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HARMONIC FUNCTIONS ON FINITELY CONNECTED TORTI*
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Abstract. In this paper, we prove a logarithmic conjugation theorem on finitely connected tori.
The theorem states that a harmonic function can be written as the real part of a function whose
derivative is analytic and a finite sum of terms involving the logarithm of the modulus of a modified
Weierstrass sigma function. We implement the method using arbitrary precision and use the result
to find approximate solutions to the Laplace problem and the Steklov eigenvalue problem. Using a
posteriori estimation, we show that the solution of the Laplace problem on a torus with a few holes
has error less than 10190 using a few hundred degrees of freedom and the Steklov eigenvalues have
similar error.
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1. Introduction. Harmonic functions satisfying the Laplace equation, Au =0,
arise in many physical applications, including potential flow in fluid dynamics, the
stationary solution of heat conduction, and electrostatics in the absence of charges,
to name just a few. Efficient and robust numerical approaches to solving the Laplace
equation on a general domain with different boundary conditions are crucial for under-
standing the aforementioned applications. In this paper, we are particularly interested
in solving the Laplace equation on finitely connected tori, which serves as a model prob-
lem for the study of heat or electrical conduction in the exterior of a periodic lattice
of inclusions with prescribed boundary conditions or for fluid flow through a doubly
periodic array of obstacles.

Harmonic functions. It is well known that every harmonic function u on a
simply connected domain 2 C C can be written as the real part of an analytic function,
f(z), where

(1.1) u(z) =Rf(z).

For finitely connected domains, the analogous result is known as the logarithmic con-
Jugation theorem [2, 21]. Let Q C C be a finitely connected region, which means
that C\ Q has only finitely many bounded connected components, {K};cp), with
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be N\ {0}. For each j € [b], let a; be a point in K. If u is a harmonic function on €,
then there exist an analytic function f on 2 and real numbers ¢;, j € [b], such that

(1.2) u(z)z?Rf(z)+chlog|z—aj|, zeQ.
Jjelb]

Our main result is to extend the logarithmic conjugation theorem to finitely con-
nected tori. We consider a torus T, = C/L,,, where L, = 2w1Z + 2w>Z is a lattice
and w = (wy,ws) € C? are half-periods, assumed not to be colinear. Let

(1.3) Q=T \Ujep K;

denote the finitely connected torus after removing b € N\ {0} disjoint, connected
compact sets { K} cp) with smooth boundary. We also introduce the parallelogram
(fundamental domain)

(1.4) P ={2wiz + 2way € C: (z,y) € [0, 1]} \ Ujep K-

Note that €2 is obtained from P after identification of opposite sides. Recall that a
meromorphic, doubly periodic function is called an elliptic function. Let

(1.5) &(z,w):e_%”ZQ_%”lzlz/Aa(z,w)

denote the modified Weierstrass sigma function [13], where o(z,w) is the Weierstrass
sigma function, v, = y2(w) € C is a lattice invariant, and A = area(T,). We further
discuss 6(z,w) in section 2, but for now just note that it is a nonholomorphic function
with a pole of order 2 at z =0 such that |5(z,w)| is doubly periodic.

THEOREM 1.1. Let Q and P be defined as in (1.3) and (1.4). For each j € [b], let
a; be a point in K;. If u is a harmonic function on Q (equivalently, harmonic and
doubly periodic on P), then there exist an analytic function f on P and real numbers
¢, 7 €[b], satisfying Zje[b] ¢; =0, such that f" is elliptic and

(1.6) u(z):%f(zﬂ—chlog|&(z—aj,w)|, z€eQ.
Jjelb]

If there is only one connected boundary component (i.e., b =1), then ¢; = 0 and
u(z) =Rf(2).

A proof of Theorem 1.1 is given in section 3. We comment that the result in
Theorem 1.1 differs from the logarithmic conjugation theorem for finitely connected
domains in several important ways. First, the modified Weierstrass sigma function,
log|6(z,w)l|, plays the role of log|z|. Second, and perhaps surprisingly, while the
derivative f’ is elliptic, the function f cannot always be taken to be elliptic.

Computing harmonic functions on finitely connected tori. There are a
variety of methods for computing harmonic functions on finitely connected tori, in-
cluding integral equation methods with multipole acceleration [3] and the finite el-
ement method [12]. In our approach, we are inspired by the work in [21] to use
Theorem 1.1 to represent doubly periodic harmonic functions using a series solution.
Let p(z) = p(2,w) denote the Weierstrass elliptic function, let p(*)(z,w) denote the
kth derivative, and let {(z) = ((z,w) denote the “modified” Weierstrass zeta function
that is doubly periodic; these will be defined in section 2.
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THEOREM 1.2. Let Q be a finitely connected torus as in (1.3). For each j € [b],
let a; be a point in K;. If u is a harmonic function on ), then there exist a constant
C €R and real coefficients (a; k), (bjx), and (c;) such that

u(z)=C+ Y |aj 1R(z — a;) +b;,19¢(z —a;) + > a; xR (2 - a;)
(1.7) JE[b] k>0
+ > baSe™ (2 - a5) + ¢;loglé (= —ay) ||
k>0

where 3 ey ¢ =0.

A proof of Theorem 1.2 is given in section 3. We have chosen to represent the
elliptic function f’ using a sum of Weierstrass functions. Similar representations
have been used to find doubly periodic solutions in several applications, including
doubly periodic stress distributions in perforated plates [16], solitary wave solutions
to a nonlinear wave equation [8] and a nonlinear Schrédinger equation [9], lowest-
Landau-level wavefunctions on the torus [13], and simulation of oil recovery [1]. Other
representations for elliptic functions are possible, including as R(p)+ ¢’ S(p) for some
rational functions R and S [7].

In section 4, we use the series representation (1.7) to solve the Laplace problem

(1.8a) Au=0 in Q,
(18b) u=f on 8Q:Uj€[b]8Kj,

where f € L?(02) is given, and the Steklov eigenvalue problem

(1.9a) Au=0 in Q,
(1.9b) Opu=ou on 00 =U;cp0Kj;.

As in [21], the series solution (1.7) are not convergent series. The coefficients depend
on the truncation of the sum (in k). For the Laplace problem, by the maximum
principle, the accuracy of the solution can be computed by looking at the error on
the boundary, sup,csq |u(z) — f(x)|. For the Steklov problem, we bound the error
in the eigenvalues using an a posteriori estimate [6, 10]. We implement the proposed
numerical method in Julia using arbitrary precision and use the result to find approx-
imate solutions to the Laplace problem and the Steklov eigenvalue problem. For a few
circular holes, the solution of the Laplace problem has error less than 10719 using a
few hundred degrees of freedom and the Steklov eigenvalues have similar error. We
show the solution to the Laplace problem with 25 disks removed in Figure 1. The
spectral accuracy is also demonstrated for nonconvex holes in Figure 4.
We conclude in section 5 with a discussion.

2. Weierstrass elliptic functions. Here we recall some background material
on Weierstrass elliptic functions and establish notation used in the paper. Excellent
references include [7, 13, 20].

We consider the lattice

Lw == 2w1Z + 2&}2Z,

where w = (wy,wz) € C? are half-periods, assumed not to be colinear. A function
f: C—C is said to be doubly periodic if it satisfies
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1.0

0.0

Fic. 1. Approximate solution to the Laplace equation on a square torus with 25 disks removed.
Dirichlet boundary conditions equal to 0 or 1 are imposed on the boundary of each disk. The compu-
tational domain is [—1,1]2, and nine copies are displayed to emphasize periodicity. See subsection 4.2
for more details.

f(z4201) = f(2),
f(z42w9) = f(2)

for all z € C. A function is said to be elliptic if it is meromorphic and doubly periodic.
An example of an elliptic function is the Weierstrass elliptic function

1 1 1
At ((z—@z ) W) |

e L, \{0}

The subtraction of the last term ensures the convergence of the series. Furthermore,
the derivative of a Weierstrass elliptic function is an odd function satisfying the dif-
ferential equation

(¢'(2)* = 4(p(2))° = g2(2) — g3,

where go := 37, 60&; and g3 = > 140(2%. This differential equation can be
used to compute higher-order derivatives of p. We obtain

g
o (2)=60(2) =

and

P () =63 (Z) OO N
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The Weierstrass zeta function is defined by

1 1 1 z 1 23
R ) B R o B Dee
o z—4 L Y z Zioé(z—f)
and satisfies
¢
dz p(2).

It has a Laurent expansion near z =0:
1 oo
2k—1
z)=—— z ,
(=12

where Yo, =3/ 7%, k> 2. In contrast to p(z), the function ¢(z) does not possess
the doubly periodic property. Instead, it satisfies the quasi-periodic condition:

C(z + 2w2) = ((2) + 212,
where 71 = ((w1) and 72 = ((w2). The values 71, 72, w1, wo are not independent but
are related by the Legendre identity

T

w2 — Na2w1 = 5

The ¢ function can be modified so that it is periodic:
~ m

() = () — a2 — 22,

where A is the area of the fundamental cell of the lattice and 72 is given by an
Eisenstein summation and satisfies ((w;) = 7; = vow; + 4=, @ = 1,2 [13]. Note that
since {‘ depends on z*, it is no longer meromorphic.

Finally, the Weierstrass sigma function is defined by

z
o(z,w)=limeexp (/ Q(w,w)dw) ,
e—0 e
which is an odd, nondoubly periodic, holomorphic function with simple zeros at the
lattice points. It satisfies

o'(zw)
2.2 =——.
(22) () = 22
As for the zeta function, the sigma function can be modified as in (1.5). When defined
this way, its modulus has the lattice periodicity [13].
3. Proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. The first part of the proof closely follows the proof of Axler
for the logarithmic conjugation theorem [2]. Define h: @ — C by

h(z) == ug(2) — ruy(2).
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The Cauchy-Riemann equations can be used to check that h is analytic on 2. For
each j € [0], let I'; be a closed curve in § that circles K; once and no other Ky, k # j.
Define

1

=— h dw.
2m Jr, (w) dw

Cj:
We see that Sc¢; = _%%frj h(w) dw = —%%%j Uy (w)dz + uy(w)dy =0, so ¢; is a
real number for each j € [b]. Since wu is doubly periodic, so is h, and by the Cauchy
integral theorem, we have that

(3.1) > ¢=0.

JE[?]

We consider h to be a function on P, which we still denote by h. Fix a point
zp € P, and define f: P — C by

f(z):= /Z h(w) — Z ¢;iC(w —aj,w) dw,

o jelb]

where the integral is taken over any path in P from zy to z and ( is the Weierstrass
zeta function as in (2.1). To show that f is well-defined, we check that the above
integral is independent of the path from zy to z. Take two paths from zy to z, and
reverse the direction of transversal in one to form a closed curve. Thus, we need only
show that

1
2m ~

h(z)dw = 2%72 Z cj?{g“(w—aj,w) dw

jep] 7Y

for any closed curve v 2. By the Cauchy integral theorem and the definition of c;, the
left- hand side is given by 3 e Gl (7), where I;(y) denotes the winding number of
v about K. Using the Laurent expansion for {(z,w), which has a single pole of order
one, by the Cauchy integral theorem, the right-hand side is also seen to be equal to
> e ¢4i(7), as desired. The function f(z) is analytic on P, and we compute the
derivative

(3.2) fl)=hz)= > ¢z —ajw).

jelbl
Now define
(3.3) q(z):=Rf(z) + ch log|o (z —aj,w)|.
Jjebl

We claim that uz(2) = ¢»(z) and uy(z) = g, (2), so that, after adding a constant to f,
we obtain u(z) = ¢(z), z € P. Using (2.2), we compute

0:(2) =Rf'(2) + Z i RC(z — aj,w) = Rh(z) = u,

JE[Y]

and

7, (2) =R(f'(2)) + Z ;R (C(z — aj,w)) =R (h(2)) = uy.
JjE[b]
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We have established that u(z) = ¢(z) up to a constant, z € P, and it remains to
show that we can rewrite g(z) in (3.3) so that the two terms on the right-hand side
are each doubly periodic, so that they can be thought of as functions on Q. In (3.3),
the second term on the right-hand side is not doubly periodic since ¢ is not doubly
periodic. By (1.5), this term can be rewritten as

> cjloglo(z—a;)| =Y ¢jlog|é (2 —aj) |+ Rg(2),

jelb] jelbl

where

9(2) =5 3 ¢ (1= — a)? + 7l — a2 /4)

JE]
=az+ 2"+,

where «, 3, and ~ are constants and we have used (3.1) to drop the quadratic terms.
From (3.2), f’ is doubly periodic since h is doubly periodic and Zje[b] ¢; = 0.
There exist a1, as such that for all admissible z

{ f(z+2w) = f(z) + au,
f(z 4 2ws) = f(2) + 2.

Let us introduce (1, 12), the unique solution of

wip +wipe = —a1/2,
Wa 1 +w§u2 = 70[2/2.

Notice that the previous system is nonsingular since the determinant is proportional
to the area of the fundamental domain, which is nonzero. Moreover, a straightforward
computation shows that

f(2) + paz + poz”

is a doubly periodic function. Thus, for a suitable u, f(z) = f(z) + pz is an analytic
function and R f(z) is also doubly periodic. Note that S f(z) is not necessarily doubly
periodic and that f’ is elliptic.

Summarizing our results, we have established that there exist f analytic with
doubly periodic real part and (v,£) € C? such that

u=Rf+ Z cjlog|d (z —a;) |+ R(vz+£27).
jelb]

Observing that both the left-hand side and the two first terms of the right-hand side
are doubly periodic, we obtain v = ¢ =0, which concludes the proof. ]

Proof of Theorem 1.2. Let f’ be the elliptic function from Theorem 1.1 associated
with the harmonic function u. Using a representation of elliptic functions (see, e.g.,
[22, p. 450] or [20, p. 23]), we may write

FE =1+ (=) +> BN (z—a)) |,
jelb]

k>0
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where 7 € C, a; € C, and §; 1, € C are constants. Consequently, there exists a constant
p € C such that

f(z):72+p+z ajlogo(z —aj;) + B 0¢(2 +Zﬂjkp(k (2 — aj)

JE[b] E>1

Introducing the periodic modifications ¢ and log |6 of ¢ and log|o| functions, respec-
tively, we obtain that there exist real coefficients C,a; ,b; r such that

u(z)zC—&—Z aj),ﬂﬁf(z—aj)—&—bj),l C(z—aj) Za]7k§)‘€p (z —ay)

JE[D] k>0

+ ij,k%p(k)(z —aj)+cjloglo(z —aj) || +g(z,y)
E>0
for some affine function g. By periodicity of all other terms, the function g also has
to be doubly periodic, so it must be identically equal to zero. Finally, > e & = 0is
deduced from the harmonicity of all the terms, except the log || terms, which have a
constant Laplacian. ]

4. Computational method and experiments. Here we develop a computa-
tional method based on a series solution of the form (1.7) to solve the Laplace problem
(1.8) and the Steklov eigenvalue problem (1.9).

4.1. Computational method. Let 2 be a finitely connected torus as in (1.3).
For simplicity, we will take each region K;, j € [b], to be a closed disk, K; = B(a;,r;),
that is centered at the point a; and has radius r;. The centers and radii are chosen
such that K; N K; = @ for i # j. Based on Theorem 1.2, we consider a series solution
of the form (1.7), where the sums on k are truncated at k = kpax. We collect the
(real) coefficients in the series solution into a vector v = [C, (a; k), (bjx), (¢;)] € R™,
where m =1+ 2b(kmax +2) + (b—1). For each coefficient, v;, we let ¢;, i € [m], denote
the corresponding basis function (e.g., the real part of a Weierstrass p function), so
that

(4.1) u(z)= Y vidn(2).

1€[m]

On each boundary component 0K, we uniformly sample points with respect to ar-
clength and denote the collection of all sampled points in the union of the boundary
components by (p¢)ee[s)- In the experiments below, we report the value of m and take
S = 3m. Define the matrices A, B € RS*™ by

00,
Ari =),
_¢z(pl)'

Details about the computation of the normal derivatives of basis functions are given
in Appendix A.

4.2. Laplace problem. We solve the Laplace problem (1.8) with boundary data
f(z), x € 0Q, as follows. Define the vector b € R® by b, = f(p;). The least-squares
solution is found by solving the normal equations

(4.2) B'Buv=B'.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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The solution v then is used with the expansion in (4.1) as an approximate solution of
(1.8). By the maximum principle, the accuracy of the solution can be computed by
looking at the error on the boundary, sup,csq |u(z) — f(x)].

We implement the numerical method in Julia using arbitrary precision provided
by the packages GenericLinearAlgebra.jl and ArbNumerics.jl (a wrapper of the Arb C
library). All computational experiments were performed with a precision of 219 bits,
which corresponds to a machine epsilon approximately equal to 107300,

We first consider a finitely connected square torus with half-periods (wy,ws) =
(1,7). The complement is taken to be b = 1 disks with K; = B(aj,r) with a; =
0 and r = 0.4. We take f(0) = sin(50), where 6 is the polar angle centered at
a1. The resulting solution is plotted in the top left panel of Figure 2. Using the
maximum principle to bound the L>°(Q) error of the solution, we estimate |u(z) —
f(@)[| L~ (a0) in the bottom left panel of Figure 2 for increasing numbers of degrees of
freedom, m. This estimate is based on the maximum value obtained at the sampled
points, after doubling the number of sampled points. Spectral convergence is observed.
With kpmax = 150 (m = 305 degrees of freedom), the solution has error less 10—100
corresponding to at least 100 digits of accuracy.

(23 N\, 0
g 407 . s -40 .
5 AN 5
] . ]
s T e,
£ 60 L £ N\
o h o -60 \
8 \ 8 LN
5 N 5 N
=3 | \\ =3
S -80 \. 8
AN -80
AN
-100 \\ \
! : : -100 ' . ;
100 200 300 200 400 600

number of degrees of freedom number of degrees of freedom

Fi1G. 2. (Upper panels) Approzimate solution to the Laplace problem in a square torus with
one and two circular holes. (Lower panels) Spectral convergence is observed for each of the two
geometries. See subsection 4.2.
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Next, we again consider a finitely connected square torus with half-periods (w1, ws2)
= (1,7). The complement is taken to be b =2 disks with K; = B(a;,r;), i =1,2, with
a1 =04, ay=—-0.4—0.4i, and r; =72 =0.2. On each boundary, we set f(6) =sin(40)
for circle i =1 and f(#) =sin(36) for circle i =2. The resulting solution is plotted in
the top right panel of Figure 2. In the bottom right panel of Figure 2, we can see that
the solutions have error similar to that in the previous example, albeit using more
degrees of freedom.

Next, we consider a finitely connected equilateral torus with half-periods (w1, ws) =
(1, % + ‘/752) The complement is taken to be the same sets as above with one and two
circular holes. We plot the results in Figure 3. The solutions have error similar to
those in the previous examples.

In Figure 4, we provide an approximate solution to the Laplace problem for two
nonconvex holes in a square torus. The polar parametrizations of the boundaries of
the two holes K7 and Ky are given by A; + p(0 + 0;)(cos(0),sin(#)), where

3 1
p(0) = 0 + 10 cos(30),
A1 =(04,04), Ao =—A1, 0, =0, and 0, = 5. We impose the Dirichlet condition 0 on
the first boundary component and 1 on the second. The sampled points are obtained
using the previous parametrization together with a uniform sampling of the angles.
As previously, in the right panel of Figure 4, we observe exponential convergence but
notice that the obtained accuracy is significantly lower than in previous cases with
the same number of degrees of freedom.

— =

FiG. 3. Approzimate solution to the Laplace problem in an equilateral torus with one and two
circular holes. See subsection 4.2.

log of leo (estimated) errors

T T T T T
100 200 300 400 500
2 o 2 00 number of degrees of freedom

Fic. 4. Approximate solution to the Laplace problem in a square torus with two nonconvex holes.
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Finally, we consider the Laplace equation on a finitely connected square torus
with 25 disks removed. Dirichlet boundary conditions equal to 0 or 1 are imposed on
the boundary of each disk. The results are plotted in Figure 1. The solution has error
less than 10716,

4.3. Steklov eigenvalue problem. To solve the Steklov eigenvalue problem
(1.9), we consider a generalized eigenvalue problem

(4.3) Av=0B .

We can approximate solutions to this eigenvalue problem by multiplying both sides
by B! and considering the nonsymmetric generalized eigenvalue problem, B'Av =
oB!Bv. For kyqq. < 50, this formulation leads to exponentially converging eigenvalue
approximations, as expected. As has been observed by several authors [5, 4, 10], this
formulation with a larger number of degrees of freedom may produce ill-conditioned
matrices. To illustrate this, in Figure 5, for the example considered above with two
nonconvex holes (see Figure 4), we plot the condition number of B!B and B'A as the
number of degrees of freedom varies. To overcome this difficulty and avoid spurious
modes, we followed the SVD approach described in [5]: for a (small) set of randomly
sampled interior points (g )re[r), we consider the evaluation matrix C' € RExm.

(4.4) Cri=¢i(ar)-

In all our experiments, we set R = 50. We define s(o) to be the smallest (always
nonnegative) eigenvalue of the generalized eigenvalue problem

(4.5) D(o)x(0) = s(a)C'Cz(0),

where D(0) = (A — 0B)!(A — ¢B). From a computational point of view, s(c) can
be efficiently evaluated using a standard power method or an orthogonal subspace
approach if the multiplicity is suspected to be greater than one. Local minimizers of
s(o) provide stable approximations of Steklov eigenvalues. To numerically identify
these local extrema, we used the golden section algorithm.

To bound the error in the eigenvalues, we use the following a posteriori estimate
for Steklov eigenvalues in [6], which extends previous estimates for Laplace-Dirichlet
eigenvalues [10, 18].

200

1004

logarithm of condition number

200

logarithm of condition number

100

T
100

T
200

T
300

T
400

number of degrees of freedom

T
500

T
100

T
200

T
300

T
400

number of degrees of freedom

T
500

FiG. 5. Exponential growth of condition numbers of matrices BB (left) and BtA (right) with
respect to the number of degrees of freedom.
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PROPOSITION 4.1 (see [6]). Consider Q a bounded open regular domain, and
suppose that u. solve the following approximate eigenvalue problem:

— Au, =0 n €,
Onle = 0:Us + fe on 0N).

Then if || fellL2(aq) s small, there exist a constant C, depending only on , and a
Steklov eigenvalue oy satisfying

loe — ol

<C| fell2a0)-

We study three geometrical configurations: tori which are the complement of
K, = B(ay,r) with a; =0 and r = 0.4, the complement of K; = B(a;,r;), i =1,2, with
a1 =0.2, az = —0.2 4+ 0.2¢, and 71 = r2 = 0.1, and the complement of K; = B(a;,7;),
i = 1,2,3, with a; = 0.3, as = 0.3, a3 = —0.3 — 0.3 and r; = r, = 0.1, r3 =
0.05. We approximated Steklov eigenfunctions of the square torus with half-periods
(w1,w2) = (1,%) (see Figures 6 to 8) and of the equilateral torus with half-periods
(wi,w2) = (1,4 + ‘/ng) in these three configurations (see Figures 9 to 11). The first
eigenvalue is zero, which corresponds to a constant eigenfunction. In these figures,
Steklov eigenfunctions of indices 2 to 7 are plotted. The Steklov eigenfunctions, as
expected, are oscillatory near the boundary and decay exponentially away from the
boundary. We used Proposition 4.1 to estimate the approximation error of the Steklov
eigenvalues. We approximated the L? boundary term by a (periodic) trapezoidal
quadrature formula after doubling the number of sampled points. Convergence plots
for Steklov eigenvalues on a square domain with one, two, and three punctured circular
holes are given in Figure 12. As expected, spectral convergence is also observed in
these situations. The same convergence rate has also been obtained studying the
equilateral case.

Finally, in Appendix B, we report in Tables 1 to 6 our approximation of the first
six nontrivial eigenvalues of the square and equilateral tori with =1, 2, and 3 circular

05 00 o5

Fic. 6. Approzimate Steklov eigenfunctions of indices 2 to 7 on a punctured square torus with
one hole. See subsection 4.3.
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Fic. 7. Approzimate Steklov eigenfunctions of indices 2 to 7 on a punctured square torus with
two circular holes. See subsection 4.3.

FiG. 8. Approzimate Steklov eigenfunctions of indices 2 to 7 on a punctured square torus with
three circular holes. See subsection 4.3.

holes. We believe that the reported 50 digits are correct in each case. As indicated
in Theorem 1.1, when there is only one connected boundary component (b = 1),
the eigenfunctions do not involve the logarithmic term and are oscillatory along the
boundary, as shown in Figures 6 and 9. In general, eigenfunctions corresponding to
larger Steklov eigenvalues are more oscillatory near the boundary. Note that the tori
parameters, w, effect the multiplicity of the eigenvalues. On a square torus with one
circular hole, oy = 03 and og = o7, while, on an equilateral torus with one circular
hole, 05 = 03 and 04 = 05. Since the domains with two or three circular holes do not
possess symmetry, we observe that all the obtained eigenvalues are simple.
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4

F1c. 9. Approzimate Steklov eigenfunctions of indices 2 to 7 on a punctured equilateral torus
with one hole. See subsection 4.3.

4

F1G. 10. Approxzimate Steklov eigenfunctions of indices 2 to 7 on a punctured equilateral torus
with two circular holes. See subsection 4.3.

5. Discussion. In this paper, we established Theorem 1.1, a logarithmic con-
jugation theorem on finitely connected tori. We used the theorem to find a series
solution representation of harmonic functions on finitely connected tori; see Theorem
1.2. Implementing the numerical method in Julia using arbitrary precision, we ap-
proximate solutions to the Laplace problem (1.8) and the Steklov eigenvalue problem
(1.9); see section 4. Using a posteriori estimation, we show that the approximate so-
lution of the Laplace problem has error less than 1071% using a few hundred degrees
of freedom and the Steklov eigenvalues have similar error.

There are several future directions for this work. The fundamental solution of
Laplacian on flat tori can be expressed as a logarithmic function involving the first
Jacobi theta function [15, 17]; we think it would be interesting to develop integral
equation methods to approximate harmonic functions on finitely connected tori in the
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05

Fic. 11. Approximate Steklov eigenfunctions of indices 2 to 7 on a punctured equilateral torus
with three circular holes. See subsection 4.3.

o0

50

log of 12 (estimated) o errors
log of 12 (estimated) o errors
log of 12 (estimated) o errors

1004

50 100 150 200 100 200 300 400 200 300 400 500 600
number of degrees of freedom number of degrees of freedom number of degrees of freedom

Fic. 12. Convergence plots for Steklov eigenvalues on a square domain with one, two, and three
punctured holes. Each line corresponds to one of the first seven eigenvalues. See subsection 4.3.

spirit of [3]. We have focused on the case where the domain complement, Ujep Ky,
has a smooth boundary. We think it would be interesting to extend the methods in
[11] to improve the order of convergence for nonsmooth boundaries. Finally, we think
it would be interesting to apply the developed numerical methods to the numerical
problem of computing extremal Steklov eigenvalue problems for finitely connected flat
tori [14, 19].

Appendix A. Computing normal derivatives. In this appendix, we provide
some details for computing normal derivatives of functions of a complex variable.
Denote f(z) =u(z,y) +w(z,y), with z =z +1y. Since f is analytic, we have u, = v,
and u, = —v,. Furthermore, f, = f/(2) and f, =1f'(2). Thus, with n =ny + g, we
have

Up = N1Ug + Nty = N1 Uy — NaVy = R [(n1 + 102) (ug + ;)] =R(nf'(2)),
Vp = N1V + MUy = —N1ty + novy = —S(ng +1m2) (uy +1wy) = S(nf(2)).

For example, f(z) = z*,

(zk))n = kR(nzF1),

w s
~
=
3\_/

I

o

29

3

N

T
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If f(2) = oM (2 - ay),

(3 (5 0),

%(np(’ﬁ_l) (Z - aj))ﬂ

If f(z) =log|6 (= — aj)|,
(log |6 (z = aj)|),, =n1 (log |6 (2 — a;)]), + n2 (log|6 (2 — a;)|),
oo (-5 o (- 35,
+n (loglo (2 — a)|), +n2 (loglo (2 — ajy)),
=m ((—?R(vz) - %) z+ %(72)11) + 12 (% (v2) z+ (3%(72) - %) y)
+n1 (R(C (2 —a;))) +n2 (=S (C (2 —ay))).

Appendix B. Numerical values of computed Steklov eigenvalues. Values
of computed Steklov eigenvalues are given in Tables 1 to 6; see subsection 4.3 for
details.

TABLE 1
Steklov eigenvalues of a square torus with one circular hole.

o2 3.21737540790552735473880286001400036767774798208487

o3 3.21737540790552735473880286001400036767774798208487

o4 4.85099530552467697892257589130439715581461931719259

o5 5.15358084940676223549771471754234765157435969419525

o6 7.50305008416767542642635086056165243882709526430554

o7 7.50305008416767542642635086056165243882709526430554
TABLE 2

Steklov eigenvalues of a square torus with two circular holes.

o2 6.45837308842285506198400983365912091999317179119988
o3 9.04038374077713587651429965380130970292955686420981
o4 9.32931391918711635803886895114746515357566095450257
o5 11.02561512617948586321622981756262835104523220458063
o6 12.69568331719729045908212485186369130848598658103989
o7 19.72884655790348748027382339516572459572547368362522
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TABLE 3
Steklov eigenvalues of a square torus with three circular holes.

o2 6.54721983775026738598476089606442586801693676638247

o3 6.79298688602543949226783518103096724408533776232952

o4 9.02715360305747386008778464587475727275979230551042

o5 9.75911376018587533254687022367601130464658416864329

o6 11.11563661826511047191549742109769883301063010901993

o7 13.08067309361125105561475152956318658177620553096385
TABLE 4

Steklov eigenvalues of an equilateral torus with one hole.

o2 3.34865594380260534169550288243470971962587318064277

o3 3.34865594380260534169550288243470971962587318064277

o4 4.99978881548382813234141616969113198885117552416465

o5 4.99978881548382813234141616969113198885117552416465

o6 7.44392530690947308002824485738760008901145380307620

o7 7.55649710043624518482844840631875099119732734059433
TABLE 5

Steklov eigenvalues of an equilateral torus with two circular holes.

o2 6.53794803818597918794030349125758145344842633243163

o3 9.03760803330365503342990995931942991592541389841134

o4 9.37148419781059159007737134528684902568383756667729

o5 11.02904931936017784776119216982004095594847249520813

o6 12.70222698966325001285792418382443547595163064198654

o7 19.72940718569248148461882657324755544321541234433839
TABLE 6

Steklov eigenvalues of an equilateral torus with three circular holes.

o2 6.63530737085667505246439432756580077469480498850424

o3 6.94424494471680808970061612948991192950478141474806

o4 9.02318420302479178183722837786227147321263458092783

o5 9.69311259795549433304394048074564041975314036318590

o6 11.14183481942696624006786357768349746325365435641531

o7 13.09270988086125229485281063758500867332548835687565
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