esti-
mates of char concentration throughout the peat
column and use those estimates to detect fire
events. While the model was fit to Sphagnum peat,
we compared the spectra of Sphagnum and cedar
peats using Mahalanobis distances (De Maesschalck
and others 2000; Chapman and others 2001; Dudek
and others 2021) and found that variance between
peat types was less than variance within peat types.
Therefore, we are confident our ability to accu-
rately detect char concentration in all peat types
sampled.

Fire Counting

For each core, individual fire events were inferred
from char concentrations determined by FTIR
spectrometry (Uhelski and others 2022b). When
char content exceeded 11.37% we concluded that
this likely reflected a fire event. We chose this
threshold because it was the average char content
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Figure 2. An example of the detection of past wildfires.
The thin gray line indicates the minimum threshold
(11.37%) for peaks to be considered. The red lines
indicate counted fire events. The shoulder between 45
and 50 cm depth may have been a fire but was not
counted because it was not sufficiently tall (> 5%)

compared to its lower neighbor, as indicated by the cyan
line.

of the 3 endmembers used to build the model
(Uhelski and others 2022b). In addition, we only
indicated the presence of fire on the local maxi-
mum, so each spike was only counted once, even
when it spanned multiple samples (Figure 2).
Furthermore, we decided that each spike in char
concentration had to be 5% higher than the local
minima both above and below it to avoid minor
fluctuations being considered separate events. The
only exceptions to these rules were in cases where
there were no samples either above or below the
sample in question due to coinciding with the top
or bottom of a core. Adhering to these rules en-
sured that our estimates were conservative, uni-
form, and repeatable.

We know that fire evidence can be erased by
subsequent fires burning antecedent char layers,
and low-severity fires may only burn vegetation
without leaving detectable traces (Miyanishi 2001).

Furthermore, smoldering peat fires may consume
much of the char produced, and peatland fires are
known to be spatially heterogeneous on a micro-
topographic scale (Benscoter and Vitt 2008; Ben-
scoter and others 2015). As a result, our estimates
of fire frequency (FF) are minima and likely rep-
resent the more impactful fires which yielded sig-
nificant concentrations of residual char.

Radiocarbon Dating

One subsample was taken from each selected
ground peat sample for radiocarbon dating. Sam-
ples were graphitized in preparation for '*C abun-
dance measurement at the Carbon, Water & Soils
Research Lab in Houghton, Michigan. Peat samples
were dried, weighed into quartz tubes, and sealed
under vacuum. Samples were combusted at 900 °C
for 6 h with cupric oxide (CuO) and silver (Ag) in
sealed quartz test tubes to form CO, gas. The CO,
was then reduced to graphite through heating at
570 °C in the presence of hydrogen (H,) gas and an
iron (Fe) catalyst (Vogel and others 1987). Graphite
targets were then analyzed for radiocarbon abun-
dance by Accelerator Mass Spectrometry at either
the Keck Carbon Cycle AMS Facility, Earth System
Science Dept., University of California Irvine, or at
the DirectAMS facility in Bothell, WA (Zoppi and
others 2007) (Supplementary Table 1). Radiocar-
bon measurements were corrected for mass-de-
pendent fractionation using AMS inline
measurements of 6'>C following Stuiver and Polach
(1977). Sample preparation backgrounds were
subtracted, based on measurements of '*C-free
wood. Calibrated ages were calculated with OxCal
v.4.4 (Bronk Ramsey 2009a, b) using the IntCal20
calibration curve. Calibrated median ages were
used to determine peat initiation date (Figure 3)
and calculate LARCA and fire frequency (Table 1).
Basal peat was differentiated from mineral sub-
strate by sample by its organic matter percentage.
In some cases, the peat-mineral boundary was not
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Figure 3. Frequency distribution of peatlands with
different initiation ages, as determined by basal peat
radiocarbon dating.
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Table 1. Summary Table of Fire Frequency (FF, Fires per Thousand Years) and LARCA
OVERALL Open Poor Fen Forested Rich Fen Treed Poor Fen Forested Poor Fen
(N = 29) (N = 16) (N = 6) (N = 6) (N=1)
FF LARCA FF LARCA FF LARCA FF LARCA FF LARCA
(Fires (gm 2y~ (Fires (gm *y  (Fires (gm 2y~ (Fites (gm %y  (Fires (gm %y~
ka™) ) ka™) ) ka™) ) ka™) ) ka™) )
Maximum 5.9 43.0 4.6 43.0 5.9 354 1.9 9.0 0.7 37.1
3rd Quar- 2.4 29.5 3.1 24.0 4.0 32.2 1.9 9.0 0.3 32.6
tile
Mean 1.7 20.1 2.0 17.6 2.6 26.0 1.9 9.0 0.2 227
Median 1.2 19.5 1.9 16.2 2.2 24.8 1.9 9.0 0.0 21.0
Ist Quar- 0.4 10.8 1.0 8.8 1.1 20.0 1.9 9.0 0.0 13.9
tile
Minimum 0.0 0.8 0.0 0.8 0.0 18.2 1.9 9.0 0.0 9.1

captured so initiation dates may be more recent
than reality.

Age-depth models were constructed using the
P_sequence function in OxCal v. 4.4 with atmo-
spheric calibration curves IntCal20 and Bom-
b2INHI1 (Bronk Ramsey 2008, 2009a; Reimer and
others 2020). The presence of outliers was assessed
using the TSimple outlier test (Bronk Ramsey
2009b). Only one radiocarbon value was rejected
based on the outlier test statistic (Core 12, sample
185).

Statistics

For dating of fire events, we used linear interpo-
lation between two or more depth strata of known
age. Each core was dated at the base using radio-
carbon dating (open triangles on Figure 4) and the
surface was assigned an age of 0 (open circles on
Figure 4). For certain cores, we dated additional
intermediate layers (triangles on Figure 4) and
interpolated between them (Figure 4).

We used mean separation on fire frequency and
LARCA to test our hypotheses about variance
across peatland ecotypes, and linear regression to
test our last hypothesis about the relationship be-
tween LARCA and FF. For any statistical analysis
relating to ecotype comparison, the forested poor
fen site was excluded due to insufficient sample
size. For any analysis relating to LARCA, two
samples from the Sleeper Lake location (Table 2)
were excluded due to insufficient depth. For data
analysis we used JMP Pro 14.0.0 (SAS Institute
Inc.). We used non-parametric tests because of data
heteroscedasticity. We began by running Levine’s
unequal variance test to determine whether to use
Wilcoxon or Welch’s test for significance testing. If

significant, we proceeded to use Steel-Dwass for
mean separation (Fujiwara and others 2014). Be-
fore modeling the relationship between fire and
LARCA, we limited our cores to those younger
than 4000 years (see Figure 3) to avoid the known
issues related to peatland age affecting LARCA re-
sults (Clymo and others 1998; Yu 2012; Young and
others 2021). Normality was confirmed before
modeling with linear regression.

REsuLTs

Our basal dates indicate that many peatlands are
relatively young and formed over past the
4000 years, but there are also older peatlands that
originated between 5000-10,000 years ago (Fig-
ure 3). There is no discernable relationship be-
tween initiation date and ecotype. Carbon stocks
ranged from 10.1 to 263.3 kg C m~? (Table 2) with
a mean of 94.6 and median of 90.5 kg C m 2.
Much of the variance in this wide range is driven
by peatland depth and age. Age-depth models also
reflected a high degree of variance both within and
across ecotypes (Supplemental Figure 1; Supple-
mental Table 1). Treed poor fens tended to have a
much higher deposition rate than open poor fens
(» = 0.10) and forested rich fens (p = 0.19), though
statistical differences are not robust due to high
variability within ecotype and the low number of
replicates modeled.

There is considerable heterogeneity in fire
occurrence within ecotypes, and even within cores.
We observed distinctly fewer fires in forested rich
fen peatlands compared to the poor fen peatlands
(Figure 4). Poor fen sites do not have significantly
different fire frequencies from one another. The
mean fire frequency of forested rich fens is 0.18
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Figure 4. Calculated age of each identified fire by peat core. Peatland types are represented by colored lines: red, sites 1—
4021 on the right-hand column, open poor fens, green, sites 2-8002, treed poor fens, yellow, site 7000, forested poor fen,
purple, sites 10-5001, forested rich fens. Open circles represent tops of cores with modern material present, triangles
represent radiocarbon dated samples between which dates are interpolated, filled symbols indicate fires.

fires ka~!, with 4 out of 6 cores having no fire
observations, and the most frequently burning core
having 0.37 fires ka~' (Table 1). This is significantly
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Figure 5. The quartiles of the mean fire frequency
estimates for the 4 ecotype classes examined. Fire
frequency is measured in fires per kiloannum (per
thousand vyears). OPF = open poor fens, TPF = treed
poor fens, FPF = forested poor fen, FRF = forested rich
fens. Different letters indicate statistical differences (FPF
not included in this analysis because n = 1).

lower than the mean of the open poor fens, which
was 2.0 fires ka~' (Table 1, Figure 5). Interestingly,
the mean fire frequency of the open poor fens did
not differ significantly from that of the treed poor
fens (2.6 fires ka~ ') or the forested poor fen (1.9
fire ka~') (Table 1, Figure 5), and their medians
and ranges were notably similar (Figure 5).

Despite the differences in fire frequency between
the rich and poor fen ecotypes, we observed no
significant LARCA differences between any of the
four ecotypes (Figure 6). All peatland types with
sufficient sample size (open poor fen, treed poor
fens, and forested rich fens) had wide ranges in
LARCA (~ 10 to ~ 45 gm 2y '), with an overall
average of 28 g m~2 y~'. We also found support for
a negative relationship between fire frequency and
C accumulation. Our model (based on a subsample
of sites younger than 4000 years to avoid previ-
ously mentioned issues with LARCA, and exclud-
ing the largely non-burning forested rich fens)
showed a significant (p = 0.013, r* = 0.41, n = 14)
negative relationship between fire frequency and
LARCA (Figure 7).

DiscussioN

We calculated fire histories for 29 peatlands in the
hemi-boreal zone of North America. This repre-
sents the first comprehensive, direct long-term
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evaluation of hemi-boreal regional peatland fire
frequency.

Fire Frequency of Hemi-boreal Peatlands

The range of our observations (0-5.8 fires ka™ ") fell
nearly exactly into the range of observations pub-
lished for similar peatlands in western Canada (0-
5.3 fires ka~') (Kuhry 1994). Our fire frequency
range and estimates fell within the wider ranges
published for some Finnish peatlands (Pitkdnen
and others 1999, 2001), but below the range esti-
mated for others (Tolonen 1985). Our estimates of
fire frequency are notably far lower than those
suggested for the same region by upland proxies,
which range from 30.6-142.9 fires ka~' (Droby-
shev and others 2008; Sutheimer and others 2021).
However, care must be taken in interpreting up-
land proxy data; these proxy estimates contain re-
cords of fires which burned either (1) through both
upland and peatland and which were recorded in
both, (2) through both upland and peatland and
which were recorded only in upland proxies due to
low severity, fire heterogeneity or other cause or,
(3) which burned in uplands while skipping peat-
lands due to higher moisture content. Therefore,
while upland proxies can be informative, poten-
tially filling in the lower severity and more con-
temporary components of the fire regime, there
remain barriers to direct comparison, even when
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Figure 6. This box-and-whisker plot indicates the
quartiles for the long-term apparent rate of carbon
accumulation (LARCA) of the ecotypes. They vary
widely within ecotypes, but we found no significant
difference between classes (p = 0.298). OPF = open poor
fens, TPF = treed poor fens, FPF = forested poor fen,
FRF = forested rich fens.

care is taken to sample in the same locations as was
the case with Sutheimer and others (2021).

Our data suggest that rich forested fens domi-
nated by northern white cedar experience very
little fire, with only 3 total fires observed in over
18,000 collective recorded years. In comparison,
the Sphagnum dominated poor fens show evidence
of 2.1 fires ka~' (mean fire return interval of
476 years). This supports our hypothesis that
forested rich fens experience fire significantly less
often than poor fens in the same region. This is
supported by multiple studies which describe a
negative association between northern white cedar
and wildfire disturbance (Fenton and Bergeron
2008; Taylor and Chen 2011; Apfelbaum and oth-
ers 2017; Jules and others 2018; Rayfield and
others 2021). Though we have not established the
cause, we suspect this to be due to a combination of
stable water tables and a closed canopy increasing
humidity and reducing ground cover capable of
carrying a fire.

The poor fens are represented in this study by
three ecotypes: open poor fens, treed poor fens, and
a forested poor fen. The open poor fens and treed
poor fens do not differ significantly in fire fre-
quency and the one forested poor fen site that we
sampled appears to follow this same broad pattern
of poor fen fire frequency. The implication of this
finding is that poor fen ecotypes have comparable
fire regimes regardless of present-day tree cover,
which is the main differentiator between these 3
ecotypes. Our prior work has also found that peat
quality was similar between these three poor fen
ecotypes throughout the entire length of the peat
cores (Uhelski and others 2022a). The main dif-
ference between the three poor fen types is the
cover of trees, which can vary due to changes in
hydrology or time since last major fire (Harris and
others 1996; Rydin and Jeglum 2013). The time
since last fire is greater in the treed poor fens
(median = 1046 years since 2021) than in the open
fens (median = 572 years since 2021), though this
difference was not statistically significant due to
high variance in time since fire. There are also a
few open fens that have not had fires in several
thousand years, which may indicate that these sites
are too wet for both fire and forest development.

Like many other published works (Tolonen
1985; Pitkdnen and others 1999, 2001; Sillasoo and
others 2011), we found that there is considerable
heterogeneity in the timing of fires within a given
core (Figure 4). Some cores appear to have rela-
tively uniform fire histories, while others have
notable ““boom and bust”” periods. Some cores have
long time spans post initiation without fire obser-
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Figure 7. This plot shows the fitted relationship
(p = 0.013, r.> =0.41, n = 14) between the long-term
apparent rate of carbon accumulation (LARCA) and fire
frequency for peatlands younger than 4000 years old.
Fire frequency is measured in fires per kiloannum (per
thousand years). O symbols are open poor fens
and + symbols are forested poor fens. Forested rich fen
sites are omitted due to lack of fire. The modeled
relationship is LARCA (gm2y ') = 44.84(SE :
6.08) — (7.31(SE : 2.51) x FF(fireska’l)).

vations, while others burned frequently from the
start. These patterns can be due to land manage-
ment by indigenous communities, climate, and
other natural causes. Large scale synchronization of
fire events, presumably due to regional drought,
appears to have occurred at least once, around
1500 years ago (Figure 4), but this has not been
verified by radiocarbon dating of all relevant char
layers. Due to our sampling design (using 10 cm
increments for the top 50 cm of peat in open and
treed poor fens) reducing the chance to detect char
layers, we were unable to compare recent fire his-
tory to the fire history of the deep past. Due to this,
and the heterogeneity in fire history, we are unable
to discern any consistent pattern of fire through
time.

Fire Frequency and Carbon
Accumulation in Hemi-boreal Peatlands

We were able to support our hypothesis of a neg-
ative relationship between fire frequency and long-
term C accumulation (Kuhry 1994; Robinson and
Moore 2000), which suggests that increased fire
occurrence can lower peatland C stocks over time.

The relationship of our model of fire frequency to
LARCA is based on conservative estimates of fire
frequency, so the true slope of the relationship may
in fact be shallower than we observed here, which
could explain why our model displays a steeper
negative relationship than that of Kuhry’s (Kuhry
1994). We stress that our method reflects the
occurrences of char-producing wildfires, which
likely exhibited smoldering combustion (Hunger-
ford and others 1995; Miyanishi 2001). Our
method does not likely capture fires with primarily
flaming modes of combustion, such as occurs with
surface fuels like sedges; these fires could be stand-
replacing (Bourgeau-Chavez and others 2020) and
yet would produce little char. With that in mind,
based on our model, LARCA approaches 0 when
fire frequency approaches 6.15 fires ka~' (fire re-
turn interval of 162 years), implying more frequent
severe fires would result in extirpation of the
peatland. However, negative feedbacks to fire fre-
quency and intensity such as increasing moisture
and reduced fuel load likely serve as counteracting
forces keeping peatlands stable outside of severe
and/or persistent disturbances. For example,
Indonesian peatlands were stable for millennia
prior to the severe and persistent hydrological dis-
turbance produced by ditching projects which
precipitated massive changes to peatland fire re-
gimes and consequent C losses (Sazawa and others
2018; Vetrita and Cochrane 2020).

While we found a significant negative relation-
ship between fire frequency and LARCA, we were
not able to support our hypothesis that forested
rich fens would have lower LARCAs than other
peatland ecotypes. We found no significant differ-
ence in LARCA between ecotypes (Figure 6),
though we did note that the weak trend was for
forested rich fens to have lower LARCA than the
poor fens despite having much fewer fire observa-
tions. This agrees with Robinson and Moore’s
findings that along a gradient from ombrotrophic
bog to poor fen to rich fen, recent rate of C accu-
mulation trended downward (Robinson and Moore
1999). The large variability that we found in
LARCA within ecotypes rather than across them
leads us to conclude that LARCA values are unique
to each specific peatland. Indeed, the range of
LARCAs we observed span the range of observa-
tions in the literature (0-40 ¢m™ > y ') (Kuhry
1994; Pitkdnen and others 1999; Robinson and
Moore 1999, 2000; Loisel and others 2014).

Given the observed negative relationship be-
tween fire frequency and LARCA, we can use a
simplified mass-balance approach to assess the C
balance associated with peatland fire. There is
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concern that the incidence of fire in peatlands can
release ““irrecoverable carbon,”” that is, C that could
not be recaptured by the same area in time to limit
the effects of anthropogenic climate change
(Goldstein and others 2020; Harris and others 2021;
Loisel and others 2021). For example, we observed
widely variable LARCA values with an average of
28gm™> y ' resulting in an average of
0.84 kg C m~? sequestered in 30 years [the mid-
century target (Goldstein and others 2020)]. If this
is compared to the average ~ 3 kg C m™* con-
sumed in each fire (Turetsky and others 2011;
Walker and others 2020a) this leaves a deficit of
2.16 kg C m~2, which could be considered “‘ir-
recoverable”. In other words, the average peat fire
will release more C than that same area burned can
recapture in over 100 years, creating a local C
deficit during humanity’s window of opportunity
to act. This back-of-the-envelope calculation leaves
out many nuances, but is supported by our ob-
served decline in LARCA with increased fire fre-
quency. We can thus expect that more frequent
and more severe peatland wildfires will decrease
the average C sink strength of dominant peatland
types in the hemi-boreal region.

Syntheses of current trends in climate indicators
for the Great Lakes region already report increased
temperature, earlier thaws, and greater numbers of
extreme heat and precipitation events (Hayhoe and
others 2010). Meanwhile, the North American
boreal region has exhibited increasing trends in fire
occurrence and extent (Kasischke and Turetsky
2006). Regional predictions for future climate sce-
narios still have wide margins of certainty, but
generally indicate decreasing snowfall and snow-
pack, increasing mean annual and seasonal tem-
peratures and increasing interannual variability
among all of these variables (Giorgi 2006; Hayhoe
and others 2010; §epar0vié and others 2013; Ash-
ley and others 2020). While the Great Lakes pro-
vide some moderating influence on regional
climate change, the area is not immune, and cli-
mate-driven changes to fire regime and species
distribution in hemi-boreal wetlands should be
expected. Notably, the three most common tree
species present in peatlands of this biome, Picea
mariana, Larix laricina, and Thuja occidentalis all exist
at their southernmost native extent in this hemi-
boreal zone (Burns and Honkala 1990). These
wetland species could have their natural ranges
exceeded by midcentury even under a lower
emissions scenario (Hayhoe and others 2010), with
unknown consequences for disturbance and
ecosystem ecology within hemi-boreal peatlands.

CONCLUSION

We established conservative fire frequencies for
peatlands in the hemi-boreal region of northern
Michigan and Wisconsin (USA), with the median
poor fen experiencing 2.1 fires ka~' (median fire
return interval of 476 years) and the median rich
fen experiencing no fire. We found a significant
negative relationship between fire frequency and
LARCA. Within our regional focus, we observed a
wide range of LARCAs. Despite the difference in
vegetation and fire regimes between poor and rich
fen classes, their LARCASs did not differ significantly
from one another. Our findings imply that fire is a
natural part of poor fen peatlands in the hemi-bo-
real region. However, with greater occurrence of
peat fires, these ecosystems overall will likely be
weaker long-term sinks for atmospheric C, while
individual burned peatlands act as short-term
sources of atmospheric C.
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previous publication (Uhelski and others 2022b) to
produce our char content estimates. The dataset doi
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