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Abstract

Real-time monitoring using in-situ sensors is becoming a common approach for measuring
water-quality within watersheds. High-frequency measurements produce big datasets that
present opportunities to conduct new analyses for improved understanding of water-quality
dynamics and more effective management of rivers and streams. Of primary importance is
enhancing knowledge of the relationships between nitrate, one of the most reactive forms of
inorganic nitrogen in the aquatic environment, and other water-quality variables. We ana-
lysed high-frequency water-quality data from in-situ sensors deployed in three sites from dif-
ferent watersheds and climate zones within the National Ecological Observatory Network,
USA. We used generalised additive mixed models to explain the nonlinear relationships at
each site between nitrate concentration and conductivity, turbidity, dissolved oxygen, water
temperature, and elevation. Temporal auto-correlation was modelled with an auto-regres-
sive—moving-average (ARIMA) model and we examined the relative importance of the
explanatory variables. Total deviance explained by the models was high for all sites (99%).
Although variable importance and the smooth regression parameters differed among sites,
the models explaining the most variation in nitrate contained the same explanatory variables.
This study demonstrates that building a model for nitrate using the same set of explanatory
water-quality variables is achievable, even for sites with vastly different environmental and
climatic characteristics. Applying such models will assist managers to select cost-effective
water-quality variables to monitor when the goals are to gain a spatial and temporal in-depth
understanding of nitrate dynamics and adapt management plans accordingly.
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Introduction

Nitrate is one of the most reactive forms of inorganic nitrogen in the aquatic environment [1]
and an essential component of the nitrogen cycle supporting life on Earth. In rivers, sources of
nitrate include atmospheric deposition, groundwater, surface runoff and the biological degra-
dation of organic matter present in freshwater ecosystems. In addition, anthropogenic sources
associated with agricultural, industrial and urban land use are becoming increasingly prevalent
[2]. This includes the combustion of fossil fuels, which contributes substantially to atmo-
spheric deposition [3]. In its bio-available form, nitrate is assimilated for growth and metabo-
lism by riverine biota (e.g. algae, macrophytes and some bacteria) that form the basal
components of aquatic food webs [1]. However, an excess of nitrate can lead to problems asso-
ciated with eutrophication, such as decrease in light infiltration and dissolved oxygen concen-
tration [4, 5]. This can negatively impact the health of aquatic biota such as invertebrates and
fish [6-8]. Understanding the dynamics of nitrate concentration in rivers, and the relation-
ships nitrate has with other water-quality variables, is therefore of primary importance for the
effective management of freshwater ecosystems.

Monitoring is central to understanding the links between water-quality variables and the
health of freshwater ecosystems [9]. Advances in the development of in-situ environmental
sensors have led to their world-wide and long-term use in environmental monitoring [10-12].
Yet, water-quality monitoring in rivers still relies primarily on the time-consuming and expen-
sive manual collection of samples, with the resultant data being sparse in space and time [13].
Fortunately, relatively low-cost in-situ sensors and sampling methods are being developed that
allow some properties such as water temperature, turbidity, oxygen concentration, salinity and
conductivity to be semi-continuously sampled and then analysed statistically [14, 15]. These
high-frequency data-sets provide unique opportunities to better understand water-quality
dynamics.

The large data-sets generated by in-situ sensors also present new challenges when analysing,
modelling and reporting water-quality data [14-16]; for example in terms of quality assurance
and control [13]. The prohibitive cost of certain sensors [17], such as optical sensors used to
estimate high-frequency nitrate (NO; ) concentration, mean that they can only be deployed at
a small number of sites and/or for limited periods of time. An additional challenge is to
develop transferable models of water-quality dynamics and the links among water-quality vari-
ables for disparate river systems, especially for properties of interest like nitrate [18], especially
when sensors are sparsely deployed. Ubiquity in water-quality relationships across climate
zones and watersheds have thus far remained difficult to detect and model due to the many dif-
ferent processes that can be responsible for the resultant dynamics [19].

While several other studies have explored models for nitrate concentration in rivers, they
have been developed for different purposes, many for prediction rather than to understand
underlying relationships among water-quality variables, and with varying degrees of success.
For example, [20] used Artificial Neural Networks to predict monthly values of nitrate from
multiple measures, including concentrations of other nutrients measured using traditional
sampling and laboratory analyses. More recently, [18] predicted nitrate from non-nutrient-
based water-quality data collected from high-frequency, in-situ sensors using generalised-lin-
ear mixed-effects models (GLMMs) with a continuous first-order auto-regressive correlation
(AR(1)) structure to account for temporal auto-correlation. However, GLMMs detect linear
relationships and, as pointed out by [21], the relationships between nitrate and other water-
quality variables tend to be nonlinear. [21] also investigated relationships between nitrate and
other water-quality variables using high-frequency sensor data with the aim of prediction
using Random Forests Regression (RFR) models, which can handle nonlinear interactions
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among variables. However, predictions could not be extrapolated beyond the ranges of the
input data and the resultant structure of the models was relatively opaque [21]. Links between
discharge (also known as flow) and nitrate have also been investigated. However this relation-
ship is complex, not least due to nutrient spiralling in streams [22], with some studies showing
poor ability to model and explain variation in nitrate [23, 24] while others finding much stron-
ger relationships [25].

Our goal is to explore opportunities and address some challenges associated with high-fre-
quency in-situ monitoring data. More specifically, we identified key variables and developed
an additive model structure, which we used to understand the complex relationships between
nitrate concentration and other water-quality variables (rather than as an exercise in predic-
tion) collected in disparate climatic regions and subject to different levels of anthropogenic
impacts.

Materials and methods
NEON database and water-quality sensors

The National Ecological Observatory Network (NEON) database provides open data from
sites across the United States of America (USA). All NEON sites are equipped with high-fre-
quency sensors and follow standardised configuration, calibration and preventive mainte-
nance procedures [26, 27], with in-situ measurements and sample analyses following protocols
[28]. Nitrate is measured in 4gM using a 10 mm path length SUNA V2 UV light spectrum sen-
sor. The SUNA V2 collects data reported as a mean value from 20 measurements made during
a sampling burst every 15 minutes (Table 1). Other sensors collect specific conductance (4S/
cm), dissolved oxygen (mg/L), temperature (°C) and turbidity (Formazin Nephelometric
Units, FNU) data as one-minute instantaneous measurements. Surface water elevation (i.e.

meters above sea level) data are also recorded as five-minute instantaneous measurements
(Table 1).

Study sites and time-series data

We extracted time-series of nitrate [29] and other surface water-quality variables [30-32] from
three different sites within the NEON database on 29 January 2021 (see Table 1): the Arikaree
River in Colorado, Caribou-Poker Creeks Research Watershed in Alaska, and Lewis Run in
Virginia, which we will refer to as Arikaree, Caribou and Lewis Run, respectively throughout
(Table 2). As nitrate measurements were collected less frequently than other water-quality var-
iables (see Table 1), all sensors took measurements each time nitrate was sampled. Water-

Table 1. Details on NEON sensors, variables collected, units of measurement, associated data-collection intervals, and the NEON data product number for data

used in this study.

Sensor
SUNA v2

Level TROLL 500

YSI EXO Optical Dissolved Oxygen

YSI EXO Turbidity

YSI EXO Conductivity and

Temperature

Platinum Resistance Thermometer

Water-quality Unit Raw sensor collection interval | Published NEON data product
variable interval number

nitrate umol/L NO3-N average of 20 bursts every 15 15 minute DP1.20033.001

minutes
water level meters above sea 1 minute 5 minute DP1.20016.001
level

dissolved oxygen mg/L DO 1 minute 1 minute DP1.20288.001
turbidity FNU 1 minute 1 minute DP1.20288.001
specific conductance | p S/cm 1 minute 1 minute DP1.20288.001
temperature °C 1 minute 1 minute DP1.20053.001

https://doi.org/10.1371/journal.pone.0287640.t001
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Table 2. Details of NEON sites used in this study.

Watershed (km?)

Latitude/Longitude (WGS
84)

Manager

Climate zone

Land use / land cover
Flow persistence

Mean annual precipitation
(mm)

Urbanisation present in
watershed?

Period of data analysed

Period of data modelled

Arikaree
2,875
39.758206, -102.44715

The Nature Conservancy

Semi-arid

Grasslands, agriculture

Caribou
106
65.153224, -147.50397

Bonanza Creek Long-Term Ecological Research Program and
University of Alaska Fairbanks

Subarctic

Subarctic taiga, discontinuous permafrost

Lewis Run
119
39.095637, -77.983216

Casey Trees (nonprofit
organisation)

Temperate

Fields, pastures, woodlands and

Intermittent (dry in

summer)
450

No

January 2018 to December

2019

September 2018 to
December 2019

https://doi.org/10.1371/journal.pone.0287640.t002

small ponds

Perennial by ice covered in winter Perennial
262 976
No Yes

January 2018 to December 2019 January 2018 to December 2019

June 2018 to October 2019 January 2018 to December 2019

quality measurements from other time points were therefore discarded so that we only used
data measured every 15 minutes (i.e. at each nitrate-measurement time point) in the analyses.
Prior to analyses, we also removed data labelled as anomalous (e.g. due to known sensor cali-
bration problems) during the rigorous NEON quality assurance and quality control procedure
[16]. This, along with periods of missing data resulting from flow intermittence or sensors
being temporarily out of service, meant that the time series of data from each site differed. For
example, the river at Caribou freezes from approximately October to May each year and
NEON removes most sensors from the site to prevent damage or loss. Despite these gaps in
the data, at least 50% of the time series we examined from any one site overlapped with that of
the other sites. Table 2 provides details about the selected data time series for each site, along
with the actual time-period that could be used for modelling due to missing data. The time
series of data are also available in the S1 File.

Statistical analyses

NEON publishes many environmental data products. The “water-quality” data product [30]
includes high-frequency pH, dissolved oxygen, oxygen saturation, turbidity, specific conduc-
tance, conductivity, chlorophyll-a, and fluorescent dissolved organic matter (fDOM) data
streams. The “temperature (PRT) in surface water” product [31] contains high-accuracy tem-
perature data and the “surface water elevation” product [32] includes elevation data derived
from pressure transducers and site-surveyed elevations. Among the water-quality variables,
many exhibit strong correlation with each other. We investigated multicollinearity in order to
select only those variables that were independent or weakly correlated with each other. Multi-
collinearity between covariates can influence parameter estimates and inflate variances, lead-
ing to improper inference from fitted models [33], especially when the sample size is small.
Although the data sets in this study were large (n = 70080 at Caribou, Arikaree and Lewis
Run), we checked for multicollinearity using the variance inflation factor (VIF) [34] to identify
and remove any covariates that were strongly multi-collinear (VIF < 6). Based on this rule, we
decided to not use conductivity, fluorescent dissolved organic matter (fDOM) pH and oxygen
saturation. Also, the chlorophyll-a data were not taken into account in this study due to there
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being an excessive number of anomalies. Therefore, we considered the following variables for
further study: elevation of surface water, temperature, specific conductance, dissolved oxygen
and turbidity.

For the purposes of statistical analyses, we considered nitrate as the response (i.e. dependent
variable) and the other water-quality variables (see Table 1) as covariates (i.e. explanatory vari-
ables or predictors). We included a continuous covariate of time to account for the natural
temporal variability that can occur in water quality variables, like nitrate concentration, in riv-
ers. Visual examination of the distributions of the response and covariates indicated that tur-
bidity had a strongly right-skewed distribution and was therefore log-transformed (i.e. log
(turbidity + 1)) prior to analysis.

Generalised additive mixed models (GAMMSs) [35] were built to link nitrate concentration
with covariates from each site individually as described by the equation:

Y, =+ Zsk(zki) +1; (1)
p
where z;; are covariates measured at the ith sample (i=1, .. ., n). Here, f3, is an intercept and 7;

is the auto-regressive integrated moving-average (ARIMA) (p,¢) error, 1, = €, + Zﬁ;l pini; +

> L, &, with p; the autocorrelation parameters and ¢, the moving average parameters, and
g N (0, 6?) is Gaussian white noise. The associated smooth function si(-) of each water-
quality variable z; was defined using thin plate spline regression [36].

This model defined in (1) is estimated using a two-step modelling framework:

1. Step one: A generalised additive model (GAM) is used to model potential non-linear links
between nitrate concentration and covariates. A stepwise variable-selection procedure was
implemented and the ‘best’ GAM (variables and penalisation of smooth splines) for each
site was identified based on the Akaike Information Criterion (AIC) [37]. To avoid over-fit-
ting of the GAM model, the maximal value of degrees of freedom of the smooth terms was
fixed at 6. This value was chosen to be large enough to allow for shapes that could be
explained by periodic ecological processes potentially occurring at intra-annual to annual
time scales. There is an identifiability issue between time trends due to seasonal patterns,
and autocorrelation due to time-changing covariates. The value we chose ensured the time
trends were flexible enough to handle longer-term trends, while not so large as to overfit
temporal variability and capture shorter-term fluctuations.

2. Step two: An autoregressive-moving-average model was fitted to the GAM residuals to take
into account the structural dependence of the time series data (GAMM). The best ARIMA
regression on the GAM residuals were identified, based on the Akaike Information Crite-
rion, to account for temporal autocorrelation in the time series data.

We then assessed the statistical significance and importance of each covariate in the best
models to better understand their effects on nitrate. Variable importance can be estimated eas-
ily with linear models using the partial R” (i.e. the proportion of variation explained by a covar-
iate in a model), but this approach cannot be used in a GAMM [38]. Therefore, we compared
the deviance explained by the best GAMM and the same GAMM with each water-quality
covariate iteratively removed. We choose to present deviance explained in this paper to com-
pare models and variable importance at each site because deviance explained is a percentage
(restricting it between 0 and 100) making it easy to interpret. Finally, to compare performance
of GAM versus GAMM in each site, we assessed the approximate Akaike Information
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Criterion (aAIC) given by the formula:
aAIC = nlog(6?) + 2k (2)

[39] where 7 is the length of the time series, 6 is the variance of the model residuals and k is
the total number of degrees of freedom in the model. We chose this approach because it is
computationally efficient compared to other cross-validation methods (e.g. with multiple
training/test set splits) and has reliable convergence properties asymptotically equivalent to
one-step time series cross-validation. The smaller the aAIC, the better the model performance.

All analyses were undertaken in R statistical software using the car [40], gam [41], mgcv
[36], and forecast [42] packages. The R script used to implement the analyses is provided
in the GitHub repository: https://github.com/Claire-K/nitrate_links.

Results
Water-quality characteristics within and among sites

Each site had distinct water-quality characteristics (Figs 1 and 2). Lewis Run had a higher
nitrate concentration than Caribou and Arikaree sites (median = 5.5, 28.4 and 192 yM at Ari-
karee, Caribou and Lewis Run, respectively). For specific conductance, the Caribou site dif-
fered from the two other sites having, lower values (median = 531.6, 77.15 and 577.8 uS/cm at
Arikaree, Caribou and Lewis Run, respectively). Dissolved oxygen concentration also differed
among the three sites (median = 7.3, 12.34 and 9.55 mg/L at Arikaree, Caribou and Lewis Run,
respectively). Water-quality variables exhibited more variability at Arikaree and Lewis Run
than at Caribou (Fig 1). Temperature ranges were narrowest at Caribou (0 to 13°C), wider at
at Lewis Run (1 to 22°C), and widest Arikaree (0 to 34°C). As noted above, turbidity was
strongly right-skewed in distribution at all three sites, with the mean always greater in value
than the third quartile (mean = 95.45 FNU, Q3 = 9.98 FNU at Arikaree; mean = 3.41 FNU,

Q3 =3.15 FNU at Caribou; mean = 23.85 FNU, Q3 = 23.93 FNU at Lewis Run). Finally, sur-
face water elevation was very different among sites, and despite the small ranges between mini-
mum and maximum elevations, exhibited some temporal variability at Caribou (230.0-230.8
m), Arikaree (1179-1180 m) and Lewis Run (125.9-126.7) during the study period.

Diel fluctuations in water-quality occurred at all three sites despite differences in the distri-
butions of water-quality data among them (top plots of Fig 2). At Caribou, nitrate, dissolved
oxygen, specific conductance and turbidity increased while temperature decreased during the
afternoon and the night. At Arikaree, the diel patterns exhibited comparatively more variation
than at Caribou, and both nitrate and dissolved oxygen fluctuated in the opposite direction
(i.e. decreasing at night and increasing during the day). Lewis Run exhibited similar diel pat-
terns in turbidity as Caribou and Arikaree in terms of there being a clear alternation between
day and night.

When a flow event (lower plots in Fig 2) occurred at Arikaree site (i.e. when the elevation
level suddenly rose), nitrate concentration, oxygen concentration and turbidity increased,
while specific conductance and temperature decreased. Conversely, at Lewis Run, a sudden
increase in water level coincided with a decrease in nitrate concentration. At Caribou, the rise
in water level was accompanied by an increase in turbidity, but the relationships between
water level and the other water-quality covariates were more complex.

GAMs

GAM regressions were used to understand the links between nitrate concentration and each
covariate (Fig 3). The smooth regressions between nitrate and the covariates revealed
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Fig 1. Box-plots of water-quality data for Arikaree, Caribou and Lewis Run. Bold lines within boxes represent
medians and lower and upper edges of boxes represent the interquartile range (IQR), with whiskers extending to 1.5
times the IQR. Closed circles represent data with values beyond the whiskers. Note, the y-axis for turbidity uses a base-
10 log scale.

https://doi.org/10.1371/journal.pone.0287640.g001

differences among sites and covariates. For example, the time smooth regression (i.e. the
expected change in nitrate concentration) peaked around April-May and September-October
at Arikaree, and in the cooler months at Lewis Run, whereas the pattern of peaks was less dis-
tinct at Caribou. The smooth regression of temperature (Fig 3) demonstrated a slight negative
effect on the expected change in nitrate concentration at Arikaree. The reverse appeared to
occur at Caribou and Lewis Run, with the expected change in nitrate concentration increasing
with temperature.

For dissolved oxygen, the smooth regression indicated a minimal effect on expected change
in nitrate concentration at Arikaree (Fig 3). This was also the case for Caribou up until a dis-
solved oxygen concentration of around 13.5 mg/L when the expected change in nitrate con-
centration increased sharply; however, this increase was due to a small number of high-
concentration dissolved oxygen measurements only. The relationship between expected
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Fig 2. The top three plots are examples of diel fluctuations and other trends in water-quality at the study sides, visualised over 5-day windows of
representative data, each starting and ending at 10 pm GMT. Local time in the three top plots starts at 3 pm at Arikaree, 2 pm at Caribou, and 5 pm

at Lewis Run. The three bottom plots are examples of flow events, which are indicated by sudden rises in surface water elevation. Cond., conductance;

Elev., elevation; Temp., temperature. Note that the scales for the y-axes differ among sites and variables.

https://doi.org/10.1371/journal.pone.0287640.9002

change in nitrate concentration and dissolved oxygen appeared to trough at Lewis Run around
9.5 mg/L.

The specific conductance smooth regression had a very different effect on the expected
change in nitrate concentration at all three sites. At Caribou, there was a strong, negative effect
on expected change in nitrate concentration up to around 45 uS/cm followed by a strong, posi-
tive effect to 65 uS/cm. Ranges of specific conductance at Arikaree and Lewis Run were similar,
but smooth regressions were different for small values. At Arikaree, the expected change on
nitrate concentration increased until 5004S/cm whereas it decreased at Lewis Run. In the two
sites, when the specific conductance was higher than 550 yS/cm, nitrate concentration
increased.

Confidence intervals for the smoothed regressions of log-transformed turbidity on the
expected change in nitrate concentration tended to be wide in all three models compared with
those of other covariates (Fig 3). The effect of turbidity, although weak, tended overall to be
negative at Caribou and Arikaree, whereas at Lewis Run the effect tended to be more variable.

PLOS ONE | https://doi.org/10.1371/journal.pone.0287640 June 30, 2023

8/16




PLOS ONE

High frequency sensor data to understand nitrate in streams

Arikaree River Caribou Creek Lewis Run
251 5
= M 01 ===
X 01 -3 0
D 4 6 251
. : : : , -9 : : : . , : : :
400 450 500 550 600 40 60 80 100 300 400 500 600
Specific Conductance [uS/cm] Specific Conductance [uS/cm]
05 ~3s 301 2
= 00 201 10
.05 101 0
1.0 y 01
25 5.0 75 10.0 10 11 12 13 14 8 9 10 11 12 13
Dissolved Oxygen [mg/L] Dissolved Oxygen [mg/L] Dissolved Oxygen [mg/L]
2
8 1
" 0
-1 T T T T T T T
25 5.0 : 5 10 15 20
Temperature [°C]
0.0 °]
— ’ O -
%-0.5 5
-1.0 64
15
31 60
fj 3 40
X o 0 20
(2]
-1 3 0
27 20
34 - 61 : : -
Nov-18 Jun-19 Dec-19 Jul-18  Oct-18 Jun-19 Oct-19
Time Time
24 /
100
= 11 10 -
@ 0 0 50 P4
115 = , , . -10 . . . o1 . . - .
11794 11795 11796  1179.7  1179.8 225.75 226.00 226.25 1249 1250 1251 1252 1253
Surface Water Surface Water Surface Water
Elevation [m] Elevation [m] Elevation [m]

Fig 3. Smooth regressions (solid lines) of the expected change in nitrate concentration (y-axes) when values taken by covariates (x-axis) increased,
by site. More specifically, each plot represents the regressive spline si(z;) (Eq (1)) of one covariate at one site, i.e. the expected change in nitrate
concentration Y; for a one unit increase in the covariate z;;. Dashed lines show the standard error estimates. Missing values (gaps in the time series data)
are not shown.

https://doi.org/10.1371/journal.pone.0287640.9003

The relationship between the smooth regression for surface water elevation and expected
change in nitrate concentration was also different among sites. At Caribou, the expected
change in nitrate concentration tended to increase with increasing surface water elevation,
while Lewis Run exhibited an opposite relationship at least until near the end of the smooth
regression. At Arikaree, confidence intervals were wide at the start of the smooth regression
and cannot be interpreted, but at higher water stages, nitrate concentration tended to increase
with surface water elevation, similar to Caribou.

GAMMs

The two-step modeling framework used in this study allowed us to differentiate the amount of
deviance explained by covariates (GAM step) and the amount of deviance explained by the
auto-regressive model (ARIMA step). In the first step, we included all variables as potential
covariates in the GAMs because the VIF results indicated that multicollinearity among the
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Table 3. Model performance for all three sites, as based on the approximated Akaike Information Criterion
(aAIC).

Site Model aAIC
Arikaree GAM 6044
GAMM -44631
Caribou GAM 76871
GAMM 40814
Lewis Run GAM 10962
GAMM -13042

https://doi.org/10.1371/journal.pone.0287640.t003

covariates (the water-quality and time variables) was not a significant concern (VIFs < 6). The
best GAMs, as selected by the stepwise variable-selection procedure based on the AIC,
achieved a deviance explained of 75%, 83% and 85% respectively for Arikaree, Caribou, and
Lewis Run The auto-regressive ARIMA functions then fit to the residuals of the best GAMs
were ARIMA(4,0,0), ARIMA(5,0,3) and ARIMA(3,1,4), respectively, for Arikaree, Caribou
and Lewis Run, which increased the total deviance explained by the models (see S2 File for fit-
ted vs observed values). Hence, final GAMM:s achieved a deviance explained of 99% for all
three sites.

Model performance for each sites were evaluated using the aAIC (Eq 2). GAMMs per-
formed far better than GAM:s across all three sites (Table 3). However, the GAMs all explained
a large proportion of variation in nitrate with the same combination of covariates, regardless
of site. These included smooth terms for specific conductance, dissolved oxygen, temperature,
turbidity (log-transformed), time and surface water elevation, which were all statistically sig-
nificant (p < 0.001). However, the importance of covariates in the models fit to nitrate data
differed among sites. Overall, the relatively low importance of all covariates at Arikaree com-
pared to that at Caribou and Lewis Run (Fig 4) was congruent with the amount of deviance
explained by the GAM portion of the Arikaree model (75%). The most important variable in
the GAM for Arikaree was water temperature, but it explained less than 5% of the deviance in
the final GAMM. However, the auto-regressive portion of the GAMM for Arikaree was partic-
ularly important, explaining 25% of the deviance. At Lewis Run, all the water-quality variables
were important in explaining nitrate. The variable with the greatest importance was specific
conductance (> 15%). The importance of all other water-quality covariates were between
about 11% and 14% of the nitrate concentration deviance. These higher values of variable
importance at Lewis Run corresponded with the larger proportion of deviance explained
(85%) by the GAM part of the GAMM for this site. At Caribou, the auto-regressive part of the
GAMM was less important in explaining nitrate concentration deviance (only 17%) than that
explained by the GAM portion of the model (83%). Specific conductance was the most impor-
tant variable (10%) and turbidity the least important in the Caribou model.

Discussion

Our study has demonstrated that GAMMs provide a suitable and useful method to model and
understand the nonlinear relationships between nitrate and other water-quality variables, with
an ability to explain 99% of the variation in nitrate concentration. Random Forests Regression
(RFR) models, which can handle nonlinear interactions among variables and have an advan-
tage over GAMM in their ability to provide information on variable importance, have been
shown to explain 89% of nitrate concentration [21]. However, we note that [21] built their
RFR models for the purpose of prediction and the resultant structure of their models was
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Variable importance (% of total deviance)

Fig 4. Variable importance, as the percentage of the total GAMM model deviance, for statistically significant covariates (p < 0.001), by study site.
Total deviance explained by each GAMM was 99% for all three sites.

https://doi.org/10.1371/journal.pone.0287640.9004

relatively opaque. Thus, we suggest GAMM regression in preference to other models like
GLMM:s and RER when the primary aim is to explore the structure of the model and the shape
of the non-linear relationship, which for the present study informs understanding of the links
between nitrate and other water-quality variables. The two-step approach we used in this study
is also highly relevant because, in addition to improving the understanding of the nitrate-
water quality links, it enables the importance of temporal auto-correlation in nitrate measure-
ments to be accounted for and assessed.

The use of GAMMs with high number of data has nevertheless raised computational chal-
lenges. The first challenge was the presence of missing data and technical anomalies in the
time series. Within the two-year period of data analysed for this study, there were extended
periods of such data that could not be incorporated into the models, which constrained the
lengths of the time series modelled as a result (see S1 File). A second challenge was building
the GAMM:s themselves. The most commonly used function in the R mgcv package to fit
GAMMs is ‘gamm’, which enables an ARIMA process to be fit to GAM residuals. However, as
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explained in the gammmgcv vignette [43], ‘gamm’ is typically much slower to run than the
‘gam’ function, and the amount of memory required by R to run ‘gamm’ with large data sets
may need to be increased substantially. Using the large data sets in this study often resulted in
function failure, which required us to individually code the two-step GAMMs. This meant that
temporal auto-correlation was not accounted for in the smoothing-parameter selection step,
such that any auto-correlation could potentially be confused with trend resulting in under-
estimation of the smoothing parameters and bias during inference. However, a two-step
approach, such as that we used to secondarily account for auto-correlation, while typically not
as efficient as estimating auto-correlation and smoothing parameters at the same time, is often
more robust [44]. A final computational challenge in this study was to calculate variable
importance for the GAMs. Several solutions are available to calculate variable importance for
linear models (see, for example the vimp package [45]), but, to our knowledge, no solutions
are available to easily calculate variable importance for non-linear models. As a result, we
needed to determine variable importance using the relatively time-consuming method of itera-
tively comparing models with and without each covariate.

In terms of describing and better understanding nitrate dynamics and the relationship
between nitrate concentration and other water-quality variables, the models we developed
indicated similarities and differences among sites. Firstly, sites differed in their nitrate dynam-
ics, likely relating to the distinct environmental conditions of the regions in which each sites
was located. Rivers in regions with discontinuous permafrost, like Caribou, tend to export
nitrogen (including in dissolved form, i.e. nitrate) rather than retain it, which is more typical
of rivers in temperate regions like Arikaree and Lewis Run [46]. At Caribou, specific conduc-
tance was the most important variable explaining variation in nitrate concentration, followed
by time to a lesser extent. Specific conductance was negatively correlated with nitrate and with
surface water elevation (see S1 File). At Caribou, it is likely that rain storms are serving to
increase stream level, decrease specific conductance and flush nitrate from shallow flow-paths
through the watershed into the stream. Another hypothesis is that any link between specific
conductance and nitrate concentration could be due to induced daily cycles of evapotranspira-
tion [47], affecting water surface elevation, specific conductance, and nitrate dissolution in
water. It is also possible that algae and other photosynthetic microorganisms active during the
day were depleting nitrate. At Arikaree, no variable was especially important in explaining
nitrate fluctuations. This suggests that daily fluctuations in nitrate at Arikaree were most likely
due to the activity of algae and other photosynthetic microorganisms that use nitrate as an
essential element for photosynthesis.

On the whole, water-quality variables at Caribou tended to reflect the relative stability of
the subarctic Alaskan ecosystem. Caribou is located in a reserve upstream of urbanisation,
with no known anthropogenic pollution present in chemical or physical form, including in the
nitrate delivered into the system via atmospheric deposition (which has been monitored at the
site since 1993 as part of the United States National Atmospheric Deposition Program). In
contrast, multiple peaks and/or troughs in nitrate, turbidity and conductance occurred at
Lewis Run, which may be associated with its proximity to an urban area, relative to other sites,
and an upstream water treatment plant within a predominantly agricultural watershed. These
factors would not only increase the overall nitrate concentration at Lewis Run, but could also
cause temporal variability in water-quality [48]. In fact, the highest concentration of nitrate
among the sites was observed at Lewis Run. The relatively high temporal variability in nitrate,
turbidity and conductance at Lewis Run may also be affected by climate, being in a temperate
zone with large intra-annual ranges in thermal and pluvial amplitudes. Water-quality at Ari-
karee also fluctuated substantially, and like Lewis Run, is located in an agricultural region,
albeit within a semi-arid climate zone.
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This work provides valuable insight on the links between nitrate and other water-quality
variables in river systems, using approximately two years of data from each of three sites.
While any analysis will only capture the range of variation contained within the input data
itself, our choice of sites being distinct in their environmental and flow-regime characteristics,
and the high-frequency nature of the sensor-based water-quality data that we analysed, means
that inference can be drawn across a range of conditions. Continual analysis of data collected
over future years, may, however, reveal new patterns and trends that allow for a more in-depth
understanding of the relationships among variables. On the other hand the computational
effort needed to create models from several years of data is large, and the availability of time
series from high-frequency sensors that are absent from long or multiple sequences of data is
limited. Nevertheless, testing the predictive ability of the models developed herein is likely to
provide further insight on the links among water-quality variables while also enabling the pre-
diction, for example, of missing or anomalous data in sensor-based time series.

Despite the among-site differences in nitrate concentration and other water-quality vari-
ables, the final GAMM s for each site included the same set of water-quality covariates. This
demonstrates that these water-quality variables are consistently important for understanding
variation in nitrate in rivers, even in watersheds with different types of land use and in different
climate zones. The transferability of models, for example between different sites, remains a
challenging obstacle in environmental and ecological modelling, as does the evaluation of their
transferability [49]. However, our results suggested that a single model was not appropriate for
the sites we examined, given the site-specific differences in relationship between nitrate and the
other water-quality variables. Rather, we were able to identify a transferable modelling frame-
work and a set of common of covariates that could together be used to explain nitrate concen-
tration across disparate sites. Although GAMMs in such a framework must be tailored to data
from individual sites, future research may reveal that models fit to data from sites with more
similar land use, climate conditions and flow regimes are more transferable. With the imple-
mentation of automated sensing across several sites, watersheds and potentially regions, pro-
ducing transferable models will become increasingly sought after in order to better understand
water-quality relationships and dynamics, and to support water-resource management [13].

Conclusion

The findings of this study are highly relevant for scientists and managers responsible for in-
situ monitoring in rivers. As mentioned above, gaps in in-situ sensor data are common and
the methods demonstrated here could be applied to the problem of missing data imputation
[50] and provide a more holistic description of nitrate dynamics. This is particularly important
when financial resources are limited and decisions must be made about which sensors to buy
and which water-quality variables to measure. In addition, this work provides a basis for future
studies focused on the prediction of other critically important, water-quality variables that can-
not be measured using in-situ sensors or when the sensors themselves are cost prohibitive.

Supporting information

S1 File. Original time-series. Time series of dissolved oxygen, nitrate concentration, specific
conductance, surface water elevation, temperature, and turbidity in the three studied sites.
(PDF)

S2 File. Diagnostic plots. Diagnostic plots of observed vs fitted values for the GAM and
GAMM model constructed at each site.
(PDF)
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