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Abstract—Graph-guided learning has well-documented impact
in a gamut of network science applications. A prototypical
graph-guided learning task deals with semi-supervised learning
over graphs, where the goal is to predict the nodal values
or labels of unobserved nodes, by leveraging a few nodal
observations along with the underlying graph structure. This is
particularly challenging under privacy constraints or generally
when acquiring nodal observations incurs high cost. In this
context, the present work puts forth a Bayesian graph-driven self-
supervised learning (Self-SL) approach that: (i) learns powerful
nodal embeddings emanating from easier to solve auxiliary tasks
that map local to global connectivity information; and, (ii)
adopts an ensemble of Gaussian processes (EGPs) with adaptive
weights as nodal embeddings are processed online. Unlike most
existing deterministic approaches, the novel approach offers
accurate estimates of the unobserved nodal values along with
uncertainty quantification that is important especially in safety
critical applications. Numerical tests on synthetic and real graph
datasets showcase merits of the novel EGP-based Self-SL method.

I. INTRODUCTION

Semi-supervised learning (Semi-SL) over graphs has gained

popularity in recent years thanks to its impact in a gamut of

network science applications, including e.g., social, financial

and biological sciences [3]. Given a few nodal observations,

the goal of Semi-SL is to reconstruct the nodal values of

unobserved nodes [27]. Semi-SL approaches over graphs rely

on the premise that neighboring nodes have similar nodal

values. Such similarities manifest nonparametric models using

e.g., graph kernels [8], [24], [21], [11], low-rank parametric

models [23] or Gauss-Markov random fields [27]. Graph

neural network (GNN) models have also been advocated in

several network domains; see e.g [6], [9], [25]. GNN-based

approaches typically operate in a batch form, they have large

storage requirements, and satisfactory performance calls for a

large number of training data. These requirements translate to

high-cost Semi-SL over large-scale graphs [3].
Featuring affordable storage, the online multi-kernel ap-

proach in [22] uses the one-hop connectivity vector of

each node to process per-node information in a stream-

ing fashion. Also accounting for local nodal connectivity, a

Bayesian online Gaussian Process (GP) based method with

quantifiable uncertainty has been developed in [14], [17], and

[15]. However, the local connectivity information leveraged in

these works can have limited representation power for graph-

guided inference, and can require considerably many nodal
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observations for training [3]. In addition, accounting for local

information such as one-hop connectivity, further discourages

application to large-scale graphs because the dimensionality of

input grows linearly with the network size. To cope with the

former, several methods advocate graph-guided active learning

to judiciously select only a few most informative nodes to

label [16], [13]. Nonetheless, active learning still necessitates

extra labeling efforts, which can be challenging in practice.

To alleviate extra labeling in large-scale graphs but also

allow for lower yet sufficient dimensionality of the input

feature vector, one can rely on the paradigm of self-supervised
learning (Self-SL) over graphs. Self-SL leverages unlabeled
data to learn low-dimensional yet informative embedding

representations per node. These embeddings are learned using

‘pseudo-labels’ obtained only from input features themselves;

that is, from the graph structure and possibly nodal features

if available [10], [4].

Self-SL approaches over graphs rely on GNNs to learn per-

node local embeddings using observed local attributes, such as

the per-node degree or local clustering coefficient and masked

edges between nodes [5], or masked nodal features [26].

These approaches however, utilize as inputs only the global

connectivity information captured by the adjacency matrix,

which comes with high storage demands especially for large-

scale graphs. Notwithstanding, they rely on additional nodal

features to yield the embeddings. Learning memory-efficient

node embeddings that capture local and global information

with no need for extra nodal features, is still unexplored.

Contributions. To bypass extra labeling efforts and also allow

for computationally-efficient learning methods due to low-

dimensional yet informative input features, the present work

develops a novel Self-SL approach that relies on both local
and global connectivity features to learn nodal embeddings.

The learned embeddings can be used for a wide range of

Semi-SL over graph problems. In this contribution, they serve

as input for a graph-guided Semi-SL regression task, which

is carried out using a Bayesian online learning scheme that

leverages an ensemble of (E)GPs. The goal is to identify

an unknown function by adaptively learning the GP model

weights on-the-fly as nodes are processed online, thus accom-

modating time-sensitive applications with reduced complexity

and storage demands. Unlike existing approaches, the novel

Bayesian Self-SL offers quantifiable uncertainty, and relies

only on the graph structure without requiring extra nodal

features or annotations. If extra nodal features are available,

they can be leveraged to enrich nodal embeddings.



II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a graph G comprising N nodes that form the

vertex set V := {1, . . . , N}, and E edges that connect

pairs of nodes. The connectivity among nodes is captured

by the N × N adjacency matrix A whose (i, j)-th entry

aij := A(i, j) is nonzero if node i is connected to node j.

Let f(·) : V → R be a real-valued function on this graph,

which maps node n ∈ V to its corresponding ground-truth

nodal value fn ∈ R that is observed in additive noise εn as

yn = fn + εn. For the Semi-SL task over graphs, only a

few nodal observations {yn, n ∈ O} are available, where the

set O collects indices of observed nodes. Given observations

{yn, n ∈ O}, the objective of Semi-SL over a graph is to

estimate function values over a set U of unobserved nodes

{ŷn, n ∈ U}, where set U contains indices of such nodes.

To bypass computational complexity, improve privacy, and

enhance generalization performance of semi-SL algorithms

over graphs, recent contributions have advocated using only

the one-hop connectivity vector an := A(:, n) of node n
as input feature vector in order to learn f online, where

fn := f(an) [14], [17], [15], [22], [16].

A. Learning with a single GP

When learning with Gaussian processes (GPs), f is viewed

as random with a prior denoted by f ∼ GP(0, κ(a,a′)),
where κ(a,a′) is the kernel function measuring the pair-

wise similarity between the connectivity vectors a and a′.
This implies that the n × 1 vector of function evaluations

fn := [f(a1), . . . , f(an)]
� (� denotes transposition) with

input matrix An := [a1, . . . ,an], is multivariate Gaussian

distributed ∀n; that is, p(fn;An) = N (fn;0n,Kn), where

Kn is the kernel (covariance) matrix whose (m,m′)-th entry

is [Kn]m,m′ = cov(f(am), f(am′)) := κ(am,am′) [20].

Function evaluation vector fn is related to nodal ob-

servations yn := [y1, . . . , yn]
� through the batch condi-

tional likelihood that upon assuming conditional indepen-

dence across nodal measurements, it can be factored as

p(yn|fn;An) =
∏n

n′=1 p(yn′ |f(an′)). In the regression task

with yn = f(an) + εn and εn ∼ N (εn; 0, σ
2
n) uncorrelated

across nodes, the conditional likelihood can be written as

p(yn|fn;An) =
∏n

n′=1 N (yn′ ; f(an′), σ2
n). With the prior

p(fn;An) and the likelihood p(yn|fn;An) at hand, it can be

shown that the predictive probability density function (pdf) of

the nodal value yn+1 corresponding to the unobserved node

n+ 1 is Gaussian distributed [20], [17]; that is

p(yn+1|yn;An,an+1) = N (yn+1; ŷn+1|n, σ2
n+1|n) (1)

with predictive mean and variance given by

ŷn+1|n = k�
n+1(Kn + σ2

nIn)
−1yn (2a)

σ2
n+1|n =κ(an+1,an+1)−k�

n+1(Kn+σ2
nIn)

−1kn+1+σ2
n (2b)

where kn+1 := [κ(a1,an+1), . . . , κ(an,an+1)]
�. The mean

in (2a) is an estimate for yn+1, while the variance in (2b)

quantifies the uncertainty of this estimate.

The single GP-based batch approach in (2) requires storage

O(n2), and complexity O(n3), which can be prohibitive

in large-scale network with large n. In addition, estimator

accuracy depends on the pre-selected kernel κ, which thus

regulates expressiveness of the sought function. The ensuing

section shows how to bypass these limitations using the so-

called random spectral features (RFs) based approximation.

B. Approximating a single GP with RFs
RF approximation begins with a shift-invariant standardized

kernel κ̄(a,a′) = κ̄(a− a′) = (1/σ2
θ)κ(a− a′) satisfying

κ̄(a− a′) =
∫

πκ̄(ζ)e
jζ�

(a−a′)dζ = Eπκ̄

[
ejζ

�
(a−a′)

]

with the power spectral density πκ̄(ζ) integrating to 1, and

thus qualifying to be a pdf. For a real-valued κ̄, it holds

that κ̄(a−a′) = Eπκ̄

[
cos(ζ�(a− a′))

]
. Drawing sufficiently

many i.i.d. deviates {ζi}Di=1 from πκ̄(ζ), κ̄ can be approx-

imated as κ̄ ≈ ˇ̄κ(a,a′) := D−1
∑D

i=1 cos
(
ζ�
i (a− a′)

)
.

Upon defining the 2D×1 RF vector

φζ(a):=
1√
D

[
sin(ζ�

1a), cos(ζ
�
1a) · · · sin(ζ�

Da), cos(ζ�
Da)

]�

the kernel approximant ˇ̄κ can be written as ˇ̄κ(a,a′) :=
φ�
ζ (a)φζ(a

′), which yields a linear and parametric approx-

imant of the sought function, namely

f̌(a) = θ�φζ(a), θ ∼ N (θ;02D, σ2
θI2D) (3)

leading to a GP prior p(̌fn;An) = N (̌fn;0n, σ
2
θΦnΦ

�
n ) with

Φn :=
[
φζ(a1), . . . ,φζ(an)

]�
. Note that for n > 2D, the

matrix σ2
θΦnΦ

�
n is a low-rank aproximant of Kn, and can

thus afford reduced complexity O(n(2D)2) in (2) [17]. As

in recursive Bayes, the parametric model (3) is amendable to

online updates of the posterior p(θ|yn;An) = N (θ; θ̂n,Σn)
per node n, thus alleviating the need for large storage [17].

III. LEARNING WITH AN ENSEMBLE OF GPS

Targeting a more expressive function model compared to

that of a single GP with a pre-selected kernel, an ensemble

(E) of M GP learners is advocated to estimate the sought

function, where each learner m ∈ M := {1, . . . ,M}
employs a distinct kernel selected from a set of available

diverse kernels K := {κm}Mm=1. Considering a unique prior

p(fn|m;An) = N (fn;0n,K
m
n ) on f per GP learner m, an

ensemble (E) GP learner adopts a weighted combination of

all GP learners corresponding to the Gaussian mixture pdf

f(a) ∼
M∑

m=1

wm
n N (fn;0n,K

m
n ) ,

M∑
m=1

wm
n = 1. (4)

The per-learner weight wm
n can be viewed as the prob-

ability of learner m to describe the ground-truth func-

tion. Finally, the predictive pdf of the unobserved node

n + 1, can be written as p(yn+1|An,yn,an+1) =∑M
m=1w

m
n p(yn+1|m,An+1,yn) [12], [17]. The latter incurs

O(Mn3) complexity that can be further reduced via the RF-

approximation for each GP model as delineated next.



A. RF-based online EGP learner

Let each GP learner m ∈ M rely on its standardized and

shift-invariant kernel κ̄m = κm/σ2
θm with κm ∈ K, and draw

i.i.d. vectors {ζm
i }Di=1 from the power spectral density πκ̄m(ζ)

of κ̄m to construct the RF vector φm
ζ (a). This corresponds to

the parametric generative function model for learner m being

p(f̌(a)|i = m,θm) = δ(f̌(a)− φm�
ζ (a)θm) (5a)

p(θm) = N (θm;02D, σ2
θmI2D) (5b)

that yields the Gaussian likelihood also parameterized by

θm as p(yn|θm,a) = N (yn;φ
m�
ζ (a)θm, σ2

n). The lat-

ter along with the prior in (5b) lead to the posterior

p(θm|m,yn;An) = N (θm; θ̂m
n ,Σm

n ) that enables prediction

of unobserved nodal values by learner m. Next, we will

show how {θ̂m
n ,Σm

n , wm
n }m will be updated in a data-adaptive

manner as nodes are processed online.

RF-based EGP prediction. Each GP learner m leverages its

posterior p(θm|m,yn;An) to predict the pdf of yn+1 as

p(yn+1|m,yn;An,an+1)

=

∫
p(yn+1|m,θm;an+1)p(θ

m|m,yn;An)dθ
m

= N (yn+1; ŷ
m
n+1|n, (σ

m
n+1|n)

2) (6)

with mean and variance given by

ŷmn+1|n = φm�
ζ (an+1)θ̂

m
n (7a)

(σm
n+1|n)

2 = φm�
ζ (an+1)Σ

m
n φm

ζ (an+1) + σ2
n . (7b)

The EGP learner combines the predictive pdfs of all M
learners via the Gaussian mixture

p(yn+1|yn;An,an+1)=

M∑
m=1

wm
n N (yn+1; ŷ

m
n+1|n, (σ

m
n+1|n)

2).

Then, the minimum mean-square error (MMSE) estimator of

yn+1 along with the corresponding variance are given by

ŷn+1|n =

M∑
m=1

wm
n ŷmn+1|n (8a)

σ2
n+1|n =

M∑
m=1

wm
n [(σm

n+1|n)
2+(ŷn+1|n−ŷmn+1|n)

2] . (8b)

where “n+1|n” indicates that only the nodal observation of

node n and the model parameters after processing node n are

used to predict yn+1.

RF-based EGP correction. When yn+1 becomes available,

each learner m leverages Bayes’ rule to update its weight wm
n

and propagate its posterior pdf as

wm
n+1 = Pr(m|yn+1;An+1)=

wm
n p(yn+1|m,yn;An+1)

p(yn+1|yn;An+1)

=
wm

n N (yn+1; ŷ
m
n+1|n, (σ

m
n+1|n)

2)∑M
m′=1 w

m′
n N (yn+1; ŷm

′
n+1|n, (σ

m′
n+1|n)

2)
, (9)

Fig. 1: Performance visualization across 20 unobserved nodes.

p(θm|yn+1;An+1)=
p(θm|yn;An)p(yn+1|θm;an+1)

p(yn+1|yn;An+1)

= N (θm; θ̂m
n+1,Σ

m
n+1) (10)

where

θ̂m
n+1 = θ̂m

n +(σm
n+1|n)

−2Σm
n φm

ζ (an+1)(yn+1−ŷmn+1|n)

Σm
n+1 = Σm

n −(σm
n+1|n)

−2Σm
n φm

ζ (an+1)φ
m�
ζ (an+1)Σ

m
n .

Albeit offering a rich function space with scalability (the

incurred per-iteration complexity is O(M((2D)2+2DN))),
the developed EGP-based method solely relies on the one-

hop connectivity vector an, which may provide limited in-

formation about node n. In certain Semi-SL-related settings

dim(an) = N � |O|, which challenges learning the under-

lying function. To overcome these roadblocks, we develop a

Self-SL method that aims at learning low-dimensional and

informative embeddings per node n, that can be coupled with

the EGP model as outlined next.

IV. SELF-SUPERVISED LEARNING WITH EGPS

In the context of semi-SL over graphs, our novel self-SL

approach aims to learn rich nodal embeddings that capitalize

on local and global connectivity features. Given graph G,

our self-SL algorithm relies on a neural network (NN) to

learn a parametric embedding function rϑ(an) : V → R
d,

where d 	 N , and ϑ collects the NN parameters. Scalability,

memory savings, and computational efficiency considerations,

motivate low-dimensional embedding with d chosen much

smaller than the number of nodes. Capitalizing on rϑ(·), the

low-dimensional vector embedding per node n is obtained as

ρn = rϑ∗(an), n ∈ V , with the learned ϑ∗ obtained as

(ϑ∗, g∗) := argmin
ϑ,g

N∑
n=1

L
(
cn, g

(
rϑ(an)

))
(12)

where L(·, ·) : R× R → R is a loss function, cn represents

node n’s pseudo-label obtained only by using the graph struc-

ture, and g(·) : Rd → R is a (learnable) projection function

that maps each embedding to the pseudo label pertinent to

that node. The representation learning in (12) provides means

to obtain embeddings {ρn}Nn=1 that encode local and global



Table 1 Synthetic SBM Network delays Temperature stations
Method NMSE NPLL NMSE NPLL NMSE NPLL

GradEGP (RBFs) 0.01936± 0.00025 −12.81± 1.20 0.116± 0.013 96.18± 1.70 0.1081± 0.0004 176.71± 8.00
GradEGP-feat (RBFs) 0.01935± 0.00045 −12.12± 1.39 0.106± 0.016 94.89± 2.03 0.1080± 0.0002 176.96± 9.20
SelfGradEGP (RBFs) 0.01875± 0.00029 −11.73± 2.70 0.060± 0.005 75.45± 1.50 0.1064± 0.0006 146.44± 4.39

GradEGP (mixed) 0.01958± 0.00041 −16.55± 1.50 0.132± 0.014 89.11± 2.05 0.0950± 0.0024 183.75± 4.35
GradEGP-feat (mixed) 0.01953± 0.00040 −16.94± 1.82 0.142± 0.023 89.76± 2.21 0.0939± 0.0024 176.06± 4.03
SelfGradEGP (mixed) 0.01934± 0.00070 −11.47± 1.82 0.045± 0.003 69.72± 1.58 0.0865± 0.0033 160.81± 6.79

GP 0.01950± 0.00061 −9.41± 2.81 0.114± 0.009 89.58± 2.34 0.1088± 0.0002 361.49± 0.03
GP-feat 0.01963± 0.00067 −16.77± 1.88 0.107± 0.021 87.86± 3.63 0.1088± 0.0003 361.47± 0.05
SelfGP 0.01901± 0.00037 −18.07± 1.48 0.055± 0.002 76.00± 1.50 0.1088± 0.0001 361.53± 0.02

connectivity per node. Input vector an captures local connec-

tivity per node, while scalar output cn denotes measurable

global connectivity information.

Here, we adopt the square loss L(cn, g(rϑ(an))) := (cn −
g(rϑ(an)))

2, and the projection function can be thought to

be an affine transformation; that is, g(ρn) := w�ρn + b.
The nested parametric function learning in (12) is solved

iteratively using the back-propagation algorithm. To infuse

global connectivity information in the learned embedding ρn,

we leverage the well appreciated eigenvector centrality of

nodes as the pseudo-labels to be predicted, which measures the

‘holistic influence’ of a node in a network [7, pg. 90]. Nodes

with high eigenvector centrality are more influential as they

have many connections with other nodes. Let λmax represent

the largest eigenvalue of the adjacency matrix A, with corre-

sponding eigenvector c, i.e., Ac = λmaxc. The n-th entry cn
of c gives the centrality score of node n. Upon learning ϑ∗, we

obtain node embeddings {ρn := rϑ∗(an)}Nn=1, which replace

one-hop adjacency vectors {an}Nn=1 as EGP input in III.

V. NUMERICAL TESTS

This section corroborates the performance of our proposed

approach using both synthetic and real graph datasets.

Synthetic dataset. A synthetic graph consisting of N = 60
nodes is constructed using the stochastic block model compris-

ing 10 communities; see e.g., [19]. The nodal value of node n
is given by the n-th entry of the eigenvector corresponding

to the lowest nonzero eigenvalue of the graph Laplacian

L := diag(A1N ) − A with 1N denoting an N × 1 vector

with all ones. The number of observed nodes is |O| = 10 and

the unobserved (test) ones is |U| = 50.

Network delays dataset. A graph with N = 70 nodes

is constructed, where nodes represent paths connecting two

of 9 end-nodes on the Internet2backbone, and edges the

shared links between any two paths [2]. The {yn}Nn=1 are

the measured delays on these paths. The number of observed

nodes is |O| = 15, and of unobserved ones is |U| = 55.

Temperature stations dataset. A graph with N = 109
nodes is constructed with nodes representing weather stations

across the US, and edge weights the geographic distances

between them [1]. Nodal values {yn}Nn=1 are the temperature

measurements across the stations. Only |O| = 15 measured

temperatures are available and |U| = 94 are to be predicted.

We compare our novel self-GP (SelfGP) and graph-adaptive

EGP (SelfGradEGP) approaches against several benchmarks.

We adopt the ‘GradEGP’ as one benchmark [17] which uses

only the local features an as input per node n, while the

‘GradEGP-feat’ [20] uses [an, cn], the single GP benchmark

with input features an and the ‘GP-feat’ with [an, cn]. For the

EGP-based approaches we adopt two distinct kernel dictionar-

ies. The first one consists of 11 radial basis function (RBF)

kernels with characteristic length scales {10k}6k=−4 and the

other comprises 4 kernels with distinct forms, namely RBF

with and without automatic relevance determination [20], and

Matern kernel with smoothness parameter ν = 3/2, 5/2 [20].

For all RF-based approaches we set D = 50. To obtain the

kernel parameters of GP-based approaches we maximize the

marginal log-likelihood. For the Self-SL based approaches the

embeddings are obtained using a feed-forward NN with only

2 layers. To train the NN parameters, we minimize the MSE

loss using the Adam optimizer with learning rate 0.015 for 100
epochs. The learned embeddings have dimensionality 10, 15,

and 15 for the SBM, Network delay, and Temperature datasets.

The performance of all approaches is evaluated utilizing

the normalized (N) MSE criterion to quantify the accuracy

of predictions across unobserved nodes n ∈ U , and the

negative predictive log-likelihood (NPLL) to account for the

associated uncertainty (cf. [18]). As corroborated by Table

1, the SelfGradEGP and SelfGP approaches outperform the

alternatives in terms of NMSE. In addition, Table 1 illustrates

that the novel approaches exhibit reduced uncertainty in most

learning tasks, as evidenced by the smaller NPLL metric;

see e.g., SelfGradEGP (with RBFs or mixed kernels) on the

Network delay and Temperature datasets. This means besides

accurate predictions, the proposed method quantifies well the

uncertainty of these predictions via the predictive variance.

Figure 1 depicts the predicted values of SelfGradEGP (mixed)

on 20 randomly selected unobserved (test) nodes of the Net-

work delay dataset, and the corresponing standard deviation

σ-confidence intervals. It is observed that the ground truth

nodal values fall within the the uncertainty intervals. All these

observations demonstrate the importance of leveraging low-

dimensional informative embeddings using local and global

information obtained from the underlying graph.

VI. CONCLUSIONS

A novel Bayesian and graph-guided self-SL approach was

introduced to solve semi-SL tasks over graphs. The proposed

self-SL algorithm learns rich nodal embeddings leveraging

both local and global connectivity information. The learned

embeddings are then used as input features for the target

graph-driven semi-SL task. The online Bayesian EGP em-

ployed offers accurate predictions of unobserved nodal values

along with quantifiable uncertainty, low storage requirements,

and reduced sample complexity.
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