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Synopsis  Microbial communities play pivotal roles in ecosystems across different scales, from global elemental cycles to
household food fermentations. These complex assemblies comprise hundreds or thousands of microbial species whose abun-
dances vary over time and space. Unraveling the principles that guide their dynamics at different levels of biological organi-
zation, from individual species, their interactions, to complex microbial communities, is a major challenge. To what extent
are these different levels of organization governed by separate principles, and how can we connect these levels to develop pre-
dictive models for the dynamics and function of microbial communities? Here, we will discuss recent advances that point
towards principles of microbial communities, rooted in various disciplines from physics, biochemistry, and dynamical systems.
By considering the marine carbon cycle as a concrete example, we demonstrate how the integration of levels of biological orga-
nization can offer deeper insights into the impact of increasing temperatures, such as those associated with climate change, on
ecosystem-scale processes. We argue that by focusing on principles that transcend specific microbiomes, we can pave the way
for a comprehensive understanding of microbial community dynamics and the development of predictive models for diverse

ecosystems.

Main text

Microbial communities are ubiquitous across all ecosys-
tems on the planet and play crucial roles in various
ecosystem functions. They cycle elements such as car-
bon and nitrogen in ecosystems from the oceans to
soils (Falkowski et al. 2008); they impact animal and
plant health, and they are important for industrial pro-
cesses, from food (e.g., fermentations) to biofuels. Un-
derstanding microbial communities at a deeper level is
essential for predicting their response to environmental
changes (e.g., climate change), to design interventions
to improve human health, and constructing communi-
ties from scratch for specific purposes like enhancing
the flavor of plant-based meats.

Modern sequencing capabilities and extensive
sampling efforts, including dedicated ocean cruises
(Sunagawa et al. 2015) and large-scale collaborations
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like the Earth Microbiome Project (Thompson et al.
2017) and the Human Microbiome Project (Turnbaugh
et al. 2007; Proctor et al. 2019), have provided
unprecedented insight into the composition of micro-
bial communities. However, community compositions
obtained by metagenome or amplicon sequencing only
provide relative abundance data, offering little infor-
mation about the traits and activity of the observed
organisms, their interactions, and how their collective
actions drive the function of a given community. To
address this limitation, we propose a synergistic ap-
proach of investigating communities at three different
levels of organization: individual traits, interactions,
and complex communities.

In the following, we will discuss recent advances in
our understanding of microbial communities from a
perspective of community metabolism. We will argue
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Searching for Principles of Microbial Ecology

that efforts must be directed towards discovering princi-
ples, concepts that are rooted in physics or biochemistry
and therefore transcend specific microbiomes. These
principles may be specific to each level of organization,
and we will therefore go on a journey through the scales,
from individual populations to whole communities.

Individual species

To establish a comprehensive theory of microbial com-
munities from the bottom up, it is natural to be-
gin by examining the traits of individual species.
These traits include a wide range of characteris-
tics, including growth rates under various conditions,
biofilm formation, motility, antibiotic resistance, ni-
trogen fixation, and many others. The specific traits
of interest depend on the microbiome under study.
Here, we focus on the metabolism and physiology
of bacteria and other heterotrophic microbes. We
choose this focus because metabolic interactions are
at the heart of microbial communities, and metabolic
biochemistry follows universal principles, such that
starting with knowledge about microbial metabolism
provides a foundation for understanding microbial
communities.

A key goal of microbial physiology is to explain
the differences and commonalities between organisms
in terms of fundamental principles. Phenomenologi-
cal models capture physiological processes in terms of
coarse-grained features of the cells, such as the relative
allocation of different kinds of enzymes and their quan-
titative effects on the molecular composition in terms
of protein, RNA, and DNA, or the rate of switching be-
tween substrates (Scott et al. 2014; Basan et al. 2015;
Basan 2018; Basan et al. 2020). These models are based
on a few simple principles, such as a fixed total amount
of enzymes per cell and a cellular objective of maximiz-
ing growth rate. These principles emerge from quantita-
tive experiments that carefully control all environmen-
tal variables, and appear to be universal across many mi-
crobes tested (Bruggeman et al. 2020).

However, even for well-studied microbes, many de-
tailed observations, such as the abundances of individ-
ual metabolic enzymes as a function of growth condi-
tions, remain unexplained (Mori et al. 2021). Complex-
ity increases further when conditions deviate from bal-
anced growth, a carefully controlled state where all bi-
ological processes are in steady-state. Gene expression
regulation, which is often not fully understood (even
in E. coli, the arguably best understood organism on
the planet, Belliveau et al. 2021), leads to diverse cellu-
lar behaviors under different environmental conditions
and transient behaviors upon environmental change,
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possibly varying among clonal members of the same
population.

Furthermore, microbes in the wild differ substan-
tially from E. coli and each other in various ways, mak-
ing it unclear which principles learned from E. coli can
be directly applied to other, potentially distantly re-
lated microbes. Two primary ways provide insight into
the metabolic capabilities and physiology of non-model
microbes: direct phenotypic characterization (largely
restricted to culturable microbes), and inference from
genomic data.

Direct phenotypic characterization of diverse mi-
crobes has led to the development of large databases
of microbial traits based on experimental characteriza-
tion (Barberdn et al. 2017; Madin et al. 2020; Heinken
et al. 2023). However, these databases suffer from sev-
eral issues. They lack completeness, as not every trait
is measured for every species. Further, traits are not
always measured using standardized methods. For in-
stance, trait databases may contain information on suit-
able growth substrates for a given species, but infor-
mation on which substrates were tested is often un-
available. Finally, quantitative data, such as growth rates
and their dependence on environmental parameters, is
rarely available. Therefore, experimental characteriza-
tion of non-model organisms remains an important pil-
lar of microbial ecology.

Experimental characterization of wild microbes can
uncover underlying principles guiding the evolution
of metabolic phenotypes. For example, a recent study
characterizing the growth capabilities of 186 diverse
marine heterotrophic bacteria on 140 carbon sources
(Gralka et al. 2022) revealed a candidate principle in
the context of carbon catabolism: the carbon catabolic
strategies of heterotrophic bacteria can be summarized
in terms of their preferences for either sugars or acids.
This preference arises from distinct metabolic enzymes
involved in glycolysis and gluconeogenesis and the con-
flicting nature of these activities in the cell (Basan et
al. 2020; Schink et al. 2022). By annotating commu-
nity compositions in terms of the metabolic prefer-
ences of their constituents, hypotheses can be generated
about potential interactions and the dominant carbon
catabolic processes within a given community. Thus,
coarse-grained metabolic traits rooted in the princi-
ples of microbial physiology may enable insight into the
metabolic processes inside communities.

In parallel to experimental characterization, certain
traits can be inferred from genomic information. These
genotype-to-phenotype mappings build upon experi-
mental characterizations and enable trait predictions
for species that have not (yet) been cultured. Such pre-
dictions enable the functional annotation of commu-
nities using metagenomic datasets. Metabolic differ-
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ences between well-studied organisms are captured in
genome-scale metabolic models (GEMs) by assembling
all known metabolic reactions into a model. GEMs
provide deep insight into the physiology of individ-
ual species, including gene essentiality, metabolic fluxes,
or predicted excretions. Consequently, GEMs are a vi-
tal tool in both basic and applied microbiology. How-
ever, while initial model construction is now mostly
automated, accurate models require extensive curation
(Machado et al. 2018; Heirendt et al. 2019; Bekiaris and
Klamt 2020; Karp et al. 2021; Seaver et al. 2021), making
them generally unavailable for a given species. However,
by incorporating available phenotype data and knowl-
edge from closely related species, curated genome-scale
metabolic models have now been developed for numer-
ous bacteria (Poyet et al. 2019; Heinken et al. 2023).

At present, it remains very challenging to accu-
rately estimate a given species’ metabolic and behav-
ioral repertoire from its genome alone. This difficulty
stems at least in part from the fact that small genotypic
changes can give rise to large phenotypic changes. For
example, in the above-mentioned experimental charac-
terization of 186 bacteria, individual growth capabilities
were not predictable, but the preference for glycolytic
versus gluconeogenic substrates could be predicted
from genome content, even for organisms not directly
characterized. This highlights a recurring theme: while
certain details (e.g., exact phenotypes from genomes,
but also abundances of species, see below) may be prac-
tically or even fundamentally impossible to predict, pre-
dictability can be restored by focusing on appropriately
coarse-grained descriptors of individual or community
characteristics, such as general metabolic preferences or
the abundance of certain functions in the community.

Bottom-up view of interactions and
communities

Interactions between microbes are foundational to their
communities. Therefore, it is important to find effec-
tive ways of understanding the principles that under-
lie them, inferring them from genomic data, and pre-
dicting how they change with the environment. Mod-
els of species interactions can be broadly grouped
into two categories: models with fixed, direct interac-
tions (e.g., Lotka-Volterra model), and models with ex-
plicitly resource-mediated interactions (e.g., consumer-
resource models).

Direct species-species interactions are characterized
as positive, neutral, or negative (for either partner),
resulting in six interaction archetypes (Grofikopf and
Soyer 2014; Amor and Bello 2019). The interactions
are typically assumed to be pairwise (although higher-
order interactions can be considered; Bairey et al. 2016;
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Grilli et al. 2017; Ludington 2022), constant over time,
and independent of environmental conditions. Orig-
inally developed for macroscopic ecological commu-
nities, these simplifying assumptions enable analytical
predictions about various aspects of the communities,
such as the stability of the community (May 1972), the
number of surviving species in unstable communities
(Servan et al. 2018), or the prevalence of multiple stable
states (Bunin 2017).

Itis very tempting to adopt pairwise interaction mod-
els to describe microbial communities. Indeed, Lotka-
Volterra models have been used successfully to pre-
dict aspects of microbial community dynamics and re-
sponses to environmental change in complex commu-
nities (Abreu et al. 2019; Lax et al. 2020; Hu et al. 2022).
For instance, recent work has suggested that, regard-
less of the species or environmental conditions, higher
temperatures favor slower-growing species (Lax et al.
2020; Abreu et al. 2022), or that the average interaction
strength can alter the nature of the community dynam-
ics in a predictable way (stable vs. chaotic) (Ratzke et al.
2020; Hu et al. 2022). These studies highlight that de-
liberately ignoring biological details can pave the way
towards discovering principles of microbial ecology.

However, there are downsides to using Lotka-
Volterra models for microbial communities. While
pairwise interactions are experimentally relatively
straight-forward to measure (Venturelli et al. 2018;
Weiss et al. 2022), it remains difficult to do so for a
large set of species. High-throughput methods have
been developed to probe interactions of many bacteria
across many environments (Kehe et al. 2019, 2021), but
those methods are still far from mainstream and cur-
rently limited to genetically tractable focal organisms.
Consequently, the relative prevalence and importance
of different types of interactions (positive vs. negative)
remains a topic of debate (Foster and Bell 2012; Ghoul
and Mitri 2016; Kehe et al. 2021; Palmer and Foster
2022). Ultimately, measurements of pairwise interac-
tions have limited predictive power for the competition
outcomes in more complex communities (Friedman
et al. 2017), and constant pairwise interactions are in-
sufficient in quantitative predicting important features
about communities, such as the diversity in differ-
ent environmental conditions (Momeni et al. 2017;
Mancuso et al. 2021). Lotka-Volterra models also fail to
predict certain fundamental aspects of microbial com-
munities, such as how community richness depends on
the frequency of nutrient inputs (Mancuso et al. 2021)
or the diversity of resources (Dal Bello et al. 2021).

As an alternative view to direct (pairwise) in-
teractions, consumer-resource models explicitly con-
sider interactions mediated by the excretion and ex-
change of chemical compounds with the environment.
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Mechanisms range from direct exchange of energy-rich
compounds such as overflow metabolites (e.g., acetate)
to electrons and protons changing the pH to antimicro-
bial compounds or non-metabolic public goods such as
siderophores (Duan et al. 2009). Interactions based on
chemical exchange between organisms also explain why
spatial structure has such a big influence on microbial
community composition and functions: diffusion and
direct cell-to-cell exchanges limit interactions to small
length scales, effectively decoupling cells at larger dis-
tances and making close spatial associations necessary
(Mueller et al. 2013; Co et al. 2019, 2020; Dal Co et al.
2023). By combining metabolomics with microscopy,
the exchange of metabolites between spatially associ-
ated microbes can also be visualized directly (Geier et
al. 2020).

To parameterize consumer-resource models, infor-
mation is needed about which substrates each species
can consume, and which compounds they excrete.
Growth characterization experiments provide data on
substrate consumption, while metabolomics can mea-
sure changes in abundance of different chemical com-
pounds in microbial cultures (Kosina et al. 2018;
Blasche etal. 2021; Yu etal. 2022). Combining these data
with mathematical models, mechanistic insight into mi-
crobial interactions can be gleaned (Blasche et al. 2021;
Amarnath et al. 2023; Pontrelli et al. 2022). In many
cases, the exchanged chemicals are metabolic interme-
diates that can be used by some community members
as carbon, nitrogen, or energy sources (Gralka et al.
2020). Since so-called trophic interactions are directly
related to metabolic processes in the individual com-
munity members, they can be understood from princi-
ples of microbial metabolism and physiology. For exam-
ple, species with complementary metabolic strategies
seem to be more likely to engage in interactions that are
beneficial for at least one species than species that are
metabolically similar (Giri et al. 2021; Kehe et al. 2021),
presumably because the latter are likely to compete for
the same resources. However, these results come from
experiments of either limited taxonomic range or cross-
feeding mechanisms. More research is needed to be able
to predict trophic interactions based on species traits.

Box1 :Mechanisms leading to the potential estab-
lishment of trophic interactions

Overflow metabolism. Biochemical constraints can
make shorter, but inefficient pathway the optimal
choice for fast growth, leading to so-called overflow
metabolism (Basan et al. 2015). A typical example of
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Stress-induced excretions. Osmotic stress, pH stress,
and other forms of cellular stress can lead to metabolic
imbalances. Metabolism may stall at some reaction,
leading to accumulation and eventually excretion of
the up-stream metabolites (Taylor et al. 2022), which
can effect intricate crossfeeding dynamics in pairwise
cocultures (Amarnath et al. 2023).

Nutrient imbalances. Limitation of one essential nu-
trient, e.g., nitrogen, may lead to the excretion of sur-
plus carbon-rich compounds and vice versa (Pacheco
etal. 2019). This is particularly evident in phytoplank-
ton, where surplus carbon from photosynthesis is ex-
creted in the form of soluble and insoluble polysaccha-
rides, particular during N or P limitation (Myklestad
1995).

Noise-averaging cooperation. Recent theory pre-
dicts that noisy gene regulation (especially in bacte-
ria) can lead to imbalanced enzyme and thus metabo-
lite concentrations in individual cells (Lopez and
Wingreen 2022). Sharing metabolite extracellularly
averages out the individual imbalances, increasing
growth rate at the population level. Excretions could
be accomplished by dedicated or promiscuous trans-
porters or passive membrane crossing of non-polar
metabolites.

Division of labor. Some chemical transformations
in multistep pathways may be carried out more effi-
ciently by splitting the pathway between organisms,
where each organism pays only part of the cost but
also reaps only part of the benefit of running the path-
way, a process called division of labor (Tsoi et al. 2018;
Gowda et al. 2022). Intermediate products of the path-
way are excreted by one organism and can be used as
an energy or carbon sources by another. Division of
labor may arise, e.g., when pathway intermediates are
toxic (Goldschmidt et al. 2018) or when the intracel-
lular concentration of enzymes in a cell is constrained
(Thommes et al. 2019).

Extracellular degradation. Some functions, such as
polysaccharide degradation, require an arsenal of ex-
tracellular enzymes produced by specialized bacteria
(“degraders”). The action of these enzymes leads to re-
lease of soluble oligosaccharides that can be exploited
by non-enzyme producers (“exploiters”) (Pollak et
al. 2021). Both degraders and exploiter may excrete
metabolites that benefit other community members
(“crossfeeders”) for various reasons, including those
given above (Pontrelli et al. 2022).

Understanding the physiological reasons leading

this is the fermentation of glucose by E. coli to acetate,
which is excreted and can support the growth of other
bacteria.

to the potentially wasteful excretion of energy-rich
metabolites is an important step in unraveling trophic
interactions McKinlay 2023. Box 1 describes some of
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the mechanisms facilitating trophic interactions and
studies where a deep exploration of the physiology of
species in a community have led to the discovery of
potential principles of microbial ecology. Given the
various mechanisms giving rise to potential trophic
interactions, it is no surprise that models that con-
sider interactions through the uptake and excretion of
(harmful or helpful) chemicals into the environment
have recently enjoyed much success (Marsland et al.
2019; Niehaus et al. 2019; Pacciani-Mori et al. 2020;
Amarnath et al. 2023). Dynamic models describing the
growth of microbes and exchange of chemicals have
been developed for individual species pairs (Momeni
et al. 2017; Niehaus et al. 2019; Amarnath et al. 2023;
Bloxham et al. 2022), and simplified versions of these
models are straightforward to extend to complex com-
munities (Goldford et al. 2018; Marsland et al. 2019).
Combining high-quality genome-scale metabolic mod-
els (GEMs) for individual species into community mod-
els (Gottstein et al. 2016) allows for detailed predictions
of the exchanged metabolites and the consequences of
small changes to each species’ metabolic networks (e.g.,
gene inactivation). Community GEMs are very useful
for the rational de-novo design of small consortia with
a defined purpose, e.g., communities of lactic acid bac-
teria in the food industry. However, community GEMs
require the input of curated GEMs for the individual
species, which are often unavailable, and they must be
experimentally validated.

Despite the consensus on the importance of species
interactions for microbial communities, making quan-
titative predictions of complex communities remains
challenging, particularly for environmental communi-
ties, where there is typically no information on phys-
iological parameters or interactions between commu-
nity members. Even when model and experiment agree,
it can be a priori unclear which model will success-
fully reproduce the data, limiting our ability to make
predictions for a new experimental system (Mancuso
et al. 2021; Van Den Berg et al. 2022). Furthermore,
mounting evidence suggests that the detailed dynam-
ics of each of the thousands of bacterial species inhabit-
ing a typical microbiome may be fundamentally unpre-
dictable under certain conditions (Pagaling et al. 2014;
Louca et al. 2016; Louca and Doebeli 2017; Pagaling et
al. 2017; Ratzke et al. 2020; Estrela et al. 2022). Possi-
ble causes include a large number of alternative stable
states, wherein stochasticity and historical contingency
during community assembly (Zhou and Ning 2017) can
steer communities towards different compositions from
the micrometer scale (Szabo et al. 2022) to the ecosys-
tem level (Bittleston et al. 2020; Vincent et al. 2023);
strongly fluctuating or truly chaotic dynamics (Ratzke
et al. 2020; Hu et al. 2022); and dominant higher-order
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interactions, which may lead to emergent species equi-
libria that are exceedingly difficult to disentangle be-
yond three or four species interactions (Bairey et al.
2016; Mickalide and Kuehn 2019; Sanchez-Gorostiaga
et al. 2019). At present, therefore, there is no consis-
tent bottom-up model of microbial communities, and
the enormous complexity of wild microbial communi-
ties makes it appear unlikely that a single mathematical
model can accurately describe the individual dynamics
of all community members in a realistic environment.

Top-down insight into communities

An alternative to the bottom-up approach discussed
above is the top—down approach, which focuses on
studying complex communities and their composi-
tional and functional changes in response to their en-
vironment. A key question in this context is the degree
to which the lower levels of organization (cells, species,
and interactions) can predict community composition
or function and the extent to which those community
properties are emergent, representing true properties of
the community. For emergent community properties,
phenomenological models may be all that is practically
relevant. In his 1972 essay, P. W. Anderson writes that
“more is different” (Anderson 1972), referring to the
emergence of new properties as a system becomes more
complex. An example is the ideal gas law, which accu-
rately describes the behavior of gases without consider-
ing the individual dynamics of gas molecules. The les-
son here is that sometimes, simple models like the ideal
gas law can effectively describe complex systems, even
when an understanding of the individual components
is lacking. The question arises whether similar princi-
ples could hold for microbial communities, where sim-
ple rules may emerge once a certain level of complexity
is reached (Cui et al. 2021).

Recent studies have suggested such emergent sim-
plicity in microbial communities. This simplicity is of-
ten described in terms of a coarse-grained description
of the communities in terms of a small number of emer-
gent variables. These variables can include statistical
properties of species abundances, the abundance of cer-
tain functional groups, diversity changes in response to
a change in environment, and statistical predictability
of community functions. In the following, we will re-
view some recent results derived from analyses of exist-
ing datasets as well as laboratory experiments, and ex-
tract potential principles that emerge.

At a macroecological level, statistical analyses of mi-
crobial community compositions across a large num-
ber of different ecosystems have revealed laws that shed
light on the fundamental forces structuring communi-
ties (Grilli 2020). From this perspective, it appears that
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environmental fluctuations and self-limiting growth are
dominant factors in shaping communities. Interactions
between species are inferred to be relatively weak and
sparse, as many statistical patterns in microbiome abun-
dances can be reproduced without including species
interactions. However, consumer-resource models in
constant environments parameterized with appropri-
ately structured random matrices can also reproduce
many statistical properties of microbial communities,
such as nestedness (Marsland et al. 2020).

Environmental sampling of comparable microbial
ecosystems has demonstrated that physically and chem-
ically similar ecosystems often have similar functional
profiles, i.e., the relative abundance of functions like
photosynthesis, sulfate reduction, etc., whereas species
compositions may differ widely (Louca et al. 2016,
2017). This is because species in communities often
overlap in terms of at least some of their functional
traits (Mcgill et al. 2006; Litchman and Klausmeier
2008; Martiny et al. 2015), i.e., they are functionally re-
dundant to varying degrees (Louca et al. 2018). Many
functions are performed by a huge diversity of or-
ganisms (e.g., carbohydrate fermentation), but some
functions may be highly phylogenetically conserved or
even monophyletic (e.g., complete ammonia oxidation;
Daims et al. 2015); in those cases, taxonomy and func-
tion become congruent.

Assigning traits to taxa can be a significant chal-
lenge, depending on the trait, its phylogenetic con-
servation, and the degree of understanding of the
pathways involved. Identifying functional groups is
therefore a major goal in microbial ecology. A re-
cently developed algorithm addresses this difficulty
by aiming to detect functional groups sequencing
survey data groups solely from relative abundance
data without taxonomic input and without explicit
functional annotation (Shan et al. 2023). Such al-
gorithms may help identify species or groups of
species that produce specific compounds of interest
or facilitate macroscopic outcomes in host-associated
microbiomes.

A trait-based ecological approach to microbial com-
munities can provide a new perspective on experi-
mentally measured interactions networks by focusing
on the interactions between functional groups rather
than species-species interactions. This approach may be
more appropriate for predicting community response
to environmental changes. For example, consider the
trophic interactions in polysaccharide-degrading com-
munities between degraders, exploiters, and crossfeed-
ers (Pollak et al. 2021) (described in Box 1 and re-
viewed in Sichert and Cordero 2021), which are char-
acterized by a hierarchical structure: organic carbon
flows from degraders to exploiters, and degraders and
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exploiters to crossfeeders, with little carbon flow in the
reverse direction (Pontrelli et al. 2022). In these com-
munities, different degraders appear to select for down-
stream community members, but not vice versa (Enke
et al. 2019). For such a community, each represented
by potentially many different species, do environmen-
tal perturbations have different effects depending on
which trophic level is most impacted by the perturba-
tion? The hierarchical structure suggests that perturba-
tions targeting high trophic levels (e.g., degraders) have
arelatively stronger community-level impact, but cross-
feeders can also affect the hydrolytic activity of the de-
graders (Daniels et al. 2022). Similarly, crossfeeders in
glucose-enriched soil communities selected for differ-
ent degraders and not the other way around, as would be
expected from trophic interactions alone (Estrela et al.
2022). More research is required to elucidate to what de-
gree trophic interactions lead to hierarchical interaction
networks.

In addition to inferring principles from large en-
vironmental datasets, systematic experimental efforts
have quantitatively explored the changes of microbial
communities with their environment. Examples include
community changes with temperature (Lax et al. 2020;
Abreu et al. 2023), mortality (Abreu et al. 2019), number
of carbon sources (Dal Bello et al. 2021), carbon con-
centration (Gralka et al. 2022), type of carbon source
(Estrela et al. 2021), and the strength of interactions
(Ratzke et al. 2020). Enrichments of natural communi-
ties are often used for this type of experiment (Estrela et
al. 2021), but complex synthetic communities are also a
valuable tool (Vorholt et al. 2017; Kong et al. 2018). Syn-
thetic communities offer exact control over the num-
ber and identity of species in a community and detailed
(functional, physiological, etc.) characterization of the
community members. By systematically manipulating
the number of species in synthetic communities, theo-
retical predictions regarding community stability in dif-
ferent environments can be tested directly (May 1972;
Fetzer et al. 2015; Hu et al. 2022). Synthetic communi-
ties of varying initial richness also enable the inference
of structure-function landscapes, allowing the predic-
tion of community function based solely on species
presence/absence data, without explicit knowledge of
dynamics or interactions (Gopalakrishnappa et al. 2022;
Skwara et al. 2023).

Tying it all together: the marine carbon cycle
as an example

Throughout this paper, we have primarily focused on
general principles applicable across ecosystems. Here,
as a concrete example, we will illustrate a scale traver-
sal, from enzymes to entire ecosystem functions, by
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Fig. | The effects of rising water temperature on the marine carbon cycle, through the lens of microbial communities, from enzymes to
ocean-scale microbial activity. Temperature fundamentally tunes enzymatic activity, and these effects cascade up through various length
scales, from the physiology of single species to species interactions to complex communities to ecosystem-level processes like
biogeochemical cycles (OC = organic carbon). Eventually, the goal is to predict ecosystem-level responses to climate change, such as how
increasing temperatures will shift the balance between photosynthetic carbon fixation and storage in the ocean relative to heterotrophic
degradation of complex organic matter and subsequent release of CO,. While very simplified models, such as the metabolic theory of
ecology, can serve as null models, a more detailed understanding is required to predict how temperature effects traverse scales from

enzymatic rates to ecosystem functions.

examining the marine carbon cycle and its response
to increasing sea water temperatures caused by climate
change (Fig. 1).

The ocean is a dynamic ecosystem whose mi-
croscopic inhabitants, i.e., phytoplankton and het-
erotrophic bacteria, cycle ~50% of all carbon of our bio-
sphere (Field et al. 1998). The cycling of carbon by ma-
rine microbes is driven by the collective metabolism of
their communities, from carbon fixation and partial ex-
cretion of organic carbon by phytoplankton to the bac-
terial degradation of organic matter and exchange of
metabolic by-products (Amin et al. 2012; Moran 2015;
Gralka et al. 2020). Even small changes to these mi-
crobes and their communities can have a major im-
pact on the planet (Cavicchioli et al. 2019), and marine
microbial communities are already strongly affected by
climate change (Behrenfeld et al. 2006; Brierley and
Kingsford 2009). In this example, we will specifically fo-
cus on the increase of rising sea surface temperatures.

Increasing sea surface temperatures impact not only
physicochemical processes in the ocean, such as the
acidification, deoxygenation, and the degree of seasonal
stratification (Keeling et al. 2010; Joint et al. 2011; Li
et al. 2020), but also biological processes at all levels of
organization (Arroyo et al. 2022). However, most stud-
ies focus exclusively on one level of organization, such
as the physiological response of individual species or
whole communities in situ. These approaches fails to
reveal underlying principles because they do not con-

nect traits of individual microbial species to the func-
tion of the whole microbiome. Consequently, current
experiments and models are unable to provide accurate
predictions for how climate change impacts carbon cy-
cling by the marine microbiome (Taucher and Oschlies
2011).

At the molecular level, temperature influences en-
zymatic rates, with increasing rates below an optimal
temperature described by Arrhenius’ law (Arroyo et al.
2022). The collective temperature sensitivities of the
enzymes involved in microbial metabolism, including
photosynthesis, central carbon metabolism, and extra-
cellular carbohydrate-active enzymes, give rise to the
temperature sensitivity of microbial activity. Despite the
underlying complexity, the temperature sensitivity of
microbial growth rate itself is also well described by Ar-
rhenius’ law. Hence, the principles of enzyme kinetics
seem to translate to cells, the next level of organization
(Arroyo et al. 2022). Temperature sensitivities of maxi-
mal growth rates are available for many species (Smith
etal. 2021), enabling realistic parameterization of math-
ematical models. However, carbon and nutrient avail-
ability modulate temperature sensitivities in ways that
are not well understood (Pomeroy and Wiebe 2001; Hall
and Cotner 2007; Thomas et al. 2017).

Moving from microbial growth to interactions, tem-
perature can also impact metabolic processes that im-
pact the excretion of metabolites, the production of an-
timicrobial compounds, and other factors. Thus, it is
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unclear how interactions between cells are expected to
change with temperature. For example, photosynthesis
rates generally increase with temperature (Kremer et al.
2017), leading to higher excreted carbon fluxes, which,
in turn, facilitate more heterotrophic growth. Will in-
creasing water temperature increase or decrease the net
carbon flux into the ocean (fixation minus degrada-
tion)? So far, we are missing well-controlled experi-
mental studies and models of these interactions to test
existing predictions (Regaudie-De-Gioux and Duarte
2012). However, exact knowledge of microbial interac-
tions may not always be required, and emergent princi-
ples at the level of interactions may be found that inform
predictions about ecosystem changes with temperature.
For instance, increasing temperature generically favors
the slower grower in laboratory cocultures (Lax et al.
2020).

Emergent principles may allow us to move up
through levels of organization, from interactions to
communities. In the case of marine microbes, there
is evidence that increasing temperatures favor slower
growers even in complex communities on the ecosys-
tem scale (Abreu et al. 2023). Other studies directly ex-
amine the functional effects of temperature changes on
complex communities. Large-scale surveys have identi-
fied a remarkably simple relationship between certain
ecosystem properties and temperature, which can be
well described by Arrhenius’ law (Gillooly et al. 2001;
Allen et al. 2002). This Metabolic Theory of Ecology
(Gillooly et al. 2001; Brown et al. 2004) (MTE) ignores
interactions between community members, which have
been shown to modulate the temperature sensitivity of
communities (Garcia et al. 2023). Therefore, it is per-
haps not a surprise that the predictions of the MTE at
the microbial ecosystem level are not always borne out.
For instance, the MTE predicts that diversity increases
with temperature, but overall microbial diversity peaks
~18°C (Thompson et al. 2017), far below the typical
optimal growth temperature of most microbes. In the
ocean, microbial diversity is maximal at extreme lati-
tudes in the winter, i.e., when the surface temperature
is lowest, in direct contradiction to the MTE (Ladau
et al. 2013). Therefore, while the MTE offers a simple
framework, it is insufficient to accurate model the tem-
perature response of the ocean microbiome. Further re-
search is needed to elucidate principles at the ecosys-
tem level that will help develop improved models for
predicting the consequences of climate change on the
marine microbiome.

Conclusion

The field of microbial ecology is at a turning point:
16S amplicon and metagenomic sequencing have de-
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livered tremendous insight into the composition of mi-
crobial communities, and other meta-omics technolo-
gies continue to provide ever higher resolution views
into the biological processes occurring in various mi-
crobial ecosystems. What is required next is a close col-
laboration between experimentalists and theorists and
an integration of bottom-up and top—down approaches:
to combine observational ‘omics data with quantitative
experimental studies of individual community mem-
bers and functional descriptions of whole communi-
ties to develop predictive models of microbial commu-
nities (Widder et al. 2016; Van Den Berg et al. 2022).
High-throughput cultivation techniques, such as mi-
crofluidic (e.g., the K-Chip) (Kehe et al. 2019), milliflu-
idic (e.g., the MilliDrop machine) (Boitard et al. 2015),
or microwell (e.g., the bioMe plate (Jo et al. 2023), the
iChip (Berdy et al. 2017)) approaches, deliver datasets
with sufficient statistical power to derive principles of
physiology and interactions across a wide range of non-
model species. Bioreactor setups, increasingly avail-
able both commercially or as open-source projects, e.g.,
the UNLOCK platform (https://m-unlock.nl/), evolvR
(Wong et al. 2018), chi.bio (https://chi.bio/), and pio-
lab (https://pioreactor.com/), allow for detailed func-
tional measurements at high temporal resolution across
a wide range of experimental conditions. Such experi-
mental setups are key for providing the necessary data
for testing mathematical models, which will both im-
prove interpretation of existing omics data and enable
quantitative predictions for and ration design of micro-
bial communities.
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