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Electrocorticography (ECoG)-based bi-directional brain-computer 
interfaces (BD-BCIs) have drawn increasing attention due to: (1) the 
need for concurrent stimulation and recording to restore human 
sensorimotor functions [1] and (2) decent spatial resolution and 
signal fidelity along with clinical practicality. On the stimulation side, 
such BD-BCIs may require >10mA of biphasic current to elicit 
artificial sensation and >20V of voltage compliance to accommodate 
various bio-impedances [1]. The charge mismatch between the two 
stimulation phases leads to voltage build-up, causing electrode 
corrosion and tissue damage. Existing charge balancing (CB) 
techniques, e.g., charge-pack injection (CPI) [2] and time-based 
charge balancing (TCB) [1], create CB current in the interpulse time 
interval, leading to unwanted secondary sensations and excessive 
stimulation artifacts (SAs). For recording, low input-referred noise 
(IRN) is necessary to acquire small neural signals (NSs) while a large 
dynamic range (DR) is required to accommodate large SAs. Existing 
recording systems employ either SAR [1] or continuous-time delta-
sigma (CT-ΔΣ) [3] ADCs (Fig. 4). The former has limited DR due to 
the DAC mismatch, and the latter suffers from distortion caused by 
the large-amplitude sharp SAs within the loop delay. Although in [4], 
the sampling  frequency  of  the  ΔΣ-ADC  is adaptively varied to 
accommodate SAs, the required settling time is large. To address 
the above issues, this work presents an ECoG-based BD-BCI that 
includes: (1) a high-voltage (HV) stimulation system with dual-mode 
time-based charge balancing (DTCB) and (2) a high-dynamic-range 
(HDR) time-domain pipelined neural acquisition (TPNA) system. 

Fig. 1 depicts the proposed BD-BCI. The stimulation system includes 
4 stimulators, each comprising an 8-bit segmented current-steering 
DAC and an HV output driver to generate stimulation pulses. To 
perform CB, each stimulator employs a DTCB loop with 2 modes, 
i.e., artifactless (AL) TCB and interpulse-bounded (IB) TCB modes. 
A  3rd-order type-II PLL creates the  required clock for time-based 
quantization. The recording system has 4 channels, each employing 
a low-gain analog front-end (LG-AFE), an HDR voltage-to-time 
converter (VTC), a two-step pipelined (TSP) TDC, and a digital core 
where the operation mode is controlled by a state machine.  

Inspired by [1], the operation of the proposed DTCB is shown in Fig. 
2. AL-TCB monitors the electrode voltage VESn-VCM (1≤n≤N; here, 
N=4) and adjusts the magnitude of subsequent stimulation pulses 
without creating extra SAs, whereas IB-TCB completes CB before 
the next stimulation pulse when |VESn-VCM| is too large that requires 
immediate charge removal. At the beginning of the first TCC, if |VESn-
VCM|≤VTH,AL (VTH,AL is the overpotential threshold that marks the 
necessity for immediate charge removal), AL-TCB turns on and VESn-
VCM is digitized by VTC & TDC within the first TCC cycle. The digital 
data DTDCn is then fed to the inter-channel interference cancellation 
(ICIC) block which compensates for the voltage error introduced by 
inter-channel interference (ICI) due to multipolar stimulation. Next, 
the digital DC gain booster (DDGB) helps increase CB accuracy 
without degrading AL-TCB loop stability. To perform CB, AL-TCB’s 
current (e.g., IAL-Cn), whose magnitude is controlled by DDGB output, 
DALn, is added to the subsequent stimulation currents to adjust their 
magnitude. In contrast, only when  |VESn-VCM|>VTH,AL, IB-TCB turns 
on and performs CB in several TCC’s within one TIP until |VESn-
VCM|<VE,P to avoid damage to the electrode and brain tissue [1]. The 
multipolar stimulation electrical model is shown in Fig. 2. It is 
noteworthy that all closed-loop CB techniques rely on accurately 
detecting VESn-VCM to estimate the amplitude and polarity of the 
residual charge, Qn [1,2]. However, in a multipolar stimulation 
system, VESn-VCM is affected by the residual charges from other 
stimulators, causing ICI (Fig. 2). The ICIC block, realized in the digital 
domain, extracts ΔVn  (=Qn/CDL) by removing ΔVCM (which is 
dependent on residual charges of all stimulation electrodes) from 
VESn-VCM, thus reducing CB time and increasing CB accuracy. 

The discrete-time model of 
the AL-TCB is derived in 
Fig. 3 to study its operation 
dynamic and CB accuracy. 
Assuming the complete 
removal of ICI by ICIC, the 
transfer function H(z) (Fig. 
3) is derived by using the 
simplified AL-TCB model. 
Considering each biphasic stimulation leads to a charge mismatch 
of QSn, the steady state value of the output Qn[k], which is inversely 
proportional to the sum of all DDGB’s coefficients, is derived. 
Subsequently, the DDGB coefficients are obtained to significantly 
increase CB accuracy while preserving loop stability. 

Fig. 4 shows the DR challenges faced by the recording system in the 
presence of strong SAs and the operation principle of the proposed 
TPNA. At the core of TPNA lies an ultra-low power TDC that 
achieves very high resolution with only sub-MHz clock pulses. To 
capture both small NSs and large SAs in  the voltage domain, this 
TDC is preceded by an HDR-VTC whose DR is crucial to the overall 
system performance. To ensure maximum linearity, AVTC is designed 
to isolate the first stage from the compensation network (CN) and 
reuse the bias current at its output stage to achieve very high gm over 
the signal BW for a given bias current. The HDR-VTC operation 
comprises 3 phases, integration (INT), fast-time conversion (FTC), 
and slow-time conversion (STC). Each TDC quantization step 
translates to an amplitude level by a scaling factor of Δ1 in FTC and 
Δ2 in STC. In Case 1, when VT(T1)>VLV, HDR-VTC employs a two-
step pipelined FTC and STC to reduce the required clock pulses for 
a specific time-domain resolution. FTC converts the large-amplitude 
portion of the signal (>VLV) to a relatively short timespan, and STC 
transforms the residual part (≤VLV) to a stretched timespan, thus 
achieving higher resolution for a given clock pulse.  In Case 2, if 
VT(T1)≤VLV, HDR-VTC skips FTC by directly initiating STC after INT.  

Fig. 5 shows in-vitro phantom brain tissue [1] measurement results 
of AL-TCB and IB-TCB as well as the electrical and proof-of-concept 
in-vivo electroencephalography (EEG) test results of TPNA. To 
evaluate AL-TCB, each stimulation DAC created 40 balanced 
stimulation pulses first without enabling AL-TCB. Due to the intrinsic 
current mismatch between the positive and negative phases, voltage 
build-up still occurred after 40 stimulations, leading to electrode 
voltages above 1V. After enabling AL-TCB, voltage build-up was 
prevented and |VESn-VCM|<7.3mV after 40 stimulation pulses (Fig. 5). 
To test IB-TCB, the stimulation system generated unbalanced 
currents that resulted in >450mV electrode voltages. Before the next 
stimulation, IB-TCB successfully reduced all the electrode voltages 
to within ±2mV (Fig. 5). On the recording side, a measured ENOB of 
13.8bits and DR of 88.9dB were achieved while the TPNA was fed 
by a 340mVPP 21Hz sinusoid. Due to similarities of ECoG and EEG 
signals in α-band (8-12Hz),  an eye closure visual cortical test was 
conducted to evaluate the TPNA performance. The in-vivo test 
verifies that TPNA can capture sub-20μV real-time biopotentials. 

Fig. 6 shows the BD in-vitro test result and the table of comparison. 
The pre-recorded human ECoG signal and the stimulation currents 
were injected concurrently into the phantom brain tissue through an 
ECoG array, while TPNA was recording the signal from the array. A 
comparison between the original pre-recorded ECoG signal and the 
measured output data from TPNA confirms the successful recovery 
of ECoG data without distortion in the presence of strong sharp SAs.  
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Fig. 1. The proposed ECoG-based bi-directional brain-computer 
interface (BD-BCI). 
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Fig. 2. DTCB operation principle, multipolar neural stimulation 
electrical model, and inter-channel interference cancellation (ICIC). 
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Fig. 3. The discrete-time model of the proposed AL-TCB and digital 
DC gain booster (DDGB). 
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Fig. 4. DR challenges faced by ECoG-based BD-BCIs and time-
domain pipelined neural acquisition (TPNA) system. 
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Fig. 5. In-vitro measurement results of AL-TCB and IB-TCB, 
electrical and in-vivo measurement results of the TPNA system. 
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340mVpp.
[5] Y. Wang et al., ISSCC 2020. [6] M. Pazhouhandeh et al., JSSC 2021. [7] U. Shin et al., ISSCC 2022.
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Fig. 6. In-vitro bidirectional phantom brain tissue experiment of the 
proposed BD-BCI and table of performance comparison. 
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