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Abstract
Objective. Invasive brain–computer interfaces (BCIs) have shown promise in restoring motor
function to those paralyzed by neurological injuries. These systems also have the ability to restore
sensation via cortical electrostimulation. Cortical stimulation produces strong artifacts that can
obscure neural signals or saturate recording amplifiers. While front-end hardware techniques can
alleviate this problem, residual artifacts generally persist and must be suppressed by back-end
methods. Approach. We have developed a technique based on pre-whitening and null projection
(PWNP) and tested its ability to suppress stimulation artifacts in electroencephalogram (EEG),
electrocorticogram (ECoG) and microelectrode array (MEA) signals from five human subjects.
Main results. In EEG signals contaminated by narrow-band stimulation artifacts, the PWNP
method achieved average artifact suppression between 32 and 34 dB, as measured by an increase in
signal-to-interference ratio. In ECoG and MEA signals contaminated by broadband stimulation
artifacts, our method suppressed artifacts by 78%–80% and 85%, respectively, as measured by a
reduction in interference index. When compared to independent component analysis, which is
considered the state-of-the-art technique for artifact suppression, our method achieved superior
results, while being significantly easier to implement. Significance. PWNP can potentially act as an
efficient method of artifact suppression to enable simultaneous stimulation and recording in
bi-directional BCIs to biomimetically restore motor function.

1. Introduction

Brain–computer interfaces (BCIs) are emerging as a
promising solution for restoring communication to
individuals with amyotrophic lateral sclerosis [1–3],
or motor function to those with paraplegia [4–6] or
tetraplegia [7–9]. Invasive BCIs based on electrocor-
ticography (ECoG) [10, 11] or intracortical micro-
electrode arrays (MEAs) [12, 13] have the ability to

elicit somatosensation via electrostimulation of cor-
tical tissue. This makes it possible for BCIs, which
currently primarily rely on visual feedback [4–9],
to enact closed-loop control using artificial soma-
tosensory feedback in what is referred to as a ‘bi-
directional’ brain-computer interface (BD-BCI) [14].
Preliminary studies with BD-BCIs suggest that the
artificial somatosensory feedback may improve BCI
performance [15]. However, BD-BCIs, especially in
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motor applications, necessitate simultaneous stim-
ulation and recording to enable smooth and con-
tinuous control. One critical requirement for this is
that neural feature extraction must be performed in
the presence of strong electrical stimulation artifacts.
These artifacts can compromise BCI performance by
masking neural activity or saturating front-end amp-
lifiers [16–18]. To avoid this problem, BD-BCIs must
be able to mitigate stimulation artifacts.

A necessary condition for artifact suppression
strategies is that large-amplitude stimulation artifacts
must not saturate analog front-ends. To this end,
hardware innovations have been devised to increase
front-end dynamic range [19, 20]. Other front-end
approaches safeguard against saturation by employ-
ing a variety of techniques. Examples include tem-
plate subtraction [21], adaptive filtering [22], and
dipole cancellation [23, 24]. Even with the imple-
mentation of such methods, residual artifacts will
persist and must be additionally suppressed by digital
back-end methods.

The simplest of these back-end methods include
blanking-reconstruction techniques, wherein data
samples containing artifacts are removed and sub-
sequently replaced by sample-and-hold [25, 26] or
interpolated [27–29] data points. Another approach
is to construct an artifact template by averaging arti-
fact waveforms and subtract the template from the
signal [30, 31]. However, these methods can cre-
ate significant signal distortions due to data removal
or replacement. A more elegant approach relies on
signal decomposition techniques, such as independ-
ent component analysis (ICA) [32] or empirical
mode decomposition (EMD) [33]. These techniques
have been useful in separating artifact from neural
sources [34–37] and are thus considered state-of-the-
art artifact suppression techniques. However, ICA-
based methods may fail to separate stimulation arti-
facts and neural signals, as they are not guaranteed to
be independent. Our recent study shows that this can
happen even when stimulation artifacts are narrow-
band [38]. Similarly, intrinsic mode functions gener-
ated by EMD [33] may fail to separate neural signals
and stimulation artifacts because their local signal
characteristics, including smoothness, may be sim-
ilar. Finally, EMD’s numerical nature makes it suitable
for offline analyses but not amenable to a real-time
implementation.

Motivated by these shortcomings, we recently
developed a subspace-based technique [38] that
utilizes pre-whitening and null projection (PWNP)
to efficiently separate artifact and neural signal
subspaces. The artifacts can then be suppressed
by projecting the contaminated signals away from
the artifact subspace. This is in contrast to ICA,
which requires intensive numerical optimization to
decompose signals and a combinatorial search to
identify the artifact components. When tested in a
single subject whose electroencephalogram (EEG)

was contaminated with electrical artifacts, our tech-
nique achieved superior suppression results to ICA,
while having a much simpler implementation [38].

In this study, we demonstrate the efficacy of the
PWNP method in suppressing cortical electrostim-
ulation artifacts in a variety of neural data. Firstly,
we expanded our preliminary analysis [38] to mul-
tiple subjects whose EEG data were contaminated by
voltage artifacts introduced by a signal generator via
scalp electrodes. Our analysis shows that PWNP can
suppress these narrow-band artifacts, i.e. increase the
signal-to-interference ratio (SIR), while preserving
neuromodulation features, expressed by the signal-
to-noise ratio (SNR). Secondly, we also analyzed sub-
dural ECoG data collected in an epilepsy monitor-
ing unit to demonstrate PWNP’s ability to suppress
broad-band artifacts generated during cortical map-
ping procedures. Finally, we analyzed human MEA
data collected during intracortical microstimulation
(ICMS) to elicit artificial sensation. We show that
PWNP can suppress these broad-band artifacts while
preserving neural signals such as action potentials.
Generally, the PWNP method outperformed ICA on
these diverse datasets, while having a much simpler
implementation. Therefore, we demonstrate that the
PWNP method is an effective technique for the sup-
pression of stimulation artifacts with obvious applic-
ations to BD-BCI technologies.

2. Methods

2.1. Electrophysiological data collection and
pre-processing procedures
Data were collected with the informed consent of all
subjects, and all procedures performed were approved
by the Institutional Review Board of the University
of California, Irvine, the University of Southern
California, and the Rancho Los Amigos National
Rehabilitation Center.

2.1.1. EEG data collection
We collected data from two healthy volunteers
(Subjects 1 and 2) using 20-electrode (10–20 inter-
national system), EEG caps (Compumedics USA,
Charlotte, NC). We reduced the 30 Hz impedance
of the electrode-scalp interface below 10 kΩ by
applying conductive gel and abrading the scalp.
Nineteen single-channel amplifiers (EEG100C,
Biopac Systems, Goleta, CA) captured EEG signals
with respect to a reference electrode located over
the frontal lobe between Fp1/Fp2 and Fz electrodes.
Amplifiers gains were set to 5000× and band-pass
filters were set to 1–35 Hz. These signals were then
sampled at 4000 Hz and digitized with a 16-bit acquis-
ition system (MP150, Biopac Systems, Goleta, CA).
The acquisition system also simultaneously recorded
analog signals generated by a custom MATLAB script
(Mathworks, Natick, MA) that tracked the behavioral
cues displayed during the experiment.
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Figure 1.MR-CT co-registered images with ECoG grids. Subject 3 and Subject 4 had 4× 5 grids implanted in the right temporal
area and left frontal area, respectively. Highlighted electrodes mark the bipolar stimulation channels.

Since non-invasive cortical stimulation methods,
like transcranial electrostimulation [39], are not com-
monly used in healthy volunteers, we utilized a hand-
held, battery powered impedance meter (EIM105,
General Devices, Ridgefield, NJ) as a surrogate for
a cortical stimulator. Prior to placing the EEG caps,
two individual EEG electrodes were affixed to the
scalp with adhesive cream (EC2, Natus Neurology,
Middleton, WI) to the left and right posterior of the
Cz electrode. The impedance meter output, which
was a 30 Hz voltage sine wave, was then introduced
to the scalp via these electrodes in a bipolar config-
uration. This output was also recorded in parallel by
the MP150 system. We first collected baseline activ-
ity for one minute without turning on the stimula-
tion. Subsequently, subjects initiated the behavioral
task, wherein the stimulator was turned on and sub-
jects followed auditory cues that alternated between
‘eyes open’ and ‘eyes closed’. Each eyes-open or eyes-
closed epoch lasted 15 s, for a total of 20 epochs (5 min
total). We then saved the EEG data for later analysis.

2.1.2. ECoG data collection
We collected ECoG data at the hospital bedside from
two subjects (Subjects 3 and 4) undergoing cortical
electrostimulation as part of epilepsy surgery eval-
uation. Subject 3 was implanted with a standard
size (10 mm spacing, 2.3 mm disc electrode diameter,
platinum–iridium contacts) 4× 5 ECoG grid (Integra

Life Sciences, Plainsboro, NJ) over the right tem-
poral lobe. Subject 4 was implanted with the same
type of grid over the left frontal cortex (see figure 1).
A clinical-grade bioamplifier (Natus® QuantumTM,
Natus Medical Incorporated, Pleasanton, CA) recor-
ded ECoG signals at a sampling rate of 512 Hz.
As part of eloquent cortex mapping procedures, an
FDA-approved cortical stimulator (Nicolet® Cortical
Stimulator, Natus Medical Incorporated, Pleasanton
CA) delivered square pulse trains across a pair of
electrodes (stimulation channel). Each pulse train
was delivered for a predetermined duration (stimu-
lation epoch) across a range of current amplitudes
(2–10 mA). Both subjects were stimulated with the
following parameters: 50 Hz pulse train frequency,
250µs pulse width, 5 s stimulation epoch, and cur-
rent amplitudes ranging from 2 to 10 mA in incre-
ments of 2 mA. We saved the collected ECoG data for
later analysis in MATLAB. Data from the electrodes
comprising the stimulation channel were excluded
as they saturated during stimulation. All data were
high-pass filtered (4th order, Butterworth, 1.5 Hz,
zero-phase). We segmented each of the stimulation
epochs from the overall data, alongside an equal-
length segment of baseline ECoG immediately pre-
ceding the stimulation epochs. We analyzed a single
representative 10 mA stimulation epoch from each
subject, as these amplitudes created the strongest arti-
facts and thus represent a worst-case scenario for
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Figure 2. Approximate locations of the two MEAs superimposed on an MRI brain template. Two 7× 7 MEAs were implanted
over S1. Stimulation was applied to electrode 19 on MEA1 (electrodes 1–49). Saturated electrodes are marked in red. Electrodes
49 and 98 were used as reference/ground for their respective MEAs.

artifact suppression. We then used the segmented
baseline and stimulation epochs to compare the per-
formance of the PWNP and ICA artifact suppression
algorithms.

2.1.3. MEA data collection
MEA data were collected from two 7× 7 sputtered
iridium oxide film (SPIROF) tipped MEAs
(Blackrock® Neurotech, Salt Lake City UT) implanted
in the primary somatosensory cortex (S1) of a single
human subject (Subject 5) with a C5-level complete
spinal cord injury [12]. As no imaging data was avail-
able for this subject, the approximate location of this
array on a brain template is shown in figure 2. Data
were collected at a sampling frequency of 30 kHz
from a total of 96 channels, as one electrode on
each array was designated as the reference/ground
(Electrode 49 for MEA1 and Electrode 98 for MEA2).
An ICMS device (Blackrock CereStim, Blackrock®

Neurotech, Salt Lake City UT) delivered stimulation
through a single electrode (Electrode 19). A one-
second stimulation epoch consisted of delivering a
train of cathodic-leading biphasic square pulses at
a frequency of 294 Hz, phase width of 200µs, and
a current amplitude of 100µA. These stimulation
epochs were repeated ten times with an average of
27 s in-between. Electrodes that were saturated due
to stimulation artifacts exceeding an absolute voltage
amplitude of 8192µV (mostly occurring on MEA1,
see figure 2) were excluded from analysis as they
contained no useful neural data, leaving 54 non-
saturated channels across both arrays. Similarly to
the ECoG data, we segmented stimulation epochs
from the overall data. We then high-passed (⩾0.1 Hz)

and linearly de-trended these stimulation epochs and
subsequently appended them into one 10 s epoch.
We also segmented a 10 s epoch of data occurring
between two consecutive stimulation epochs and
designated these data as the baseline epoch. These
baseline and stimulation epochs were saved for later
analysis.

2.2. Artifact suppression procedures
2.2.1. PWNP algorithm
The PWNP algorithm is fully described in [38], and
its theoretical basis can be found in [40]. Appendix A
also gives a detailed, self-contained account of the
main assumptions and mathematical derivations.
The algorithm exploits the fact that artifacts are typ-
ically much stronger than neural activity, and thus
reside in a low-dimensional subspace, correspond-
ing to the highest singular values of the data mat-
rix. This allows the artifact subspace to be readily
identified, so the data can be projected to its ortho-
gonal complement through null projection. The res-
ulting data will then reside in an artifact-free sub-
space. The pre-whitening step serves to remove spatial
correlations between electrodes, which improves the
SNR of neural signals and the accuracy of the signal
and artifact subspace estimates [41]. Mathematically
(see appendix A for derivations) these steps can be
expressed as:

Xclean
S =Σ

1
2
BHH

T
[
Σ

− 1
2

B (XS −µS1
T)
]
+µS1

T (1)

where XS ∈ Rn×tS represents the artifact-laden stim-
ulation data from n channels over tS time samples.
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Correspondingly, Xclean
S ∈ Rn×tS represents the stim-

ulation data after it has been ‘cleaned’ by the PWNP
method. The vector µS ∈ Rn×1 is the time average
of XS and 1 ∈ RtS×1 is a vector whose entries are
1, so that subtracting µS1T de-means XS. The pre-
whitening process is then completed by multiply-
ing the de-meaned data by the pre-whitening mat-

rixΣ
− 1

2
B ∈ Rn×n, which is estimated from the baseline

data. The columns of the null-projection matrix,H ∈
Rn×(n−d), are the pre-whitened data’s left singular
vectors that correspond to its lowest n− d singular
values, where d is the dimension of the artifact sub-
space. The artifact subspace dimension is equival-
ent to the number of singular values σ that satisfy
the criterion σ > α

√
tS − 1 (α> 1). This is modified

from the original criterionσ ≈
√

tS − 1 to account for
noise [38]. The reader is referred to appendix A for
a full derivation of this criterion. The pre-whitened
data are then null-projected (pre-multiplied by HT),
reconstructed (pre-multiplied by H), and re-colored

(pre-multiplied by Σ
1
2
B ). Finally the mean, µS, is

added back to the data.
To determine the optimal value of the threshold

multiplier α for each neural data set, we used the fol-
lowing procedure. First, the average power P̄ was cal-
culated for each channel as:

P̄ =
1

nf

ˆ f2

f1

PSD( f)df (2)

where PSD(f ) is the power spectral density, [f1, f2] is
the relevant frequency range, and nf is the number
of frequency points in that range. For the narrow-
band, 30 Hz, EEG stimulation, we used the frequency
range of [f1, f2] = [29,31]Hz. For the broad-spectrum
ECoG/MEA stimulation response, we used a fre-
quency range of [f1, f2] = [0, fs/2], where fs is the
sampling frequency. We then calculated P̄ for both
stimulation (Ps) and baseline (Pb) data and identified
a worst-case electrode as the electrode with the largest
average power difference (Ps − Pb). We subsequently
varied α= [1,αmax], where α= 1 is the theoretical
optimum and αmax is a conveniently chosen value at
which the artifact subspace collapses into an empty
set (d= 0). For each value of α within this range, we
removed the artifacts from the worst-case electrode
according to equation (1), and calculated its average
power Pclean

α . We then find the optimal value α̂ by:

α̂= argmin
α

|Pclean
α − Pb|, α ∈ [1,αmax]. (3)

Note that this procedure takes advantage of the fact
that the power difference between the baseline and
stimulation data is largely due to the presence of arti-
facts. Therefore, upon cleaning, we expect that Pclean

α̂

approaches Pb.

2.2.2. ICA artifact suppression procedure
To benchmark the artifact suppression performance
of the PWNP method, we compared it against an ICA-
based back-projection method. We used the FastICA
toolbox in MATLAB [42] to generate independent
components (ICs) for the EEG, ECoG, and MEA
data. Unlike the PWNP method, in which the arti-
fact subspace is readily identifiable due to rank-
sorting of components, the ICA method necessit-
ates a combinatorial search to identify the optimal
artifact subspace. Given the number of channels we
had in EEG, ECoG and MEA, it was not practical
to perform a full combinatorial search. Instead, we
used the following heuristic approach. Converged ICs
were inspected in the time and frequency domains
to identify components containing artifact features
(e.g. patterns occurring at the pulse train frequency,
power peaks occurring at the pulse train frequency
and super-harmonics [16, 18]). After the compon-
ents comprising the artifact subspace were identi-
fied and nulled, the cleaned data were obtained via
the back-projection method [43]. This procedure was
repeated by nulling various combinations of artifact
components until we achieved the best suppression
result, defined as the minimum average power differ-
ence between ICA-cleaned and baseline states on the
worst-case electrode.

2.3. Artifact suppression evaluation analyses
2.3.1. EEG artifact suppression evaluation
Using the procedures for PWNP (section 2.2.1) and
ICA (section 2.2.2), we cleaned the stimulation EEG
data of Subjects 1 and 2. Subsequently, we calcu-
lated the change in SNR and SIR due to artifact
suppression for both PWNP and ICA methods in
order to compare their performances. Due to the eyes
open/closed task, we expect to observe modulation in
the α band (8–12 Hz) [44]. To quantify this modula-
tion, we introduced a SNR-like metric, which com-
pares the separability of the eyes-open/eyes-closed
states. Specifically, we calculated SNR as a deflection
coefficient [45]:

SNR( f) = 10 log

√
(µc( f)−µo( f))2

0.5(σ2
c ( f)+σ2

o( f))
, f ∈ [8,12] Hz

(4)

where µc( f) and µo( f) represent the average power
in the α band over eyes-closed and eyes-open epochs,
respectively. Correspondingly, σ2

c ( f) and σ2
o( f) are

the eyes-closed and eyes-open power variances in the
α band. The overall SNR was then calculated as the
average of SNR(f ) over the α band.

To further compare suppression performances,
we also introduced a metric to represent the SIR.
This metric allowed us to evaluate the degree of stim-
ulation interference in comparison to the amount
of occipital α-band modulation. We calculated the
SIR as the ratio of the maximum average power in
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the α band to the maximum average power in the
interference band, which we chose to be 29–31 Hz
to capture the narrow-band, 30 Hz, sine stimulation
(equation (5)). We evaluated SIR during eyes-closed
segments to ensure that the occipital α waves were
present, i.e.:

SIR = 10 log

max
8⩽f⩽12

µc( f)

max
29⩽f⩽31

µc( f)
. (5)

For each channel, we calculated the SNR and SIR
before suppression and after application of either the
PWNP or ICA method. We then characterized the
suppression performance of each method by calcu-
lating ∆SNR and ∆SIR, respectively defined as the
change in SNR and SIR due to artifact suppression.
We expect that successful artifact suppression would
increase the SIR (∆SIR > 0) while not decreasing
SNR (∆SNR ⩾ 0). We subsequently used a signed
rank test to confirm whether SIR values across elec-
trodes were significantly different before and after
applying either suppression method. The same test
was also used to assess whether the∆SIR values across
electrodes were significantly different between the
two suppression methods. Finally, to visualize and
compare the suppression results spatially, the ∆SIR
values were color-coded and overlaid on a topograph-
ical EEG map.

2.3.2. ECoG artifact suppression evaluation
ECoG stimulation data were cleaned using the
PWNP and ICA methods described in sections 2.2.1
and 2.2.2, respectively. Unlike those in the EEG pro-
tocol, the subjects in the ECoG protocol did not per-
form any behavioral tasks, therefore an SNR could
not be defined as was done with the EEG data. Instead,
we evaluated the artifact suppression performance by
comparing the PSD of cleaned data to that of the
baseline. This approach is consistent with our pre-
vious assertion that most of the power differences
between stimulation and baseline data are due to arti-
facts (see section 2.2.1). For example, significant spec-
tral differences between cleaned and baseline data,
especially at the stimulation frequency and its super-
harmonics, would indicate inadequate suppression.
Conversely, more aggressive suppression could poten-
tially remove neural features in addition to artifacts,
resulting in ‘over-cleaning’. To control for this out-
come, we performed a baseline control experiment
where we applied both artifact suppression methods
to the baseline epoch. Since baseline data contain no
artifacts, we expect the baseline epoch to remain relat-
ively unaffected by this procedure. To visualize poten-
tial distortions due to either method of artifact sup-
pression, we compared the baseline epoch before and
after cleaning in the time and frequency domains. We

quantified the distortion in the time domain by cal-
culating the root-mean-squared error (RMSE):

RMSE =

√√√√1

n

n∑
i=1

(bi − ci)2 (6)

where n is the number of samples in the baseline
epoch time series, b is original baseline data and c is
the same data after suppression. These RMSE values
were then color-coded and mapped to images of the
ECoG grids to spatially visualize the effect of cleaning
over multiple electrodes. Additionally, time domain
data for a representative channel were shown before
and after the PWNP/ICA cleaning procedures. We
then visualized the effects of the cleaning procedures
in the frequency domain by plotting average PSDs of
baseline and cleaned epochs. A signed rank test was
then performed to determine whether the power dis-
tributions were significantly different across frequen-
cies. We note that the PWNP method may have an
unfair advantage in this comparison, as it was trained
using the baseline epoch. To control for this, we tested
the performance of both artifact suppression meth-
ods on an additional 100 baseline epochs, segmen-
ted from ECoG data occurring outside of stimula-
tion periods. These tests and their results are detailed
in appendix B.

We then examined the neural time series for
the stimulation, PWNP-cleaned, ICA-cleaned and
baseline conditions in order to assess the signal qual-
ity after artifact suppression. We next examined the
aforementioned conditions in the frequency domain
by calculating the PSD. We accomplished this by
splitting the epoch for each condition (stimula-
tion, PWNP-cleaned, ICA-cleaned, baseline) into ten
equal-length subsections, and then performing the
fast Fourier transform on each section to obtain their
PSDs. The average and standard deviation of these
PSDs were then calculated over the sections. We sub-
sequently plotted the PSDs for each condition for
the worst-case electrode, defined as in section 2.2.1.
This allowed us to observe the frequency domain fea-
tures introduced to the baseline PSD by the stimu-
lation. Additionally, these PSDs allowed us to assess
the reduction of artifact features by both suppression
methods.

Unlike EEG artifacts, which had a narrow-band
frequency response, ECoG artifacts had a broad-
band power distribution. As such, the SIR defined
by equation (5) could not be used, so we intro-
duced a separate SIR-like metric to quantify the
artifact suppression performance. As was described
in section 2.2.1, we expect the power distribution
of cleaned data to approach that of the baseline.
To quantify the separation between power distribu-
tions, we calculated a variant of the deflection coeffi-
cient [46], which we refer to as the interference index.

6
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Note that this is a general metric that is capable of
accounting for overlapping means and unequal vari-
ances [45]. For two power distributions a and b, the
interference index at frequency f is defined as:

I( f) =
1

2
log

σ2
t ( f)

σa( f)σb( f)
(7)

where σa( f) and σb( f) are the standard deviations
of PSDs for two conditions. Since the PSD sample
sizes for each condition are equal (n= 10, see previ-
ous paragraph), the total standard deviation, σt( f),
can be expressed as:

σ2
t ( f) =

σ2
a( f)+σ2

b( f)

2
+

[µa( f)−µt( f)]2

2

+
[µb( f)−µt( f)]2

2
(8)

where µa( f) and µb( f) are the means of the two PSDs
and µt( f) = 1

2 (µa( f)+µb( f)) is the total mean. We
first calculated the interference index between stim-
ulation and baseline conditions to serve as a positive
control (a = stimulation, b = baseline). Subsequently,
we calculated the interference index between the
cleaned and baseline conditions (a = cleaned,
b = baseline) to evaluate the effectiveness of each
artifact suppression method. Note that smaller arti-
fact interference will result in a lower value of I(f )
(inverse to SIR). Ideally, in the case where there are
no artifacts, the interference index will approach zero
(σa( f) = σb( f) and µa( f) = µb( f)). We then plotted
the interference indices for the stimulation, PWNP-
cleaned, and ICA-cleaned conditions for the worst-
case electrode.

We further qualified each interference index by
performing a rank-sum test to identify frequencies
with power distributions different than those of the
baseline condition. These significant interference fre-
quencies were then marked on the interference index
plots. We expect the superior suppression method to
result in fewer significant interference frequencies. As
a positive control, we also calculated the number of
significant interference frequencies in the stimulation
data.

We additionally characterized the suppression
results by calculating the interference indices for all
electrodes in the grid between different conditions
for each ECoG electrode. Specifically, we first cal-
culated the interference index between the stimu-
lation and baseline conditions as a positive con-
trol. Subsequently, we calculated the interference
indices between the cleaned and baseline conditions
to quantify the residual artifact for both artifact sup-
pression methods. We then used a signed rank test
to establish the statistical significance of these res-
ults across all electrodes. Subsequently, we used the
same test to compare the performances of PWNP
and ICA interference indices. To visualize the distri-
bution of residual artifacts, we spatially interpolated,

color-coded, and mapped the interference indices
onto MR-CT co-registered images. For both sub-
jects, we used pre-implantation MR images and post-
implantation CT images to co-register ECoG grids
onto a 3D brain rendering. We followed the same co-
registration process outlined in [18].

Finally, since clinically obtained stimulation data
by definition has no ground truth, we sought to
simulate artifact data wherein the underlying neural
signals are known. Therefore, we extracted artifacts
from the stimulation epoch, and overlaid the aver-
age artifact waveforms onto the 100 baseline epochs
(as explained above). We then applied the artifact
suppression methods to these simulated data, and
compared the results to the ground truth signals to
quantify the performance in the time and frequency
domains (see appendix B).

2.3.3. MEA artifact suppression evaluation
MEA stimulation data were cleaned using the
PWNP and ICA methods described in sections 2.2.1
and 2.2.2, respectively. Similar to the ECoG protocol,
the subject in the MEA protocol did not perform any
behavioral tasks, therefore we evaluated the artifact
suppression performance by comparing the PSD of
cleaned data to that of the baseline. To rule out ‘over-
cleaning’, we again performed baseline control exper-
iments and compared the baseline epoch before and
after cleaning in the time domain (RMSE) and fre-
quency domain (PSD). Similar to the ECoG data, we
tested the performance of both artifact suppression
methods on an additional 100 baseline epochs, seg-
mented from MEA data occurring outside of stimula-
tion periods. These tests and their results are detailed
in appendix C.

We then examined the MEA time series for
the stimulation, PWNP-cleaned, ICA-cleaned and
baseline conditions in order to assess the signal qual-
ity after artifact suppression. Similarly to the ECoG
data, these conditions were analyzed in the frequency
domain for the worst-case electrode. Specifically, we
calculated the PSDs and interference indices across
these conditions to account for the broadband nature
of the MEA stimulation artifacts. We also used the
rank-sum test to identify those frequencies exhibiting
significantly different power distributions between
the baseline and cleaned data.

To characterize the artifact suppression results
beyond the worst-case electrode, we calculated the
frequency-averaged interference index for each non-
saturated electrode of the MEA. These interference
indices were then spatially interpolated, color-coded
and mapped onto the coordinates of the MEA super-
imposed onto a 3D brain render. Note that for Subject
5, brain images were not available. Instead, the loca-
tion of the MEA was estimated based on photographs
of the implantation location taken during surgery and
aligned to a template brain using anatomical land-
marks. To compare the significance of these results
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across all electrodes and between PWNP and ICA, we
used a signed rank test to establish the statistical sig-
nificance between conditions across all electrodes.

Finally, in the absence of a behavioral task in the
MEA protocol, we wanted to evaluate the ability of
both artifact suppression methods to retain action
potentials in the MEA data. Specifically, we identi-
fied an electrode exhibiting action potentials during
the baseline condition. We then counted the number
of action potentials occurring during the stimulation
epochs for that electrode. After artifact suppression,
we calculated the fraction of retained action poten-
tials for both the PWNP-cleaned and ICA-cleaned
data.

3. Results

3.1. EEG artifact suppression results
Artifact suppression results for EEG data showed that
both methods successfully attenuated the artifacts,
as evidenced by SIR improvements, while preserving
the SNR. Using the PWNP method, we estimated
the dimension of the artifact subspace to be four
(d= 4, α̂= 2.9) for Subject 1 and d= 7 (α̂= 1.2)
for Subject 2. For the ICA method, 3 of 19 con-
verged components were identified as artifact com-
ponents for Subject 1, and 3 of 15 were identified
for Subject 2. The components comprising the arti-
fact subspace in PWNP and the artifact components
in ICA all contained significant power at the stimu-
lation frequency (30 Hz). Figure 3 shows the change
in the SNR (equation (4)) and SIR (equation (5))
after applying each artifact suppression technique.
As expected, both methods resulted in SIR improve-
ments that were statistically significant (a paired,
right-tailed, signed rank test; Subject 1, p = 0.00007
for both methods; Subject 2, p = 0.00007 for both
methods). Comparing between methods, the ∆SIR
was greater for the PWNP method than for the
ICA method for both subjects. For example, for
Subject 1, the best channel (C3) exhibited a ∆SIR of
47.2 dB for PWNP compared to 41.1 dB for ICA (see
table 1). This table also shows the summary statist-
ics for ∆SIR and ∆SNR across all 19 channels for
both subjects. Comparing the median ∆SIR values
between suppression methods, PWNP outperformed
ICA by 7.04 dB in Subject 1 and 10.84 dB in Subject
2. Furthermore, these performance improvements
were statistically significant for both subjects (paired,
right-tailed, signed rank test; Subject 1, p = 0.00201;
Subject 2, p = 0.00016). The spatial distribution
of ∆SIR (figure 4) further highlights these results.
Additionally, PWNP appeared to be the most effective
on those electrodes closest to the stimulation chan-
nel, which were the most severely affected by artifacts.
In comparison to the SIR changes, SNR changes were
generally small (<1 dB). Statistical analysis showed
that the SNR improvement after PWNP was statist-
ically significant for Subject 1 (paired, right-tailed,

signed rank test; p = 0.00258), but not for Subject
2 (p = 0.14312). For ICA, both subjects had stat-
istically significant improvement in SNR (Subject 1,
p = 0.00530; Subject 2, p = 0.00136). Note that SNR
improvements are not the primary objective of arti-
fact suppression.

3.2. ECoG artifact suppression results
Like with EEG data, both methods were able to
remove artifacts in the ECoG stimulation data. For
the PWNP algorithm, we estimated the artifact
dimension to be d= 12 (α̂= 1.1) for Subject 3 and
d= 11 (α̂= 1.1) for Subject 4. For the ICA proced-
ure, 10 of 18 components were identified as artifact
components for Subject 3, while 11 of 15 were iden-
tified for Subject 4. The components comprising the
artifact subspace in PWNP and the artifact compon-
ents in ICA were nulled as explained in sections 2.2.1
and 2.2.2, respectively.

ECoG signals exhibited prominent artifacts dur-
ing stimulation. Figure 5(A) shows a representat-
ive segment of a stimulation epoch to illustrate this
phenomenon. Despite their broadband nature, these
artifacts were substantially reduced by both PWNP
and ICA methods, examples of which are shown in
figures 5(B) and (C), respectively. Generally, the sig-
nal amplitudes upon cleaning were more similar to
those of baseline data (figure 5(D)).

To illustrate the effectiveness of artifact suppres-
sion in the frequency domain, figure 6 shows example
PSDs before and after cleaning from the worst-case
electrodes. Unsurprisingly, these were the electrodes
closest to the stimulation channel that were co-linear
with the moment of the stimulation dipole [16,
18]. In comparison to the baseline data, stimulation
PSDs exhibited peaks at the stimulation frequency
(50 Hz) and its super-harmonics, as well as a broad-
band increase. Upon artifact suppression, these arti-
fact features were largely reduced and the PSDs were
brought closer to the baseline. Furthermore, the PSDs
of PWNP-cleaned data were generally closer to the
baseline in comparison to their ICA counterparts.

The interference index of the stimulation data
exhibited peak values at the stimulation frequency
(50 Hz) and its super-harmonics, similarly to stim-
ulation data PSDs. Figure 7 illustrates this effect for
the worst-case electrode. These peaks were largely
removed after artifact suppression, with the PWNP
method outperforming ICA. This was evidenced by
PWNP achieving lower interference index values
compared to ICA. Summary statistics for these results
are given in table 2. Moreover, PWNP-cleaned data
had fewer frequencies with significant residual inter-
ference compared to ICA-cleaned data (rank-sum test
p< 0.01).

To demonstrate the effectiveness of artifact
suppression methods beyond the worst-case elec-
trode, we spatially mapped the interference indices
(figure 8). As expected, the map corresponding to the
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Figure 3. Plots of the change in SIR and SNR values upon applying PWNP/ICA artifact suppression techniques for the EEG data
for Subjects 1 and 2. Each color corresponds to a different EEG channel. The median (∆SIR, ∆SNR) point across electrodes is
indicated on each plot by a ‘+’. The SIR improved significantly for both subjects, with the PWNP method outperforming the ICA
method. Both methods preserved the SNR, as evidenced by median ∆SNR≈0. A numerical summary of these results is provided
in table 1.

Table 1. Change in SIR and SNR after suppressing artifacts in EEG data for Subjects 1 and 2. The maximum ∆SIR and ∆SNR
correspond to the electrodes that exhibited the largest SIR and SNR change upon artifact suppression. The median ∆SIR and ∆SNR are
also reported with the median absolute deviation (MAD).

Subject 1 Subject 2

(dB) PWNP ICA PWNP ICA

max(∆SIR) 47.20 41.10 43.08 35.20
max(∆SNR) 4.41 3.51 5.13 7.75
median(∆SIR) 34.22± 9.02 27.18± 8.34 31.79± 7.85 20.95± 7.04
median(∆SNR) 0.18± 1.02 0.59± 0.84 -0.03± 1.49 0.34± 1.91
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Figure 4.Maps of ∆SIR for both subjects for the PWNP-cleaned (A), (C) and ICA-cleaned (B), (D) data. Black square (reference
electrode), black circles (stimulation electrodes). PWNP outperforms ICA for both subjects, with the most substantial
suppression occurring on the most contaminated channels (C3, Cz, C4). Hot/cold spots away from electrodes are spatial
interpolation artifacts due to sparse electrode coverage.

stimulation data exhibited the highest values, espe-
cially in the vicinity of the stimulation channel. Both
artifact suppression methods effectively reduced the
interference indices across electrodes. Specifically,
the interference indices upon PWNP suppression
became significantly smaller (paired, left-tailed,
signed rank test: Subject 3, p = 4.8× 10−5; Subject 4,
p = 1.1× 10−4). Similar behavior was observed after
ICA suppression as well (Subject 3, p = 4.8× 10−5;
Subject 4, p = 1.1× 10−4). Consistent with our
worst-case electrode analyses, we observed that
PWNP generally outperformed ICA, particularly
on the electrodes closest to the stimulation channel.
Specifically, the PWNP method yielded lower inter-
ference indices across electrodes (paired, left-tailed

signed rank test; Subject 3: p = 0.010495; Subject 4:
p = 0.000994).

Figure 9 shows the results for the baseline control
experiment. Since baseline data contained no arti-
facts, we expect artifact suppression methods to yield
small RMSE values between baseline and artifact-
suppressed baseline data. For PWNP, the average
RMSE value across electrodes was 15.3± 2.3µV,
which accounted for only 6% of the pre-cleaning
baseline voltage swing (256µV). In contrast, approx-
imately four times higher RMSE values were obtained
with the ICA method (68.8± 27.4µV), suggesting
that it imposed more significant signal distortions.
To visualize these distortions, figure 9 also shows
time domain baseline signals for a representative
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Figure 5. Representative ECoG time series from 18 channels of the right temporal grid (RTG) of Subject 3 (see figure 1). The
stimulation channel (RTG14-15) is omitted due to saturation. (A) One-second segment from the stimulation epoch. (B) Same
segment after PWNP artifact suppression. (C) Same segment after ICA artifact suppression. (D) One-second segment from a
baseline epoch occurring immediately before the stimulation epoch. Note that the stimulation data is shown at an eighth of the
scale of the others.

Figure 6. PSDs of ECoG signals under four different conditions from a worst-case electrode from both subjects (RTG13 for
Subject 3 and LFG13 for Subject 4, cf figure 1). Solid lines represent the PSD averages taken over ten subsections and shades
represent corresponding one standard deviation bounds.

electrode before and after artifact suppression. We
selected the representative electrode as the electrode
exhibiting the RMSE closest to the median RMSE
across the grid. As evidenced by these examples,
the PWNP method introduced much less distor-
tion in the time domain compared to the ICA

method. We additionally characterized these post-
suppression baseline distortions in the frequency
domain. Comparing the PSDs before and after arti-
fact suppression (signed rank test, p < 0.01), we iden-
tified no frequencies exhibiting significantly different
power distributions after PWNP artifact suppression,
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Figure 7. Interference indices calculated for worst-case electrodes from both subjects. Filled-circle markers indicate frequencies
with significant interference, as determined by rank-sum test (p< 0.01). The PWNP method achieved superior suppression
results, as it generally resulted in lower interference indices, as well as fewer frequencies with significant residual interference.

Table 2. Frequency-averaged interference indices, Ī, (see equation (7)) and corresponding standard deviation, σI , for stimulation,
PWNP-cleaned and ICA-cleaned conditions for worst-case electrode in ECoG data.

Subject 3 Subject 4

Stim. PWNP ICA Stim. PWNP ICA

Ī 0.399 0.089 0.108 0.403 0.080 0.199
σI 0.318 0.102 0.140 0.320 0.100 0.121

while 6 (out of 129) frequencies were identified for
ICA. The PWNP method may have benefited over the
ICA method from the fact that the baseline data epoch
in this control experiment had been used to calculate

the pre-whitening matrix, Σ
− 1

2
B , (see equation (1)).

To rule this out, we performed control experiments
on additional baseline epochs (appendix B), while
retaining the same PWNP and ICA parameters.
Specifically, we found that PWNP yielded an average
RMSE that accounted for only 5.5% of the baseline
voltage swings. The distortions due to ICA were three
times as high, with the average RMSE value reach-
ing 16.5% of the baseline voltage swing. In the fre-
quency domain, we found that PWNP on average
yielded 1.9% of frequencies with significantly differ-
ent power distribution compared to 43.6% of the
frequencies yielded by ICA. For a detailed account
of these results and supporting figures, the reader is
referred to appendix B.

The advantages of the PWNP artifact suppression
method over its ICA counterpart were retained with
the simulated artifact data. Specifically, upon PWNP
artifact suppression, the residual signals generated an
average RMSE accounting for 5.6% of the baseline

voltage range. Similarly to the baseline control exper-
iments, the average distortions due to ICA were
three times as high (16.7%). Furthermore, PWNP
on average yielded 4.5% of frequencies with power
distribution significantly different from those of the
corresponding ground truth signals. For ICA, this
fraction was 46.5%, which is also in line with the
baseline control experiments. Appendix B provides a
detailed account of these results.

3.3. MEA data artifact suppression results
Artifact suppression evaluation for the MEA data
yielded similar results as for ECoG data, with the
PWNP method generally demonstrating superior
suppression results. After excluding saturated elec-
trodes (artifact amplitudes exceeding 8.7 mV) from
both MEAs, we used data from the remaining 54
channels (cf figure 2) to train the PWNP and ICA
algorithms. For the PWNP method, we estimated the
artifact subspace dimension to be d= 33 (α̂= 1.2).
For the ICA method, we identified 49 ICs as artifacts
(out of 54 converged components). The artifact sub-
space in PWNP and the artifact components in ICA
were nulled as explained in sections 2.2.1 and 2.2.2,
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Figure 8. Frequency-averaged interference indices (equation (7)) were spatially interpolated, color-coded and mapped to cortical
surfaces. For the saturated stimulation electrodes (white), the values were imputed to the highest value in the map to preserve the
continuity of the interpolation. (A), (B) Interference indices for stimulation data. (C), (D) Interference indices for PWNP-cleaned
data. (E), (F) Interference indices for ICA-cleaned data. Note that the stimulation electrodes were saturated, so their value was
imputed to the highest in the grid to preserve interpolation continuity.

respectively. Since most of the electrodes on MEA1
were saturated, we focus on results from MEA2.

Figure 10 shows a representative segment of
the stimulation data from the worst-case electrode
on MEA2. Evidently, neural signals were domin-
ated by extremely strong artifacts, whose amplitudes
exceeded those of baseline signals by as much as two
orders of magnitude. This is in contrast to the ECoG
artifacts, which were generally an order of magnitude
larger than the corresponding baseline signals (see
figure 5). Despite their large amplitude and broad-
band power distribution, these artifacts were still sub-
stantially reduced by both PWNP and ICA methods,
bringing the signal amplitudes closer to those of the
baseline data.

Figure 11 shows these representative signals in
the frequency domain. The stimulation data PSDs
exhibited a broadband increase, as well as peaks at
the stimulation pulse train frequency (294 Hz) and
its super-harmonics (589 Hz, 883 Hz, 1178 Hz, etc).
Note that these frequencies were rounded to the
nearest whole number due to the 1 Hz frequency res-
olution of the PSD. Both PWNP and ICA reduced
the artifact-related spectral features in the stimulation
data and brought the resulting PSDs closer to those of
the baseline data. However, PWNP appeared to out-
perform ICA as it produced data with less residual
artifact.

The interference index of the stimulation data
exhibited peaks at the stimulation frequency (294 Hz)
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Figure 9. Baseline control experiment results for PWNP (Left) and ICA (Right) methods. (Top) RMSE values (equation (6))
spatially interpolated, color-coded, and mapped to MR-CT co-registered images of the ECoG grids from Subject 4. Color bar
range is from 0µV to 256µV (maximum absolute voltage of the baseline data). (Middle) Representative baseline time domain
examples before and after artifact suppression (Bottom) Representative frequency domain examples (mean PSD) from the same
electrode before/after artifact suppression. Dashed lines indicate frequencies where the power distribution significantly differed
before and after artifact suppression (signed rank test, p< 0.01).

and its super-harmonics, similar to their PSD.
Figure 12 illustrates this phenomenon for the worst-
case electrode. Both artifact suppression methods
reduced the artifact peaks, with PWNP generally
outperforming ICA. This was evidenced by PWNP
achieving lower overall interference index values, for
which summary statistics are shown in table 3. PWNP
also yielded signals with fewer significant residual
interference frequencies in comparison to ICA (rank-
sum test, p < 0.01). These advantages were especially
evident in the local field potential range (0–500 Hz).

To visualize the effectiveness of artifact sup-
pression methods for the whole MEA, we spatially
mapped the interference indices (figure 13). Similar

to the ECoG results, the map corresponding to
the stimulation data exhibited the highest values.
Likewise, upon artifact suppression, these map values
were significantly reduced (paired, left-tailed, signed
rank test; PWNP, p = 8.4× 10−11; ICA, p = 8.4×
10−11). Consistent with our worst-case electrode ana-
lyses, we observed that PWNP outperformed ICA.
Specifically, the PWNP method achieved lower inter-
ference indices across electrodes (paired, left-tailed,
signed rank test, p = 0.000131).

Figure 14 shows the results of the baseline con-
trol experiment. As with the ECoG experiments,
we expect artifact suppression methods to yield
small RMSE values. The average RMSE value across
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Figure 10. (Top) A representative 50 ms segment of the stimulation epoch from the worst-case electrode on MEA2, along with the
same data after artifact suppression. To preserve the scale, the stimulation data have been de-meaned and truncated. (Bottom) A
duration-matched baseline segment immediately preceding the stimulation data.

Figure 11. PSDs of signals under four different conditions from the worst-case electrode (electrode 73) of MEA2. Solid lines
represent the PSD averages taken over ten stimulation epochs and shades represent corresponding one standard deviation
bounds. (Top) Full PSD. (Bottom) Same PSD, zoomed to local field potential frequency range.
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Figure 12. Interference index for the worst-case electrode from MEA2. Solid-colored lines are the interference index for the
stimulation, ICA-cleaned, and PWNP-cleaned conditions. Filled-circle markers indicate frequencies where power distributions
are significantly different from the baseline condition (rank-sum test, p< 0.01). PWNP generally exhibited lower interference
indices, as well as fewer frequencies with significant residual interference. (Top) Full bandwidth. (Bottom) Zoomed to local field
potential bandwidth
(0–500 Hz).

Table 3. Frequency-averaged interference indices, Ī, and corresponding standard deviations, σI , for stimulation, PWNP-cleaned, and
ICA-cleaned conditions for worst-case electrode in MEA data.

Subject 5

Stim PWNP ICA

Ī 0.292 0.045 0.089
σI 0.253 0.052 0.071

Figure 13. Interference indices spatially interpolated, color-coded and mapped to estimated MEA2 locations. (A) Interference
indices for stimulation data. (B) Interference indices for PWNP-cleaned data. (C) Interference indices for ICA-cleaned data. Note
that electrodes 51 and 62 were saturated, so their values were imputed to the highest in the grid to preserve the interpolation
continuity.

electrodes was 17.4± 2.6µV for the PWNP method,
which is approximately 5.4% of the pre-cleaning
baseline voltage swing (325µV). The ICA method,

on the other hand, yielded much larger RMSE val-
ues (40.9± 15.5µV), and in turn, more significant
signal distortions. Figure 14 shows time domain
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Figure 14. Baseline control experiment results for PWNP (Left) and ICA (Right) methods. (Top) RMSE values spatially
interpolated, color-coded, and mapped to estimated MEA2 electrode locations. Color bar range is from 0µV to 325µV
(maximum absolute voltage of the baseline data). (Middle) Representative baseline time domain examples before and after
artifact suppression. (Bottom) Representative frequency domain examples (mean PSD, zoomed to local field potential band,
0–500 Hz) from the same electrode before/after artifact suppression. Dashed lines indicate frequencies where the power
distribution significantly differed before and after artifact suppression (signed rank test, p< 0.01).

distortions for representative baseline signals after
artifact suppression. These representative sig-
nals were taken from the electrode exhibiting the
RMSE closest to the median RMSE across the
grid. Similar to the ECoG experiments, the dis-
tortions introduced by PWNP were less prom-
inent than those introduced by ICA. We also
characterized these post-suppression baseline dis-
tortions in the frequency domain. Specifically, by
comparing the PSDs before and after artifact sup-
pression (signed rank test, p< 0.01), we identified
162/15 000 (1.1%) frequencies exhibiting signific-
antly different power distributions after PWNP arti-
fact suppression. In contrast, 1153/15 000 (7.7%)

frequencies were identified for ICA. To avoid poten-
tial performance bias towards the PWNP method,
we performed control experiments on additional
baseline epochs (appendix C), while retaining the
same PWNP and ICA parameters (same procedure
as ECoG baseline experiments). After averaging per-
formances across 100 baseline epochs, we found that
PWNP yielded an RMSE that accounted for only
4.9% of the baseline voltage swing. The distortions
due to ICA were twice times as high, with the average
RMSE value reaching 9.5% of the baseline voltage
swing. These advantages were preserved in the fre-
quency domain, where we found that PWNP on aver-
age yielded 13.0% of frequencies with significantly
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Figure 15. An example of action potentials in MEA data before and after application of PWNP and ICA methods. (A) Baseline
data from an electrode exhibiting spontaneous action potentials (outlined in black). (B) Stimulation and PWNP-cleaned data
from the same electrode. Stimulation artifacts reached ∼3 mV amplitudes but have been truncated to preserve scale. (C) The
same data segment as in (B), comparing the PWNP-cleaned and ICA-cleaned conditions.

different power distribution compared to 28.2% of
the frequencies yielded by ICA. The reader is referred
to appendix C for more information regarding these
results.

3.4. Action potential recovery inMEA stimulation
data
In the absence of stimulation data containing con-
trolled behavioral tasks, we sought evidence for the
PWNP method’s ability to preserve neural features
in recorded data. To this end, we observed stimula-
tion data from an electrode containing action poten-
tials (Electrode 59) before and after artifact suppres-
sion. Across the ten stimulation epochs a total of 135
action potentials were visually identified among the
stimulation artifacts. The representative time domain
data segments shown in figure 15 demonstrate the
ability of PWNP and ICA methods to selectively sup-
press the stimulation artifacts while preserving action

potentials. Both techniques had a 100% retrieval rate
of the observed action potentials.

4. Discussion

In EEG data contaminated with narrow-band arti-
facts, PWNP achieved substantial artifact sup-
pression (expressed as SIR) while preserving the
underlying α-band modulation (expressed as SNR).
Specifically, PWNP effectively improved the SIR by
a median of 32–34 dB, while preserving the SNR
(|∆SNR|⩽0.18 dB). Artifact suppression as high as
44–47 dB was achieved on electrodes adjacent to the
stimulation channel (C3 for Subject 1 and Cz for
Subject 2). Compared to ICA, PWNP achieved super-
ior artifact suppression results, and these differences
were statistically significant for both subjects. On the
other hand, ICA yielded slightly higher SNR improve-
ments (|∆SNR|⩽ 0.59 dB), which is not surprising
given ICA’s ability to extract neural sources [47, 48].
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However, the primary objective of artifact suppres-
sion is SIR maximization, and we only used SNR
to measure whether artifact suppression comprom-
ised physiological information. If the objective is
SNR maximization, we contend that artifact sup-
pression should be followed by more appropriate
SNR-enhancing methods, like supervised learning
techniques [49].

Extending our analysis to broadband ECoG arti-
facts, we observed that PWNP retained the ability
to suppress artifact features. Specifically, on worst-
case electrodes, PWNP achieved a reduction of broad-
band artifact features, as indicated by a decrease of
the frequency-averaged interference index by 0.31–
0.32. Similarly, at the fundamental stimulation fre-
quency and its super-harmonics, interference indices
were reduced by as much as 1.08–1.58. Additionally,
upon PWNP artifact suppression, the fraction of fre-
quencies with significant residual artifact contamin-
ation was reduced from 108/129 (84%) to 27.5/129
(22%), averaged across Subjects 3 and 4. Our res-
ults generalize beyond the worst-case electrode, as
we observed the reduction in interference indices
across the whole grid. Similar to the EEG results, the
electrodes in the vicinity of the stimulation chan-
nel benefited the most from PWNP. On the other
hand, given that baseline data do not contain artifacts,
we expect them to be unaffected by artifact suppres-
sion. Therefore, we performed baseline control exper-
iments and demonstrated that the PWNP method did
not impose severe distortions on these signals. On
average, <2% of the baseline signal frequencies were
significantly affected by PWNP. These spectral dif-
ferences translated into 5.5% distortion in the time
domain. Similar results were obtained by applying
PWNP to simulated artifact data, where on average
4.5% of the frequencies had significantly different
power from those of the ground truth, with the cor-
responding time-domain distortions of 5.6%. When
these analyses were performed with ICA, the sup-
pression results were inferior. Specifically, broadband
suppression resulted in frequency-averaged interfer-
ence index reductions of only 0.20–0.29 at the worst-
case electrode, with reductions as high as 0.69–1.36 at
the stimulation frequency and super-harmonics. ICA
suppression also yielded 66.5/129 (52%) frequen-
cies with significant residual artifact contamination,
averaged across the two subjects. The ICA method
also caused more distortion to the baseline data,
with an average time-domain distortion of 16.5%
and 43.6% of frequencies with significantly differ-
ent power distributions. The ICA performance drop
was also apparent in simulated artifact data, where
on average 46.5% of the frequencies had signific-
antly different power from those of the ground truth,
with the corresponding time-domain distortions of
16.7%. Collectively, these results show that PWNP

outperforms ICA on artifact-contaminated ECoG,
and does so without imposing significant distortion
onto the baseline signals.

Repeating the above analyses, we also demon-
strated the ability of PWNP to suppress broad-
band artifacts in MEA data. For a worst-case elec-
trode, PWNP artifact suppression achieved a reduc-
tion of the frequency-averaged interference index
of 0.25. Particularly, the reductions at the stimu-
lation frequency and super-harmonics ranged from
0.23 to 1.37. We also observed a decrease of the
fraction of artifact-contaminated frequencies from
11 112/15 000 (74%) to 934/15 000 (6%). These
worst-case electrode results generalize, as we observed
a significant reduction in interference indices across
the whole MEA. It is worth noting that PWNP
suppressed artifacts while preserving 100% of the
action potentials observed in the stimulation data.
For baseline control experiments, an average of 13.0%
of the baseline signal frequencies were significantly
affected by PWNP. These spectral differences trans-
lated into 4.9% distortion in the time domain. In
contrast, ICA yielded 4957/15 000 (33%) frequen-
cies with significant residual artifacts for the worst-
case electrode. ICA broadband suppression achieved
a frequency-averaged interference index reduction of
0.20, with reductions of 0.16–1.17 at the stimula-
tion frequency and super-harmonics. The baseline
control experiments also indicated that ICA altered
the underlying neural signals, with an average time-
domain distortion 9.5%, which translated to 28.2%
of frequencies with significant power distribution dif-
ference. ICA did, however preserve the action poten-
tial features, similarly to PWNP. Overall, PWNP again
outperformed ICA according to multiple perform-
ance criteria.

In addition to its superior performance, PWNP is
also simpler and easier to implement. Specifically, it
takes advantage of stimulation artifacts being much
stronger than neural signals. This enables PWNP to
group these high-energy features into the top com-
ponents, thereby easing the identification of the arti-
fact subspace, as outlined in appendix A. In many
practical applications, the amplitude of stimulation
artifacts can be orders of magnitude larger than those
of neural sources. For example, for a typical ECoG
stimulation at 3.5 mA [10, 11] and a channel imped-
ance of 1 kΩ [50], artifacts may reach an amplitude
of 3.5 V at the stimulation channel. Based on typ-
ical voltages of ECoG signals (cf figure 9), it follows
that artifacts may need an attenuation of >80 dB to
bring their amplitude to or below the level of neural
signals. This problem is exacerbated by the proxim-
ity of motor and sensory cortices (primary targets for
BD-BCI applications), where the artifact attenuation
due to tissue volume conduction is insufficient. For
example, our prior work demonstrates that artifacts
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that are an order of magnitude higher than ECoG sig-
nals are found within ∼2 cm of a stimulation chan-
nel for a range of stimulation amplitudes [18]. State-
of-the-art, front-end artifact suppression techniques
may alleviate this problem, but they typically provide
30–40 dB of attenuation [22, 24]. Therefore, it is likely
that the assumptions set forth by PWNP remain ful-
filled, even with artifact suppression at the front-end.
In theory, as long as the magnitudes of stimulation
artifacts exceed those of neural sources, the PWNP
method is expected to work (see appendix A). In the
unlikely situation where artifacts are comparable to or
weaker than neural signals, the PWNP method may
fail to separate the two subspaces. In this case, how-
ever, the presence of artifacts may not be a concern
given their low amplitude.

In contrast to PWNP, ICA returns unsorted com-
ponents, thus necessitating a heuristic approach to
identify the components that span the artifact sub-
space. This problem is akin to feature selection in
pattern recognition theory [51]. While there are
algorithmic approaches that guarantee the optimal
solution [52], they are nonetheless of combinator-
ial complexity. This problem is typically tackled by
rank-ordering features according to certain criteria
and selecting a subset of features from this list [51],
as we have done here by ordering ICs according to
SIR. Note, however, that this approach may be sub-
optimal [53], in that a combination of components
exhibiting the lowest SIRs is not guaranteed to achieve
the optimal artifact suppression result.

Additionally, since ICA-based artifact suppres-
sion imposed significant distortions on artifact-free
baseline data, we infer that the removed ICs contained
both neural and artifact features. To investigate this
trade-off, we also performed a perturbation analysis
on the number of artifact ICs by adding or remov-
ing individual components. Specifically, the set of
artifact components was either reduced by removing
components or augmented by adding putative artifact
components. This analysis indicated that baseline dis-
tortions could be mitigated by discarding fewer ICs, at
the expense of inferior artifact rejection. Conversely,
augmenting the set artifact ICs achieved superior arti-
fact suppression while resulting in more severe distor-
tions. An apparent example of this was observed in
the MEA data, where an attempt to improve the arti-
fact suppression resulted in the loss of action poten-
tial features. A likely cause of these phenomena is
that broadband artifacts and neural signals may not
be independent of each other. Therefore, many com-
ponents identified by ICA end up containing a mix-
ture of artifact and neural features. By suppressing
these ICs, some of the neural features are invari-
ably lost. On the other hand, leaving them in fails to
suppress artifact features. Conversely, PWNP is not
constrained by the stringent independence require-
ment. Instead, it alleviates these issues by rank-

ordering its components using energy and separat-
ing neural and artifact subspaces based on a single,
theoretically-justified threshold α, as explained in
appendix A.

Unlike the EEG data, which had a labeled beha-
vioral task, ECoG and MEA data did not. This lim-
itation was imposed by the nature of the ECoG and
MEA data collection. Specifically, ECoG data were
collected as a part of Phase II epilepsy evaluation,
where it was neither justified nor practical to interfere
with the clinical procedure. On the other hand, MEA
data were collected as a part of a sensory mapping
task [12], which solely focused on sensory responses.
To address this concern, we verified that artifact sup-
pression did not remove neural features from ECoG
and MEA data by performing extensive baseline con-
trol experiments. Using ECoG data, we also generated
synthetic stimulation artifacts while preserving the
spatio-temporal correlations in the original signals.
We then quantified the performance of artifact sup-
pression against the ground truth. We also demon-
strated that action potentials were largely unaffected
by artifact suppression in the MEA data.

To demonstrate that our results generalize to real-
time operation, both PWNP and ICA artifact sup-
pression methods should ideally be tested within
a cross-validation framework. While this could be
easily implemented in PWNP using standard lin-
ear algebra tools, this procedure would be prohib-
itively time-consuming to perform in ICA due to
its reliance on a heuristic combinatorial search. Our
baseline control and simulated artifact experiments
(appendix B) demonstrate some generalization cap-
abilities of PWNP, although not in a true cross-
validation manner. Therefore, our future work will
test the ability of PWNP to suppress stimulation arti-
facts in real time. It should be noted that PWNP
is amenable to efficient real-time implementation as
explained below. To train the algorithm, one would
collect short data segments during both baseline
(stimulator off) and stimulation (stimulator on) con-
ditions. These epochs do not need to be contiguous
and they do not need to be of the same duration. From
these data, the matrices ΣB and H can be estimated
offline (following the steps in appendix A) and saved
for real-time application. In the present study, a total
of 10 s, 20 s and 120 s of data was sufficient to train
these parameters for the ECoG, MEA, and EEG sig-
nals, respectively. The real-time artifact suppression
then reduces to matrix multiplications (equation (1)),
with XS being the most recently acquired real-time
data buffer. Being a purely spatial signal processing
method, PWNP is independent of the buffer size.
Since PWNP does not impose substantial distortions
to artifact-free data, it could be added to the stand-
ard data acquisition pipeline. Alternatively, it could be
synchronized with the stimulator and switched on/off
accordingly.
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5. Conclusion

In this work, we present a novel stimulation artifact
suppression algorithm based on PWNP techniques.
We demonstrate its effectiveness in suppressing vari-
ous types of stimulation artifacts across a variety of
neural signals, including EEG, ECoG and MEA data.
When compared to an ICA-based method, considered
to be the state-of-the-art, PWNP generally demon-
strated superior artifact suppression results. In con-
junction with a straightforward real-time implement-
ation, these results suggest that the PWNP algorithm
is a suitable method for real-time artifact suppression
in BD-BCI.
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Appendix A. Null projection for artifact
suppression

During stimulation, the measurements from n
sensors can be modeled as:

XS = ASSS +ANSN +N (A.1)

where SS ∈ Rd×tS are the time-dependent moment
magnitudes of d equivalent stimulation dipoles
(d< n), SN ∈ Rs×tS are the activities of s neural
sources, andN ∈ Rn×tS is background noise [40]. The
columns of AS ∈ Rn×d and AN ∈ Rn×s are the lead
field vectors of the stimulation dipoles and neural
sources, respectively.

If the stimulation dipoles are the strongest com-
ponent in (A.1) most of the energy of XS will be
contained in a d-dimensional subspace spanned by
the columns of AS. This assumption holds in most
practical applications, as the amplitude of artifacts
caused by stimulation dipoles are typically orders of
magnitude larger than those of neural sources. The
stimulation artifacts can then be suppressed by null

projection [40], i.e. by projecting XS to the ortho-
gonal complement of this artifact subspace. The arti-
fact suppression process may be hindered by strong
spatial correlations present in the artifact-free signal
ANSN +N. These correlations may be caused by the
physical proximity of individual sensors and the cor-
related nature of background noise.

To remove these correlations, we employ the
so-called dual-condition experimental design [54],
where we also collect data while the stimulator is
turned off (baseline state):

XB = ANSN +N. (A.2)

To improve the SNR and accuracy of an arti-
fact subspace estimate [41], we calculate the pre-

whitening matrix from the baseline data: Σ
− 1

2
B =

VBΛ
− 1

2
B VT

B. Here, ΣB ∈ Rn×n is the covariance of
XB, and VB ∈ Rn×n and ΛB ∈ Rn×n are its eigen-
vector and eigenvalue matrix, respectively. Note that
the pre-whitening matrix is well-defined since XB ∈
Rn×tS is generally a full row-rank matrix (n ≪ tS).
Subsequently, we de-mean and de-correlate the stim-
ulation data:

X ′
S =Σ

− 1
2

B

(
XS −µS1

T
)

(A.3)

where µS is the time-average of XS, i.e. µS =
1
tS

∑tS

i=1XS(i) ∈ Rn×1 and 1 ∈ RtS×1 is a vector whose
entries are all 1. Since this transformation whitens the
artifact-free response in (A.1), the artifact subspace
can be identified through the singular value decom-
position of X ′

S [40]:

X ′
S = USΣSV

T
S = [Ud Uc

d]

[
Σd 0 0
0 Σc

d 0

]
VT

S .

(A.4)

The artifact subspace is spanned by the columns of
Ud ∈ Rn×d which are the left singular vectors of X ′

S

corresponding to its largest d singular values (the
diagonal of Σd). The remaining n− d left singular
vectors (columns of Uc

d) span the orthogonal com-
plement of the artifact subspace. In theory, such a
decomposition is possible as long as the magnitudes
of stimulation dipoles exceed those of neural sources,
so that the largest d singular values in (A.4) indeed
correspond to stimulation artifacts. Introducing a
matrix representation H= Uc

d and projecting data
onto this subspace, i.e. HTX ′

S, will result in artifact
suppression, hence the name null projection. We can
then reconstruct these projected data in the original
space followed by ‘coloring’ and restoring the mean
to obtain:

Xclean
S =Σ

1
2
BHH

TX ′
S +µS1

T (A.5)

equation (1) follows by combining (A.3) and (A.5).

21



J. Neural Eng. 20 (2023) 056018 J Lim et al

In the presence of a single stimulation dipole, the
theoretical dimension of the artifact subspace is d= 1.
In practice, d is likely to be higher due to imperfec-
tions in the model (A.1). To accurately estimate it,
we note that the non-artifact components of X ′

S are
expected to be uncorrelated and with a unit variance.
Therefore, the smallest n− d eigenvalues of its cov-
ariance matrix, SX , are expected to be ≈1. Since X ′

S is
a zero-mean signal, its (unbiased) covariance matrix
is defined as SX = 1

ts−1X
′
s (X

′
s )

T. After invoking (A.4),
we have:

SX =
1

ts − 1
USΣSV

T
S

(
USΣSV

T
S

)T
=

1
ts − 1

USΣSΣ
T
SU

T
S

where we have used the fact that VS is an orthogonal
matrix (VSVT

S = I). Since US is also an orthogonal
matrix, the last equation becomes:

UT
SSXUS =

1
ts − 1

ΣSΣ
T
S =

1
ts − 1

[
Σ2

d 0

0 (Σc
d)

2

]

which represents the eigenvalue decomposition of the
covariance matrix SX . Specifically:

UT
S SXUS =ΛS =

[
Λd 0

0 Λc
d

]
=

1

ts − 1

[
Σ2

d 0

0 (Σc
d)

2

]

where the diagonal of Λc
d contains the eigenvalues

of SX corresponding to the non-artifact compon-
ents. From the last equation, it follows that Σc

d =√
(ts − 1)Λc

d, and since the non-zero elements of Λc
d

are ≈1, we expect the corresponding singular val-
ues to be σ ≈

√
tS − 1. Conversely, the singular values

corresponding to the artifact subspace are those that
satisfy σ >

√
tS − 1. To account for noise in the sin-

gular value distribution, we determined d by count-
ing the number of singular values that satisfy σ >

α
√

tS − 1, whereα> 1. More elaborate techniques for
determining d based on information theoretic criteria
can be found in [55].

Appendix B. ECoG control experiments

B.1. Baseline data
In our baseline control experiments described in
section 2.3.2, the PWNP artifact suppression method
may have benefited over ICA in that the baseline
data epoch had been used to calculate the pre-

whitening matrix, Σ
− 1

2
B , (see equation (1)). To rule

this out, we performed control experiments on addi-
tional baseline epochs, while retaining the same
PWNP and ICA parameters as trained on the original
data. Specifically, from the ECoG data collected from
Subject 4, we segmented 100 five-second-long non-
overlapping epochs of data outside of the stimulation
periods.

Figure B1 summarizes the results of PWNP and
ICA suppression over these 100 baseline epochs. As

with the original baseline epoch, we expect the artifact
suppression methods to yield small RMSE values. For
PWNP, the grand average RMSE value (across epochs
and channels) was 26.3± 8.1µV, which accounted for
only 5.5% of the pre-cleaning baseline voltage swing
(475µV). Similar to the original baseline data (see
figure 9), the ICA method produced three times as
large RMSE values (78.6± 33.6µV), accounting for
a 16.5% distortion of baseline signals. To appreci-
ate these distortions in the time domain, figure B1
also shows a representative example of baseline epoch
for a representative electrode before and after arti-
fact suppression. As before, we selected the rep-
resentative electrode as the electrode exhibiting the
epoch-averaged RMSE closest to the median (across
the grid) epoch-averaged RMSE. Consistent with
the results in figure 9, the ICA method introduced
much larger distortions in the time domain com-
pared to the PWNP method. Finally, we charac-
terized these distortions in the frequency domain,
by comparing the epoch-averaged PSDs before and
after artifact suppression (signed rank test, p< 0.01,
Bonferroni corrected for multiple comparisons across
frequencies and channels). Averaging across chan-
nels, we identified 24.61 out of 1280 (1.9%) fre-
quencies exhibiting significantly different power dis-
tributions after PWNP artifact suppression and
558.06/1280 (43.6%) frequencies after ICA artifact
suppression.

B.2. Simulated artifact data
From the original stimulation epoch from Subject
4, we identified individual artifacts by performing a
peak detection, constrained by the 50 Hz pulse fre-
quency (20 ms inter-pulse period). To facilitate accur-
ate estimation of artifact arrival times, we used data
from the electrode LFG13, which was closest to the
stimulation channel (see figure 1) and had the largest
artifacts. The arrival times were then propagated
across channels, taking advantage of the fact that arti-
facts are phase-locked [18]. In total, for the∼5 s stim-
ulation epoch, 249 artifact events were detected. Short
(15.6 ms) data segments centered at each arrival time
were then extracted and averaged over the 249 events
to construct an artifact template for each channel. We
then generated 50 Hz trains of artifact templates for
each channel and superimposed them (see figure B2)
onto the same 100 baseline data epochs, as identi-
fied in the previous section. Note that this procedure
preserves the spatio-temporal correlations in the ori-
ginal ECoG data. An alternative approach would be
to generate a forward model for neuronal and arti-
fact sources [56]; however, this model would closely
match the assumptions of PWNP and ICA, which
could potentially positively bias the suppression res-
ults. Finally, we applied PWNP and ICA artifact
suppression methods to these simulated artifacts
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Figure B1. Experiment results for PWNP (Left) and ICA (Right) methods for 100 baseline epochs. (Top) RMSE values
(equation (6)) averaged over 100 epochs, spatially interpolated, color-coded, and mapped to MR-CT co-registered images of the
ECoG grids from Subject 4. Color bar range is from 0µV to 475µV (maximum absolute voltage across baseline epochs).
(Middle) One-second segment of a representative baseline epoch before and after artifact suppression (Bottom) Epoch-averaged
PSDs from the same representative electrode before/after artifact suppression. The reported numbers indicate the fraction of
frequencies where the power distribution significantly differed before and after artifact suppression (signed rank test, p< 0.01,
Bonferroni corrected for multiple comparisons across frequencies and channels). For clarity, the dashed lines indicate only the
subset of frequencies with significant power differences across all channels.

and performed the same comparisons using
RMSE and PSDs as we did with the baseline
data.

Figure B3 summarizes the artifact suppression
results over the 100 simulated artifact epochs. For
PWNP, the grand average RMSE value (across epochs
and channels) was 26.7± 8.0µV, which accounted
for only 5.6% of the pre-cleaning baseline voltage
swing (475µV). Interestingly, these values are highly
consistent with those obtained from the baseline
control experiments, suggesting that the chosen
threshold α̂= 1.1 precisely delineates the artifact

and neural subspaces. Similar to the baseline control
experiments, the ICA method produced three times
as large RMSE values (79.5± 34.0µV), account-
ing for a 16.7% of the baseline voltage amplitude.
Figure B3 shows representative examples of these
distortions in the time domain for a representat-
ive electrode. As before, we selected the representat-
ive electrode as the electrode exhibiting the epoch-
averaged RMSE closest to the median (across the grid)
epoch-averaged RMSE. Consistent with prior results,
the ICA method introduced much larger distortions
in the time domain relative to the PWNP method.
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Figure B2. Generation of simulated artifacts demonstrated on the electrode closest to the stimulation channel. (Top) A
one-second segment of the original uncontaminated baseline epochs from Subject 4. (Middle) The train of artifact templates
overlaid onto baseline data (note the different voltage scale). (Bottom) Time-domain examples of artifact suppression results
plotted alongside the ground truth baseline data.

Finally, we characterized these distortions in the fre-
quency domain, by comparing the epoch-averaged
PSDs before and after artifact suppression (signed
rank test, p<0.01, Bonferroni corrected for multiple
comparisons across frequencies and channels). After

averaging across channels, we identified 57.33/1280
(4.5%) frequencies exhibiting significantly different
power distributions after PWNP artifact suppression
and 595.67/1280 (46.5%) frequencies after ICA arti-
fact suppression.
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Figure B3. Experiment results for PWNP (Left) and ICA (Right) methods for 100 simulated artifact epochs. (Top) RMSE values
(equation (6)) averaged over epochs, spatially interpolated, color-coded and mapped to MR-CT co-registered images of the ECoG
grids from Subject 4. Color bar range is from 0µV to 475µV (maximum absolute voltage across baseline epochs). (Middle)
One-second segment of a representative baseline epoch before artifacts are overlaid and after the simulated artifacts are
suppressed. (Bottom) Epoch-averaged PSDs from the same representative electrode before/after artifact suppression. The
reported numbers indicate the fraction of frequencies where the power distribution significantly differed before and after artifact
suppression (signed rank test, p< 0.01, Bonferroni corrected for multiple comparisons across frequencies and channels). For
clarity, the dashed lines indicate only the subset of frequencies with significant power differences across all channels.

Appendix C. MEA baseline control
experiments

Similar to the ECoG experiments, we also performed
additional baseline control experiments with MEA
data. Specifically, from the MEA data collected from
Subject 5, we segmented 100 one-second-long, non-
overlapping epochs of data outside of the stimulation
periods. We then individually subjected these baseline
epochs to both PWNP and ICA artifact suppression
with the same originally trained parameters.

Figure C1 summarizes the results. For PWNP,
the grand average RMSE value (across epochs and
channels) was 20.4± 2.4µV, which accounted for

only 4.9% of the pre-cleaning baseline voltage swing
(420µV). In comparison, the ICA method produced
two times as large RMSE values (39.9± 14.5µV),
accounting for a 9.5% distortion of baseline signals.
Figure C1 also shows a representative example of
baseline epoch for a representative electrode before
and after artifact suppression. As before, we selected
the representative electrode as the electrode exhibit-
ing the epoch-averaged RMSE closest to the median
(across MEA2) epoch-averaged RMSE. Consistent
with the results in figure 14, the ICA method
doubled the distortions in the time domain com-
pared to the PWNP method. Finally, we charac-
terized these distortions in the frequency domain,
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Figure C1. Experiment results for PWNP (Left) and ICA (Right) methods for 100 baseline epochs from MEA data. (Top) RMSE
values (equation (6)) averaged over epochs, spatially interpolated, color-coded, and mapped to the estimated location of the
MEA. Color bar range is from 0µV to 420µV (maximum absolute voltage across baseline epochs). (Middle) Ten-millisecond
segment of a representative baseline epoch before and after artifact suppression (Bottom) Epoch-averaged PSDs from the same
representative electrode before/after artifact suppression, zoomed to the local field potential band (0–500 Hz). The reported
numbers indicate the fraction of frequencies where the power distribution significantly differed before and after artifact
suppression (signed rank test, p< 0.01, Bonferroni corrected for multiple comparisons across frequencies and channels). For
clarity, the dashed lines indicate only the subset of frequencies with significant power differences across all channels.

by comparing the epoch-averaged PSDs before and
after artifact suppression (signed rank test, p< 0.01,
Bonferroni corrected for multiple comparisons across
frequencies and channels). Averaging across channels,
we identified 1956.61/15 000 (13.0%) frequencies
exhibiting significantly different power distributions
after PWNP artifact suppression and 4236.85/15 000
(28.2%) frequencies after ICA artifact suppression.
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