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HARMONIC FUNCTIONS ON FINITELY CONNECTED TORI\ast 

CHIU-YEN KAO\dagger , BRAXTON OSTING\ddagger , AND \'EDOUARD OUDET\S 

Abstract. In this paper, we prove a logarithmic conjugation theorem on finitely connected tori.
The theorem states that a harmonic function can be written as the real part of a function whose
derivative is analytic and a finite sum of terms involving the logarithm of the modulus of a modified
Weierstrass sigma function. We implement the method using arbitrary precision and use the result
to find approximate solutions to the Laplace problem and the Steklov eigenvalue problem. Using a
posteriori estimation, we show that the solution of the Laplace problem on a torus with a few holes
has error less than 10 - 100 using a few hundred degrees of freedom and the Steklov eigenvalues have
similar error.

Key words. harmonic function, Laplace equation, finitely connected torus, doubly periodic
domain, elliptic function, Weierstrass elliptic function
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1. Introduction. Harmonic functions satisfying the Laplace equation, \Delta u = 0,
arise in many physical applications, including potential flow in fluid dynamics, the
stationary solution of heat conduction, and electrostatics in the absence of charges,
to name just a few. Efficient and robust numerical approaches to solving the Laplace
equation on a general domain with different boundary conditions are crucial for under-
standing the aforementioned applications. In this paper, we are particularly interested
in solving the Laplace equation on finitely connected tori, which serves as a model prob-
lem for the study of heat or electrical conduction in the exterior of a periodic lattice
of inclusions with prescribed boundary conditions or for fluid flow through a doubly
periodic array of obstacles.

Harmonic functions. It is well known that every harmonic function u on a
simply connected domain \Omega \subset C can be written as the real part of an analytic function,
f(z), where

u(z) =\Re f(z).(1.1)

For finitely connected domains, the analogous result is known as the logarithmic con-
jugation theorem [2, 21]. Let \Omega \subset C be a finitely connected region, which means
that C \setminus \Omega has only finitely many bounded connected components, \{ Kj\} j\in [b], with
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2796 C.-Y. KAO, B. OSTING, AND \'E. OUDET

b\in N\setminus \{ 0\} . For each j \in [b], let aj be a point in Kj . If u is a harmonic function on \Omega ,
then there exist an analytic function f on \Omega and real numbers cj , j \in [b], such that

u(z) =\Re f(z) +
\sum 
j\in [b]

cj log | z  - aj | , z \in \Omega .(1.2)

Our main result is to extend the logarithmic conjugation theorem to finitely con-
nected tori. We consider a torus T\omega = C/L\omega , where L\omega = 2\omega 1Z + 2\omega 2Z is a lattice
and \omega = (\omega 1, \omega 2)\in C2 are half-periods, assumed not to be colinear. Let

\Omega =T\omega \setminus \cup j\in [b]Kj(1.3)

denote the finitely connected torus after removing b \in N \setminus \{ 0\} disjoint, connected
compact sets \{ Kj\} j\in [b] with smooth boundary. We also introduce the parallelogram
(fundamental domain)

\scrP =
\bigl\{ 
2\omega 1x+ 2\omega 2y \in C : (x, y)\in [0,1]2

\bigr\} 
\setminus \cup j\in [b]Kj .(1.4)

Note that \Omega is obtained from \scrP after identification of opposite sides. Recall that a
meromorphic, doubly periodic function is called an elliptic function. Let

\^\sigma (z,\omega ) = e - 
1
2\gamma 2z

2 - 1
2\pi | z| 

2/A\sigma (z,\omega )(1.5)

denote the modified Weierstrass sigma function [13], where \sigma (z,\omega ) is the Weierstrass
sigma function, \gamma 2 = \gamma 2(\omega ) \in C is a lattice invariant, and A = area(T\omega ). We further
discuss \^\sigma (z,\omega ) in section 2, but for now just note that it is a nonholomorphic function
with a pole of order 2 at z = 0 such that | \^\sigma (z,\omega )| is doubly periodic.

Theorem 1.1. Let \Omega and \scrP be defined as in (1.3) and (1.4). For each j \in [b], let
aj be a point in Kj. If u is a harmonic function on \Omega (equivalently, harmonic and
doubly periodic on \scrP ), then there exist an analytic function \^f on \scrP and real numbers
cj, j \in [b], satisfying

\sum 
j\in [b] cj = 0, such that \^f \prime is elliptic and

u(z) =\Re \^f(z) +
\sum 
j\in [b]

cj log | \^\sigma (z  - aj , \omega ) | , z \in \Omega .(1.6)

If there is only one connected boundary component (i.e., b = 1), then c1 = 0 and
u(z) =\Re \^f(z).

A proof of Theorem 1.1 is given in section 3. We comment that the result in
Theorem 1.1 differs from the logarithmic conjugation theorem for finitely connected
domains in several important ways. First, the modified Weierstrass sigma function,
log | \^\sigma (z,\omega )| , plays the role of log | z| . Second, and perhaps surprisingly, while the
derivative \^f \prime is elliptic, the function \^f cannot always be taken to be elliptic.

Computing harmonic functions on finitely connected tori. There are a
variety of methods for computing harmonic functions on finitely connected tori, in-
cluding integral equation methods with multipole acceleration [3] and the finite el-
ement method [12]. In our approach, we are inspired by the work in [21] to use
Theorem 1.1 to represent doubly periodic harmonic functions using a series solution.
Let \wp (z) = \wp (z,\omega ) denote the Weierstrass elliptic function, let \wp (k)(z,\omega ) denote the
kth derivative, and let \^\zeta (z) = \^\zeta (z,\omega ) denote the ``modified"" Weierstrass zeta function
that is doubly periodic; these will be defined in section 2.
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HARMONIC FUNCTIONS ON FINITELY CONNECTED TORI 2797

Theorem 1.2. Let \Omega be a finitely connected torus as in (1.3). For each j \in [b],
let aj be a point in Kj. If u is a harmonic function on \Omega , then there exist a constant
C \in R and real coefficients (aj,k), (bj,k), and (cj) such that

u(z) =C +
\sum 
j\in [b]

\Biggl[ 
aj, - 1\Re \^\zeta (z  - aj) + bj, - 1\Im \^\zeta (z  - aj) +

\sum 
k\geq 0

aj,k\Re \wp (k)(z  - aj)

+
\sum 
k\geq 0

bj,k\Im \wp (k)(z  - aj) + cj log | \^\sigma (z  - aj) | 

\Biggr] 
,

(1.7)

where
\sum 

j\in [b] cj = 0.

A proof of Theorem 1.2 is given in section 3. We have chosen to represent the
elliptic function f \prime using a sum of Weierstrass functions. Similar representations
have been used to find doubly periodic solutions in several applications, including
doubly periodic stress distributions in perforated plates [16], solitary wave solutions
to a nonlinear wave equation [8] and a nonlinear Schr\"odinger equation [9], lowest-
Landau-level wavefunctions on the torus [13], and simulation of oil recovery [1]. Other
representations for elliptic functions are possible, including as R(\wp )+\wp \prime S(\wp ) for some
rational functions R and S [7].

In section 4, we use the series representation (1.7) to solve the Laplace problem

\Delta u= 0 in \Omega ,(1.8a)

u= f on \partial \Omega =\cup j\in [b]\partial Kj ,(1.8b)

where f \in L2(\partial \Omega ) is given, and the Steklov eigenvalue problem

\Delta u= 0 in \Omega ,(1.9a)

\partial nu= \sigma u on \partial \Omega =\cup j\in [b]\partial Kj .(1.9b)

As in [21], the series solution (1.7) are not convergent series. The coefficients depend
on the truncation of the sum (in k). For the Laplace problem, by the maximum
principle, the accuracy of the solution can be computed by looking at the error on
the boundary, supx\in \partial \Omega | u(x)  - f(x)| . For the Steklov problem, we bound the error
in the eigenvalues using an a posteriori estimate [6, 10]. We implement the proposed
numerical method in Julia using arbitrary precision and use the result to find approx-
imate solutions to the Laplace problem and the Steklov eigenvalue problem. For a few
circular holes, the solution of the Laplace problem has error less than 10 - 100 using a
few hundred degrees of freedom and the Steklov eigenvalues have similar error. We
show the solution to the Laplace problem with 25 disks removed in Figure 1. The
spectral accuracy is also demonstrated for nonconvex holes in Figure 4.

We conclude in section 5 with a discussion.

2. Weierstrass elliptic functions. Here we recall some background material
on Weierstrass elliptic functions and establish notation used in the paper. Excellent
references include [7, 13, 20].

We consider the lattice

L\omega = 2\omega 1Z+ 2\omega 2Z,

where \omega = (\omega 1, \omega 2) \in C2 are half-periods, assumed not to be colinear. A function
f : C\rightarrow C is said to be doubly periodic if it satisfies

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2798 C.-Y. KAO, B. OSTING, AND \'E. OUDET

Fig. 1. Approximate solution to the Laplace equation on a square torus with 25 disks removed.
Dirichlet boundary conditions equal to 0 or 1 are imposed on the boundary of each disk. The compu-
tational domain is [ - 1,1]2, and nine copies are displayed to emphasize periodicity. See subsection 4.2
for more details.

f(z + 2\omega 1) = f(z),

f(z + 2\omega 2) = f(z)

for all z \in C. A function is said to be elliptic if it is meromorphic and doubly periodic.
An example of an elliptic function is the Weierstrass elliptic function

\wp (z,\omega ) :=
1

z2
+

\sum 
\ell \in L\omega \setminus \{ 0\} 

\Biggl( 
1

(z  - \ell )
2  - 1

(\ell )
2

\Biggr) 
.

The subtraction of the last term ensures the convergence of the series. Furthermore,
the derivative of a Weierstrass elliptic function is an odd function satisfying the dif-
ferential equation

(\wp \prime (z))2 = 4(\wp (z))3  - g2\wp (z) - g3,

where g2 :=
\sum 

\ell \not =0 60
1

(\ell )4
and g3 :=

\sum 
\ell \not =0 140

1
(\ell )6

. This differential equation can be

used to compute higher-order derivatives of \wp . We obtain

\wp (2)(z) = 6\wp 2(z) - g2
2

and

\wp (n+2)(z) = 6

n\sum 
k=0

\biggl( 
n

k

\biggr) 
\wp (n - k)(z)\wp (k)(z), n\geq 1.
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HARMONIC FUNCTIONS ON FINITELY CONNECTED TORI 2799

The Weierstrass zeta function is defined by

\zeta (z) =
1

z
+
\sum 
\ell \not =0

\biggl\{ 
1

z  - \ell 
+

1

\ell 
+

z

\ell 2

\biggr\} 
=

1

z
+
\sum 
\ell \not =0

z3

\ell 2(z2  - \ell 2)
(2.1)

and satisfies

d\zeta 

dz
= - \wp (z).

It has a Laurent expansion near z = 0:

\zeta (z) =
1

z
 - 

\infty \sum 
k=2

\gamma 2kz
2k - 1,

where \gamma 2k =
\sum 

\ell \not =0
1

\ell 2k
, k \geq 2. In contrast to \wp (z), the function \zeta (z) does not possess

the doubly periodic property. Instead, it satisfies the quasi-periodic condition:

\zeta (z + 2\omega 1) = \zeta (z) + 2\eta 1,

\zeta (z + 2\omega 2) = \zeta (z) + 2\eta 2,

where \eta 1 = \zeta (\omega 1) and \eta 2 = \zeta (\omega 2). The values \eta 1, \eta 2, \omega 1, \omega 2 are not independent but
are related by the Legendre identity

\eta 1\omega 2  - \eta 2\omega 1 =
\pi \imath 

2
.

The \zeta function can be modified so that it is periodic:

\^\zeta (z) = \zeta (z) - \gamma 2z  - 
\pi 

A
z\ast ,

where A is the area of the fundamental cell of the lattice and \gamma 2 is given by an
Eisenstein summation and satisfies \zeta (\omega i) \equiv \eta i = \gamma 2\omega i +

\pi \omega \ast 
i

A , i = 1,2 [13]. Note that

since \^\zeta depends on z\ast , it is no longer meromorphic.
Finally, the Weierstrass sigma function is defined by

\sigma (z,\omega ) = lim
\varepsilon \rightarrow 0

\varepsilon exp

\biggl( \int z

\varepsilon 

\zeta (w,\omega )dw

\biggr) 
,

which is an odd, nondoubly periodic, holomorphic function with simple zeros at the
lattice points. It satisfies

\zeta (z,\omega ) =
\sigma \prime (z,\omega )

\sigma (z,\omega )
.(2.2)

As for the zeta function, the sigma function can be modified as in (1.5). When defined
this way, its modulus has the lattice periodicity [13].

3. Proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. The first part of the proof closely follows the proof of Axler
for the logarithmic conjugation theorem [2]. Define h : \Omega \rightarrow C by

h(z) := ux(z) - \imath uy(z).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2800 C.-Y. KAO, B. OSTING, AND \'E. OUDET

The Cauchy--Riemann equations can be used to check that h is analytic on \Omega . For
each j \in [b], let \Gamma j be a closed curve in \Omega that circles Kj once and no other Kk, k \not = j.
Define

cj :=
1

2\pi \imath 

\oint 
\Gamma j

h(w) dw.

We see that \Im cj =  - 1
2\pi \Re 

\oint 
\Gamma j

h(w) dw =  - 1
2\pi \Re 

\oint 
\Gamma j

ux(w)dx+ uy(w)dy = 0, so cj is a

real number for each j \in [b]. Since u is doubly periodic, so is h, and by the Cauchy
integral theorem, we have that \sum 

j\in [b]

cj = 0.(3.1)

We consider h to be a function on \scrP , which we still denote by h. Fix a point
z0 \in \scrP , and define f : \scrP \rightarrow C by

f(z) :=

\int z

z0

h(w) - 
\sum 
j\in [b]

cj\zeta (w - aj , \omega ) dw,

where the integral is taken over any path in \scrP from z0 to z and \zeta is the Weierstrass
zeta function as in (2.1). To show that f is well-defined, we check that the above
integral is independent of the path from z0 to z. Take two paths from z0 to z, and
reverse the direction of transversal in one to form a closed curve. Thus, we need only
show that

1

2\pi \imath 

\oint 
\gamma 

h(z)dw=
1

2\pi \imath 

\sum 
j\in [b]

cj

\oint 
\gamma 

\zeta (w - aj , \omega ) dw

for any closed curve \gamma \Omega . By the Cauchy integral theorem and the definition of cj , the
left- hand side is given by

\sum 
j\in [b] cjIj(\gamma ), where Ij(\gamma ) denotes the winding number of

\gamma about Kj . Using the Laurent expansion for \zeta (z,\omega ), which has a single pole of order
one, by the Cauchy integral theorem, the right-hand side is also seen to be equal to\sum 

j\in [b] cjIj(\gamma ), as desired. The function f(z) is analytic on \scrP , and we compute the
derivative

f \prime (z) = h(z) - 
\sum 
j\in [b]

cj\zeta (z  - aj , \omega ).(3.2)

Now define

q(z) :=\Re f(z) +
\sum 
j\in [b]

cj log | \sigma (z  - aj , \omega ) | .(3.3)

We claim that ux(z) = qx(z) and uy(z) = qy(z), so that, after adding a constant to f ,
we obtain u(z) = q(z), z \in \scrP . Using (2.2), we compute

qx(z) =\Re f \prime (z) +
\sum 
j\in [b]

cj\Re \zeta (z  - aj , \omega ) =\Re h(z) = ux

and

qy(z) =\Re (\imath f \prime (z)) +
\sum 
j\in [b]

cj\Re (\imath \zeta (z  - aj , \omega )) =\Re (\imath h(z)) = uy.
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HARMONIC FUNCTIONS ON FINITELY CONNECTED TORI 2801

We have established that u(z) = q(z) up to a constant, z \in \scrP , and it remains to
show that we can rewrite q(z) in (3.3) so that the two terms on the right-hand side
are each doubly periodic, so that they can be thought of as functions on \Omega . In (3.3),
the second term on the right-hand side is not doubly periodic since \sigma is not doubly
periodic. By (1.5), this term can be rewritten as\sum 

j\in [b]

cj log | \sigma (z  - aj) | =
\sum 
j\in [b]

cj log | \^\sigma (z  - aj) | +\Re g(z),

where

g(z) =
1

2

\sum 
j\in [b]

cj
\bigl( 
\gamma 2(z  - aj)

2 + \pi | z  - aj | 2/A
\bigr) 

= \alpha z + \beta z\ast + \gamma ,

where \alpha , \beta , and \gamma are constants and we have used (3.1) to drop the quadratic terms.
From (3.2), f \prime is doubly periodic since h is doubly periodic and

\sum 
j\in [b] cj = 0.

There exist \alpha 1, \alpha 2 such that for all admissible z\biggl\{ 
f(z + 2\omega 1) = f(z) + \alpha 1,
f(z + 2\omega 2) = f(z) + \alpha 2.

Let us introduce (\mu 1, \mu 2), the unique solution of\biggl\{ 
\omega 1\mu 1 + \omega \ast 

1\mu 2 = - \alpha 1/2,
\omega 2\mu 1 + \omega \ast 

2\mu 2 = - \alpha 2/2.

Notice that the previous system is nonsingular since the determinant is proportional
to the area of the fundamental domain, which is nonzero. Moreover, a straightforward
computation shows that

f(z) + \mu 1z + \mu 2z
\ast 

is a doubly periodic function. Thus, for a suitable \mu , \^f(z) = f(z) + \mu z is an analytic
function and \Re \^f(z) is also doubly periodic. Note that \Im \^f(z) is not necessarily doubly
periodic and that \^f \prime is elliptic.

Summarizing our results, we have established that there exist \^f analytic with
doubly periodic real part and (\nu , \xi )\in C2 such that

u=\Re \^f +
\sum 
j\in [b]

cj log | \^\sigma (z  - aj) | +\Re (\nu z + \xi z\ast ).

Observing that both the left-hand side and the two first terms of the right-hand side
are doubly periodic, we obtain \nu = \xi = 0, which concludes the proof.

Proof of Theorem 1.2. Let \^f \prime be the elliptic function from Theorem 1.1 associated
with the harmonic function u. Using a representation of elliptic functions (see, e.g.,
[22, p. 450] or [20, p. 23]), we may write

\^f \prime (z) = \tau +
\sum 
j\in [b]

\left(  \alpha j\zeta (z  - aj) +
\sum 
k\geq 0

\beta j,k\wp 
(k)(z  - aj)

\right)  ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2802 C.-Y. KAO, B. OSTING, AND \'E. OUDET

where \tau \in C, \alpha j \in C, and \beta j,k \in C are constants. Consequently, there exists a constant
\rho \in C such that

\^f(z) = \tau z + \rho +
\sum 
j\in [b]

\left(  \alpha j log\sigma (z  - aj) + \beta j,0\zeta (z  - aj) +
\sum 
k\geq 1

\beta j,k\wp 
(k - 1)(z  - aj)

\right)  .

Introducing the periodic modifications \^\zeta and log | \^\sigma | of \zeta and log | \sigma | functions, respec-
tively, we obtain that there exist real coefficients C,aj,k, bj,k such that

u(z) =C +
\sum 
j\in [b]

\Biggl[ 
aj, - 1\Re \^\zeta (z  - aj) + bj, - 1\Im \^\zeta (z  - aj) +

\sum 
k\geq 0

aj,k\Re \wp (k)(z  - aj)

+
\sum 
k\geq 0

bj,k\Im \wp (k)(z  - aj) + cj log | \^\sigma (z  - aj) | 

\Biggr] 
+ g(x, y)

for some affine function g. By periodicity of all other terms, the function g also has
to be doubly periodic, so it must be identically equal to zero. Finally,

\sum 
j\in [b] cj = 0 is

deduced from the harmonicity of all the terms, except the log | \^\sigma | terms, which have a
constant Laplacian.

4. Computational method and experiments. Here we develop a computa-
tional method based on a series solution of the form (1.7) to solve the Laplace problem
(1.8) and the Steklov eigenvalue problem (1.9).

4.1. Computational method. Let \Omega be a finitely connected torus as in (1.3).
For simplicity, we will take each region Kj , j \in [b], to be a closed disk, Kj =B(aj , rj),
that is centered at the point aj and has radius rj . The centers and radii are chosen
such that Ki \cap Kj =∅ for i \not = j. Based on Theorem 1.2, we consider a series solution
of the form (1.7), where the sums on k are truncated at k = kmax. We collect the
(real) coefficients in the series solution into a vector v = [C, (aj,k), (bj,k), (cj)] \in Rm,
where m= 1+2b(kmax+2)+(b - 1). For each coefficient, vi, we let \phi i, i\in [m], denote
the corresponding basis function (e.g., the real part of a Weierstrass \wp function), so
that

u(z) =
\sum 
i\in [m]

vi\phi i(z).(4.1)

On each boundary component \partial Kj , we uniformly sample points with respect to ar-
clength and denote the collection of all sampled points in the union of the boundary
components by (p\ell )\ell \in [S]. In the experiments below, we report the value of m and take
S = 3m. Define the matrices A,B \in RS\times m by

A\ell ,i =
\partial \phi i

\partial n
(pl),

B\ell ,i = \phi i(pl).

Details about the computation of the normal derivatives of basis functions are given
in Appendix A.

4.2. Laplace problem. We solve the Laplace problem (1.8) with boundary data
f(x), x \in \partial \Omega , as follows. Define the vector b \in RS by b\ell = f(p\ell ). The least-squares
solution is found by solving the normal equations

BtBv=Btb.(4.2)
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HARMONIC FUNCTIONS ON FINITELY CONNECTED TORI 2803

The solution v then is used with the expansion in (4.1) as an approximate solution of
(1.8). By the maximum principle, the accuracy of the solution can be computed by
looking at the error on the boundary, supx\in \partial \Omega | u(x) - f(x)| .

We implement the numerical method in Julia using arbitrary precision provided
by the packages GenericLinearAlgebra.jl and ArbNumerics.jl (a wrapper of the Arb C
library). All computational experiments were performed with a precision of 210 bits,
which corresponds to a machine epsilon approximately equal to 10 - 300.

We first consider a finitely connected square torus with half-periods (\omega 1, \omega 2) =
(1, i). The complement is taken to be b = 1 disks with K1 = B(a1, r) with a1 =
0 and r = 0.4. We take f(\theta ) = sin(5\theta ), where \theta is the polar angle centered at
a1. The resulting solution is plotted in the top left panel of Figure 2. Using the
maximum principle to bound the L\infty (\Omega ) error of the solution, we estimate \| u(x) - 
f(x)\| L\infty (\partial \Omega ) in the bottom left panel of Figure 2 for increasing numbers of degrees of
freedom, m. This estimate is based on the maximum value obtained at the sampled
points, after doubling the number of sampled points. Spectral convergence is observed.
With kmax = 150 (m = 305 degrees of freedom), the solution has error less 10 - 100

corresponding to at least 100 digits of accuracy.

Fig. 2. (Upper panels) Approximate solution to the Laplace problem in a square torus with
one and two circular holes. (Lower panels) Spectral convergence is observed for each of the two
geometries. See subsection 4.2.
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2804 C.-Y. KAO, B. OSTING, AND \'E. OUDET

Next, we again consider a finitely connected square torus with half-periods (\omega 1, \omega 2)
= (1, i). The complement is taken to be b= 2 disks with Ki =B(ai, ri), i= 1,2, with
a1 = 0.4, a2 = - 0.4 - 0.4i, and r1 = r2 = 0.2. On each boundary, we set f(\theta ) = sin(4\theta )
for circle i= 1 and f(\theta ) = sin(3\theta ) for circle i= 2. The resulting solution is plotted in
the top right panel of Figure 2. In the bottom right panel of Figure 2, we can see that
the solutions have error similar to that in the previous example, albeit using more
degrees of freedom.

Next, we consider a finitely connected equilateral torus with half-periods (\omega 1, \omega 2) =

(1, 12 +
\surd 
3
2 \imath ). The complement is taken to be the same sets as above with one and two

circular holes. We plot the results in Figure 3. The solutions have error similar to
those in the previous examples.

In Figure 4, we provide an approximate solution to the Laplace problem for two
nonconvex holes in a square torus. The polar parametrizations of the boundaries of
the two holes K1 and K2 are given by Ai + \rho (\theta + \theta i)(cos(\theta ), sin(\theta )), where

\rho (\theta ) =
3

10
+

1

10
cos(3\theta ),

A1 = (0.4,0.4), A2 = - A1, \theta 1 = 0, and \theta 2 =
\pi 
3 . We impose the Dirichlet condition 0 on

the first boundary component and 1 on the second. The sampled points are obtained
using the previous parametrization together with a uniform sampling of the angles.
As previously, in the right panel of Figure 4, we observe exponential convergence but
notice that the obtained accuracy is significantly lower than in previous cases with
the same number of degrees of freedom.

Fig. 3. Approximate solution to the Laplace problem in an equilateral torus with one and two
circular holes. See subsection 4.2.

Fig. 4. Approximate solution to the Laplace problem in a square torus with two nonconvex holes.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/0

5/
24

 to
 1

34
.1

73
.1

79
.7

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



HARMONIC FUNCTIONS ON FINITELY CONNECTED TORI 2805

Finally, we consider the Laplace equation on a finitely connected square torus
with 25 disks removed. Dirichlet boundary conditions equal to 0 or 1 are imposed on
the boundary of each disk. The results are plotted in Figure 1. The solution has error
less than 10 - 16.

4.3. Steklov eigenvalue problem. To solve the Steklov eigenvalue problem
(1.9), we consider a generalized eigenvalue problem

A v= \sigma B v.(4.3)

We can approximate solutions to this eigenvalue problem by multiplying both sides
by Bt and considering the nonsymmetric generalized eigenvalue problem, BtAv =
\sigma BtBv. For kmax \leq 50, this formulation leads to exponentially converging eigenvalue
approximations, as expected. As has been observed by several authors [5, 4, 10], this
formulation with a larger number of degrees of freedom may produce ill-conditioned
matrices. To illustrate this, in Figure 5, for the example considered above with two
nonconvex holes (see Figure 4), we plot the condition number of BtB and BtA as the
number of degrees of freedom varies. To overcome this difficulty and avoid spurious
modes, we followed the SVD approach described in [5]: for a (small) set of randomly
sampled interior points (qr)r\in [R], we consider the evaluation matrix C \in RR\times m:

Cr,i = \phi i(qr).(4.4)

In all our experiments, we set R = 50. We define s(\sigma ) to be the smallest (always
nonnegative) eigenvalue of the generalized eigenvalue problem

D(\sigma )x(\sigma ) = s(\sigma )CtCx(\sigma ),(4.5)

where D(\sigma ) = (A  - \sigma B)t(A  - \sigma B). From a computational point of view, s(\sigma ) can
be efficiently evaluated using a standard power method or an orthogonal subspace
approach if the multiplicity is suspected to be greater than one. Local minimizers of
s(\sigma ) provide stable approximations of Steklov eigenvalues. To numerically identify
these local extrema, we used the golden section algorithm.

To bound the error in the eigenvalues, we use the following a posteriori estimate
for Steklov eigenvalues in [6], which extends previous estimates for Laplace--Dirichlet
eigenvalues [10, 18].

Fig. 5. Exponential growth of condition numbers of matrices BtB (left) and BtA (right) with
respect to the number of degrees of freedom.
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2806 C.-Y. KAO, B. OSTING, AND \'E. OUDET

Proposition 4.1 (see [6]). Consider \Omega a bounded open regular domain, and
suppose that u\varepsilon solve the following approximate eigenvalue problem:

 - \Delta u\varepsilon = 0 in \Omega ,

\partial nu\varepsilon = \sigma \varepsilon u\varepsilon + f\varepsilon on \partial \Omega .

Then if \| f\varepsilon \| L2(\partial \Omega ) is small, there exist a constant C, depending only on \Omega , and a
Steklov eigenvalue \sigma k satisfying

| \sigma \varepsilon  - \sigma k| 
\sigma k

\leq C\| f\varepsilon \| L2(\partial \Omega ).

We study three geometrical configurations: tori which are the complement of
K1 =B(a1, r) with a1 = 0 and r= 0.4, the complement of Ki =B(ai, ri), i= 1,2, with
a1 = 0.2, a2 =  - 0.2 + 0.2i, and r1 = r2 = 0.1, and the complement of Ki = B(ai, ri),
i = 1,2,3, with a1 = 0.3, a2 = 0.3i, a3 =  - 0.3  - 0.3i and r1 = r2 = 0.1, r3 =
0.05. We approximated Steklov eigenfunctions of the square torus with half-periods
(\omega 1, \omega 2) = (1, i) (see Figures 6 to 8) and of the equilateral torus with half-periods

(\omega 1, \omega 2) = (1, 12 +
\surd 
3
2 \imath ) in these three configurations (see Figures 9 to 11). The first

eigenvalue is zero, which corresponds to a constant eigenfunction. In these figures,
Steklov eigenfunctions of indices 2 to 7 are plotted. The Steklov eigenfunctions, as
expected, are oscillatory near the boundary and decay exponentially away from the
boundary. We used Proposition 4.1 to estimate the approximation error of the Steklov
eigenvalues. We approximated the L2 boundary term by a (periodic) trapezoidal
quadrature formula after doubling the number of sampled points. Convergence plots
for Steklov eigenvalues on a square domain with one, two, and three punctured circular
holes are given in Figure 12. As expected, spectral convergence is also observed in
these situations. The same convergence rate has also been obtained studying the
equilateral case.

Finally, in Appendix B, we report in Tables 1 to 6 our approximation of the first
six nontrivial eigenvalues of the square and equilateral tori with b= 1, 2, and 3 circular

Fig. 6. Approximate Steklov eigenfunctions of indices 2 to 7 on a punctured square torus with
one hole. See subsection 4.3.
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HARMONIC FUNCTIONS ON FINITELY CONNECTED TORI 2807

Fig. 7. Approximate Steklov eigenfunctions of indices 2 to 7 on a punctured square torus with
two circular holes. See subsection 4.3.

Fig. 8. Approximate Steklov eigenfunctions of indices 2 to 7 on a punctured square torus with
three circular holes. See subsection 4.3.

holes. We believe that the reported 50 digits are correct in each case. As indicated
in Theorem 1.1, when there is only one connected boundary component (b = 1),
the eigenfunctions do not involve the logarithmic term and are oscillatory along the
boundary, as shown in Figures 6 and 9. In general, eigenfunctions corresponding to
larger Steklov eigenvalues are more oscillatory near the boundary. Note that the tori
parameters, \omega , effect the multiplicity of the eigenvalues. On a square torus with one
circular hole, \sigma 2 = \sigma 3 and \sigma 6 = \sigma 7, while, on an equilateral torus with one circular
hole, \sigma 2 = \sigma 3 and \sigma 4 = \sigma 5. Since the domains with two or three circular holes do not
possess symmetry, we observe that all the obtained eigenvalues are simple.
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2808 C.-Y. KAO, B. OSTING, AND \'E. OUDET

Fig. 9. Approximate Steklov eigenfunctions of indices 2 to 7 on a punctured equilateral torus
with one hole. See subsection 4.3.

Fig. 10. Approximate Steklov eigenfunctions of indices 2 to 7 on a punctured equilateral torus
with two circular holes. See subsection 4.3.

5. Discussion. In this paper, we established Theorem 1.1, a logarithmic con-
jugation theorem on finitely connected tori. We used the theorem to find a series
solution representation of harmonic functions on finitely connected tori; see Theorem
1.2. Implementing the numerical method in Julia using arbitrary precision, we ap-
proximate solutions to the Laplace problem (1.8) and the Steklov eigenvalue problem
(1.9); see section 4. Using a posteriori estimation, we show that the approximate so-
lution of the Laplace problem has error less than 10 - 100 using a few hundred degrees
of freedom and the Steklov eigenvalues have similar error.

There are several future directions for this work. The fundamental solution of
Laplacian on flat tori can be expressed as a logarithmic function involving the first
Jacobi theta function [15, 17]; we think it would be interesting to develop integral
equation methods to approximate harmonic functions on finitely connected tori in the
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HARMONIC FUNCTIONS ON FINITELY CONNECTED TORI 2809

Fig. 11. Approximate Steklov eigenfunctions of indices 2 to 7 on a punctured equilateral torus
with three circular holes. See subsection 4.3.

Fig. 12. Convergence plots for Steklov eigenvalues on a square domain with one, two, and three
punctured holes. Each line corresponds to one of the first seven eigenvalues. See subsection 4.3.

spirit of [3]. We have focused on the case where the domain complement, \cup j\in [b]Kj ,
has a smooth boundary. We think it would be interesting to extend the methods in
[11] to improve the order of convergence for nonsmooth boundaries. Finally, we think
it would be interesting to apply the developed numerical methods to the numerical
problem of computing extremal Steklov eigenvalue problems for finitely connected flat
tori [14, 19].

Appendix A. Computing normal derivatives. In this appendix, we provide
some details for computing normal derivatives of functions of a complex variable.
Denote f(z) = u(x, y) + \imath v(x, y), with z = x+ \imath y. Since f is analytic, we have ux = vy
and uy = - vx. Furthermore, fx = f \prime (z) and fy = \imath f \prime (z). Thus, with n= n1 + \imath n2, we
have

un = n1ux + n2uy = n1ux  - n2vx =\Re [(n1 + \imath n2)(ux + \imath vx)] =\Re (nf \prime (z)),

vn = n1vx + n2vy = - n1uy + n2vy = - \Im (n1 + \imath n2)(uy + \imath vy) =\Im (nf \prime (z)).

For example, f(z) = zk, \bigl( 
\Re 
\bigl( 
zk
\bigr) \bigr) 

n
= k\Re (nzk - 1),\bigl( 

\Im 
\bigl( 
zk
\bigr) \bigr) 

n
= k\Im (nzk - 1).
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2810 C.-Y. KAO, B. OSTING, AND \'E. OUDET

If f(z) = \wp (k)(z  - aj),\Bigl( 
\Re 
\Bigl( 
\wp (k)(z  - aj)

\Bigr) \Bigr) 
n
=\Re (n\wp (k+1)(z  - aj)),\Bigl( 

\Im 
\Bigl( 
\wp (k)(z  - aj)

\Bigr) \Bigr) 
n
=\Im (n\wp (k+1)(z  - aj)).

If f(z) = \^\zeta (z  - aj),\Bigl( 
\Re 
\Bigl( 
\^\zeta (z  - aj)

\Bigr) \Bigr) 
n
= (\Re (\zeta (z  - aj)))n  - 

\Bigl( 
\Re 
\Bigl( 
\gamma 2 (z  - aj) +

\pi 

A
(z  - aj)

\ast 
\Bigr) \Bigr) 

n

= - \Re (n\wp (z  - aj)) - 
\Bigl( \Bigl( 

\Re (\gamma 2) +
\pi 

A

\Bigr) 
n1  - \Im (\gamma 2)n2

\Bigr) 
,\Bigl( 

\Im 
\Bigl( 
\^\zeta (z  - aj)

\Bigr) \Bigr) 
n
= (\Im (\zeta (z  - aj)))n  - 

\Bigl( 
\Im 
\Bigl( 
\gamma 2 (z  - aj) +

\pi 

A
(z  - aj)

\ast 
\Bigr) \Bigr) 

n

= - \Im (n\wp (z  - aj)) - 
\Bigl( 
\Im (\gamma 2)n1 +

\Bigl( 
\Re (\gamma 2) - 

\pi 

A

\Bigr) 
n2

\Bigr) 
,

If f(z) = log | \^\sigma (z  - aj)| ,

(log | \^\sigma (z  - aj)| )n = n1 (log | \^\sigma (z  - aj)| )x + n2 (log | \^\sigma (z  - aj)| )y

= n1

\biggl( 
\Re 
\biggl( 
 - 1

2
\gamma 2z

2  - 1

2

\pi 

A
| z| 2
\biggr) \biggr) 

x

+ n2

\biggl( 
\Re 
\biggl( 
 - 1

2
\gamma 2z

2  - 1

2

\pi 

A
| z| 2
\biggr) \biggr) 

y

+ n1 (log | \sigma (z  - aj)| )x + n2 (log | \sigma (z  - aj)| )y
= n1

\Bigl( \Bigl( 
 - \Re (\gamma 2) - 

\pi 

A

\Bigr) 
x+\Im (\gamma 2)y

\Bigr) 
+ n2

\Bigl( 
\Im (\gamma 2)x+

\Bigl( 
\Re (\gamma 2) - 

\pi 

A

\Bigr) 
y
\Bigr) 

+ n1 (\Re (\zeta (z  - aj))) + n2 ( - \Im (\zeta (z  - aj))) .

Appendix B. Numerical values of computed Steklov eigenvalues. Values
of computed Steklov eigenvalues are given in Tables 1 to 6; see subsection 4.3 for
details.

Table 1
Steklov eigenvalues of a square torus with one circular hole.

\sigma 2 3.21737540790552735473880286001400036767774798208487
\sigma 3 3.21737540790552735473880286001400036767774798208487

\sigma 4 4.85099530552467697892257589130439715581461931719259
\sigma 5 5.15358084940676223549771471754234765157435969419525
\sigma 6 7.50305008416767542642635086056165243882709526430554

\sigma 7 7.50305008416767542642635086056165243882709526430554

Table 2
Steklov eigenvalues of a square torus with two circular holes.

\sigma 2 6.45837308842285506198400983365912091999317179119988

\sigma 3 9.04038374077713587651429965380130970292955686420981
\sigma 4 9.32931391918711635803886895114746515357566095450257

\sigma 5 11.02561512617948586321622981756262835104523220458063
\sigma 6 12.69568331719729045908212485186369130848598658103989
\sigma 7 19.72884655790348748027382339516572459572547368362522
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HARMONIC FUNCTIONS ON FINITELY CONNECTED TORI 2811

Table 3
Steklov eigenvalues of a square torus with three circular holes.

\sigma 2 6.54721983775026738598476089606442586801693676638247

\sigma 3 6.79298688602543949226783518103096724408533776232952
\sigma 4 9.02715360305747386008778464587475727275979230551042

\sigma 5 9.75911376018587533254687022367601130464658416864329

\sigma 6 11.11563661826511047191549742109769883301063010901993
\sigma 7 13.08067309361125105561475152956318658177620553096385

Table 4
Steklov eigenvalues of an equilateral torus with one hole.

\sigma 2 3.34865594380260534169550288243470971962587318064277

\sigma 3 3.34865594380260534169550288243470971962587318064277
\sigma 4 4.99978881548382813234141616969113198885117552416465

\sigma 5 4.99978881548382813234141616969113198885117552416465

\sigma 6 7.44392530690947308002824485738760008901145380307620
\sigma 7 7.55649710043624518482844840631875099119732734059433

Table 5
Steklov eigenvalues of an equilateral torus with two circular holes.

\sigma 2 6.53794803818597918794030349125758145344842633243163

\sigma 3 9.03760803330365503342990995931942991592541389841134
\sigma 4 9.37148419781059159007737134528684902568383756667729

\sigma 5 11.02904931936017784776119216982004095594847249520813

\sigma 6 12.70222698966325001285792418382443547595163064198654
\sigma 7 19.72940718569248148461882657324755544321541234433839

Table 6
Steklov eigenvalues of an equilateral torus with three circular holes.

\sigma 2 6.63530737085667505246439432756580077469480498850424

\sigma 3 6.94424494471680808970061612948991192950478141474806
\sigma 4 9.02318420302479178183722837786227147321263458092783

\sigma 5 9.69311259795549433304394048074564041975314036318590

\sigma 6 11.14183481942696624006786357768349746325365435641531
\sigma 7 13.09270988086125229485281063758500867332548835687565
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