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Abstract

Climate change is driving substantial changes in North American boreal for-
ests, including changes in productivity, mortality, recruitment, and biomass.
Despite the importance for carbon budgets and informing management deci-
sions, there is a lack of near-term (5-30 year) forecasts of expected changes in
aboveground biomass (AGB). In this study, we forecast AGB changes across
the North American boreal forest using machine learning, repeat measure-
ments from 25,000 forest inventory sites, and gridded geospatial datasets. We
find that AGB change can be predicted up to 30 years into the future, and that
training on sites across the entire domain allows accurate predictions even in
regions with only a small amount of existing field data. While predicting AGB
loss is less skillful than gains, using a multi-model ensemble can improve the
accuracy in detecting change direction to >90% for observed increases, and up
to 70% for observed losses. Higher stem density, winter temperatures, and the
presence of temperate tree species in forest plots were positively associated
with AGB change, whereas greater initial biomass, continentality (difference
between mean summer and winter temperatures), prevalence of black spruce
(Picea mariana), summer precipitation, and early warning metrics from
long-term remote sensing time series were negatively associated with AGB
change. Across the domain, we predict nondisturbance-induced declines in
AGB at 23% of sites by 2030. The approach developed here can be used to esti-
mate near-future forest biomass in boreal North America and inform relevant
management decisions. Our study also highlights the power of machine learn-
ing multi-model ensembles when trained on a large volume of forest inventory
plots, which could be applied to other regions with adequate plot density and

spatial coverage.
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INTRODUCTION

The boreal forest is the second largest forest biome,
accounting for roughly two thirds of global forest carbon
stocks and one fifth of the global forest carbon sink
(Bradshaw & Warkentin, 2015; Pan et al., 2011). The North
American boreal forest is rapidly warming at a rate that
exceeds the adaptive capacity of trees in some regions
(Gauthier et al., 2015). Changes in aboveground biomass
(AGB) reflect both the natural forest disturbance-recovery
dynamic (Wang et al., 2021) as well as the ongoing impacts
of climate change (Chen et al., 2016; Hember et al., 2017a;
Sulla-Menashe et al., 2018). Despite the importance for
predicting the impact of forests on the global carbon cycle
and for informing management decisions, the effects of cli-
mate change on biomass in the boreal zone are not well
understood (Chen et al., 2016; Wang et al., 2021). A grow-
ing number of studies identified processes such as droughts
and wildfires that have the potential to reverse the boreal
carbon sink as warming continues (Hember et al., 2017a;
Walker et al., 2019). Well-planned management interven-
tions informed by robust predictions of AGB change on a
5- to 30-year scale have the potential to help ameliorate this
risk (Anderegg et al., 2020). However, forecasts informing
decisions on this timescale are lacking, mainly because the
current scientific modeling infrastructure is not designed to
forecast AGB on a decadal timescale (Rogers et al., 2018)
and, when available, resource manager-specific growth
models typically lack climate change information
(Di Lucca, 2019).

Climate change is having multifaceted and potentially
counteracting impacts on AGB in the boreal forest. In
recent decades, climate change has positively influenced
boreal AGB through increases in the growing season
length (Gauthier et al.,, 2015; Hember et al., 2017a),
increased nitrogen availability (Trugman et al., 2016),
and CO, fertilization (Bradshaw & Warkentin, 2015; Liu
et al., 2015). Climate change has driven mixed and nega-
tive impacts on boreal forest AGB though shifts in mois-
ture availability (D’Orangeville et al., 2018; Hember
et al., 2017a; Luo et al., 2019) and more frequent and
intense droughts (Itter et al., 2019; Rogers et al., 2018), as
well as increasing frequency of disturbance events like
fires (Abatzoglou et al., 2018; Hanes et al., 2018; Jia et al.,
2019; Walker et al., 2019) and disease or pest outbreaks
(Jia et al., 2019; Rogers et al., 2018). These processes
interact with each other in complex ways (Burrell et al.,

2021; Peng et al., 2011), and can have different impacts
on mature and younger forests (Chen et al., 2016; Sun
et al., 2021). The complexity of these interacting process
and forest responses has generated considerable uncer-
tainty in the current extent and drivers of change in
boreal AGB (D’Orangeville et al., 2018; Girardin et al.,
2016; Wang et al., 2021), and are likely to continue
changing with further climate warming (Zhang
et al., 2022).

The extent and drivers of boreal forest change are
generally assessed using repeated site-level measure-
ments (Baltzer et al., 2021; Chen et al, 2016;
D’Orangeville et al., 2018; Girardin et al., 2016; Rogers
et al., 2018), satellite measurements of vegetation indices
(VIs) such as the normalized difference vegetation index
(NDVI) (Guay et al., 2014; Sulla-Menashe et al., 2018;
Wang & Friedl, 2019), or process-based modeling (Birch
et al., 2021; Foster et al., 2019; Mekonnen et al., 2019;
Trugman et al.,, 2016). Although the broad patterns of
change are similar in that they show increases in AGB
over recent decades (Hember et al., 2017a; Sulla-Menashe
et al., 2018), the results of these different approaches
diverge considerably when assessing the magnitude of
different drivers (Guo et al., 2018; Sulla-Menashe et al.,
2018). For example, recent studies have attributed the
widespread greening of the boreal zone to rapid warming
and CO, fertilization (ALRahahleh et al., 2018; Gauthier
et al., 2015; Yang et al., 2018). By contrast, a recent study
over Canada’s forests found that the majority of changes
were driven by the disturbance-recovery dynamic with
the impact of climate changes outside of this dynamic
being geographically limited and relatively small in mag-
nitude (Sulla-Menashe et al., 2018).

There are also large uncertainties in projections of
future AGB change in the boreal zone (D’Orangeville
et al., 2018; Yang et al., 2018). Land surface models over-
whelmingly predict large increases in biomass over the
observed period and 21st century driven primarily by
increases in temperature (Olsson et al., 2019; Wang et al.,
2021). However, these models tend to overestimate the
positive impact of climate change and CO, fertilization
over the observed period (Kolby Smith et al., 2016; Wang
et al., 2021; Yang et al., 2018), and the modeled response
of mature forests to climate change diverges considerably
from what has been observed (Jia et al., 2019). This is
likely due to models having limited representation of fire
dynamics (Sanderson & Fisher, 2020), permafrost (Burke
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et al., 2020), drought effects (D’Orangeville et al., 2018),
species types (Anderegg et al., 2021), and tree mortality
(Boussetta et al., 2013; Felton, 2021). They also tend to
misrepresent the impact of warming on CO, uptake (Zhu
et al., 2019) and fail to capture moisture-limiting impacts
on GPP in the late summer (Liu et al., 2020; Zhang et al.,
2020). These problems led a recent Intergovernmental
Panel on Climate Change (IPCC) report to conclude “low
confidence in the projections of global greening and
browning trends” (Jia et al., 2019), and why current pre-
dictions of AGB change are unsuitable for most manage-
ment applications (Rogers et al., 2018).

Near-term predictions of biomass change are impor-
tant for understanding and quantifying boreal-climate
change feedbacks, informing forest management deci-
sions, and designing carbon offset projects (Anderegg
et al., 2020). While it does vary between organizations,
most make decisions on a 1- to 30-year timescale. The
decisions made by these organizations influence fire
management, harvest, replanting, and the preservation of
primary forest. Even if we ignore the aforementioned
issues with land surface models, much of the existing
process-based modeling is focused on long-term changes
at coarse spatial resolutions, which are not helpful for
managers requiring near-future site-level predictions to
inform management decisions (Rogers et al., 2018).

As a result of the growing need for near-term predic-
tions of AGB change, some studies have attempted to
inform management decisions by conducting site-level
modeling using statistical and machine learning
(ML) methods (Lidberg et al., 2020; Liu et al., 2018; Sun
et al., 2021). Existing ML studies have two primary poten-
tial hurdles that have limited their widespread use for bio-
mass change prediction. The first hurdle is data
availability, with small training datasets from geographi-
cally confined regions limiting the general applicability of
ML modeling. The second is the asymmetrical impact of
the disturbance-recovery dynamic of boreal forests, with
increases in biomass following predictable growth curves
(Jarvis & Linder, 2000; Jonsson et al.,, 2020), while the
drivers of loss are often multifaceted and stochastic (Boyd
et al., 2019; Hember et al., 2017b; Rogers et al., 2018),
which complicates predictions for any specific location at
a specific time. However, recent studies have shown there
are legacy effects and ‘resilience debts” that lead to
nondisturbance-driven declines in AGB (Boyd et al., 2021;
Hember et al., 2017b; Itter et al., 2019), and indicators of
tree mortality-driven AGB loss can be detected in remotely
sensed data as many as 25 years prior to the loss event
(Rogers et al., 2018). These early warning signal (EWS)
metrics raise the possibility that an ML modeling approach
trained with a sufficiently large and diverse dataset may
be able to predict nondisturbance-driven biomass loss.

The aim of this study was to develop a ML-based
predictive modeling approach that can be used to predict
site-level changes in AGB across boreal North America
and to test the limits of this predictability. We first com-
piled an extensive database of permanent sample plot
(PSP) forest inventory sites with repeat measurements
collected by 13 different agencies across Canada and
Alaska. We then trained ML models and used them to
test several hypotheses: (1) performance of AGB change
prediction will vary regionally depending on the number
of PSP sites, (2) prediction accuracy decreases as the pre-
diction window increases, (3) negative changes in AGB
due to background mortality and partial disturbance can
be predicted but with lower accuracy than gains, and
(4) the direction of future AGB change will vary region-
ally depending on climatology and climate trends with
declines in biomass likely to occur in the southern boreal
in areas more sensitive to drought.

METHODS

The aim of our methodology is to apply ML to a large
dataset of field sites with repeat biomass measurements to
predict the change in AGB (AAGB) between T, and T;,.
Our modeling approach only used information available at
Ty, including both inventory-based metrics as well as
gridded information on prior climate and ecosystem
dynamics, as this allows the models to predict biomass
changes into the future without the need to also project the
driver and response variables simultaneously. An overview
of the methodology used in this study is shown in Figure 1.

Site-level database

PSPs with repeat inventory measurements are invaluable
for understanding long-term changes in boreal forests.
We quantified temporal changes in stand attributes
(e.g., AGB) using repeat inventory measurements at PSPs
distributed across boreal North America. Specifically, we
assembled a database consisting of 106,828 census mea-
surements collected by 11 government agencies between
1926 and 2017 at 24,690 sites across boreal North
America (Figure 2). While forest inventory monitoring is
widespread in this domain, the characteristics of moni-
toring programs vary among research groups and govern-
ment agencies. A regional breakdown of sites is included
in Appendix S1: Figures S1 and S2. This represents one of
the largest databases of this type ever assembled, and
contains data on time-varying species composition, dbh,
mortality, stem density, damage flags, disturbance his-
tory, and stand age.
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FIGURE 1 Flow diagram showing the construction of the dataset and the testing methodology.
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FIGURE 2 Characteristics of forest inventory site observation database. (a) The number of observations in the database. An
observation is a field measurement at a site at a specific time. Modeled observations are those that were included in the XGBoost testing and
training datasets, and final is the last observation at a given site. (b) Map of the number of modeled sites on a 1° X 1°-grid. Background
image: Natural Earth Shaded Relief. (c) Probability density function of the gaps between observations. Colors match the classes in panel (a).
For the final observation, it is the gap between the last observation and 2021. (d) The number of sites with biomass increases and decreases
in the modeled dataset. AGB, aboveground biomass.

Differences in sampling methods through time and  always directly comparable. To account for differences
between agencies meant that not all parameters were in site dimensions, we converted all observations to an
available at every site, and raw observations were not average per unit area basis (per hectare). We also
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standardized species information between four different
species groupings (Appendix S1: Table S1). Both the
counts of individual species and the grouped species
types were included as predictor variables in our models.
To allow for comparisons across sampling regions, we
calculated stand-level AGB at every site for each census.
This was done by calculating individual tree AGB using
the Canadian national species-specific dbh-based tree
AGB allometric equations (Ung et al., 2008) and then
summing the AGB of all trees within each sample plot at
each census. Allometric equations were available for
most of the dominant tree species, but for some less com-
mon species, it was necessary to use generic “hardwood”
or “softwood” equations unless there was a closely
related species that could be substituted (e.g., Larix
laricina for Larix occidentalis). Alaska-specific allometric
equations (Alexander et al., 2012) were used for Betula
neoalaskana, Populus balsamifera, Picea glauca, Picea
mariana, Betula kenaica, Picea lutzii, and Populus
tremuloides. The AGB from shrubs was not included
because data about shrubs were not collected at many
sites, and the overall fraction of AGB from them is
expected to be low. This led to a total of four surveys and
72 species variables derived from site measurements.

Additional predictor variables

Recent changes in forest AGB were likely influenced by
climate and soil characteristics, including the presence of
permafrost. Therefore, we collected climate, soil, and per-
mafrost as well as remotely sensed vegetation and distur-
bance data for every site. Disturbance data were included
so that declines in forest AGB caused by stochastic distur-
bances such as wildfire, which are outside the scope of
this study, could be excluded. We used the Alaskan Large
Fire Database (Kasischke et al., 2002) and the Canadian
National Fire Database (Stocks et al., 2002) fire history
which, in combination with site records of disturbance,
was used to exclude sites that were disturbed during
training and prediction intervals.

For climate data, we used the ClimateNA product
that is a locally downscaled historical climate dataset for
North America (Wang et al., 2016). For every observation
at each site, we calculated the mean, trend, and absolute
trend on 21 climate variables (Appendix S1: Table S3).
We used a 30-year window for climate metrics, which
allowed us to account for decadal climate variability
(Lloyd & Bunn, 2007). For soils, we used the SoilGrids
250m dataset (Hengl et al., 2017), and for permafrost, we
used both the Northern Hemisphere permafrost map
(Obu et al., 2019) and the Global Permafrost Zonation
Index Map (Gruber, 2012).

Satellite time series measurements of VIs may help
predict recent changes in forest AGB; for instance, EWS
metrics derived from Landsat VIs have been used to detect
tree mortality (Rogers et al., 2018). We therefore derived
annual time series of summer VIs for each site using 30-m
resolution measurements of surface reflectance from the
Landsat satellites. Specifically, for a 90 X 90-m footprint
centered on each site, we used Google Earth Engine
(Gorelick et al., 2017) to extract all Landsat 5, 7, and 8 sur-
face reflectance measurements made during July and
August from 1984 to 2017. Following methods used in
several recent studies, we identified high-quality, clear-sky
measurements based on pixel and scene criteria, and then
computed 10 VIs wusing clear-sky measurements
(Appendix S1: Table S2). Because there are systematic dif-
ferences in VIs among Landsat sensors, further
cross-calibration is necessary to avoid spurious changes
when generating VI time series from multiple sensors
(Berner & Goetz, 2022; Sulla-Menashe et al., 2018). We
therefore cross-calibrated the VIs among Landsat sensors
using a recently developed ML technique that effectively
minimized these biases (Berner et al.,, 2020; Berner &
Goetz, 2022). For each VI at every site, we computed
annual median summer values and then calculated the
Theil-Sen slope (Theil, 1950) through years, pulse, EWS
(Carpenter & Brock, 2011; Dakos et al., 2012), and Drift
Diffusion Jump (DDJ) metrics (Carpenter & Brock, 2011;
Dakos et al.,, 2012) (Appendix S1: Table S2), similar to
Rogers et al. (2018). A minimum window of 5 years and a
maximum window of 10 years prior to a given inventory
measurement was selected as a trade-off between improved
model performance using longer windows versus large
reductions in the number of available observations for
model testing and training. This 10-year window prior to
inventory measurement is also consistent with prior
research (Itter et al., 2019; Rogers et al., 2018).

We included sample interval as a predictor variable
because it varied between observations (Figure 1). The
sample interval is defined as the difference in years
between T, and T, where T, is the year a given PSP site
was surveyed and T, is the next observation year used for
testing and training the models, or the desired year
for predicting future biomass changes. For sites with more
than two measurements, every combination of Ty and T,
was used. We removed any sites where disturbance
occurred between T, and T,,. For fires, we excluded sites
using the Alaskan Large Fire Database and Canadian
National Fire Database and for other disturbances, we
used disturbance flags in the PSP databases. While all
regions did record disturbance information, many areas
were missing information about the nature of the distur-
bance meaning it was not possible to consistently distin-
guish different disturbance causes (i.e., logging vs. insect
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outbreak). As such all sites flagged as disturbed were
excluded. After removing data that failed the disturbance
or missing data criteria, this gave a final training dataset of
916 possible predictor variables (most coming from differ-
ent lengths of remote sensing time series before a given
site observation) at every T, with 58,026 observation inter-
vals across 17,124 sites.

Modeling changes in forest AGB

Our modeling approach aimed to predict the change in
AGB (AAGB) between T, and T}, using site-level informa-
tion on biomass and species composition, gridded infor-
mation on climate, soil, and permafrost properties, and
remotely sensed time series of VIs in the years up to
and including T, (i.e., EWSs of mortality; Rogers et al.,
2018). To do so, we used an Extreme Gradient Boosting
regression algorithm as implemented in the Python
XGBoost package (Chen & Guestrin, 2016). XGBoost was
chosen because it is widely used, can tolerate missing
data in the predictor variables, scales well in Cloud com-
pute and GPU compute environments, and outperformed
the more widely used Random Forest and Light Gradient
Boosting Machine in both compute time and accuracy in
our initial tests. While XGBoost is tolerant of missing
data because it uses sparsity-aware split finding (Chen &
Guestrin, 2016; Rusdah & Murfi, 2020), performance
degrades as the amount of missing data increases. For
this reason, sites with more than 50% missing data
(mostly from VI time series) were excluded. This thresh-
old was chosen to optimize the trade-off between
increased model performance with more sites and
decreased model performance due to missing predictors.
To ensure a completely independent test sample and
prevent overfitting, we used a strict withholding procedure
with a four-way split of the dataset combined with a k-fold
rather than the standard two-way test/train set common in
ML. The four sets included (1) a training set (train) used
for training in both the feature and hyperparameter selec-
tion stages, and when training the final models; (2) the val-
idation set (train,,) that acted as a withheld test set in the
feature and hyperparameter selection stages, and then
combined with the train set when training the final
models; (3) model test (test,,oq), which was a fully withheld
set that was unique to each model; and (4) ensemble test
(testens), Which was 5% of the dataset fully withheld from
all 10 models to assess the model ensemble performance.
After the test.,s set was removed, a 10-way k-fold split was
applied to the remaining dataset with 10% to testy,q, 10%
to train,,;, and 80% to the test set. The train and train,, sets
were used for the feature selection and model
hyperparameter optimization (Xia et al., 2017; Yu & Zhu,

2020), and then combined with the training set for the final
model. The model hyperparameters were set using
Bayesian hyperparameter optimization. The procedure
used to perform the splits, as well as the model feature and
hyperparameter selection, is described in Figure 1
and Appendix S1.

The multiple subdivisions of the dataset and the strict
grouping by sites at every split were implemented to
ensure that test sets were fully withheld and there was no
data leakage, which is a widespread problem in ML stud-
ies (Jones, 2019; Kaufman et al., 2012). The splitting and
modeling of the dataset were then repeated using a more
flexible set of criteria to assess the impact of including an
earlier portion of the time series for a specific site on pre-
diction performance. This approach is less strict because
it allows the model to train and test on the same site,
though at different parts of the time series. These two dif-
ferent groupings (site withholding ensemble, or
SWE = withholding entire inventory sites, interval with-
holding ensemble, or IWE = withholding only particular
measurement intervals within sites) allowed us to test
model performance under different conditions, with the
strict “site withholding” grouping giving model perfor-
mance at completely unknown sites, and the less strict
“interval withholding” grouping giving model perfor-
mance at already established sites such as the
existing PSPs.

Assessing model performance and
predicting future change

To assess the model performance, we used R? score in
the fully withheld test set, the median absolute error
(MAE), and binned heatmaps of observed versus
expected values. All statistical tests were performed using
the scikit-learn Python package (Pedregosa et al., 2011).
To examine the limits of performance, we also compared
residuals grouped by factors like region, observed change
direction, the temporal gap between observations, and
differences between model ensembles. We also assessed
intra-ensemble performance wusing the multi-model
model mean and the proportion of models that agree on
directionality in the test., set.

To assess the importance and impact of the different
predictor variables, we used Shapley additive explana-
tions (SHAP) (Lundberg & Lee, 2017). SHAP values rep-
resent how the model estimates of AAGB change
depending on the value of the input features. The 0 point
of the SHAP value is the default outcome of the model,
which is the value the model predicts in the absence of
any values in the predictors, also known as the model
default or baseline output. Future predictions for 2020,
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2025, 2030, and 2040 were performed by applying our
final 10 models to the most recent observation at each
site. Sites where the most recent observation was greater
than 30years from the prediction endpoint were
excluded. This resulted in a database of 23,281 sites that
can be used for future prediction. All maps show results
from sites aggregated within a 1° X 1°-grid.

RESULTS
PSP database and the EWS signals

In total, our PSP database contained 24,690 sites and
106,828 total census measurements (mean of 4.3 observa-
tions per site). Of these, 17,124 sites with 58,026
observations had sufficient data to be included in model
testing and training (Figure 2). There were large differ-
ences in the number of sites sampled across the 13 regions;
for example, we were able to model 17,693 observations in
Nova Scotia but only 209 in Saskatchewan. This disparity
was also reflected in the number of measurements per site,
with Alberta, British Columbia, and Saskatchewan all hav-
ing an average of less than three measurements per site,
compared with Manitoba and Nova Scotia where the aver-
age was greater than nine (Appendix S1: Figure S1).
Increases in AGB were observed at 81% of measurement
intervals, with the largest increases observed at sites with
low initial biomass and in regions with the highest mean
biomass (Appendix S1: Figure S1). The dominance of AGB
increases compared with decreases was consistent across
most regions, with increases varying from 66% in
Saskatchewan and Quebec to >90% in British Columbia
and Newfoundland.

Model performance and feature selection

Our 10-member ensemble of XGBoost models was able
to predict changes in AGB with an ensemble R of 0.46
in the fully withheld test sets (test.,s) for the SWE
(withholding inventory sites entirely), and 0.62 for the
IWE (withholding measurement intervals within sites)
(Figure 3a,c). The less strict withholding procedure
used by the IWE resulted in lower MAE (6.4
vs. 9.9 t ha™') and a better ability to predict the magni-
tude of AGB change, especially for biomass losses
(Figure 2b,d). Figure 4b shows that the higher perfor-
mance of the IWE reflects the models’ ability to learn
the sites, as the IWE error generally decreases with
more site measurements. Overall, both ensembles were
able to predict the direction of change correctly >82%
of the time.

Both model ensembles showed similar behavior dur-
ing feature selection with comparable total permutation
importance placed on different feature groups
(Figure 3a). Our feature selection approach reduced an
initial 916 variables down to between 44 and 75 variables
depending on the model without any loss in model per-
formance. In total, 137 different variables were selected
by at least one member of the two ensembles. When con-
sidered as a group, site-level inventory variables had the
greatest permutation importance for both model ensem-
bles (Figure 4a) and made up the three most important
predictor variables (Figure 5; Appendix S1: Figure S5).
We found the initial biomass at T, (biomass) was the
most important predictor variable, followed by the obser-
vation gap (the gap in years between T, and T,),
continentality (the temperature difference [TD] between
the hottest and coldest month), and initial stem density.
Initial biomass at T, was negatively correlated with
AAGB whereas both the observation gap and the initial
stem density showed strong positive correlations
(Figure 5). TD displayed a threshold effect where
TD > 30°C has a negative effect and <30°C has a positive
impact in the SHAP values (Appendix S1: Figure S6). The
most important species variable was the fraction of black
spruce (P. mariana), which had a negative correlation
with AAGB. Similar variables were important for the sub-
set of sites where the models predicted loss (Appendix S1:
Figure S7). However, site variables such as observation
gap and stem density were comparatively less important,
and climate and EWS variables tended to be more impor-
tant (Appendix S1: Figure S7).

Limits of model performance

We found residuals for both model ensembles showed no
change in net bias (mean = 0) as a function of observa-
tion gap, but the spread (99% CI) in the dataset grew as
the gap between T, and T, increased (Figure 6a,b).
However, this pattern was largely because longer predic-
tion windows include larger changes in AGB, and hence
larger residuals; residuals normalized by (AT) did not
show an increasing spread over time (Figure 6b;
Appendix S1: Figure S9c,d). These relationships break
down at approximately AT = 30 years, either because
there are relatively few measurements in the database
that have a AT > 30 (Figure 2c) or because this repre-
sents a limit for statistical extrapolation of AGB changes.
Models varied considerably in their ability to predict
AGB gain versus loss. Overall, both ensembles were able
to correctly predict change direction >82% of the time,
but this may be biased by the fact that 81% of observa-
tions in the training data experienced AGB gains. Both
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FIGURE 3 Model ensemble heatmaps: (a, b) heatmaps of the site withholding ensemble, (c, d) heatmaps of the interval withholding

ensemble. (a, c) Binned heatmaps show the predicted versus observed values for the multi-model ensemble. (b, d) Heatmaps normalized for
each observation bin show the observed versus predicted values for the multi-model ensemble. Each column of the normalized heatmaps

sums to 1. AGB, aboveground biomass.

ensembles showed high accuracy when predicting bio-
mass gains, with a 90.7% direction accuracy and residual
of —6.4 t ha™! for the SWE and 91.3% direction accuracy
and residual of —4.2 t ha™" for the IWE. The models did
not perform as well at predicting declines in AGB
(Figures 3b and 6a), with a significant net positive bias in
the residuals (SWE: 26.3 tha™', IWE: 17.2tha™') and a
lower direction accuracy (SWE: 41.5%, IWE: 60.2%),
although the IWE still performed better than the SWE.
Differences in the frequency of both AGB loss and sam-
pling intervals between regions mean there is a difference
between the mean observation gap of measurements with

ABG loss (12.0 years) versus gain (10.9 years), although
this difference is too small to account for the disparity in
model performance and does not explain differences
in performance of loss and gain within the same region
(Appendix S1: Figure S10).

The magnitude of the residuals varied considerably
by region (Figure 6c; Appendix S1: Figure S10a,b). The
largest MAE was in Quebec (17.1 t ha™"), followed by
British Columbia (11.5 t ha™"), with all other regions fall-
ing between 5 and 10 t ha™'. There were notable differ-
ences in the mean biomass at T, and the gap between
observations (Appendix S1: Figure S1) with Quebec
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FIGURE 4 Model ensemble characteristics. (a) The summed model permutation importance scores for features grouped by data source.
(b) The median absolute error of the two model ensembles (site withholding ensemble [SWE] and interval withholding ensemble [TWE])
grouped by the number of unique site measurements. RSVI, remotely sensed vegetation indices.

having a mean observation gap of 14.8 years compared to
7.9-11.6 for all other regions. As with the differences in
residuals as a function of time, accounting for differences
in initial biomass and observation gap mostly removed
the difference in residuals between regions (Appendix S1:
Figure S10c,d).

Model ensemble performance

To predict future biomass change, we used the
multi-model ensemble that included 10 estimates at
each location. To assess the ensemble performance, 5%
of the dataset was fully withheld from all models
(testens). For the SWE, the multi-model mean
outperformed individual models with a MEA of
8.85 t ha™! versus the individual models that had MAEs
between 9.03 and 10.18 t ha™'. The multi-model mean
correctly identified the change direction observed 85%
of the time, compared to 82%-84% for the individual
models. The multi-model mean still underestimated
AGB loss, correctly detecting loss in 39% of cases
compared to 38%-44% for the individual models.
Appendix S1: Figure S11la shows the agreement of the
models regarding the direction of AGB changes.
However, these accuracies are substantially improved
by considering cases where all 10 ensemble models
agreed on either AGB increases or decreases (Figure 7).
In these instances, directional accuracy improved to
>90% for AGB gains and 70% for AGB losses. In general,

greater model ensemble agreement resulted in greater
directional accuracy.

Future biomass predictions

The model ensembles predicted mostly gains in biomass at
PSP sites across boreal North America over the coming
decades (Figure 8; Appendix S1: Figure S12). Between the
last site-level observation and 2020, the multi-model mean
AAGB was positive at 76.9% of sites (n = 18,051) and neg-
ative at 23.1% of sites (n = 5426) with a mean observation
gap of 13.3 years. Of the sites with predicted decreases in
AGB, 2051 sites (38%) had all 10 members models
predicted negative AGB change. Regionally, the most con-
sistent increases were predicted to occur in Nova Scotia
(95.2%) and Ontario (89.6%). Conversely, the most consis-
tent decreases were predicted to occur in Alberta, where
70.7% of sites are predicted to decrease, as well as the
Northwest Territories (63.6%) and Saskatchewan (63.3%).
It should be noted that the Northwest Territories only had
22 sites that were used for prediction, which was 100 fewer
than Yukon which had the second fewest. Looking further
into the future, increases were predicted for 77.6% of sites
in 2025, 77.2% in 2030, and 79.2% in 2040, with similar
regional patterns as those observed for 2020. The reduction
in areas with predicted biomass decreases is the result of a
lack of recent sampling in regions with decline as opposed
to changes in the direction of individual sites. Maps of
predicted AGB changes and the number of sites, along

ad ‘1 “vT0T ‘ST680S1T

molesa//:sdpy woxy

ASUSOIT suowro)) dANeaI) a[qeorjdde oy Aq pauraA0S aIe SAONIE YO oSN JO SA[NI 10§ KIRIqIT AUI[UQ AJ[IA\ UO (SUONIPUOD-PUE-SULId) /W0 KA1m ATeIqIjout[uo//:sdny) suonipuo)) pue swid [, o1 98 [$707/10/0€] U0 A1eiqry suruQ Ao[IA ‘syueqare] esey JO ANSIOATUN £q L€/ 7S99/Z001°0/10p/W0d" KI[IM'"



ECOSPHERE

11 of 20

High
(st) Initial Biomass
(st) Observation Gap
(Cli.) TD mean

(st) Stem Density

(sp.) Picea mariana
(Cli.) MSP mean
(Cli.) MCMT mean
(Soil) BLDFIE 30 cm

(sp.) GP2 temperate
(sp.) GP2 boreal

(RSVI) NDVI ddj S2.t
(RSVI) NDII pulse size
(sp.) Abies balsamea
(Cli.) SHM mean

(RSVI) NDWI ddj S2.t
(Soil) CRFVOL 30 cm
(RSVI) MSI Theil. trend
(Cli.) FFP trend

(RSVI) NDII ddj S2.t
(sp.) Tsuga heterophylla
(RSVI) PSRI ddj TotVar.t
(Cli.) Eref trend

(RSVI) NIRV ddj S2.t
(sp.) Picea glauca

(Cli.) MCMT trend

(Cli.) CMD trend

(RSVI) TVFC Theil. trend
(RSVI) NDII ddj TotVar.t
(Soil) SNDPPT 30cm
(Cli.) AHM trend

(RSVI) MSI pulse size
(Cli.) NFFD mean

(Cli.) MWMT trend

Feature value

(sp.) GP1 pine
(Cli.) Eref mean -
(RSVI) NDII Theil. trend —fp—
(Cli.) FFP mean e
(Cli.) CMD mean e —
(RSVI) NIRV ddj TotVar.t —{}—-
(Cli.) DD5 mean . ---__J}_.

—ﬁo —‘30 —éO —iO 6 1b Zb 3‘0 4:0
SHAP value (t ha™?)

FIGURE 5 Aggregated Shapley additive explanation (SHAP)
values for the 40 most important features for the site withholding
ensemble models. Features are sorted from most to least important. A
SHAP value of 0 represents the default outcome of the model, which
for this model ensemble is a mean of AAGB 15.96 t ha™*. The
parentheses before the variable name indicate predictor type: site (st),
climate (Cli), tree species (sp.), remotely sensed vegetation data
(RSVI), and soil (soil). Full names of the predictors are found in
Appendix S1: Tables S1-S4. The colors indicate the value of a feature
within that predictors range, with blue indicating a low value and
pink indicating a high value (e.g., Appendix S1: Figure S6). An
example of what this looks like for an estimate at a single site is
included in Appendix S1: Figure S8. AGB, aboveground biomass.

with versions for the EWS models, are included as
Appendix S1: Figures S13-S17 and show very similar over-
all patterns between ensembles.

DISCUSSION
Modeling biomass change

Our modeling approach was able to robustly forecast
changes in biomass at PSPs across boreal North
America. We found AGB increased at 81.7% of sites in
the PSP database, and our models predicted AGB to
increase at 77% of sites between the last field observa-
tion and 2020 (assuming no extraneous disturbance).
Widespread increases in AGB are broadly consistent
with prior satellite observations showing extensive
greening trends in boreal North America (Guay et al.,
2014; Sulla-Menashe et al., 2018; Wang & Friedl, 2019).
A single model is sufficient to detect the direction of
change in 82%-84% of sites, and the agreement of our
predictions with existing studies showing the spatial
extent of greening shows that ML approaches can be
used to predict AGB change.

Our first hypothesis was that model performance would
vary regionally depending on the large differences in the
availability of training data. Our results do not support this
hypothesis and instead show that differences in model per-
formance between regions can be explained by differences
in sampling frequency (Appendix S1: Figure S10) and
regional growth rates (Appendix S1: Figure S1d). This find-
ing reinforces the usefulness of ML modeling for predicting
AGB changes as it shows that data from a large spatial
domain can partially address regional sampling gaps.
There were significant regional differences in the frequency
of loss observed in the PSP database (Appendix S1:
Figure Slc), which ranged from <8% in Newfoundland
and Labrador to >30% in Saskatchewan, Alberta, and
Northwest Territories. There were also large differences in
the regional availability of site data (Figure 2). For exam-
ple, Saskatchewan had one of the highest loss rates (33%)
but only 209 sites could be included in the model. Despite
these differences, model performance was consistent
between regions. The ability of our models to accurately
predict biomass gains versus losses in areas with few site
observations makes it valuable for addressing these large
data gaps.

Our second hypothesis was that model performance
would degrade as prediction interval increased. While true
in absolute terms (Figure 6a), our ensembles showed no
increase in the spread of normalized residuals as predic-
tion interval increased, and only broke down at intervals
of <3 years and >30 years (Figure 6b), which either repre-
sent the limits of predictability or the training dataset.
Ensemble direction also showed no clear degradation in
performance until the model approached the limits of the
training dataset (Figure 6b,c). ML methods often perform
poorly when trying to predict outside of range of the data

ad ‘1 “vT0T ‘ST680S1T

mofesa/:sdny woxy

sdjy) suonipuo) puv swid L, gy 998 “[$20¢/10/0€] U0 A1eIqrT ouIuQ AD[IAN “SHULQIIR BISTIY JO ANSIOAIUN £Q LELY TSI/TO0101/10p/wi00" KJIm'

SuLIR)/Wod KA M A.

pi

ASUOIT suowwo)) dANea1) o[qeardde oy Aq pouroA0S ore SOONIE V() (AN JO AN 10§ AIRIQIT dUI[UQ) AJ[IAN UO (SUOH



12 of 20 |

BURRELL ET AL.

used in training, an issue commonly referred to as the
“area-of-applicability” or “extrapolation” problem (Colwell
et al., 2012; Meyer & Pebesma, 2021). Our results also sug-
gest this approach may still be limited by data availability
rather than methodological or theoretical constraints.
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Modeling biomass loss versus gain

Our third hypothesis was that losses in AGB would be
harder to predict than gains in disturbance-dominated
ecosystems such as the boreal forest (Sulla-Menashe
et al., 2018; Wang et al., 2021). Increases in biomass were
highly predictable with a directional accuracy of almost
91%, with model performance minimally degrading as
prediction interval increased (Figure 6; Appendix SI:
Figure S9). The excellent performance of our model
ensembles at predicting increases in AGB is likely
because forests follow relatively predictable growth
curves (Jonsson et al., 2020; Luo et al., 2019; Repo et al.,
2021). Gains in biomass are governed by tree physiology,
climate, soils, and other site conditions (Jarvis & Linder,
2000; Jonsson et al., 2020) that constrain the minimum
and maximum level of gain in any given time period.
Previous studies have generally found stand age to be the
best predictor of biomass growth (Jonsson et al., 2020;
Luo et al., 2019). While stand age was included in the
possible predictor variables, none of the models selected
it, likely because it was only collected at ~20% of PSPs in
our database. Instead of stand age, the models all selected
initial stand biomass as the most important variable
when predicting AGB change, with low initial biomass
contributing to the largest modeled increases in predicted
AAGB (Figure 5). Previous research on growth curves of
boreal tree species shows that biomass is highly corre-
lated with stand age (Jonsson et al., 2020; Repo et al,,
2021), which means that the initial biomass is likely act-
ing as a proxy for stand age.

Model predictions of AGB loss had much higher
uncertainty than predictions of gain, correctly identifying
losses in the fully withheld test set 41.5% and 60.2% of
the time in the SWE and IWE models, respectively. In
addition, the models’ ability to predict AGB loss degraded
more rapidly over time than AGB gain, with a rapid
decline in accuracy at the 20-year prediction interval
(Appendix S1: Figure S11a). In the boreal forest, loss of
biomass is mostly driven by stand-replacing disturbances
such as wildfire and logging (Wang et al., 2021; Wulder

FIGURE 6 Site withholding ensemble (SWE) performance
limits. (a) The mean and 99th percentile range (QI) of the residuals by
years between observations (in tons per hectare). (b) The mean and
99th percentile range (QI) of the residuals by years between
observations normalized by the mean absolute AAGB change per
years between observations (in tons per hectare). (c) Violin plot of
model residuals (in tons per hectare) by region. Blue shows observed
AGB gain and orange shows observed AGB loss. Equivalent figures
comparing the SWE to the interval withholding ensemble are included
in Appendix S1: Figures S9 and S10. AGB, aboveground biomass.
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FIGURE 7 Model ensemble agreement. The ensemble agreement versus the mean (+99% CI) fraction of sites where loss or gain is
observed in the teste,s set for the site withholding ensemble (SWE) and the interval withholding ensemble (IWE). For ensemble agreement,

1 is equivalent to all 10 models predicting aboveground biomass (AGB) gain at a site and —1 is equivalent to all models predicting AGB loss.

For observed gain and loss, 1 represents 100% of sites experiencing AGB gains while —1 represents 100% loss.
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FIGURE 8 Future direction of change. The directional agreement of sites in a 1° X 1° box where the site withholding ensemble

multi-model mean predicts an increase in aboveground biomass (AGB) to 2030. A value of 1 indicates all sites had predicted increases in

AGB, whereas —1 indicates all sites had predicted decreases in AGB.

et al., 2020), which were both excluded from our model-
ing. Biomass loss due to nonstand-replacing disturbances
is expected to be smaller in both spatial extent and mag-
nitude (Sulla-Menashe et al., 2018), and was observed in
17.8% of sites in the PSP database. Biomass loss from
nonstand-replacing disturbance is primarily driven by
tree mortality from pests, pathogens, accumulated
drought stress, and other tree-level factors (Hember et al.,
2017b; Kautz et al., 2017; Rogers et al., 2018). In addition,
AGB loss is less constrained because theoretically up to
100% of the trees within a stand could die in any given
interval. This, along with the complexity of the drivers,
makes AGB loss fundamentally more difficult to predict.
Recent studies have shown there are legacy effects and
resilience debts that lead to nondisturbance-driven
declines in AGB (Boyd et al., 2021; Itter et al., 2019), and
that indicators of AGB loss can be detected in remotely
sensed data as many as 24 years prior to the loss event
(Rogers et al., 2018). Our results (Figure 6b,c) support

these findings. However, the combined importance of
EWS metrics was considerably less than that of survey and
climate predictors but comparable to the combined impor-
tance of species data (Figure 4a). The highest ranked
importance for remotely sensed EWS metrics (NDII and
NDVI respectively) was only 14th in permutation impor-
tance (Appendix S1: Figure S5) and 11th in SHAP impor-
tance (Figure 5). Hence, although there is evidence that
the temporal limitations for prediction are limited by the
temporal coverage of data (see above), these lines of rea-
soning suggest ML model predictions of AGB change can
be used up to roughly 25-30 years after the last observa-
tion of a site, but not longer, even given sufficient data
availability. The conditional variance (ddj S2.t), a metric
that is correlated with rapid state changes in ecological
time series (Carpenter & Brock, 2011; Dakos et al., 2012,
2013), for both NDII and NDVI was negatively correlated
with biomass changes. The fact that NDWI conditional
variance shows an opposite relationship is unexpected and
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is perhaps indicative of locations that have more available
water. The reason NDII pulse is negatively correlated with
AGB change is not entirely clear; however, the magnitude
of a vegetation pulse may be indicative of the degree to
which a site is water limited, and previous research has
shown that vegetation declines are more likely in the more
water limited parts of the boreal forest (Berner &
Goetz, 2022).

Improving performance with model
ensembles

The limitations in any given single model’s prediction of
loss are offset considerably by using a multi-model
ensemble. When there is high intra-ensemble agreement
on biomass loss, the likelihood of loss being observed is
high. Our results suggest that if all 10 ML models predict
a decline in AGB, then a decline in biomass is expected
with >70% probability. The multi-model mean also
outperformed individual models, which improves our
confidence in future predictions. The other advantage of
using a k-fold model ensemble is that it allows for the
quantification of uncertainties when performing forecast-
ing through the use of ensemble means and model agree-
ment metrics (James et al., 2013).

We tested two 10-member ensembles based on differ-
ent withholding procedures: the SWE, where sites are
strictly withheld in the test sets, and the IWE, where the
model is allowed to train on a site at a different part of the
time series (for sites with more than two measurements).
The two withholding procedures provide different insights.
The SWE models are applicable when applied to
completely new sites, sites with only a single measure-
ment, or as a potential foundation for developing gridded
models. The IWE models are applicable for inventory sites
with at least three repeated measurements, such as the
majority of sites contained in our PSP database. The IWE
models have higher overall performance, with an R of 0.6
and significantly better ability to detect loss with a direc-
tion accuracy of 60.2% versus 41.5% for the SWE. SWE and
IWE model performance is almost identical at sites with
only two measurements (Figure 3b), which is expected
since the IWE models are not allowed to train at those
sites. For use cases in which predictions are only needed
at existing PSPs, the IWE approach offers a substantial
improvement in performance.

Modeling the future

In eastern Canada, as well as Alaska, our model ensem-
ble overwhelmingly predicted increases in biomass,

whereas the results are mixed in central and western
Canada with large areas of predicted declines. Spatially,
this is reasonably consistent with the long-term trends of
both Landsat NDVI (Appendix S1: Figure S18) as well as
observations of increasing tree mortality and limited
biomass gains in the drier portions of southern Canadian
boreal forests (Hember et al., 2017a, 2017b; Hogg et al.,
2008; Peng et al.,, 2011). Although comparisons of our
site-based predictions to existing gridded studies on bio-
mass change are challenging, there are some relevant
patterns. Multiple recent studies have shown that climate
and climate change impacts differed among regions
(Olsson et al., 2019), and that nondisturbance-driven
trends in vegetation productivity are strongly influenced
by water availability and temperature (Berner & Goetz,
2022; Buermann et al., 2013; Sulla-Menashe et al., 2018).
The three most important climate variables were all cli-
matology metrics with both TD (a.k.a. continentality)
and mean summer precipitation (MSP) negatively associ-
ated with AGB change, and coldest monthly temperature
positively associated with AGB change.

In most non-water-limited regions such as eastern
Canada and parts of British Columbia, previous research
has shown that warming temperatures are driving signifi-
cant increases in vegetation productivity (Crous et al.,
2022; D’Orangeville et al.,, 2016; Peng et al, 2011;
Sulla-Menashe et al., 2018). This is consistent with both
TD and the mean coldest month temperature (MCMT)
predictors, as well as the positive association between
AGB and frost-free period trend (the most important cli-
mate trend predictor). The relationship between AAGB
and TD exhibits a clear threshold at TD > 30°C
(Appendix S1: Figure S6), which reflects the divide
between maritime-influenced regions like British
Columbia and interior boreal forest regions. The negative
association between MSP and predicted AGB change is
consistent with both the radiation limitation
(e.g., cloudiness/rain during the growing season) and/or
soil waterlogging, both of which are known to limit
boreal AGB growth.

In contrast, over central and western Canada where
our models predict more mixed AGB change, previous
research has shown that warming has resulted in smaller
trends and greater vulnerability to drought, especially in
the warmest margins of both the boreal forest biome and
its major forest types (Berner & Goetz, 2022; Girardin
et al,, 2016; Hember et al., 2017a; Peng et al., 2011;
Sulla-Menashe et al.,, 2018). The regional differences
between the response to warming can best be seen in the
association between mean warmest month temperature
(MWMT) trend and AGB change (Appendix SI:
Figure S7), where the largest MWMT trends are associ-
ated with the largest increases and the largest decreases
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in AGB. Maps of the SHAP values of the five most
important predictor variables as well as those variables
discussed in this section are included in Appendix S1:
Figures S19-S26. It should also be noted that the relative
importance of climate variables increases considerably
when we look at the subset of sites where we predict
declines in AGB (Appendix S1: Figure S7). Taken
together, these findings support our fourth hypothesis
that the direction of future AGB change will vary region-
ally depending on climatology and climate trends. This is
consistent with previous work (Berner & Goetz, 2022)
and suggests that while climate change will have a posi-
tive impact on forest AGB in many regions, there are lim-
itations of warming on increasing biomass as climate
change continues and climate change will be a significant
factor in nondisturbance-induced AGB declines.

Our ensemble predictions for AAGB out to 2025,
2030, and 2040 (Figure 8; Appendix S1: Figure S10) show
similar spatial patterns to our predictions for 2020, with
the fraction of sites predicted to increase from 77% in
2020 to almost 80% in 2040. This does not necessarily
reflect biome-wide responses to climate change, and may
partly reflect regional biases in PSP sampling. Currently,
the number of sites with repeat measurements is heavily
biased toward regions with active forestry (Wulder et al.,
2020), with Nova Scotia and Quebec together accounting
for more than 54% of all site measurements but only a
small portion of the North American boreal forest area.
Our results, as well as previous studies (D’Orangeville
et al., 2016; Girardin et al., 2016; Hember et al., 2017b;
Sulla-Menashe et al., 2018), strongly suggest these regions
are not the ones currently experiencing biomass loss or
likely to experience it in the future. Moreover, our
models are not designed to predict acute disturbances
such as wildfire, which are increasing across the domain
(Hanes et al., 2018; Jain et al., 2022; Kasischke et al.,
2010; Veraverbeke et al., 2017). Hence, the fact that >20%
of sites are predicted to lose biomass even without acute
disturbances is of concern, particularly given land surface
models simulate an overwhelmingly positive influence of
climate change on North American boreal forests (Friend
et al., 2014; Olsson et al., 2019; Wang et al., 2021).

Our ML-based modeling approach offers an excellent
complement to existing modeling methodologies. High
spatial resolution process-based models can be applied
across the regions, but are limited in terms of the locality
(time/space) at which they can predict forest change, that
is, a model that works well for one site might not trans-
late well to another.

Our ML-based modeling approach offers an excellent
complement to existing modeling methodologies. High
spatial resolution process-based models can be applied
across regions (e.g., Foster et al., 2019, 2022) and

compared with our data-constrained approach. At larger
scales, the process-based models used in climate models
are designed to predict longer term dynamics and are not
explicitly intended for forecasting short-term trends at
site-specific locations. In contrast, our ML-based method-
ology can incorporate very local-scale (i.e., <1 km) effects
and observed responses that are harder for these
process-based models to capture. However, process-based
models have a definitive advantage in being able to
mechanistically represent nonlinear dynamics such as
fire disturbance, and can provide insight into how forests
may change under completely novel conditions
(i.e., conditions that the data used to train ML models
have not seen at all) (Foster et al., 2022). Further research
combining these different approaches, for example,
model-data hybrid approaches and data assimilation,
may provide greater insight into the impacts of climate
change on boreal forest demographics. In addition, com-
paring future predictions from our modeling to future
observations may allow for the identification of ecosys-
tem state transitions and tipping points.

Our study was only possible because of the long-term
devoted sampling and archiving of forest inventory plots
across government agencies in Canada and Alaska. This
speaks to the power of long-term repeat measurements, as
changes in forest demographics are only detectable using
multiple observations over many years. As such, we argue
there are substantial benefits to the scientific and manage-
ment communities of continued and expanded PSPs. Even
so, these data do not come without limitations, for exam-
ple, we noted large geographic bias in PSP density across
boreal North America. Moreover, there are very little field
data from Alaska and, more broadly, from the northern
parts of boreal forest outside of areas with commercial for-
estry. AGB data from repeat lidar and/or synthetic aper-
ture radar could fill this gap, but more work is needed to
compare the accuracy of field and remotely sensed AGB
estimates. There are also differences in sampling methods
between regions, with many sites missing potentially
important predictors such as stand age, and significant dif-
ferences in the dbh thresholds for what counts as a “tree.”
As such, future sampling designs might consider compara-
ble protocols to facilitate assessments of climate change on
boreal forests. Related, we encourage an increased focus
on regional intercomparisons when designing sampling
methodologies.

CONCLUSION

Climate change is driving significant changes in North
American boreal forests. The ability to predict changes in
AGB is essential for multiple communities ranging
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from resource managers to Earth system modelers. We
demonstrate that when ML algorithms are informed with
rich PSP data, they are able to predict AGB changes up to
30 years into the future. Moreover, by training on sites
across the entire domain, we were able to accurately
predict changes in AGB even in regions with a lack of
PSP data. As expected, AGB loss was more challenging to
predict than AGB gains, but the greater importance of
climate variables for predicting declining biomass
suggests climate change will have a significant role
in driving nondisturbance-induced biomass loss.
Limitations in predicting AGB losses can be partially off-
set by increasing the number of measurements at PSP
sites and using a multi-model ensemble. This work also
lays the foundation for developing ML-based gridded
models and regional products that could be used for man-
agement, vulnerability analyses, regional planning,
model intercomparisons, general scientific understand-
ing, and informing process-based modeling.
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