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Abstract
Climate change is having significant impacts on Earth’s ecosystems and carbon budgets, and in the
Arctic may drive a shift from an historic carbon sink to a source. Large uncertainties in terrestrial
biosphere models (TBMs) used to forecast Arctic changes demonstrate the challenges of
determining the timing and extent of this possible switch. This spread in model predictions can
limit the ability of TBMs to guide management and policy decisions. One of the most influential
sources of model uncertainty is model parameterization. Parameter uncertainty results in part
from a mismatch between available data in databases and model needs. We identify that mismatch
for three TBMs, DVM-DOS-TEM, SIPNET and ED2, and four databases with information on
Arctic and boreal above- and belowground traits that may be applied to model parametrization.
However, focusing solely on such data gaps can introduce biases towards simple models and
ignores structural model uncertainty, another main source for model uncertainty. Therefore, we
develop a causal loop diagram (CLD) of the Arctic and boreal ecosystem that includes
unquantified, and thus unmodeled, processes. We map model parameters to processes in the CLD
and assess parameter vulnerability via the internal network structure. One important substructure,
feed forward loops (FFLs), describe processes that are linked both directly and indirectly. When the
model parameters are data-informed, these indirect processes might be implicitly included in the
model, but if not, they have the potential to introduce significant model uncertainty. We find that
the parameters describing the impact of local temperature on microbial activity are associated with
a particularly high number of FFLs but are not constrained well by existing data. By employing
ecological models of varying complexity, databases, and network methods, we identify the key
parameters responsible for limited model accuracy. They should be prioritized for future data
sampling to reduce model uncertainty.

1. Introduction

As climate change causes temperatures in the Arctic
to increase between 1.7 and 2.8 times the rate
of Northern Hemisphere warming [1], Arctic ter-
restrial ecosystems are undergoing rapid change.

This includes shifts in plant community structure
and function [2], coupled with changes in soil and
permafrost dynamics [3, 4], which impact carbon
(C) cycling in these ecosystems [5]. Depending on
the scenario and timescale, vegetation changes may
counterbalance, dampen, or enhance the microbial
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Figure 1. Example of a negative feedback loop in a causal loop diagram, including local temperature, greenhouse gas
concentration and tundra GPP (gross primary productivity). The annual mean atmospheric CO2 concentration measured at
Mauna Loa Observatory, the annual mean temperature in the Arctic region (defined as north of the Arctic circle) from the ERA5
dataset and the yearly maximum of the tundra GPP based on the Global Monthly GPP from an Improved Light Use Efficiency
Model have shown a positive trend over the last decades [20–22].

decomposition of soil carbon [6], likely causing a
strong permafrost-carbon feedback to global climate
[7–9] (figure 1). However, there is much uncertainty
surrounding the possible transition of the Arctic from
a carbon sink to a source [10, 11]. Many processes
contribute to the Arctic and boreal carbon budget,
including photosynthesis, respiration, decomposi-
tion, wildfires, permafrost thaw, and hydrological
processes [7, 12–17], making it challenging to rep-
resent the full complexity of these ecosystems in a
modeling context. As a result, model intercompar-
isons of high-latitude carbon cycling in the future
indicate significant differences across models [6, 18].
These uncertainties present challenges in determining
whichmeasures are needed tomeet climate goals [19]
and reinforce the importance of quantifying uncer-
tainty in terrestrial biosphere models (TBMs).

Model uncertainty can be categorized as uncer-
tainty in (1) the system structure and function
[19, 23], (2) model parameters [23, 24], (3) model
initial conditions [25, 26] (4) external forcing data
(i.e. climate drivers and atmospheric data) [27, 28],
and (5) lack of accurate validation/verification data
[29]. Because the configuration of model paramet-
ers is one of the most influential sources of model
uncertainty [23, 30], reducing parameter uncertainty
is an impactful step towards a better representation
of high-latitude ecosystems. However, it is not inde-
pendent of structural uncertainty, as adding processes
(and thus parameters) to reduce structural uncer-
tainty introduces a higher cumulative parameter
uncertainty [23]. Purely focusing on the reduction
of parameter uncertainty can thus introduce a bias
towards simpler models and ignores the high sensit-
ivity that non-linearmodels have to their formulation
[26, 31]. Therefore, the goals of this study are to work
towards a better understanding of the full range of

tundra and boreal ecosystem model uncertainty in
terms of both (1) model structure and function and
(2)model parameter uncertainty, and how they relate
to one another.

High-latitude ecosystems have several feedback
mechanisms that affect their dynamics (see example
in figure 1), many of which lack a quantitative
description and remain excluded from state-of-the-
art Earth system models [32], while there are only
few models particularly including Arctic and boreal
processes [33]. Some of thesemechanisms are capable
of triggering regime shifts [34] that are re-shaping the
high-latitude landscape and can have large impacts
on global climate [35]. These shifts, like bogs turn-
ing into peatlands, changing fire regimes, and shrubs
gaining dominance in the tundra through shrubific-
ation, have been studied individually, but regimes
in the high-latitudes are closely linked [36, 37] and
their interactions are important to consider as they
might have the potential to cause domino effects
[38]. The uncertainty introduced by this incomplete
description of the ecosystem dynamics makes it dif-
ficult to predict whether and when tipping points
are reached [19]. It is important to determine which
additional processes should be included in TBMs to
further reduce model uncertainty without introdu-
cing an excessively computationally complex model
that results in expensive simulations and greater para-
meter uncertainty [23]. Therefore, both sources of
uncertainty, parameter and structural-based, should
be considered when evaluating ecosystem models.

Model parameters are configuration settings
internal to the model. Their quantities can be estim-
ated from data collected in the field, through empir-
ical experimental approaches in laboratory settings,
or through model-data assimilation approaches.
TBM parameters describe structural, biochemical,
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and functional traits of vegetation and the ecosys-
tem, such as plant structure and dimensions and soil
microbial activity and can thus be highly site-specific.
Additionally, somemodel parameters represent prop-
erties that are not easily measured and are thus dif-
ficult to inform with measurements. Observational
data needed to parameterize TBMs at high-latitudes
can be sparse and are often clustered in few access-
ible areas [19]. Additionally, there is often a discon-
nect between parameters used by models and avail-
able measurements. Field campaigns are typically
designed to answer a specific set of questions regard-
ing the behavior of the environment, and the data
collected does not necessarily conform to data needs
of models, which are not typically considered at the
start of field campaigns. Thus, targeted measure-
ments designed to resolve model uncertainties may
be an efficient way to refine TBMs.

To help identify the interactions of unmodeled
feedback mechanisms and how they tie in with
model parameters, we construct a causal loop dia-
gram (CLD), a technique commonly used in dynamic
systems modeling [39–41]. The CLD is a qualitative
description of the ecosystem as a complex network
and as such can include processes that cannot be rep-
resented in quantitative models, allowing it to be less
biased. By bringing several feedback loops into one
description, we can identify which processes become
reinforced through the interactions.

To identify gaps between data needs for model
parameterization and data availability, we query sev-
eral recently developed databases. We then match
available data to model parameter needs for three
TBMs of differing complexities in their representa-
tion of high-latitude ecosystems. Finally, to integrate
the information obtained from the CLD with that
from our database query, we take the processes that
are identified in the CLD as being important to rep-
resent and match them to database parameters as
another indicator for which parameters need addi-
tional data. This measure takes structural uncertainty
into account and, combined with the data availabil-
ity analysis, provides a less biased estimate of which
parameters should be measured.

2. Methods

2.1. Building a CLD
To assess structural uncertainty for the three mod-
els, we developed a description of high-latitude ter-
restrial ecosystem dynamics to evaluate which pro-
cesses might become reinforced through feedbacks
and are thus important to represent in models. We
created a CLD that builds on a body of research
and includes the most relevant feedback processes for
Arctic and boreal ecosystems.

A CLD is a qualitative description of a system and
its interactions in the form of a network [39], and

thus lends itself to an unbiased evaluation of whether
a process is well quantified. As a first step, the network
is constrained through boundaries and interfaces
with surroundings, and key actors of the system are
identified. We chose to describe the terrestrial Arctic
and boreal region without direct human influence
or global drivers other than increases in greenhouse
gas concentrations and local temperature. Variables
of the system are represented as nodes. These include
easily observed variables that are good indicators of
change in the system, such as tundra and boreal
vegetation productivity in terms of gross primary
productivity (GPP), permafrost volume in mineral
lowlands, organic lowlands and upland soils, and less
visible but important variables of the system, such as
summer and winter soil insulation. The impact of one
of these nodes on another is represented by a direc-
tional arrow between them, also called an edge. These
edges, describing the process through which the first
node affects the other, are denoted with a positive or
negative sign, depending on whether a change in the
first node will induce a change in the second node in
either the same or the opposite direction, respectively
[39].

Once a CLD of a system has been defined, vari-
ous methods can be applied to analyze the system,
one of which is static network analysis. Static net-
work analysis aspires to gain insight into the internal
feedbackmechanisms of real-life systems by analyzing
structures and motifs within the causality network of
variables. Motifs are small-scale substructures within
interaction networks, which can be important for
the overall functioning of a large-scale system and
have as such been called the ‘building blocks of com-
plex networks’ [42, 43]. Some examples where motifs
are decisive microstructures in larger networks are
social networks, gene transcription networks, and
networks in ecology [44, 45]. One of the most influ-
ential microstructures for overall system behavior are
feed forward loops (FFLs) (figure 2(a)), a structure
in which two nodes are linked through both a dir-
ect and an indirect process via one intermediary node
[41, 46, 47]. The number of FFLs targeting a node
can serve as an appropriate measure of its vulner-
ability to change. Another relevant motif is the sec-
ondary FFL (figure 2(a)), where one process passes
through two, instead of one, intermediary nodes.
While the impact of single FFLs is generally more sig-
nificant, the remaining ambiguity in the definition of
theCLDmakes the distinctions betweenmotifs some-
what arbitrary. Therefore, we treat both motifs as one
topological category (referred to as FFLs in the fol-
lowing) instead of unique features. This accounts for
some of the ambiguous choicesmade in the construc-
tion of the CLD, such as whether a process is repres-
ented by one or two nodes. Through motifs, we can
identify processes that become reinforced or act rein-
forcing and are thus more likely to cause substantial
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Table 1. Overview of the elements modeled in the three terrestrial biosphere models [56, 57]. While TEM has two main carbon pools
(soil and vegetation), they are further subdivided into leaf, wood, and root vegetation carbon, and chemically resistant soil carbon,
physically resistant soil carbon, active soil carbon and coarse plant material for each soil layer, and a coarse woody debris carbon pool
[58]. We investigated parameters with ecological significance beyond functional requirements for the model run, while excluding initial
parameters.

Number of parameters
investigated Frozen soil Wildfire disturbance Number of carbon pools

TEM 90 2 (with further subdivision)
ED2 80 5
SIPNET 71 x 3

changes in model outputs. That way, we identify the
processes that should be represented in high latit-
ude TBMs to lower the possibility of high structural
model uncertainty.

2.2. Models and databases
We identify the disconnect between available meas-
urements and data needed for model parameteriza-
tion for three TBMs of differing complexity that have
been applied in high latitudes, including (1) DVM-
DOS-TEM (The Terrestrial Ecosystem Model with
Dynamic Vegetation and Dynamic Organic Soil lay-
ers, TEM in the following), (2) SIPNET (Simplified
Photosynthesis-Evapotranspiration model) and (3)
ED2 (Ecosystem Demography Biosphere Model).
The models were chosen to investigate the trade-off
between simplicity and complexity (see table 1).

The three models are integrated into the
Predictive Ecosystem Analyzer (PEcAn) framework,
facilitating a future model intercomparison based on
ensemble modeling. PEcAn standardizes the work-
flow for analyzing model parameter sensitivity and
uncertainty, which allows for comparability across
models. It further treats parameter values as probab-
ility distributions based on available measurements
that are included in its associated database (Biofuel
Ecophysiological Traits and Yield database, BETY),
highlighting the need to examine model parameter
data availability [48–50]. TEM was developed for
high-latitude ecosystems, and the version used in
this study, DVM-DOS-TEM, includes both perma-
frost soils and disturbance through wildfires [51].
Additionally, it represents tundra and boreal com-
munities in detail by subdividing each community
(e.g. tussock tundra, heath tundra, wet sedge tundra,
white spruce forest, black spruce forest, deciduous
forest, bog, fen) into up to ten plant functional types
(PFTs). These PFTs, such as sedges, grasses, ever-
green shrubs, and feathermoss, have different model
parameterizations depending on the community in
which they grow and compete for light, water, and
nutrients, providing a nuanced picture of high lat-
itude vegetation dynamics. As a result, TEM has
been widely applied in modeling studies of Arctic
and boreal ecosystems [24, 52]. SIPNET (version
r136, https://github.com/PecanProject/sipnet) is a
box model and represents a lower complexity model

in the comparison. However, it does include frozen
soil characteristics, can be applied to communities
underlain by permafrost, and has been applied to
subalpine ecosystems [53]. In SIPNET, three carbon
pools are used to model carbon dynamics: a soil car-
bon pool, and two vegetation pools (wood and leaves
carbon pools) [53]. The model ED2 (v.2.2.0) has
been applied to Arctic ecosystems as well [54, 55]. It
is more complex than SIPNET and has more para-
meters than TEM; however, it is less high-latitude
specific than TEM and has a less detailed descrip-
tion of tundra and boreal communities (see https://
github.com/EDmodel/ED2).

Although all three models can be applied to
describe the same ecosystems and plant communit-
ies, they each depend on different sets of paramet-
ers. Therefore, data availability in ecological databases
differs between models. We evaluated each model
to identify the included parameters and looked for
their equivalents in four different databases. The four
investigated databases for assessing data availabil-
ity are (1) TRY (TRY Plant Trait Database) [59],
www.try-db.org/, (2) BETY (Biofuel Ecophysiological
Traits and Yield database) [60], www.betydb.org/,
(3) NGEE (Next-Generation Ecosystem Experiments
Arctic data catalogue) https://ngee-Arctic.ornl.gov/
data/, and (4) FRED (Fine Root Ecology Database)
[61], https://roots.ornl.gov/. The model parameters
are matched to their respective equivalents in each
database, and the number of measurements north of
60 degrees is recorded. While measurements north of
66.3 degrees are more relevant to high-latitude eco-
systemmodels, the scarcity of field data overall makes
measurements between 60 and 66.3 degrees still use-
ful for model parameterization when the plant com-
munities correspond.

2.3. CLD evaluation of model parameters
The mismatch between data needs and availabil-
ity provides a first approximation of which para-
meters should be targeted for additional measure-
ments, although this approximation may be biased
towards simple models with fewer parameters. To
refine these results and represent the influence of
structural uncertainty on parameter uncertainty, we
include the CLD as an analysis tool. This inclu-
sion permits us to identify parameters that should
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Figure 2. (a) Feed forward loops and secondary feed forward loops are important substructures (motifs) of the causal loop
diagram. The targeted node is shown in red with stripes, the start node in blue, the secondary nodes in black. (b) The parameter
(or parameter group) describing the process between node A and B in the model is mapped to the direct edge between node A
and B in the causal loop diagram. When it is data-informed, it can include the feed forward and secondary feed forward loops and
creates an effective parameter.

be targeted for additional measurements to reduce
model uncertainty induced by parameter and struc-
tural uncertainty.

Parameters in the models usually describe the
form and strength of a process, and thus can be
mapped to an edge between two nodes (A and B) in
the CLD. This creates logical groups of parameters
that are mapped to the same edge (parameter groups
in the following), which together describe the inter-
action between A and B. In some cases, we need to
generalize edges to fit the model parameters. Because
parameters themselves do not distinguish between
the ecotypes, and the modeled plant community is
instead chosen when selecting a site, we summarize
edges that include boreal and tundra GPP into GPP.
Similarly, we introduce the collective terms soil mois-
ture, microbial activity, and permafrost volume, as
only location determines which of the more specific
terms is applicable. The number of motifs is then
averaged for the number of edges in the group. With
functional parameter groups across models, we can
now apply the causal loop analysis to the models.

For the causal loop analysis, we identify substruc-
tures surrounding the edges between A and B in
the CLD. We can then apply network theory to the
parameters in the model that have been mapped to
that edge. We specifically look for FFLs (figure 2(a)),

where node A impacts node B not only through
the direct connection that the parameter describes,
but also through additional processes. Some of these
indirect connections from A to B over C, and from A
to B over D and E, might not be explicitly modeled
but might be implicitly included if the direct connec-
tion is well parameterized by field data. For example,
local temperature (FFL node A) impacts microbial
activity directly (FFL node B), and additionally indir-
ectly through its effects on soil moisture (FFL node
C). Under realistic conditions, the impact of the dir-
ect connection can be difficult to isolate from that
of indirect connections, creating an effective para-
meter (figure 2(b)). Models with such data-informed
parameters might be able to emulate more com-
plex ecosystem models (emulator models) by impli-
citly including the indirect processes described by the
FFLs [62]. However, without sufficient field measure-
ments, model parameter groups with a high number
of FFLs could induce more uncertainty than para-
meters without additional, unmodeled feedbacks,
since they may carry more structural uncertainty.
Therefore, we aim to identify the edges from A to B
with a high number of FFLs over C, D, and E.We sug-
gest that the parameters in the models that describe
those edges bewell parameterized, as this would result
in the highest potential to decreasemodel uncertainty
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in terms of both parameter and structural-based
uncertainty.

To assess the level of parameterization for
functional processes and quantify their need for
additional field data based on availability and
vulnerability through reinforcing microstructures,
we introduce the Parameterization-factor (Pa-factor).
For each parameter group (parameters mapped to
the same edge), we calculate the average number of
measurements per parameter in the group,NM,where
parameters shared across models are counted once.
To compare it with the number of FFLs for that edge,
NFFL, we normalize NM and NFFL to a scale of [0,1]
and create a scatter plot. For generalized edges, we
average the number of FFLs for the number of edges.
The Pa-factor is defined as

Pa=
1√
2
(NFFL−NM) , (1)

and describes the signed distance to the x= y diag-
onal. It is therefore a measure of the relationship
between parameter vulnerability and the level of data
availability. A high positive Pa-factor indicates a high
number of FFLs in relation to a low number of meas-
urements, and thus a high need for additional meas-
urements. Through both methods combined, that is,
the identification and use of parameters from the
databases and analysis of the CLD, we identify which
model parameters are likely to play a key role inmodel
structure and dynamics and should be prioritized for
further measurements to aid in better constraining
model uncertainty.

3. Results

3.1. CLD analysis
We created a CLD as described in section 2.1 on
a body of research and discussion among the co-
authors. After a review by several experts (see supple-
mentary material for methodology) we applied it as
an analysis tool to further inform which parameters
should be targeted. The final diagram consists of 30
nodes, which are connected via 127 edges, 71 of which
represent positive and 56 of which represent negative
interactions (figure 3, supporting file 2).

We search for nodes that are targeted by a high
number of FFLs, as they may be particularly vulner-
able and/or influential in the system [41, 45]. We
define ‘vulnerable’ as a parameter that is likely to
experience disproportionately large impacts due to
changes in the system, and ‘influential’ as a para-
meter that is likely to cause large changes in the sys-
tem.We identify connections linking the nodemicro-
bial activity to various other nodes, including CO2

production, tundra GPP, boreal GPP, local temperat-
ure, bog and pond area, phosphorus availability, and
fires (annually burned area). Processes related to these
nodes may be important but may not be included

in high-latitude TBMs. Therefore, parameters that
include any of these processes in their effective form
(figure 2(b)), should be well informed by data to rep-
resent the ecosystem as well as possible with the exist-
ing model structure.

3.2. Database analysis
While the majority of parameters differs across the
threemodels, there is someoverlap (figure 4, support-
ing file 1). We included 90 parameters from TEM, the
majority of which describe the impact of microbes
and the respective biomes on carbon and nitro-
gen cycling and storage. The 80 parameters in ED2
include a large focus on albedo processes, whereas
many of the 71 parameters in SIPNET describe the
impacts of temperature on different parts of the sys-
tem. TEM shares a lower percentage of its parameters
than ED2 and SIPNET, which is a result of the more
high-latitude specific set of parameters and the fact
that the model specifically parameterizes each PFT in
each community type (as described in the Methods).

Our queries to the TRY, NGEE, BETY and FRED
databases for measurements that can be used to para-
meterize the three models revealed that the TRY,
NGEE and BETY databases include numerous obser-
vations for eachmodel (figure 5). The observations in
the root-specific FRED database are more specialized
than the parameters representing soil processes in the
three models, and are therefore less applicable. While
there were many observations in the TRY, NGEE, and
BETY databases that matched the model parameters,
these are typically related to only a few of the model
parameters. Considering the field data available from
the four databases, only 25.4% of considered para-
meters in SIPNET include at least one observation
from field data, 17.5% of parameters in ED2, and
16.7% in TEM (supporting file 1).

3.3. Combined analysis
We map the model parameters to edges in the CLD
as described in section 2.3. This creates 25 categor-
ies based on functional traits, each of which con-
tains between one and 24 parameters. We can then
apply the results from the static network analysis to
the parameter groups, by assessing the number of
FFLs connected to the individual parameters. When
an edge has been generalized to account for ambigu-
ities in the biome, the number of FFLs is averaged.
This provides an estimate of how vulnerable or influ-
ential the parameters are in terms of the CLD. TEM
parameters have lower numbers of FFLs per para-
meter than ED2 and SIPNET (figure 6).

Both methods, the data availability and FFL ana-
lyses, have a bias towards simple or complex models,
respectively. Bringing them together into one assess-
ment of model parameterization can balance the
biases and account for both structural and parameter
uncertainty. We therefore compare the number of

6



Environ. Res. Lett. 18 (2023) 084032 H Mevenkamp et al

Figure 3. Full causal loop diagram, with 127 edges and 30 nodes. Blue lines represent negative connections, red lines positive ones.
Direction is visualized through curvature; the edges are connecting the nodes clockwise. The node color represents the number of
incoming edges (in-degree) and the node size represents the number of outgoing edges (out-degree).

FFLs for a parameter group with the number of
measurements, which is averaged for the number of
respective parameters in each group.

When plotting the resulting normalized num-
ber of measurements (NM) against the number of
FFLs (NFFL), we observe a distinct L-shape (com-
pare figure 7(a)). This again shows not only the low
number of parameters with significant numbers of
measurements, but also how these parameters tend
to describe the same process, indicating poorly con-
strained models. Only four edges have a high NM,
whereasmore than four parameters have a high num-
ber of measurements.

Based onNM andNFFL, we calculate the Pa-factor
for each edge. The values and corresponding edges are
shown in figure 7(b). The edge with the highest Pa-
factor, and thus also the highest need for additional
field measurements points from ‘Local temperature’
to ‘Microbial activity’. This edge contains eight para-
meters, the base microbial activity, the microbe Q10,
soil Q10, soil Q10 when soil temperature is below a
certain temperature, E0 and T0 in the Lloyd–Taylor
soil respiration function, which are all SIPNET para-
meters, the rate of increase of heterotrophic respir-
ation with increasing temperature, which is an ED2
parameter, and the TEM parameter heterotrophic
respiration Q10. The impact of local temperatures on
the rate of microbial activity is not commonly meas-
ured, but is highly influential in high-latitude ecosys-
tems and needs to be modeled accurately.

The other outstanding edges go from ‘GPP’ to
‘Nitrogen availability’, and from ‘GPP’ to ‘Leaf area
index’. The first edge contains 19 parameters, 12 of
which are TEM parameters, four ED2 parameters,
and three SIPNET parameters. The second edge

contains six TEM parameters, two SIPNET para-
meters, and two ED2 parameters. These paramet-
ers are well defined, but do not have any FFLs that
make them particularly vulnerable or influential. For
example, specific leaf area, a parameter that is shared
across all three models, and the percentage of carbon
and carbon nitrogen ratios in leaves and leaf-litter, are
exceptionally well-sampled.

4. Discussion

4.1. Overview
This study presents an analysis of the model para-
meters from three models, TEM, SIPNET, and ED2
and how they differ from each other. This can
provide a foundation to help understand differences
in model outputs when performing ensemble model-
ing and model intercomparisons [18]. The CLD ana-
lysis helped us gain an insight into model process
and structural uncertainty, highlighting the advant-
age of more complex models due to their lower num-
ber of FFLs per parameter. The database analysis has
uncovered a mismatch between data needs and avail-
ability and highlighted the advantage of simplermod-
els, as a higher percentage of their parameters have
measurements. The Pa-factor helps bring these two
perspectives together and provides a measure to pri-
oritize model parameters for data acquisition.

4.2. Model process and structural uncertainty:
implications
Through the CLD analysis we have identified sev-
eral nodes that should be candidates for inclu-
sion in TBMs. Some of these, such as bog and
pond area, phosphorus availability, and fire regime
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Figure 4. Schematic representation of the distribution of parameters across models. The parameters are separated into above- and
belowground temperature, and nutrient and carbon related groups, and parameters that link above- and belowground processes.
The miscellaneous category includes parameters such as the maximum rate of dew formation, parameters for soil decay, and
parameters for aerodynamic resistance.

Figure 5. Number of measurements available for each of the three models, with relative contributions of the four databases. The
observations are not evenly spread across parameters but only cover 25.4% of considered parameters in SIPNET, 17.5% of
parameters in ED2, and 16.7% in TEM, ranging between 12 495 and 3 observations per parameter. The exact number of
measurements per parameter can be seen in supporting file 1.
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Figure 6. Histogram of the normalized number of feed forward loops per parameter for each of the three models in our analysis.

(annual burned area), are currently not represented
in all TBMs applied in high latitudes. The impact
of different types of waterbodies on soil insulation,
erosion and methane production has been identified
[33, 63–69], as well as the impact of fire frequency and
intensity [12, 70, 71] on high-latitude carbon storage.
None of the three models includes aquatic dynam-
ics, and SIPNET does not include fire dynamics [72].
Phosphorus in high-latitude soils, which has been
shown to co-limit vegetation growth with nitrogen
[73], is not included in any of the models selected for
this analysis. Additionally, boreal and tundra GPP are
among the nodes with the highest FFLs, which sug-
gests that a more complex model description may be
beneficial. This is supported by the finding that the
least complex model SIPNET has the highest num-
ber of FFLs per parameter, and the less high-latitude
specific model ED2 ranks in themiddle. Other nodes,
such as beaver and herbivore populations, might be
important based on the literature [74, 75], but have
not become reinforced through FFLs or loops in the
CLD (figure S1).

Overall, the results of the CLD analysis high-
light the benefits of more complex models, as
more feed forward processes are explicitly modeled.
Additionally, they suggest that parameters related to
relevant processes be well informed by data to repres-
ent the ecosystem as well as possible within the exist-
ing model structure.

However, there are some limitations that need
to be considered. The list of parameters with a high
number of FFLs, that are identified as potentially vul-
nerable, might not be exhaustive, as nodes with few
direct connections (such as permafrost) have fewer
motifs and may not be captured by the network ana-
lysis. We therefore do not identify processes that are
not important in the system, but ones that are becom-
ing reinforced. Additionally, the definition of the CLD
is ambiguous, and with the boundaries set to the

outlines of the terrestrial Arctic and boreal region,
not all interactions could be captured in the diagram.
Proximity to sea ice [76], resulting changes in chan-
ging precipitation patterns and moisture stress [77],
and incoming deciduous vegetation from the south
[78] are therefore not represented in the CLD. Lastly,
many lateral hydrological processes, such as loss of
dissolved organic carbon through stream and river
transport, are not represented in either the terrestrial
ecosystem models in this study or the CLD. While
they can strongly influence for the overall carbon
budget [14, 16, 17], their representation in terrestrial
ecosystem models cannot be improved through bet-
ter constraining model parameters. Therefore, a sep-
arate study is needed to evaluate how the omission of
these processes affects the carbon budget in terrestrial
Arctic and boreal ecosystem models.

4.3. Parameter uncertainty and data informed
parameters: implications
Identifying data availability and needs for eachmodel
is an important starting point for assessing model
parameterization. We found that in the queried data-
bases, observations are limited and focused on few
parameters, like specific leaf area and leaf carbon.
Additionally, this data is often documented without
a common standard [79], making it challenging to
fully incorporate existing data. As a result, many
parameter groups have no available measurements,
and further distinction between desirable and cru-
cial measurements is necessary. As expected, the
simplest model SIPNET has the highest percent-
age (25.4%) of field-constrained parameters, since
the less specialized parameters are most easily col-
lected in the field. TEM, which has been most
specifically developed for high-latitude ecosystems,
only has data available for 16.7% of its paramet-
ers. ED2 ranks similarly (17.5%). This highlights the
benefits of model simplicity but does not consider
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Figure 7. (a) Scatter plot of normalized number of measurements (NFFLs) vs the normalized number of single and secondary feed
forward loops (NM) for each model parameter group. (b) Pa-factor for each parameter group, which are the edges of the CLD. A
high positive value is a sign for a high need for additional measurements.

whether the parameters with missing data are pos-
sible or feasible to measure. Similarly, other paramet-
ersmight be observed in laboratory or remote sensing
approaches that have not been included in the queried
databases. Existing remote sensing datasets [80, 81]
and planned upcoming satellite missions [82] may
provide spatially and temporally rich information

on key plant traits needed for ecosystems models
through novel retrieval approaches [83].

Although this analysis identifies parameters
without observational data that should be targeted
in field efforts to improve model precision, the selec-
tion is not sufficiently narrow to make it feasible.
Additionally, the data availability analysis suggests
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that parameters of more complex models are less well
constrained and could carry more uncertainty. This
can introduce a bias towards less complex models, as
this analysis does not consider structural uncertainty,
which plays a large role in whether observational data
will be available. Therefore, we are looking for an
analysis that helps refine which parameters should be
targeted for additional observations while accounting
for structural uncertainty.

A common method to assess parameter uncer-
tainty is ensemble modeling, which can be facilitated
through platforms such as PEcAn [23, 50]. Previous
studies have found that parameters describing
short-term ecosystem processes induce large model
uncertainties in ED2 [84], and that TEM is espe-
cially sensitive to parameters describing the temper-
ature dependence of photosynthesis [24]. However,
model uncertainty analyses through ensemble mod-
eling are rarely combined with a conceptual approach
to address structural uncertainty.

4.4. Pa-factor and parameter prioritization
The results above illustrate the trade-off between
complexity and simplicity and how decisions on
future data acquisition should not be based solely
on a data availability analysis. Taking the structural
uncertainty assessed in the CLD analysis into account
helps balance the bias from the database analysis, as
it is biased towards more complex and specific mod-
els. Combining both into the Pa-factor helps make
decisions for future data acquisition and provides a
ranking of how necessary additional measurements
are for a given parameter group. We find that for
modeling purposes, field efforts should focus less on
specific leaf area andC:N ratiomeasurements because
these are already well represented in the database
and do not impact vulnerability. Instead, parameters
describing the impact of local temperature on micro-
bial activity should be prioritized.

However, while most parameters could be
matched to the CLD, some were too specific and
did not fit any process. These 61 parameters, most of
which are without measurements (supporting file 1),
are thus captured by the database analysis, but not by
the FFL analysis. Additionally, even though emulator
models with data-informed parameters can produce
results very similar to more complex models, they
cannot always compensate for structural accuracy. If
a process is modeled fundamentally differently in the
simpler model, field data might not be able to make
up for this discrepancy [62].

5. Conclusion

The combination of data availability and needs ana-
lysis with the causal network approach provides
better insight into how ecosystem models can be

refined than with database analysis and CLD ana-
lysis alone. Model parameterization with field meas-
urements is a crucial step towards better constrain-
ing and ultimately reducing model uncertainty [85],
which becomes especially relevant when modeling
ecosystems under a changing climate. For this pur-
pose, we propose the Pa-factor as a useful tool for
guiding decisions about which parameters to prior-
itize and target in field efforts and demonstrate its
usefulness for different Arctic and boreal ecosystem
models. Based on the presented analysis, we suggest
prioritizing parameters in future field campaigns and
remote sensing efforts that describe the relationship
between local temperature and microbial activity in
particular, and beyond that all parameter groups with
a significantly positive Pa-factor. These are the impact
of local temperature on vegetation growth, the effect
of drained soils on fire frequency, the impact of veget-
ation growth on microbial activity and the impact of
soil moisture on nitrogen availability.
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