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ARTICLEINFO ABSTRACT
Editor: Dr. Balz Kamber Abundances of minor and trace elements in olivine are increasingly used as petrogenetic indicators for mantle source
lithologies, mantle metasomatism history, mantle potential temperatures, and magmatic differentiation. As it is common for
Keywords: HP-EPMA olivine to be complexly zoned on a fine-scale, high precision analytical methods for EPMA (electron microprobe microanalyzer,
Accurate EPMA trace element analysis or Electron Microprobe) trace element analysis under high spatial resolution have been developed. However, previous studies
Olivine geochemistry have focused more on analytical precision with fewer efforts in examining the accuracy of the data. In this study, we used the
Mantle source lithologies Cameca SXFive field emission (FE) EPMA to fully evaluate the effects of beam settings, background offsets and background
Magma differentiation regression models, and primary calibration standards on the data accuracy of 10 key petrogenetic elements (Na, Al, P, Ca, Ti,
East Pacific Rise Cr, Mn, Co, Ni, and Zn) using MongOISh11-2 olivine as a reference material. Our results indicate that high voltage, high beam

current and long counting time not only improve data precision, but also improve data accuracy, especially on elements with
low P/B (peak/background) ratios such as Zn and Cr. Importantly, careful background offsets and background regression models
need to be obtained via high resolution WDS relative scans or step scans on each target element. Special care needs to be paid
to Co element analysis to avoid or correct for peak interference of Fe KB. Among 10 minor and trace elements, exponential
background regression models need to be applied to Al, Mn, and Ti elements, whereas other elements require linear
background regression. Furthermore, to avoid Al and Zn surface contamination due to alumina polishing or brass presence,
ultrasonic cleaning between each intermediate polishing steps and plasma cleaning immediately prior to EPMA experiments is
highly recommended. Micro-inclusions such as chromite and spinel in olivine or adjacent Ca-rich phases need to be avoided to
minimize primary or secondary fluorescence-related contamination on Al, Cr, or Ca. As a volatile element, Na element needs
to be analyzed first with appropriate counting time to minimize the Na loss under high beam conditions. It needs mentioning
that major elements (Mg, Fe, and Si) are best analyzed using MongOISh11-2 or San Carlos olivine as primary standards for
calibrations, which can yield more accurate data for both major elements and trace elements because of the improved matrix-
corrections. Using our recommended analytical protocols, we have successfully discriminated “depleted” mantle olivine cores
from an EMORB in northern East Pacific Rise (EPR) via Ca, Ti, Ni, Co, and Mn abundances. Our olivine data from Siqueiros
Transform and the nearby 8°20'N seamounts also help reveal a metasomatized peridotite mantle beneath the northern EPR.
Overall, the protocols proposed in this study can serve as a guide for accurate EPMA olivine trace element analyses, which
potentially contributes to the efforts of fostering a comparable olivine database worldwide.

1. Introduction magmatic differentiation (Foley et al., 2013). Minor and trace element abundances in olivine have recently been used to determine mantle

As a major mineral component in Earth’s mantle and in most cases source heterogeneity, mantle metasomatic history, crustal recycling, the first silicate mineral
to crystallize from mantle-derived primary mantle-crust interaction, and complex magmatic recharge, mixing and melts, olivine shows great potential in tracing
mantle composition and fractional crystallization processes (e.g., Sanfilippo et al., 2014; de

* Corresponding author at: Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA. E-mail address:

pjiang18@gmail.com (P. Jiang). https://doi.org/10.1016/j.chemgeo0.2022.121199


https://doi.org/10.1016/j.chemgeo.2022.121199
https://doi.org/10.1016/j.chemgeo.2022.121199
https://doi.org/10.1016/j.chemgeo.2022.121199
http://www.sciencedirect.com/science/journal/00092541

P Jiang et al.

Received 29 July 2022; Received in revised form 30 October 2022; Accepted 1 November 2022

November 2022

0009-2541/© 2022 Elsevier B.V. All rights reserved.

Maisonneuve et al., 2016; Neave et al., 2018; Jankovics et al., 2019; Rasmussen
et al., 2020; Liu et al., 2021; Shi et al., 2022). Among the minor and trace
elements in olivine, Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, and Zn commonly have
concentrations over 10 ppm that can be analyzed by electron probe
microanalyzer (EPMA) (Batanova et al., 2015). Concentrations of Al, Cr, Ca, and
Na are proposed to be dependent on temperature (and/or pressure), and can
serve as good geothermobarometers (Wan et al., 2008; De Hoog et al., 2010;
Coogan et al., 2014; Su et al., 2019). Ca and Ti show potential for discriminating
“mantle” olivines from “igneous” olivines and tracing chemistry of
metasomatic melts (Foley et al., 2013). Mn/Fe and Zn/Fe ratios have been used
to constrain mantle source lithologies because they do not significantly
fractionate during melting or olivine crystallization (Sobolev et al., 2007; Le
Roux et al., 2011). Furthermore, Ni and Co show strong correlation with
crystallization (Rasmussen et al., 2020; Wang et al., 2021) and P, Al, Cr are
relatively slow-diffusing elements suitable for preserving complicated
magmatic histories and determining timescales of magmatic processes (de
Maisonneuve et al., 2016; Gordeychik et al., 2018; Shea et al., 2019; Costa et
al., 2020; Yang et al., 2021).

The significant applications of the 10 minor and trace elements in olivine
mentioned above demand accurate data acquisition. Compared to the
commonly employed laser ablation inductively coupled plasma spectrometry
(LA-ICP-MS) for olivine trace element analyses, EPMA shows its advantage by
1) having exceptionally high spatial resolution at micron scale, 2) the capability
of acquiring major, minor and trace elements in one single analysis, and 3)
generating useful compositional X- ray maps and/or backscattered electron
(BSE) images to guide fine-scale analysis. Research indicates that accurate
olivine trace element analysis by LA-ICP-MS requires 2100 pm spot sizes to
mitigate potential downhole fractionation effects for certain elements such as
Na, P, Mn, Co, Niand Zn (Bussweiler et al., 2019), and that high Na backgrounds
can be present during ICP-MS analysis (De Hoog et al., 2010). High spatial
resolution is particularly important when olivine has micro-scale growth
zonation or when a detailed profile analysis is required for diffusion modeling
purposes (Fig. 1). Previous analytical developments by Batanova et al. (2015,
2018) have shown the capability of modern EPMA for acquiring high precision
trace element concentrations in olivine by increasing voltage, beam current
and counting time. Their analytical protocols have made it possible to analyze
low-concentration elements such as Na, P, Zn and Ti, which were not previously
analyzed in the protocols developed by Sobolev et al. (2007). Furthermore,
their method has been widely applied by researchers worldwide, with
sometimes minor modifications of beam settings (voltage, beam current,
counting time, etc.) to account for specific applications (e.g., Shaikh et al.,
2019; Su et al., 2019; Zhang et al., 2022). Nevertheless, these studies focused
on the precision of analyses, and did not fully discuss the details of accurate
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acquisition for each element: some studies evaluated the accuracy of the
analyzed elements by comparing data using different methods (such as EPMA
and LA-ICP-MS) (Batanova et al., 2015, 2019; Su et al., 2019), but only a few
elements such as Ti and Al have been specifically discussed for the protocols of
accurate analyses (see Batanova et al., 2018). As noted by Llovet et al. (2021),
there is generally an underdeveloped appreciation of the importance of fully
documenting experimental conditions in publications and reporting quality
control checks. To this end, we hope to address in detail the accurate
acquisition of all the 10 minor and trace elements in olivine by EPMA.

In this study, we performed experiments documenting the effects of
voltage, beam size, counting time, background offsets, background regression
models, and calibration standards on the accuracy of measurement of each
element using the MongOISh11-2 olivine reference material (RM) (Batanova
et al.,, 2019). By comparing our results and reviewing published work, we
discuss some pitfalls of and protocols for accurate analyses of three major
elements (Mg, Fe, Si) and all 10 minor and trace elements mentioned above in
olivine in order to provide helpful documentation for accurate olivine analysis.
In addition to the evaluation of data accuracy, we also discuss spatial
resolution, data precision, and some potential beam damage under extreme
beam conditions and approaches to minimize beam damage. With our
recommended analytical protocols, we have obtained geologically significant
olivine data in basalts from the Siqueiros Transform and East Pacific Rise (EPR)
8°20'N seamounts.

2. Experimental design and settings

A total of 14 analytical experimental sessions on the new MongOISh11-2
olivine RM (Batanova et al., 2019) were performed using the Cameca SXFive
field emission (FE) EPMA at the University of Florida, to test spatial resolution,
data precision and accuracy by changing beam conditions and analytical
protocols.

The first set of analytical sessions, “Runs” 1-10, were done in July- Aug 2020
and the second set of analytical sessions, “Runs” 11-14, were done in Feb
2021. The second set of sessions were completed six months after the first set
of sessions and serve to test the reproducibility of the obtained data. Each run
in these analytical sessions represent a round of analysis under specified beam
conditions, calibration and quantification settings, etc. A brief description of
the details of each run is presented in Table 1.

Detailed wavelength dispersive spectroscopy (WDS) step scans and/ or high
resolution WDS relative scans were made to best reveal the X-ray continuum
for each element, so as to determine appropriate background offsets and
background regression models (linear, exponential, etc.) based on the
curvature of the scans. The WDS scan settings and raw data
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Fig. 1. The BSE image and X-ray map of olivine crystals revealing internal growth and chemical zonation. (a) BSE image of an olivine with multiple (reverse to normal) growth zones (from
Jankovics et al., 2019). (b) X-ray map of Mg in olivine revealing fine-scale reverse zonation, with the potential for diffusion modeling (from de Maisonneuve et al., 2016).

Table 1

Experimental settings and key outcomes for Runs 1-14.

Runs (dates)

Beam conditions

Descriptions of analytical protocols or changes

Key outcomes

Run 1 (2020-7-31) 15kV, ~530 nA Analysis on Grain 01 (EPMA mount), see Tables S1.1 and S2.1 for analytical protocol
(calibration and quantification) details.

Run 2 (2020-8-3) 15kV, ~530 nA A focused beam changed to a defocused beam with 5 um in size. Other settings
remain unchanged.

Run 3 (2020-8-3) 15 kV, ~530 nA Co, Zn, Na, P background offsets adjusted, Ti regression method changed to
“linear”; peak counting time shorten, see Table S2.2

Run 4 (2020-8-3) 15kV, ~530 nA Zn background offsets switched back as in Run 1; Ti regression method back to
“exponential”; all other settings same as in Run 3.

Run 5 (2020-8-4) 15 kV, ~530 nA Same settings as Run 4, but the Grain 02 (EPMA mount).

Run 6 (2020-8-4) 15 kV, ~530 nA Mn background offsets changed (Table S2.2), other settings same as Run 4; Analysis
on Grain 01.

Run 7 (2020-8-12) 25 kV, ~530 nA New calibration (Table S1.2) and quantification (Table S2.3) under 25 kV;
Background offsets of Si, Ca, and Ni adjusted (Table S2.2); Ca regression changed to
“exponential”; analysis done on Grain 01.

Run 8 (2020-8-12) 25kV, ~530 nA Same settings as Run 7, but on a MongOISh11-2 olivine grain in the LA mount.

Run 9 (2020-8-12) 25kV, ~530 nA Same settings as Run 7, with a newly added Sc element (Table $2.3); analysis done
on Grain 01 (same below).

Run 10 (2020-8-13) 25 kV, ~530 nA Same settings as Run 9, but with shortened total counting time (Table $2.3).

Runs 11-14 (2021-2-  15kV, ~530 nA New calibration on Mg, Fe, and Si using MongOISh11-2 as primary standard (Table

24-26)

$1.3). Settings same as Run 7, but with Ca regression as “linear” and shortened

Overall consistent with reference values within errors. P, Ti,
Co, and Zn show larger deviations.

No observable change.

Co data improved; Ti data turned negative; No notable
improvements on Na, P, and Zn.

All elements show great consistence with references, expect
for Zn (still overestimated).

Notable Na and Al (in particular) overestimation.

Na and Al data back to normal; No observable
improvements for Mn.

Data overall consistent with data obtained under 15 kV; Ca
slightly overestimated while Ni, Si, and Zn data accuracy
improved.

Notable Na and Al (in particular) overestimation again
(same as Run 5).

Data very consistent with those obtained under 15 kV; Sc
data not accurate.

Consistent data with previous runs.

Significant improvements of major elements (Mg, Fe, and
Si) data accuracy.

total counting time (Table S2.4).

are presented in Tables X1 and X2. WDS scans with recommended background
offsets and background regression models are presented in Fig. 2. Calibration
standards, spectrometers (SP1-SP4), crystals (LiF, LLiF, TAP, LPET), background
regression methods and offsets, and beam settings for 14 runs on Mg, Fe, Si
(major elements) and Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, and Zn (minor and trace
elements) are listed in Table S1. The quantification settings for 14 runs are listed
in Table S2 and the recommended quantification settings with key outcomes
(detection limits, precision, and accuracy) for representative runs (Runs 4, 10,
11-14) are provided in Table 2.

3. Spatial resolution of EPMA olivine analyses: Micron- submicron scale

High spatial resolution is a key aspect of EPMA analysis, helping to reveal
complex mineral growth history recorded in micro-scale chemical variations.
The X-ray emission volume is a radially distributed volume generated by the
emitted X-rays that are closely related to the accelerating potential. However,
the applied beam diameters (from 100 nm to a few microns) also affect the
final emission volume. Jercinovic et al. (2008) proposed that the effective
analytical resolution (AR) can be expressed as DAR = (D%beam + DZemission)™?,
where Dbeam is the beam diameter and Demission is the diameter of the emission
volume. To best estimate the spatial resolution under different beam
conditions, we used the CASINO software (Drouin et al., 2007) to model
electron energy distributions (Fig. 3). In the models, we applied an average
olivine density of 3.25 g/cm?with a composition of (Mg, Fe),SiOs, and a 15 nm
carbon coat on the top. A total of 10,000 electron trajectories in each Monte
Carlo simulation were made to model the interactive volume under 10 kV, 15
kV, 25 kV, with a focused (100 nm) or defocused beam (5 um). As is shown in
Fig. 3, with a focused beam, the spatial resolution can be down to sub-micron
scale (0.8-1 um) under 10 kV (Fig. 3a) and is <5 pum under either 15 kV or 25 kV
(Fig. 3b-c). With a defocused beam at 5 um under 25 kV, the horizontal spatial
resolution drops to 8-9 um while the vertical resolution remains unchanged (3-
4 um) (Fig. 3d). It needs mentioning that the sub-micron scale spatial resolution
can be theoretically reached under 10 kV (or lower), but this relatively low
voltage would make it harder to get high precision and low detection limits of
the data.

Although olivine is a beam resistant mineral (Shea et al., 2019), extreme
beam conditions may still damage the sample to some extent (Fig. 4). Beam
damage can be better revealed by secondary electron (SE) images (Fig. 4a vs.

4d). One way to reduce the beam damage and contamination is to apply a
different coating material (such as iridium, Johnson et al., 2019). Another way
is to apply the sub-counting method (e.g., Jercinovic et al., 2012; Hazarika et
al., 2017; Kone“cny et al., 2018; Hrushikesh et al., 2020), that is, dividing a long-
period single spot analysis, e.g., >10 mins, into several cycles of shorter peak
and background counting. Therefore, in cases where 5-10 um is the required
spatial resolution, 15 kV or 25 kV can be applied with a defocused beam to
minimize the beam damage. In cases where <5 um spatial resolution is
required, a focused beam is needed, and a sub-counting method can be
applied.
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4. Data precision and reproducibility of EPMA olivine analyses

High data precision and low detection limit is a key part for EPMA olivine
minor and trace element analyses, especially for those elements at low-
concentration levels such as Na, P, Zn, Ti, Co, and Cr (Fig. 2, elements with weak
or non-observable peaks). As is shown in the study by Batanova et al. (2018),
the detection limit of an element is positively correlated with the analytical
precision (standard deviation). That is, lower detection limits mean smaller
standard deviations, and thus higher data precision. To improve the data
precision, extreme beam conditions can be applied, such as 25 kV, 900 nA, and
long peak counting time from 80 s up to 300 s (e.g., Batanova et al., 2015, 2018;
Gomez-Ulla et al., 2017 ; Su et al., 2019). In the 14 runs (Section 2), we used
different voltages, beam sizes, and counting times with a constant beam
current at ~530 nA. Under 15 kV, ~530 nA, and peak counting time from 120 s
to 240 s, the detection limits are 20 ppm for Na, 10 ppm for Al, 15 ppm for P,
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16 ppm for Ti, 55 ppm for Cr, 29 ppm for Mn, 61 ppm for Co, 38 ppm for Ni, 62
ppm for Zn, and 13 ppm for Ca, independent of beam sizes (i.e., Runs 1-2, Table
S2.1, Table S4). The total analysis time is 16m10s per point. These detection
limits are low enough to ensure the significance of the data: most elements
(except Cr, Co, and Zn) have concentrations 3 times higher than their detection
limits. With more extreme beam conditions but shorter peak counting time,
i.e., under 25 kV, ~530 nA, and 60 s to 120 s peak counting, the detection limits
are 24 ppm for Na, 15 ppm for Al, 19 ppm for P, 8 ppm for Ti, 26 ppm for Cr, 18
ppm for Mn, 35 ppm for Co, 19 ppm for Ni, 18 ppm for Zn, and 11 ppm for Ca
(Runs 7-8, Table S2.3, Table S4), comparable to the routine detection limits
range (~5-25 ppm) reported in the literature (Llovet et al., 2020). This setup
has a shorter total analysis time of 12m50s. It is expected that detection limits
can further decrease to below 10 ppm when 900 nA and > 240 s peak counting
time are applied. However, severe beam damage may occur when operating
under these extreme beam conditions for long time periods (e.g., Jercinovic et
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Fig. 2. (a)-(j) WDS step and relative scans for 10 minor and trace elements in MongOISh11-2 olivine RM with recommended background offsets and background regression models
illustrated. Among these elements, Ni, Ca, Al elements show notable WDS peaks (a-d), whereas Na, P and Zn show slight peaks (e-g); the other elements do not reveal observable peaks

(h-j). Detailed scan settings can be referred to Table X1.
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al., 2008, 2012); and the analysis would be less time-efficient. Therefore,
analysts need to set appropriate beam settings for efficient EPMA analysis with
sufficient data precision that meet the scientific goals. A summary of the
analytical precision and detection limits in representative runs (along with
recommended quantification settings) are presented in Table 2.

Chemical Geology 614 (2022) 121199
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Over the 14 runs on MongOISh11-2 olivine analyses, once the correct
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background offsets and background regression models are set, the data are
consistent with quoted values within errors (Figs. 6-9, Table X3), regardless of
the beam size changes, peak counting time or relatively long periods of time
between analyses (in a few weeks or over 6 months) (Figs. 6-9). These points
support the reproducibility of the data and the reliability of the method.
Elements with significant variations (such as Al, Ca, Ti, and Co) are associated
with incorrect background offset selections, background regression models, or
analytical procedures, which points to the focus of this paper: pitfalls and
protocols for more accurate analyses (Section 5).

5. Key petrogenetic elements’ data accuracy evaluation and improvements:
pitfalls and protocols

To define protocols for accurate EPMA major, minor and trace analysis in
olivine, we tested and evaluated the effects of voltage, beam size, counting
time, background offsets, background regression models, and calibration
standards over the 14 runs via measuring the international MongOISh11-2
olivine RM (treated as “unknowns”). The details of calibration and
quantification settings are presented in Table S1 and Table S2, respectively.
Quantification data are presented in Table S3 (via X-PHI matrix correction
method) and Table S4 (via PAP correction method). Both X-PHI (Merlet, 1992,
1994) and PAP (Pouchou and Pichoir, 1991) matrix corrections apply the ®(pz)
(or Phi-Rho-Z) correction models where a X-ray depth distribution function
(D(pz)) is used to integrate X-rays for the whole excitation volume, generating
more accurate data than the traditional ZAF correction (which integrates X-rays
along the electron track). The data obtained by X-PHI and PAP corrections are
consistent, with the PAP method revealing overall slightly higher accuracy
(lower deviation % from the reference values) (see plots in Supplementary
Table X4). Therefore, we applied the PAP method for all data presented in this
study. Based on our thorough data accuracy evaluation and improvement, we
present our recommended calibration and quantification settings in Table S1.3
and Table 2, respectively. Key outcomes (including accuracy evaluation) for
representative runs (Runs 4, 10, 11-14) are also presented in Table 2.
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Overall, higher voltage improves data precision and potentially data
accuracy due to the increased peak/background (P/B) ratios (Newbury, 2002;
Batanova et al., 2018), whereas beam size changes do not have observable
effects on data accuracy. The data accuracy evaluation plots yield overall great
consistence between measured values and the reference values (Fig. 5; Runs 4,
10). However, some elements show slight or significant variations over the 14
runs (Figs. 6-9), which are correlated with potential inaccurate background
offsets, background regression model selections or inappropriate analytical
protocols. In the following subsections, we will discuss the pitfall and protocols
for accurate analyses for 3 major elements (Mg, Fe, Si) and all the 10 minor and
trace elements (Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, and Zn). To simplify the
discussion, 10 minor and trace elements are grouped by their potential
petrogenetic applications, such as geothermobarometers (Na, Al, Ca, and Cr),
mantle source lithology tracers (Ca, Ti, Mn, and Zn), and indicators of magma
differentiation (Ni, Co, and P). Note that some elements can have multiple
applications. 5.1. Major elements in olivine (Mg, Fe, and Si)

Major elements Mg, Fe, and Si provide information regarding key aspects
of olivine growth history and temperatures of crystallization. The forsterite (Fo)
content (Mg/(Mg + Fe)) in olivine may help discriminate primitive mantle-
derived melts and degrees of fractionation experienced by magmas (Foley et
al., 2013). In addition, accurate analyses of Mg, Fe, and Si can help make
accurate matrix corrections that improve the overall accuracy of minor and
trace element concentrations in olivine.

Compared to the method by Batanova et al. (2015) where combined EDS
(for Mg, Fe, Si) and WDS (for trace elements) detectors were used, we applied
WDS detectors for both major and trace element analyses. In the first set of
analytical sessions (Runs 1-10), hematite (Fe.0s), periclase (MgO), and
wollastonite (CaSiOs) were selected as the primary standards for calibrations
on Fe, Mg, and Si, respectively (Table S1.1, S1.2), whereas in the second set of
analytical sessions (Runs 11-14), the matrix-matched MongOISh11-2 olivine
RM was used for these
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Fig. 3. (a)-(d) The Monte Carlo simulations of the electron energy distributions for olivine under 10, 15 and 25 kV, with a focused or defocused beam (5 pm). The simulations were done
using the CASINO program (Drouin et al., 2007), with 10,000 electron trajectories, for each model. The 5% contour represents the distance from the beam where the majority of electrons
are near 0.5 kV (under 10 kV), 0.75 kV (15 kV) or 1.25 kV (25 kV) due to the inelastic scattering in olivine. Beyond the 5% contour, X-rays are not effectively generated (thus the spatial
resolution can be approximately defined by the 5% contour). With a focused beam, the spatial resolution is <5 um under 10, 15, 25 kV. A defocused beam with 5 pm spot size can

generate decreased horizontal spatial resolution to 8-9 pm with no influence on vertical resolution. SR: spatial resolution. For details of modeling parameters, see Section 3.

calibrations (Table S1.3). With this primary standard, the average compositions
of Mg, Fe and Si overall yield lower deviations from the reference values, with
0.5-0.9% for Mg, 0.3—-1.7% for Si, and 1.5-3.8% for Fe, compared to Runs 1-10
with 0-2.1% for Mg, 0.3-4.4% for Si, and 3.0-5.8% for Fe (see Table S4; Fig. 6a-
c). In addition, Runs 11-14 yield Mg, Fe and Si data with much smaller
variations for each single analysis, whereas Runs 1-10 (without applying the
matrix-matched MongOISh11-2 as primary standard) reveal notable element
variations or drifting, especially for Mg and Si (Fig. 6a, c). One possible cause
can be the matrix difference between calibration standards and “unknown”
samples. As is shown in Fig. 6d, slight shifts of the peaks and minor peaks are
revealed between wollastonite (non-matrix matched Si standard) and
MongOISh11-2 (the “unknown”) (Runs 1-6). After applying the wider
background offsets (Runs 7-14), the drifting effect was reduced (average
deviation at 1.2% for Runs 7-10 with a wollastonite standard), and was
minimized when a matrix-matched standard was applied (average deviation at
0.7% for Runs 11-14; Fig. 6¢). The wider background offsets are needed so as
to avoid the peak interference from Si KB on the background acquisition (Fig.
6d). The use of a matrix-matched olivine as the primary standard, either San
Carlos (Sobolev et al., 2007) or MongOISh11-2 (Batanova et al., 2019), is highly
recommended for primary calibrations on Fe, Mg and Si. Ideally, one olivine
RM can be used as standard for calibration and another olivine RM can serve
as “monitor standard” for data correction. In cases where such a standard is
not available, careful examinations on WDS scans of both the standard and
unknown samples are needed to make sure that accurate background offsets
are selected separately for calibration and quantification. This approach also
works for other cases where primary standards and unknown samples have

very different matrices (see Na and Al examples in Suppl. Fig. S2). 5.2.
Geothermobarometers (Na, Al, Ca, and Cr)

De Hoog et al. (2010) proposed that the abundances of Na, Al, Ca, and Cr
in olivine are dependent on temperature (and to some extent, pressure) in
garnet peridotites, and suitable for empirical olivine thermobarometers.
Among these elements, the AI-Ol and Cr-Ol thermometers are closely
correlated (both dependent on Cr/(Cr + Al), i.e., the Cr#®"), and the Al-in-olivine
is the most commonly used thermometer to reveal primitive melt
crystallization and mantle potential temperatures (Jennings et al., 2019; Goltz
et al., 2020; Li et al., 2021). In addition, Ca in olivine also shows correlations
with melt water content (geohygrometer) in subduction zone settings
(Gavrilenko et al., 2016), and Na in olivine shows potential as a pressure
indicator for orogenic mantle peridotite (Su et al, 2019). With these
implications, accurate analyses of Na, Al, Ca, and Cr in olivine are crucial.

Analysis of Na yields overall very consistent concentrations with the
reference value (cf. Batanova et al., 2019) within uncertainty (Fig. 7e). Slight
changes in background offsets of Na in Runs 3—6 (Section 2, Table S2.2) do not
affect data accuracy. However, when analyzing MongOISh11-2 olivine grains in
the LA mount (Run 8), the Na content is notably overestimated, which can be
correlated with slight heterogeneity among different olivine grain pieces
(Batanova et al., 2019). It is therefore advised to apply only one MongOISh11-
2 olivine grain (in a small area) for the purpose of “data monitoring” (as a
reference material). We also noticed that, when operating under 25 kV on
Grain 01
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Fig. 4. BSE and SE images of the MongOISh11-2 olivine grains illustrating the potential polishing issue and beam damage after long-time analysis under high beam conditions. (a) BSE
image of Grain 01 (EPMA mount) with no observable polishing issue or beam damage. (b) SE image of Grain 02 (EPMA mount) with notable polishing holes and potential remaining
polishing powders (blue arrows). The 6-7 um analyzed area under 5 pm beam spot size corresponds to the CASINO modeled horizontal spatial resolution. (c) BSE image of a MongOISh11—
2 olivine grain in LA mount with observable polishing holes. (d) SE image of Grain 01 (a small region in Fig. 4a) showing relatively good polishing and revealing the analyzed and
“contaminated” area (beam damage) under high beam conditions (15 kV, ~530 nA). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 6. (a)-(c) Accuracy evaluation on major elements (Mg, Fe, and Si) analysis using MongOISh11-2 olivine reference material. Note that the usage of matrix- matched MongOISh11-2
olivine as the primary standard for Mg, Fe and Si calibrations (Runs 11-14) generates more consistent Mg, Fe and Si data with reference values. (d) A comparison of the WDS scans of
Wollastonite (Si standard) and MongOISh11-2 olivine (matrix-matched Mg, Fe, Si standard). Note that slight shift of Si peak is present and that a wider range background offsets selection
yields more stable Si data (with fewer fluctuations) (Runs 7-14, Fig. 6¢c-d). See Section 5.1 for details. The error bars in (a)-(c) reflect the analytical uncertainties for each individual

analysis.

(Runs 9-10), the Na contents tend to be a little underestimated compared to
previous runs (Runs 1-7). As “sodium loss” can take place under high beam
current (Su et al., 2019), Na should be the first element to be analyzed among
all other minor and trace elements to minimize the Na loss.

Analyses of Al yield overall high precision and high accuracy data, all falling
within the reference composition range except for Run 5 and Run 8 (Fig. 7a).
Abnormally high Al concentrations were obtained in Runs 5 and 8 (Fig. 7a),
where the MongOISh11-2 olivine Grain 02 (EPMA mount) and grains in LA
mount were analyzed. One possible cause for this anomaly can be related to
MongOISh11-2 olivine heterogeneity in Al content (Fig. 7b), as revealed by the
large Al abundance variations measured via different techniques (Batanova et
al., 2019). However, considering that Al has been used as a thermometer,
significant temperature variation in this reference material seems unlikely.
Another possible cause for Al anomaly can be the compromised signals from
spinel micro-inclusions and their corresponding secondary fluorescence (SF) X-
rays (Jennings et al., 2019; Li et al., 2021). However, we have carefully avoided
spinel inclusions (or adjacent spinel phases) during the analysis so this cause
can be excluded as well. Here, we correlate the Al anomaly we observed with
polishing-related issues: i.e., uneven polishing with potential Al.Os polishing
powder residuals in Grain 02 and LA mount (Fig. 4b-c). It has been reported

that Al contamination can be caused by Al,Os polishing powder (Batanova et
al.,, 2015; Nekrylov et al., 2021). Therefore, to avoid any potential
contamination, it is highly recommended to apply ultrasonic cleaning during
intermediate polishing steps and perform plasma cleaning (Williams et al.,
2017) immediately prior to EPMA experiments. Lastly, among 14 runs, Al is one
of the two elements (Al and Cr) that did not have their background offsets or
background regression models changed, which supports the use of exponential
background regression (Fig. 2d, Table S2.2) for accurate Al analysis, as was also
suggested by Batanova et al. (2018). In addition, the polynomial background
regression method was also used for Al analysis in olivine (Goltz et al., 2020).
Similar to Al, Ca analysis also yields notable overestimation in Run 8 when
analyzing the LA mount (Fig. 7c). However, this overestimation is not correlated
with polishing issues. Although Batanova et al. (2019) claimed that the large
discrepancies of Ca contents between EPMA and ICP-MS-based methods (Fig.
7d) are related with isobaric interferences on Ca isotopes, the overestimation
in both Grain 02 and LA mount (Runs 5, 8) (Fig. 7c) suggests that different
olivine grains might have slight Ca content heterogeneity. Therefore, a similar
analytical approach as is used with Na (i.e., limiting analyses in a small area)
can be applied to avoid the heterogeneity issue. In addition, the consistently
lower Ca contents in Runs 1-6 and 11-14 (both with linear background
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Fig. 7. Accuracy evaluation on geothermobarometers-related elements (Na, Al, Ca, and Cr) using MongOISh11-2 olivine reference material. (a) Measured Al abundances compared to
the reference value. (b) Variations of Al abundances of MongOISh11-2 olivine using different analytical methods from different laboratories (L1-L6, see Batanova et al., 2019 for details).
Notable Al overestimation in this study (Runs 5, 8) could be related with MongOISh11-2 slight heterogeneity or polishing issues. (c)-(d) Measured Ca abundances (c, this study) and

variations of Ca abundances based on different analytical methods and laboratories (d, Batanova et al.,

2019). Notable increase of Ca in Runs 5 and 8 can be correlated with slight Ca

heterogeneity in MongOISh11-2 olivine RM; and the exponential background regression tends to yield overestimated Ca data (Runs 9-10 vs. Runs 11-14). (e)-(f) Measured Na and Cr
abundances over the 14 runs. Note that slight Na heterogeneity is also observed (Run 8), and that higher voltage could cause notable Na loss (Runs 7, 9-10). Lower detection limits and
higher accuracy of Cr analysis are observed under higher voltage (25 kV). See Section 5.2 for detailed discussion.

higher Ca contents in Runs 9-10 (on Grain 01, with background offsets changed
and exponential background regression applied) suggest that changes in
background offset (Table S2.2; Suppl. Fig. S1a) do not noticeably affect Ca
contents, whereas the exponential background regression method yields
overall higher Ca contents compared to the linear background regression.
Nevertheless, all these runs (except for Run 8) yield Ca contents consistent with
the reference value within uncertainty (Fig. 7c). From the above perspectives,
we propose that a linear background regression is appropriate for Ca element
analysis in olivine, and that a correction factor can be applied if systematic
underestimation is observed. It also needs mentioning that Ca analysis in
olivine needs to consider the SF effect from adjacent Ca-rich phases (such as
plagioclase, pyroxene, and basaltic glass). Studies have

11

(Dalton and Lane, 1996; Llovet and Galan, 2003). To minimize the SF effect,
analyses need to be done >50 um from the adjacent phases. However, in cases
where olivine gains are small and a detailed profile analysis is needed, the
PENEPMA program can be of help to correct the effect of SF by Monte Carlo
simulations (Llovet and Salvat, 2016; Llovet et al., 2020).

Cr element analysis over 14 runs all yield data that are consistent with the
reference value within errors (Fig. 7f). Similar to Al analysis, no background
offsets or background regression models were changed throughout 14 runs,
but it is notable that the Cr analysis under 25 kV (in Runs 7-10) yields Cr
concentrations with smaller uncertainties and
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Fig. 8. Accuracy evaluation on elements (Mn, Zn, and Ti) used as mantle source lithology tracers using the MongOISh11-2 olivine reference material. (a) Measured Mn abundances
compared to the reference value. Note that Mn element analysis yields slightly underestimated values but are overall consistent with reference concentrations. (b) Measured Zn
abundances compared to the reference value. Note that Zn element analysis yields more accurate concentrations when higher voltage (25 kV) was applied (Runs 7-10). (c)-(d) Measured
Ti abundances compared to the reference value and a comparison of linear and exponential background regression for Ti analysis. It is noted that the linear background regression (Run
3) yields negative Ti values, and that exponential background regression yields more accurate Ti data. Note that the unstable beam current in Runs 11-14 affected the analyses of Zn and
Ti so only data from Runs 1-10 are presented in the plots (Fig. 8b- c) (see Table S4 for details). The error bars in (a)-(c) reflect the analytical uncertainties for each individual analysis.

higher accuracy. This supports the proposition that higher voltage can help
significantly improve data precision and accuracy, especially for those elements
with low P/B ratios (Fig. 2 g-j). What needs mentioning again is that accurate Cr
analysis in olivine also needs to avoid contamination from Cr-rich mineral
inclusions (spinel, chromite, etc.) (Bussweiler et al., 2019) and the SF effects of
the adjacent Cr-rich mineral phases (Llovet et al., 2020).

5.3. Mantle source lithology tracers (Ca, Ti, Min, and Zn)

Foley et al. (2013) claimed that mantle olivines have restricted lower Ca
(<700 ppm) and Ti (<70 ppm) contents, whereas igneous olivines exhibit much
greater concentration ranges. Enrichments of Ca and Ti in mantle olivines
provide clues of mantle metasomatism by carbonate or silicate melts (Foley et
al., 2013). Regardless of whether olivines are derived directly from the mantle
or formed via crystallization from mafic magmas, Mn/Fe and Zn/Fe ratios of
olivines have been posited to serve as good tracers for their origins to have
been related to peridotite or pyroxenite sources (e.g., Sobolev et al., 2007; Le
Roux et al., 2011; Howarth and Harris, 2017). If these chemical characteristics
are indicative of source lithologies, accurate analyses of Ca, Ti, Mn, and Zn in
olivines are very important. As Ca has been discussed in previous subsection,
only Ti, Mn and Zn will be discussed below.

Mn element analysis for all runs yield slightly underestimated values but
overall are consistent with the reference concentrations within analytical
uncertainty (Fig. 8a). However, when compared to the Mn variations of

MongOISh11-2 obtained by various techniques worldwide (EPMA, XRF, LA-ICP-
MS, SIMS, sol ICP-MS), our measured Mn values are very consistent with those
measured by LA-ICP-MS (Batanova et al.,, 2019). This indicates that
MongOISh11-2 olivine RM might have larger Mn variations than provided. In
addition to Al and Ti, Mn is another element that needs to apply the
exponential background regression due to its notable WDS curvature (Fig. 2a).
A change of background offsets (with a narrower range) (in Run 6, Table S2.2)
does not seem to affect the data accuracy.

Analysis of Zn under 15 kV (in Runs 1-6) yields notably overestimated
concentrations compared to the reference olivine value (with ~36% to ~75%
deviation, Table S4) (although consistent within uncertainty) (Fig. 8b). A change
of background offsets (Run 3, Table S2.2) does not help improve the data
accuracy. Recent research measuring Zn suggests that the drift due to
contamination by brass (e.g., the Cu—Zn sample holder) (Batanova et al., 2015)
should be monitored during analysis (Trela et al., 2017; Gazel et al., 2018).
However, under 25 kV (Runs 7-10), the data precision and accuracy are both
significantly
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Fig. 9. Accuracy evaluation on elements (Ni, Co, and P) indicative of magmatic differentiation using the MongOISh11-2 olivine RM. (a) Measured Ni abundances compared to the reference
value. Note that a change of background offsets resulted in Ni abundances closer to the reference value. (b) Measured P abundances compared to the reference value. P element analysis
yields overall consistent data. (c)-(d) Measured Co abundances compared to the reference value and a sketch illustrating the Fe KB interference on Co analysis. It is noted that the Co
analysis needs to avoid Fe Kp interference. Also note that Ni and Co only present 10 runs due to the unstable beam current during Runs 11-14 (see Table S4 for details). For legends in

this figure, please refer to Fig. 6.

improved, with the deviation lowered to ~6—20% (Fig. 8b), which then rules out
the possibility of Zn contamination. These improvements suggest that high
voltage can help rapidly increase P/B ratios for low- content elements (e.g., Zn
in Suppl. Fig. S1d) and hence improve the accuracy of the analysis, such as Cr
(section 5.2) and Zn (Figs. 7f, 8b).

Analysis of Ti via the exponential background regression method yields
slightly overestimated values relative to the reference olivine but they are
overall consistent within error (Fig. 8c). However, when using the linear
background regression method (Run 3), negative Ti contents were obtained
(Fig. 8c). The potential WDS spectral “holes” or “negative peaks” both
underneath and adjacent the Ti Ka peak position (for the LPET crystal)
(Donovan et al., 2011) could be one cause for the negative values. But the WDS
Tiscan in our study does not show observable “holes” (Fig. 2i), so another likely
cause for the negative values is the inaccurate background acquisition. As is
shown in Fig. 4d, the detailed WDS step scan of Ti Ka reveals some curvature,
where the linear background regression (two-point interpolation) yields
significantly overestimated background value at the peak position while the
exponential background regression yields more accurate background value.
Therefore, the exponential background regression is recommended for EPMA
olivine Ti analysis. It should be noted that a “blank” correction can be helpful
when artifacts (such as spectral “holes”) are present (Donovan et al., 2011;
Batanova et al., 2018) and can help improve the data accuracy.

5.4. Indicators of magma differentiation (Ni, Co, and P)

As compatible elements in olivine, Ni and Co are strongly fractionated into

olivine during melt crystallization. The greater compatibility of Ni over Co
allows Ni/Co ratios to be indicative of magmatic processes.
Wang et al. (2021) claimed that mantle olivines generally have Ni/Co > 20,
whereas igneous olivines have gradually decreasing Ni/Co ratios. In particular,
olivine forsterite (Fo) — Ni relations are strongly correlated with initial melt
composition, crystallization pressures, and extent of fractional crystallization
(e.g., Herzberg et al.,, 2016; Gazel et al., 2018; Gordeychik et al., 2020).
Phosphorous is an important element in olivine in that 1) its notable
enrichment can indicate rapid olivine growth (rapid cooling), and that 2) its
relatively slower diffusion rate makes it a good candidate preserving
complicated magmatic processes (mixing, recharge, etc.) and modeling
magmatic timescales (e.g., de Maisonneuve et al., 2016; Gordeychik et al.,
2018; Shea et al., 2019). In cases where diffusion has not fully erased original
element zonation (such as fast- diffusing element Ni), these elements (Ni, Co,
and P) can be utilized together to unravel the magmatic processes.

Analysis of Ni yields data consistent with the reference value within
uncertainty (Fig. 9a). However, changing background offsets in Runs 7-10
(Table S2.2, Suppl. Fig. S1b) resulted in Ni contents closer to the reference
value, with 0.5% ~ 1.6% deviation, compared to the 2% ~ 2.2% deviation for
Runs 1-6 with original background offsets (Table S4). Therefore, it is
recommended to use a wider background offset range for Ni analysis (see Table
2, Suppl. Fig. S1b). Higher voltage under 25 kV also helped notably improve
precision of the Ni analysis (Table 2).



P Jiang et al.

Significant improvement in Co accuracy was observed after the background
offsets were changed in Runs 3-10 (Fig. 9c-d, Table S2.2). As is shown in Fig.
9d, the Fe KB X-ray peak is very close to Co Ka, which can potentially affect Co
analysis when using a wide background offset range. A narrow range
significantly reduces the Fe KB interference on Co Ka analysis (Fig. 9d). In the
case where Fe KB interference is notable, an interference correction may be
applied. Sobolev et al. (2007) proposed a linear equation to make interference
corrections of Fe KB on Co Ka: CoOc = CoOm — 0.0011*FeOm — 0.013, where
CoOc, CoOm, and FeOm are the corresponding corrected and measured values
(wt.%). As noted above with Cr, Mn, Zn and Ni elements, analysis with a higher
voltage also greatly improved Co data precision.

Despite the change in background offsets in Runs 3—14, P abundances are
consistent with the reference values within errors throughout the 14 runs,
revealing only slight underestimation (Fig. 9b). However, Batanova et al. (2019)
claimed that phosphorous in MongOISh11-2 is the only element that shows
significant heterogeneity with a homogeneity index of 12. Therefore, the slight
underestimation in our study may simply be accounted for by phosphorous
heterogeneity. In any case, MongOISh11-2 olivine can still be a good reference
material to monitor P analysis and a correction factor may not be necessary if
there is only slight over- or under-estimation of the measured P concentrations.

6. Application to olivine samples in the northern East Pacific
Rise

With our recommended calibration and quantification settings (Table S1.3;
Table 2), we analyzed a few geochemically diverse mid- ocean ridge basalt
(MORB) lavas from the Siqueiros Transform and the nearby 8°20'N seamounts
adjacent to the EPR. Of particular interest are Siqueiros picritic basalts
containing ~10 wt% MgO with up to 20 vol.% olivine phenocrysts (Fig. 10a) that
have high forsterite compositions at Foo1.5-Fosss (Perfit et al., 1996; Putirka et
al.,, 2011, 2018). Lavas from the 8°20'N seamounts are extremely geochemically
heterogeneous (Anderson et al.,, 2021), including depleted (meaning
containing very low concentrations of incompatible elements) MORB
(DMORB), normal MORB (NMORB) and a range of highly enriched MORB
(EMORB). Olivine in a few representative MORB and picritic basalts were
analyzed for their major, minor and trace element compositions (Table 3).

Ca—Ti variations have significant implications for olivine origins (entrapped

from the mantle or crystallized from a melt) and history (Foley et al., 2013).
Olivines in EMORB in our samples clearly differ from those in DMORB (that
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includes picritic basalts, PB), and NMORB by containing lower Ca and higher
Ti contents (Fig. 11a). Because both Ca and Ti are incompatible elements in
olivine, sole olivine crystallization could lead to Ca and Ti enrichments in the
melt and thus the increasing Ca and Ti abundance in olivine, whereas
concurrent plagioclase (Ca as a major element, Ti as an incompatible
element) crystallization can lower Ca but increase Ti abundances in olivine.
Clinopyroxene is rarely observed in the samples, but its crystallization can
have similar effect as plagioclase. Therefore, differences in rim compositions
(note that all the rim analyses were done at >50 pum from the boundary to
minimize the SF effect in particular on Ca element) compared to cores can be
explained by the effects of olivine plus or minus plagioclase crystallization on
an evolving D- or N- MORB melt, or olivine plus plagioclase plus or minus
clinopyroxene crystallization on an EMORB melt (Fig. 11a). Detailed analysis
of olivine phenocrysts also reveals complex magmatic histories such as a
“depleted” olivine core in an EMORB (4856-12, Fig. 10b) sample that falls
just within DMORB “region” (Fig. 11a). As is shown in Fig. 11b, this
“depleted” olivine core could be a xenocrystic “mantle” olivine based on the
higher Ni/Co ratios (>20) and Ni/Mn ratios (>2) (Wang et al., 2021), whereas
the “enriched” olivine rim has a composition reflecting the subsequent
evolution of the EMORB melt (i.e., “igneous” overgrowth rim). Therefore, the
EMORB sample might record a magmatic history of mantle-melt interaction
where mantle olivine residual was entrapped by an enriched melt that
ultimately erupted on one of the 8°20'N seamounts. In addition to the
mantle olivine cores in the EMORB, many Siqueiros olivines also suggest
their “mantle” origin (Fig. 11b). According to Foley et al. (2013), mantle
olivines should have restricted Ca—Ti compositions (i.e., Ca < 700 ppm, Ti <
70 ppm). The notable enrichment of Ca (>1800 ppm) of our analyzed mantle
olivines (Fig. 11c) can potentially be related with carbonate-silicate melt
metasomatism of the original mantle (Foley et al., 2013). Furthermore, we
used the mantle lithology tracers, the Mn/ Fe — 100*Zn/Fe variations (Fig.
11d), to constrain potential mantle source. It is clear that all the olivine data
fall within or around the composition in equilibrium with the peridotite
melts, with no direct evidence for a pyroxenite melt source. This suggests
that the heterogeneity of the lavas in Siqueiros Transform and the nearby
8°20'N seamounts could partly be correlated with heterogeneous
metasomatism of a peridotite mantle.
Our EPR olivine data show that the proposed EPMA analytical protocols in
this study can vyield accurate data that help discriminate element
concentrations at 10s of ppm level (such as Ti, Zn), and help reveal olivine
grains of different origin (mantle vs. igneous), constrain

“Enriched”
Olrim -

o]

‘Depleted” Ol core

4856-12, EMORB

Fig. 10. Optical and BSE images of representative olivine grains from (a) Siqueiros picritic basalts and (b) EMORB from the 8°20'N seamounts. The olivine grains in a picritic basalt (2384-
1a) are overall euhedral with no observable embayment. The EMORB sample (4856—12) contains olivine with core-rim BSE zonation. For their geochemical compositions, see Fig. 11.

Abbreviations: Ol, olivine; Sp, spinel; MI, melt inclusions.
Table 3
Preliminary EPMA minor and trace element data on 8°20'N EPR olivine samples.

Corrected EPR data Weight % (Oxides) ppm (Element) Weight %

Sample info. MgOo SiO2 FeO Na Al P Ti Cr Mn Co Ni Zn Ca Oxides Total Fo number
(wt%) (mol%)

4860-12_01-1, EMORB 43.71 40.64 14.01 72 373 107 157 214 1725 130 1731 74 1715 99.24 84.76
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4860-12_01-2, EMORB 44.70 41.61 15.22 66 263 115 144 469 1798 146 1743 79 1696 102.43 83.96
4857-8_03-1, DMORB 46.77 42.60 12.22 94 431 56 62 425 1449 194 2622 67 1943 102.60 87.21
4857-8_03-2, DMORB 46.07 42.61 12.71 84 403 86 67 404 1529 160 2404 85 1991 102.39 86.59
4847-8_02-1, DMORB 46.61 39.77 9.98 51 126 42 47 360 1305 134 1728 73 2036 97.16 89.27
4847-8_02-2, DMORB 47.12 39.56 10.22 64 135 42 43 359 1310 137 1778 58 1996 97.70 89.15
4847-8_02-3, DMORB 47.40 39.35 10.29 65 130 43 42 406 1283 117 1766 60 1991 97.84 89.14
4856-12_02-c1, EMORB 47.98 40.34 9.34 75 155 34 46 526 1171 146 2808 70 1863 98.59 90.16
4856-12_02-c2, EMORB 47.82 40.74 9.39 62 130 39 42 473 1202 117 2772 74 1860 98.86 90.08
4856-12_02-r1 EMORB 45.41 38.92 12.74 74 94 67 77 229 1653 147 1993 67 1837 97.92 86.40
4856-12_02-r2 EMORB 45.32 38.95 12.87 62 95 63 88 238 1649 115 1972 79 1846 97.98 86.25
0S13-E_01-1, DMORB 46.28 39.39 11.90 57 225 41 46 402 1575 160 2193 65 1969 98.48 87.39
0S13-E_01-2, DMORB 47.59 40.57 12.52 46 197 30 50 370 1544 143 2192 56 2008 101.58 87.14
0S13-E_01-3, DMORB 47.21 40.55 12.18 56 348 84 46 371 1551 122 2214 71 1968 100.88 87.35
4847-7_01-c, DMORB 48.04 41.56 10.90 99 388 67 56 330 1327 141 2105 72 2154 101.42 88.71
4847-7_01-m, DMORB 48.01 41.26 10.88 87 387 27 48 312 1340 142 2085 63 2125 101.05 88.72
4847-7_01-r, DMORB 47.51 41.05 10.69 78 341 8 46 303 1305 135 2098 61 2128 100.13 88.79
4857-8_03-c, DMORB 47.02 40.98 12.00 70 452 97 54 433 1440 157 2737 69 1907 101.02 87.47
4857-8_03-m, DMORB 47.17 41.20 11.81 107 423 92 57 457 1444 143 2711 63 1942 101.20 87.69
4857-8_03-r, DMORB 46.14 40.80 12.75 79 361 78 73 326 1573 160 2289 69 2135 100.67 86.58
0S09-A_02-1, NMORB 46.84 40.73 12.17 66 316 40 60 262 1461 133 2081 72 2097 100.63 87.28
0S09-A_02-2, NMORB 47.04 41.20 12.23 39 288 31 57 330 1465 139 2098 70 2090 101.37 87.27
0S09-A_02-3, NMORB 47.04 41.11 12.23 45 278 25 51 277 1463 161 2110 65 2032 101.27 87.27
2384-1a_01-c, Picritic basalts 49.85 41.38 9.43 73 1826 33 31 344 1149 140 2602 70 2040 101.87 90.40
2384-1a_02-c, Picritic basalts 49.46 41.04 9.44 77 365 31 39 358 1189 151 2668 83 2048 100.90 90.33
2384-1a_01-c, Picritic basalts 47.72 41.12 8.69 74 343 43 42 361 1193 141 2701 78 2138 98.50 90.73
2384-1a_09-c, Picritic basalts 50.27 41.04 8.94 67 371 26 37 473 1098 133 3010 63 2023 101.24 90.93
2384-1a_10-c, Picritic basalts 50.24 41.07 8.81 73 395 46 39 519 1094 132 2991 86 2001 101.13 91.04
2384-1a_11-c, Picritic basalts 48.32 41.02 8.79 81 518 328 44 527 1193 130 3033 80 2110 99.27 90.74
2384-1a_13-c, Picritic basalts 50.24 39.49 9.06 67 392 75 33 421 1061 122 2872 51 2008 99.76 90.81
2384-1a_14-c, Picritic basalts 50.04 41.11 8.78 69 352 77 33 403 1040 164 2936 63 2011 100.90 91.04
2384-1a_04-m, Picritic basalts 47.62 40.90 8.77 79 378 25 48 377 1262 161 2618 74 2194 98.27 90.63
2384-1a_05-m, Picritic basalts 49.37 41.13 9.09 65 401 51 43 386 1258 144 2683 88 2215 100.58 90.64
2384-1a_06-r, Picritic basalts 49.75 41.19 9.24 72 407 34 50 365 1235 133 2690 67 2193 101.17 90.56
2384-1a_06-r, Picritic basalts 49.68 39.65 9.27 59 384 34 49 351 1278 145 2673 80 2210 99.59 90.52
2384-1a_06-r, Picritic basalts 49.64 39.63 9.37 62 355 15 57 344 1201 168 2590 76 2219 99.61 90.43
2384-1a_12-r, Picritic basalts 47.69 40.94 9.16 66 364 24 47 371 1261 143 2676 74 2339 98.79 90.27

Note: 1) Original data were obtained via the PAP matrix correction method. 2) The post-analysis correction of the original data was done by applying a correction factor using the matrix-
matched olivine reference material (MongOISh11-2). Overall, MongOISh11-2 olivine yields data consistent with reference values, so only minor corrections were made. 3) Some analyses
show abnormally high Al (1826 ppm, bolden in text) probably due to presence of spinel inclusion around (or the presence of polishing powder). 4) Some of the totals are above 100 wt%

probably due to the non-matrix matched standard calibrations where SiO,, MgO and FeO were overestimated (due to matrix effect). 5) In the Sample Info., the letters

refer to "core",
detailed magmatic processes and their mantle source lithologies. This method
can be applicable to other laboratories that seek to obtain accurate olivine
minor and trace elements by EPMA.

mantle", and "rim", repsectively.

7. Conclusions and further implications

The spatial resolution of EPMA olivine analyses can be from <5 um down to
sub-micron scale under 15-25 kV or 10 kV with a focused beam, sufficiently

"C", “m", and "rt

In addition to the beam settings and quantification parameters, specific
attention needs to be paid to 1) Na loss by heating; 2) uneven polishing; 3)
surface contamination by brass or Al,0s polishing powder; 4) olivine-hosted Cr-
Al-rich micro-inclusions such as spinel and chromite; 5) secondary fluorescence
from adjacent phases containing large abundances of the elements of interest.
In order to acquire accurate Na concentrations, it needs to be the first element
to analyze in one single analysis to avoid significant Na loss. Fine-polishing and
ultrasonic cleaning in intermediate steps and plasma cleaning immediately

high to analyze complexly grown olivine grains. With less extreme beam
conditions (i.e., 15 kV, ~530 nA, 60-120 s peak counting), detection limits for
most elements are 10-25 ppm, low enough to analyze trace level elements. As
a main focus of the paper, we have systematically evaluated approaches for olivine, as well as the effects of their secondary fluorescence X-rays. In
Fig. 11. Geochemical plots for EPR olivine data obtained by our proposed EPMA analytical protocols. (a) Ca—Ti variations of olivines from Siqueiros picritic basalts (PB), and 8°20'N
seamounts DMORB, NMORB, and EMORB. While PB, D- and N-MORB olivines are characterized by lower Ti and higher Ca, the EMORB olivines show lower Ca and higher Ti. The cores
and mantles (“c&m”) and rims (“r”) depict fractional crystallization trends (olivine, plagioclase and clinopyroxene). (b) Ni/ Co-Ni/Mn variations indicative of mantle and igneous olivines.
Siqueiros PB olivines are basically of “mantle” origin, with rims or some grains showing melt-mantle interaction (which lowered the Ni/Co ratios below 20). The olivine cores from the
44856-12 sample (Fig. 10b) also show mantle origin. (c) A rescaled Ca—Ti variations of EPR olivine data in comparison with mantle olivine compositions defined by Foley et al. (2013). The
notable Ca enrichment of the mantle olivines in this study can be observed. (d) Mn/Fe-100*Zn/Fe variations of olivines. All data fall within the olivine composition in equilibrium with

prior to EPMA experiments are recommended to avoid any Zn and Al
contaminations. Careful microscopic observations need to be made to avoid
compromised Cr and Al signals from the spinel and chromite inclusions in

peridotite melts. See Section 6

accurate EPMA olivine analyses. Among all the beam settings, high voltage,
high beam current and long counting time not only improve data precision, but
also improve data accuracy, especially on those elements with low P/B ratios
such as Zn and Cr. In comparison, beam size changes do not have effect on
either precision or accuracy of the data, which gives more confidence for high
spatial resolution analysis (with a focused beam). Background offset changes
on Na, Ca, Mn, and P do not have notable effects on data accuracy, but
significant effects are observed on Ni and Co, where a wider background offset
range is recommended for Ni and a narrow range free of Fe KB peak
interference is needed for Co. Regarding background regression models, except
for Mn, Al, and Ti, where exponential regression is required, all other elements
can apply linear regression models.

particular, the Ca analysis in olivine needs to consider the SF effect from
adjacent Ca-rich phases (such as plagioclase, pyroxene, and glass).

Our systematic tests and evaluations indicate that MongOISh11-2 olivine is
overall a very good primary matrix-matched olivine standard for major
elements (Mg, Fe, Si) calibrations and a reference material for minor and trace
element data accuracy monitoring. Slight Na, Ca, and P heterogeneity may be
present in MongOISh11-2 olivine RM, where
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researchers are advised to focus their analyses on a small restricted area to
minimize the heterogeneity effect. Due to instrumental differences among
laboratories, systematic underestimation or overestimation may occur, to
which an appropriate correction factor can be applied.

While precautions and protocols can be applied, it is always appropriate to
set specific settings for specific application cases. For example, if Al-in-olivine
thermometer is the focus of a study, multiple spectrometers can be counted
simultaneously, along with high beam current, voltage, and long counting time,
to increase the precision (e.g., Jennings et al., 2019; Goltz et al., 2020).
However, EPMA has its limitations in accurately measuring elements <5-10
ppm (such as Li, Sc, V, Cu), or below 1 ppm (such as Sr, Y, Zr and REEs). In cases
where olivine growth zones are large (>50-100 pum), or the grains are
homogenous, LA-ICP-MS method can be applied to obtain these elements with
extremely low concentrations. It is expected that combined EPMA and LA-ICP-
MS (and potentially SIMS) techniques can be applied to fully unravel detailed
olivine growth history. As a full set of minor and trace elements are analyzed,
with sufficient high precision and accuracy, olivine data can be confidently
compared from different case studies to form a big database, which benefit
researchers worldwide.
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