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Abstract

The selective turnover of macromolecules by autophagy provides a critical homeostatic mechanism for recycling cellular
constituents and for removing superfluous and damaged organelles, membranes, and proteins. To better understand
how autophagy impacts seed maturation and nutrient storage, we studied maize (Zea mays) endosperm in its early and
middle developmental stages via an integrated multiomic approach using mutants impacting the core macroautophagy
factor AUTOPHAGY (ATG)-12 required for autophagosome assembly. Surprisingly, the mutant endosperm in these
developmental windows accumulated normal amounts of starch and Zein storage proteins. However, the tissue acquired
a substantially altered metabolome, especially for compounds related to oxidative stress and sulfur metabolism,
including increases in cystine, dehydroascorbate, cys-glutathione disulfide, glucarate, and galactarate, and decreases in
peroxide and the antioxidant glutathione. While changes in the associated transcriptome were mild, the proteome was
strongly altered in the atg12 endosperm, especially for increased levels of mitochondrial proteins without a concomitant
increase in mRNA abundances. Although fewer mitochondria were seen cytologically, a heightened number appeared
dysfunctional based on the accumulation of dilated cristae, consistent with attenuated mitophagy. Collectively, our
results confirm that macroautophagy plays a minor role in the accumulation of starch and storage proteins during maize
endosperm development but likely helps protect against oxidative stress and clears unneeded/dysfunctional
mitochondria during tissue maturation.
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Introduction
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entire organelles that could elicit proteotoxic stress if allowed

Plants employ various catabolic routes for recycling cellular to accumulate. One major recycling route involves
autopconstituents to promote survival and new growth and to re- hagy whereby intracellular material is sequestered
into spemove unwanted/aberrant proteins, membranes, and even cialized vesicles for degradation within vacuoles (Yang

and
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Bassham 2015; Marshall and Vierstra 2018). Numerous
studies with several plant species have shown that this
clearance is critical to their nutrient economy through its
roles in catabolizing proteins, lipids, and nucleic acids, and
by helping reuse fixed nitrogen and carbon and various
essential elements (Avin-Wittenberg et al. 2015; Masclaux-
Daubresse et al. 2017; Marshall and Vierstra 2018;
Naumann et al. 2019; Shinozaki et al. 2020). Often
autophagic-deficient mutants display stunted growth,
accelerated senescence, and reduced fecundity under such
limitations. Autophagy mutants are also hypersensitive to
pathogens, possibly through a failure to break down the
foreign invaders or their constituents (Dagdas et al. 2016;
Hafren et al. 2017; Ustun et al. 2018; Leong et al. 2022).
Additional roles for autophagy have been seen for
hormone signaling (Zhan et al. 2018; Wang et al. 2021),
lipid metabolism (Fan et al. 2019; Barros et al. 2021),
oxidative stress protection (Sun et al. 2018; Zhou et al.
2018; Ma et al. 2021), and various developmental
processes, including anther and seed development and
programmed cell death (Sera et al. 2019; Feng et al. 2022).
Nonetheless, many strong autophagy mutants are
phenotypically normal when grown under nutrient-rich
conditions, suggesting that other degradative systems
become engaged in its absence.

In plants, as in animals and fungi, two main autophagic
routes exist: microautophagy and macroautophagy (Yang
and Bassham 2015; Marshall and Vierstra 2018). During
microautophagy, the tonoplast deforms locally to directly
sequester autophagic cargo into vacuolar vesicles called
autophagic bodies. By contrast, macroautophagy
assembles a cup-shaped phagophore (or isolation)
membrane from the endoplasmic reticulum (ER) that
envelops unwanted material in a double membrane-bound
autophagosome; these cytosolic vesicles then fuse with the
tonoplast to release the internal compartment as an
autophagic body. In both cases, autophagic bodies and
their cargo are degraded by vacuolar hydrolases with the
resulting products then exported back to the cytoplasm for
reuse.

The mechanisms underpinning microautophagy are
poorly understood at present but appear to be at least
partially distinct from those that direct macroautophagy
(Reyes et al. 2011; Chanoca et al. 2015; Ding et al. 2022).

By contrast, numerous factors have been connected to
macroautophagy, designated hereafter as autophagy
(Marshall and Vierstra 2018). Key components include (i) an
upstream AUTOPHAGY

(ATG)-1 kinase complex that responds to nutritional
deficits, (ii) an ATG2/9/18 membrane delivery system that
promotes phagophore expansion, (iii) a
phosphatidylinositol-3- phosphate kinase complex that
marks autophagic surfaces with its lipid product, and (iv) an

enzymatic cascade that decorates the autophagic
membranes with an adduct of ATG8-bearing
phosphatidylethanolamine (PE). ATGS8-PE conjugation

employs a reaction scheme analogous to ubiquitylation,
which culminates with an E3 ligase complex containing an
ATG12-ATG5 conjugate that links the ethanolamine moiety
of PE to the C-terminal glycine of ATGS.

The embedded ATG8-PE not only helps recruit factors
needed for autophagosome assembly and tonoplast fusion,
but it also provides docking sites for a plethora of
autophagic receptors that recruit appropriate cargo
(Marshall and Vierstra 2018; Bu et al. 2020; Stephani and
Dagdas 2020). A rapidly expanding plant catalog of known
ATG8-binding receptors has connected autophagy to the
selective clearance of numerous cellular compartments,
including mitochondria, peroxisomes, chloroplasts and ER,
and the breakdown of protein aggregates and
dysfunctional proteasomes and ribosomes. Specific
receptors include NEIGHBOR OF BRCA1l (NBR)-1 and
REGULATORY PARTICLE NON-ATPase-10
(RPN10) that respectively commit protein aggregates and
dysfunctional proteasomes for autophagic clearance by
tethering them to lipidated ATG8 (Marshall et al. 2015;
Jung et al. 2020).

To better appreciate autophagy and its substrates, we
have developed an integrated omic platform that
combines maize (Zea mays) atgl2 mutants, which
attenuate ATGS8-PE conjugation and thus autophagosome
assembly (Li et al. 2015), with deep metabolomic,
ionomic, transcriptomic, and proteomic profiling
(McLoughlin et al. 2018, 2020). Consistent with roles for
autophagy in nutrient recycling, the mutants are
hypersensitive to nitrogen and fixed-carbon deprivation
and show reduced nitrogen-use efficiency even when
well fertilized. Striking alterations in leaf metabolite,
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Autophagy influences maize endosperm maturation

MRNA, and protein profiles were discovered, indicating
that autophagy is critical to many physiological processes,
ranging from organelle recycling and lipid droplet
consumption to primary and secondary metabolism
homeostasis (McLoughlin et al. 2018, 2020). Elevated
levels of numerous proteins in atg12 backgrounds also
identified substrates potentially cleared by autophagy.

Our and others’ studies indicate that autophagy is also
active during maize seed development (Li et al. 2015;
Ding et al 2022; Arcalis et al. 2023). As the deposition of
nutrients into seeds and their subsequent reuse during
germination are central aspects of plant reproduction,
understanding how autophagy contributes could have
important agronomic ramifications. For maize and other
cereals, the main seed storage compartment is the
endosperm, a specialized triploid tissue created as part of
double fertilization of the female gametophyte (Sabelli
and Larkins 2009). At maturity, it includes an outermost
single-cell aleurone layer and a prominent starchy
endosperm which occupies most of the seed and contains
dense aggregates of prolamin storage proteins inside the
ER (protein bodies) and large granules of starch within
plastids (Woo et al. 2001; Reyes et al. 2011). While the
starchy endosperm ultimately undergoes programmed
cell death, the peripheral aleurone layer remains alive
and secretes a cache of hydrolytic enzymes into the
starchy endosperm during seed germination whose
activities release amino acid and sugar building blocks for
the developing embryo.

Understanding how autophagy contributes to maize
endosperm  development and storage protein
accumulation is complicated at present. The major
alcohol-soluble, prolamin storage proteins (called Zeins in
maize) accumulate in protein bodies within the starchy
endosperm cells, but in aleurone cells, similar bodies are
delivered to vacuoles for storage via a microautophagy
route independent of ATG8 (Reyes et al. 2011; Ding et al.
2022). Nonetheless, these aleurone cells also have an
active ATG8-dependent macroautophagic route that
promotes ER homeostasis (Zhang et al. 2020).

Here, we further examined the roles of autophagy
during maize seed development through an omic
analysis of atgl2 endosperm harvested at early and
middle developmental windows (Chen et al. 2014). We
confirmed that ATG8-PE-dependent macroautophagy
contributes little to storage protein and starch
accumulation at these time points but substantially
influences the physiology of the endosperm as it
matures. Notably, the mutant endosperm displayed
altered redox metabolism and hyperaccumulated
mitochondrial proteins and aberrant mitochondria,
revealing that autophagy protects against oxidative
stress and helps clear dysfunctional/unwanted
mitochondria as the endosperm matures.

PLANT PHYSIOLOGY 2023: 193; 1395-1415 | 1397

Results

Maize endosperm at early and later
developmental times have markedly altered omic
profiles To assess how autophagy impacts maize
endosperm development, we combined two well-
characterized atg12 mutants (Li et al. 2015) with a
previously described non-targeted omic platform
(McLoughlin et al. 2018, 2020) that quantified the
metabolome, ionome, transcriptome, and proteome
from endosperm collected at 6 and 18 d after pollination
(DAP) (Fig. 1A). Six-DAP endosperm was chosen as it
would interrogate an early developmental period when
this tissue undergoes rapid syncytial divisions followed
by cellularization, while 18-DAP endosperm features
robust accumulation of starch and Zeins well before
programmed cell death of the starchy endosperm and
dehydration of the entire seed (Young and Gallie 2000;
Chen et al. 2014). Here, we confirmed that the wild-type
parent (W22) accumulates little starch and members of
the Zein family at 6 DAP but robust storage of both at 18

DAP (Fig. 1, B to E). While separating the starchy

endosperm from the embryo and aleurone layer at 18

DAP was relatively easy, it was more problematic at 6

DAP as the aleurone had not yet differentiated, and the

embryo was microscopic (Fig. 1A; Chen et al. 2014).

However, given their small size, embryos likely

contributed little to the analyses.

Comparative omic analyses of wild-type endosperm
confirmed the unique maturation states at 6 and 18 DAP
that emphasized cell division/enlargement versus
storage. Quantitative profiles of 440 metabolites by
nontargeted liquid chromatography-mass spectrometry
(LC-MS), ~33,000 transcripts by RNA-seq, and almost
3,300 proteins by LC-MS/MS revealed distinct differences
related to their early and middle developmental stages
(Supplemental Fig. S1, A to C). For example, metabolomic
profile heat maps revealed substantial differences
between the 6- and 18-DAP wild-type samples for almost
90% of the compounds and identified increases in the
metabolism of fatty acids, nucleotides, and several
amino acid classes at 6 DAP but found enhancements in
phospholipid accumulation at 18 DAP (Supplemental Fig.
S1A).

Gene ontology (GO) analyses of RNAs from 11,341
differentially expressed genes (DEGs) and 3,267
differentially accumulating proteins confirmed this view,
with GO term enrichments seen at 6 DAP favoring
anion/nucleotide-sugar transport, cell cycle, microtubules,
and the plasma membrane, and those at 18 DAP favoring
amide and starch  biosynthesis, macromolecules
metabolism, plastids, and translation, all likely connected
to a robust accumulation of storage compounds
(Supplemental Fig. S1, D and E). As expected (Chen et al.
2014; Yi et al. 2019; Dai et al. 2021; Ding et al. 2022),
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transcripts for representative Zein genes (19-kDa a-Zein
and 50-kDa y-Zein), which can become as much as 65% of
the endosperm mRNAs, and those related to Zein
expression and localization or involved in Suc and starch
synthesis were all strongly upregulated in the endosperm
samples at 18 versus 6 DAP (Supplemental Fig. S2C).
Conversely, the expression of genes related to early
endosperm differentiation, cell cycle and cell expansion,
and mitosis/cytokinesis (Yi et al. 2019; Dai et al. 2021) were
all emphasized at 6 DAP (Supplemental Fig. S2, A and B).
Notably, mRNA levels for several autophagic components
rose marginally at 18 versus 6 DAP, suggesting that this
recycling route is not appreciably upregulated as the
endosperm develops (Supplemental Fig. S2D).

Our omic comparisons of atgl2 versus wild-type
endosperm used two UniformMu mutant alleles (Li et al.
2015) and involved numerous biological replicates, each
generated by pooling samples from 30 to 50 individual
seeds, to help find robust connections. Previous studies
showed that the atg12-1 mutation is a likely null allele,
whereas the atgl12-2 mutation is a weaker transcript
knockdown allele (Li et al. 2015; McLoughlin et al. 2018,
2020). Here, when grown under nutrient-rich conditions,
the developing seeds and the endosperms from both atg12
alleles were morphologically similar to their wild-type
cohort except for a slightly reduced embryo size (Figs. 1A
and S3).

Surprisingly, we saw little difference in the accumulation
of starch and Zeins, which eventually comprise the bulk of
the mature starchy endosperm (Sabelli and Larkins 2009),
in the mutants at either 6 or 18 DAP (Figs. 1, Bto E, and S4).
By contrast, the atgl12-1 allele at both time points had
substantially elevated levels of the core autophagy factor
ATG8 and autophagic receptor NBR1 as seen either by
immunoblotting for the entire family with ATG8a antibodies
or by LC-MS/MS quantification of the ATG8d and the NBR1a
isoforms specially identified in the MS data sets (Fig. 1, F
and G). These elevations were not concomitant with
increases in their corresponding mRNAs (Fig. 1H). As ATG8
and NBR1 are both consumed during autophagy (Li et al.
2015; Jung et al. 2020), their increased levels in the atg12
backgrounds especially at 18 DAP confirmed that the
mutations substantially dampened endosperm autophagy
as seen previously in leaves (McLoughlin et al. 2018, 2020).
Furthermore, while NBR1 was stabilized only by the strong
atg12-1 allele, ATG8 was stabilized by both the atg12-1 and
atg12-2 alleles, implying that it is a more sensitive readout
for compromised autophagy.

Barros et al.
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Figure 1. Atg12 mutations, while attenuating autophagy, do not impair starch and seed storage protein accumulation in the maize
endosperm. A) atg12 seeds develop normally. Photographs of homozygous atg12-1 and atg12-2 cobs and individual whole and dissected
seeds next to those from their corresponding wild type (WT) at 8 and 18 DAP. The images were digitally placed on a black background. Endo,
endosperm; Emb, embryo. Scale bar =1 mm. B and C) atg12 seeds accumulate major seed storage proteins normally. Total aqueous extracts
B) and ethanol-soluble extracts enriched for Zeins C) from endosperm harvested at 6 and 18 DAP. Equal volumes of extracts were subjected
to SDS-PAGE and stained for protein with Coomassie Blue. D) Ethanol-soluble extracts from C) subjected to immunoblot analysis with
antibodies against a- and y-Zeins. E) atg12 mutants accumulate starch normally. Starch levels were quantified spectrophotometrically after
hydrolysis to glucose from 5 biological replicates (+sp) from WT and atg12 endosperm at 6 and 18 DAP. F and G) atg12 seeds have defective
autophagy as evidenced by the hyperaccumulation of ATG8 and NBR1. atg12 and WT samples from 6 and 18 DAP endosperm were either
subjected to immunoblot analysis with antibodies against Arabidopsis ATG8a or NBR1 F) or quantified for the ATG8d (GRMZM2G134613) and
NBR1a (GRMZM2G09447) isoforms in total cell extracts by LC-MS/MS G). Near equal loading in F) was confirmed by immunoblot analysis
with anti-histone H3 antibodies. Mean values in G) were determined from the MS1 precursor ion intensities from 5 biological replicates (+sb)
each analyzed by 4 technical replicates. All values were normalized to the mean value for WT endosperm at 6 or 18 DAP. H) Levels of the
ATG8d and NBR1a mRNAs in the endosperm are unaffected by the atg12 mutations. polyA+ mRNA isolated from the same endosperm as in
G) were subjected to RNA-seq. Each bar represents the mean log; FC of 3 biological replicates (tsp). All values were normalized to the mean
value for WT endosperm at 6 or 18 DAP. Log; FC for the ATG8d and NBR1a proteins and mRNAs in G and H) used in the same floating scale
dimensions to permit direct comparisons.

Effects of autophagy on the endosperm representative biological replicates based on the average
metabolomic profiles, and the proteome analyses included
the same 5 biological replicates each measured in
quadruplicate. See Supplemental Data Set S1 to S10 for the
raw data associated with each omic profile. Principal
component analyses (PCA) showed clear separation of all 3
data sets between the atg12 mutants and wild type at both
developmental stages (Fig. 2A), with the atg12-2 samples

metabolome and ionome

Next, we compared the omic profiles of the atg12 lines to
appreciate how autophagy globally impacts maize
endosperm physiology. The metabolome and ionome
analyses employed 5 biological replicates, the
transcriptomes were analyzed using the 3 most
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Figure 2. Metabolic responses of maize atg12 endosperm at 6 and 18 DAP. A) PCA of the metabolome, transcriptome, proteome, and ionome
data sets for 6- and 18-DAP endosperm collected from atg12-1, atg12-2, and wild-type (WT) seeds. The values were calculated from log,-
transformed ion counts for the metabolome and ionome data sets (n = 5 biological replicates), median-normalized log,-transformed
transcript counts for the transcriptomic data sets (n = 3 mean biological replicates), and log,-transformed MS1 precursor ion intensities for
the proteomic data sets (n = 5 biological replicates, each with 4 technical replicates). The amounts of variation explained by the first 2
components are indicated on the axes. The dashed circles outline the PC coordinates for the biological replicates from each genotype/sample.

B) Heat maps comparing the abundances of

440 metabolites measured in atgl12-1, atg12-2, and WT endosperm at 6 and 18 DAP. The metabolites were quantified by LC-MS from 5

biological

affected by genotype, where less separation of the PCA
values was observed (Fig. 2A). In agreement, focused
guantifications saw little variations in abundance between
mutant and wild type for the 20 common inorganic
elements with a modest change seen only for calcium at
18 DAP (Supplemental

Fig. S5).

In-depth analysis of the metabolome showed clear
differences between wild type and the mutant
endosperm, with the abundances of 239 and 247
metabolites (~55% of total) significantly altered (P < 0.05
and g £ 0.10) by the atg12 mutations at 6 and 18 DAP,
respectively (Fig. 2B). The strength of the metabolite
changes—either up or down—were well correlated
between the atgli2-1 and atgl2-2 backgrounds by
Pearson correlation coefficient and fit values, strongly
implying that the differences were caused by a block in
autophagy (Fig. 2C). When clustered into groups either
based on chemical subcategories (Fig. 2B), metabolic
impact and pathway enrichment as defined by Kyoto
Encyclopedia of Genes and Genomes (KEGG) and
MetaboAnalyst (Chong et al. 2019) (Fig. 2, D and E), or
organized into networks by Cytoscape (Supplemental Figs.
S6 and S7), robust differences were seen with respect to
amino acid, primary carbon, phospholipid, and nucleotide
metabolism. The strongest metabolite impact for the
atgl2 mutants, as calculated by MetaboAnalyst, was for
the 2 nonproteinogenic sulfur amino acids—taurine and
hypotaurine (Figs. 2D, S6, and S7—which have been
connected to antioxidant metabolism and stress defense
(Song et al. 2019). Additionally, robust differences were
seen for various phospholipids (e.g. 1-linoleoyl-GPA [18:2]
and 1-steroyl-GPA [18:2]), along with a strong drop (8.6-
fold) in the auxin amide conjugate indoleacetylaspartate

(continued)
at 6 DAP, with the latter suggesting an early compromise
in auxin homeostasis (Figs. 3B and S6).

The metabolite differences from wild type were more
evident in the 18-DAP samples, suggesting that the
physiological consequences of the autophagy mutants
become more acute as the endosperm matures
(Supplemental Fig. S7). At this developmental age, robust
changes were seen for compounds related to glutathione
and ascorbate metabolism, such as an 8.1-fold increase in
cystine combined with 22-fold less glutathione and 3.1-
fold less ascorbate and 6.5- and 8.1-fold more glucarate
(saccharate) and galactarate (mucic acid), which are
generated by oxidation of glucose

Figure 2. (Continued)

and galactose, respectively (Fig. 3, A and B). Other
compounds that hyperaccumulated in the mutants
included cys-glutathione disulfide (4.9-fold), numerous y-
glutamyl amino acids (1.2- to 1.7-fold), S-methylcysteine
(4.1-fold), N-acetylglutamate (4.2-fold), and
hydroxyproline (3.8-fold). Most of the strongly affected
compounds have been connected to thiol metabolism and
oxidative stress, implying that they protect the endosperm
against reactive oxygen species (ROS) that accumulate
without autophagy.

Atg12 mutations alter the endosperm

transcriptome

Assuming that the metabolic changes in the atgl2
endosperm are linked to gene expression and protein
composition, we first examined the transcriptome in
search for informative loci. By RNA-seq of polyA+ RNA, we
identified 33,066 shared transcripts in the wild-type and
the atg12-1/atg12-2 lines. Comparisons among the
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Autophagy influences maize endosperm maturation

A
replicates for each genotype/developmental time point
showed strong coincidences, confirming the reliability of
the data sets (Supplemental Fig. S8A). When the
genotypes were compared, we identified 539 DEGs based
on a log; fold change (FC) in abundance 20.5 (21.4 FC)
together with a significant expression difference (false
discovery rate (FDR) <0.05); 460 among the 6-DAP
samples but only 91 among the 18-DAP samples (Fig. 4, A
and B). These differences were unexpectedly diminutive
(only 1.6% of total transcripts), implying that autophagy
only has a mild impact on endosperm gene expression. As
with the metabolome, the strength of the transcript
differences strongly correlated between the atg12-1 and
atg12-2 backgrounds by Pearson correlation coefficient

PLANT PHYSIOLOGY 2023: 193; 1395-1415 | 1403

DAP, implying that the DEGs we did find arose due to a
block in autophagy (Fig. 4C).

Notably, only 12 DEGs overlapped between 6- and 18-
DAP samples (Fig. 4B), in line with the distinct maturation
states of the endosperm at these time points (Chen et al.
2014; Fig. 1). Included in this short list were mRNAs
encoding ATG12 (direct target of the mutagenesis), the
SPIKE1 guanyl- nucleotide exchange factor, a
phosphoinositol 3-phosphate kinase, the mitochondrial
enzyme aconitase, a vacuolar glucose transporter, and
VESICLE TETHERING (VETH)-1 that regulates microtubule
dynamics, all of which have been connected to autophagy,
membrane trafficking, and/or metabolic  flux
(Supplemental Data Set 5). These distinct mRNA

and fit values based on log,-transformed data at 6 and 18

replicates each prepared from 30 to 50 seeds. The relative abundance of each metabolite was calculated by Z-scores after normalization of
each mean value generated with WT at each developmental time point. The metabolites were clustered based on chemical type and specific
subcategory. C) Scatterplots showing strong correlations for affected metabolites in atg12-1 and atg12-2 endosperm at 6 and 18 DAP. The
dashed line shows the correlation within each comparison. Log, FC values (atg12/WT) for metabolites significantly impacted in both atg12
backgrounds (P < 0.05; g < 0.05; 80 for 6-DAP and 70 for 18-DAP samples) and for the rest of the 440 metabolites are shown in red and gray,
respectively. The Pearson correlation coefficient (Corr) and fit (R2) values are indicated. D) Metabolic pathway overrepresentation and
topology analysis determined by MetaboAnalyst for metabolites that differed significantly in both atg12 alleles compared to those from WT.
P-values generated as in (Chong et al. 2019) reflect overrepresentation of each category, while the pathway impact weighs the importance
of the affected metabolites within the pathway. Significantly impacted pathways/clusters are indicated. Yellow box highlights pathways with
insignificant impact values (impact <0.15 and -logio P < 2). E) Metabolic enrichment of specific metabolic pathways showed in the heat maps.
The enrichment was generated by clusterProfiler package in R and was based on the -log1o P-value enrichment comparisons of the metabolite
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1.5

Glutathione/Ascorbate Ser Family Glu family (a-ketoglutarate-
Glucarate metabolism (phosphoglycerate-derived) derived) Galactarate S-
methylcysteine
4
6-DAP 18-DAP 6-DAP 18-DAP 6-DAP 18-DAP 6-DAP 18-DAP 6-DAP 18-2AP

Figure 3. Specific metabolic clusters that are substantially impacted by ATG12 in maize endosperm. A) Cytoscape clustering of metabolites
related to glutathione/ascorbate, serine, and glutamate metabolism that showed significant FCs for atg12-1 versus wild-type (WT)
endosperm at 18 DAP. The sizes of the circles reflect FC in abundance between the WT and atg12-1; red indicates FC significantly higher in
atg12-1, blue indicates FC significantly higher in the WT, and gray indicates no significant difference. FC values 25 are indicated. Cytoscape
clusterings of all 440 metabolites in 6 and 18 DAP samples are displayed in Supplemental Figs. S6 and S7. NS, not significant. B) Specific
metabolites that differentially accumulate in atg12-1 endosperm at 6 and/or 18 DAP. Each bar represents the mean of 5 biological replicates
(£sp). Glucarate and galactarate are the oxidized products of glucose and galactose, respectively, S-methylcysteine is a methylated derivative
of cysteine, hydroxyproline is the hydroxylated version of proline, 1-linoleoyl-GPA (18:2) and 1-steroyl-GPA (18:2) are intermediates of
phospholipid degradation, N-acetylglutamate is a condensate of glutamate and acetyl-CoA, and indoleacetylaspartate is connected to auxin
metabolism.

profiles were also evident when aligning the transcriptome biosynthesis, and a downregulation of mRNAs related to
niheat maps by transcript (Fig. 4A), which showed that many trogen assimilation and glutamate metabolism, such those
DEGs at 6 DAP were not impacted at 18 DAP. encoding glutamine synthetase (GS)-2 and a putative gluta-

When analyzed for GO, we identified a number of transcript mate dehydrogenase (GDH) that likely underlie the
observed groupings differentially influenced by the atgl2 mutations des- differences in the glutamate-related
compounds (Fig. 4E). pite the low DEG numbers. Particularly at 6 DAP, there were in- Intriguing changes at 18 DAP were
for mRNAs encoding ribocreases in GO terms related to S-adenosylmethionine (SAM), nucleotide reductase (RNR)-1 and
the DNA replication comgamma-(y) aminobutyric acid (GABA), and sulfur compound plex 70 subunit B (RPA70B), which
again might reflect altered metabolism but decreases in responses to abiotic stress and per- DNA replication and
chromosome maintenance (Fig. 4E). As oxide, and protein folding, implying specific compromises in noted above,
modest mRNA differences were seen between metabolic, redox, and protein homeostasis (Fig. 4D). At 18 wild type and
the atg12 backgrounds for ATG8d and NBR1a DAP, elevated GO terms included DNA replication and chro- either at 6 or
18 DAP (Fig. 1H), implying that the block in au-
mosomes, suggesting that the mutations delayed the
syncytial divisions associated with endosperm maturation
(Fig. 4D). Transcriptomic analyses by MapMan (Usadel et

tophagy did not transcriptionally upregulate the process.

al. 2005) also identified other GO terms enriched in the
atg12 endosperm (Supplemental Fig. S9), which might be
related to the observed changes in glutamate, ammonia,
and polyamine metabolites

(Fig. 2, B, D, and E).

A focus on specific transcripts revealed informative
changes in endosperm expression in the atgl2
backgrounds. Included were an upregulation of mRNAs
encoding methionine adenosyltransferase (MAT)-1 and
spermine synthase (SPMS)-1, which respectively
participate in SAM and polyamine

Autophagy strongly influences the endosperm
proteome

To define how autophagy impacts the endosperm
proteome, we analyzed total tissue extracts by shotgun
LC-MS/MS followed by label-free quantification based on
MS1 precursor ion intensities (McLoughlin et al. 2018,
2020). Only those proteins detected in at least 3 biological
replicates were included in the final data sets; strong
coincidence among the replicates confirmed their
reliability (Supplemental Fig. S8B).
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Figure 4. ATG12 mildly impacts the maize endosperm transcriptome. A) Heat maps showing the log, FC in transcript abundance in 6 and 18
DAP endosperm from the atg12-1 and atg12-2 mutants versus wild type (WT). Abundances were calculated using EBSeq and were normalized
to the mean values obtained for WT. Of the 33,066 total transcripts detected, 539 were found to be DEGs with either log, FC> 0.5 up or <-0.5
down in both mutants. B) Venn diagram showing the overlap in the numbers of transcripts that were consistently up- or downregulated in
both atg12 mutants versus WT in 6- and 18-DAP endosperm. C) Scatterplots of significantly affected transcripts identified in B) that compared
the 2 atg12 mutants versus WT. The total number of significantly affected transcripts analyzed is indicated in each plot, along with Pearson
correlation coefficient (Corr) and fit (R2) values. The dashed line shows the correlation within each comparison. D) Specific GO terms for DEGs
that were significantly enriched or depleted in the atgl2 backgrounds versus WT for 6- and 18-DAP endosperm. Logie fold
enrichment/depletion values were based on a singular enrichment of specific GO terms for transcripts consistently altered in abundance for
2 atg12 backgrounds. E) Response of representative endosperm transcripts differentially impacted by development and the atg12 mutations.
Shown are the responses of transcripts encoding a putative GDH, glutamine synthetase (GLN)-2, S-adenosylmethionine synthase (SAM)-1,
spermine synthetase (SPDS)-1, the DNA replication complex subunit B (RPA70B), and RNR-1. Each bar represents the mean log, FC of 3
biological replicates (+sp) from endosperm collected at 6 and 18

DAP from WT, atg12-1, and atg12-2 seeds. sets for atg12-1, atg12-2, and wild-type endosperm at 6

and 18 DAP, respectively.
In contrast to the endosperm transcriptome, a much

We then used 150 proteins whose abundances varied little greater influence for the atg12 mutations was observed
among the backgrounds/time points to develop a  ith respect to the proteome. As seen by volcano plots
normalization factor (ranging from 0.85 to 1.27) for each  assessing FC in abundance and P-value of significance,
data set (McLoughlin et al. 2018, 2020). This approach was  13.4/13.6% and 29.1/22.2% of the proteins detected
validated by the statistically similar histone levels observed showed a significant abundance difference in the mutants
among samples after correction (Figs. 5A and S10). Intotal,  versus wild type at 6 and 18 DAP (FC < 0.67 or 21.5 and P-
~3,160 and 2,800 proteins were shared among the data  value < 0.05) (Figs. 5A and $10). The strength of the

protein changes strongly correlated between the atg12-1
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and atg12-2 backgrounds by Pearson correlation
coefficient and fit values (Fig. 5B), clearly implying that the
differences were caused by attenuated autophagy. In
contrast to the transcriptome, the proteome differences
were greater at 18 DAP than at 6 DAP and

rros et al.

were strongly skewed in the volcano plots toward greater
abundance in the atg12 mutants (Figs. 5A and S10). For
example, the number of proteins whose abundance
increased in the atg12-1 endosperm went from 7.4% of
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Figure 5. The maize endosperm proteome is substantially altered by atg12 mutations. A) Volcano plots comparing protein abundance in 6-
and 18- DAP endosperm from the atg12-1 mutant versus wild type (WT). Protein abundances were quantified by LC-MS/MS based on the
MS1 precursor ion intensities, normalized by a collection of 150 stable proteins, and plotted based on their log, FC in abundance (atg12-
1/WT) and their -logio P-value in significance. The dashed yellow boxes outline the collection of proteins whose abundances did not
significantly differ in atg12-1 versus WT (FC < 1.5-fold or -logio P > 0.05). The mean value for each protein was determined from 5 biological
replicates, each analyzed by 4 technical replicates. The enlargements highlight a section of the volcano plots containing proteins with
significant P-values that were at least 1.5-fold and 4-fold more abundant in the atg12-1 mutant at 6 and 18 DAP, respectively. Select
significantly affected proteins are indicated. Proteins connected to autophagy, histones, and the collection of normalization proteins are
colored in cyan, orange, and red, respectively. Comparable volcano plots for atg12-2 endosperm at 6 and 18 DAP can be found in
Supplemental Fig. S10. The total number of proteins analyzed (n) and the numbers in the indicated quadrants are shown. B) Scatterplots
comparing significantly affected proteins in the 2 atg12 alleles versus WT. The total number of significantly affected proteins analyzed is
indicated in each plot, along with Pearson correlation coefficient (Corr) and fit (R2) values. Dashed lines show the correlation within each
comparison. C and D) Specific GO terms for proteins that were significantly enriched or depleted in the atg12-1 endosperm versus WT at 6
DAP C) and 18 DAP D). Logiofold enrichment/depletion values were based on a singular enrichment of specific GO terms for proteins con-

sistently altered in abundance for the atg12-1 background.

5A).

total proteins to 23.7% as the endosperm matured (Fig.
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Autophagy influences maize endosperm maturation

A

Among the significantly increased proteins in atgl2
backgrounds at 18 DAP were the autophagy components
ATG8d and NBR1a and various organellar proteins (Figs.
1G, 5A, and S11). GO analysis identified term
enrichments for the nucleolus, nuclear body, ribosomes,
RNA processing, and translation-related events in atg12-
1 endosperm at 6 DAP, and for mitochondria,
ribonucleoprotein complexes, proteasomes, rough ER,
and metabolic functions associated with these
compartments/complexes at 18 DAP (Fig. 5, C and D).
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Elevated protein levels in the atgl12 backgrounds could
have arisen from increased synthesis, reduced turnover, or
both, which can be discriminated in part by directly
comparing transcript and protein levels (McLoughlin et al.
2018, 2020). Here, we examined these possibilities by
scatter plots comparing FC in abundance for each protein
with the FC in abundance for its corresponding mRNA (FC
values £ 0.5 or >2). Of the 3,073 and 2,700 proteins and
associated transcripts shared between the atgl12-1 and
wild-type data sets at 6 and 18 DAP, respectively, a large
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Figure 6. Comparisons between transcript and protein abundances for atg12 endosperm. A) Scatterplots showing the relation between log,
FC in protein abundance versus the log; FC in mRNA abundance in atg12-1 versus wild-type W22 (WT) endosperm at 6 and 18 DAP. The
different colored regions indicate sectors that contain proteins and/or mRNAs whose abundances were impacted >2-fold by the atg12-1
mutation. Yellow, proteins (but not mRNA) that were more abundant in WT; orange, mRNAs (but not proteins) that were more abundant in
atgl2-1; blue, proteins (but not mRNAs) that were more abundant in atg12-1; green, proteins and their mRNAs that were both more
abundantin atg12-1; and gray, mRNAs (but not proteins) that were less abundant in WT. The total number of proteins/transcripts (n) analyzed
and the number of proteins in each sector are shown in parentheses. Proteins connected to autophagy and histones are colored in red and
orange, respectively. Specific outlier proteins/mRNAs are labeled. The dashed yellow boxes outline the collection of proteins whose protein
and transcript abundances did not significantly differ in atg12-1 versus WT (<2-fold). The white cross shows the mean FC value for all protein
detected. B) GO term enrichment for proteins found within the blue and yellow sectors in (A) based on a FC > 2 (blue) or <-2 (yellow) in
protein abundance but not mRNA abundance in atg12-1 versus WT at each developmental point. C) Scatterplots highlighting the
protein/mRNA ratios for proteins associated with mitochondria (blue) and the ribonucleoprotein complex (green). All other proteins are in
gray. Pearson correlation coefficient (Corr) and fit (R?) values are given for each selection. The dashed lines show the correlation for the
highlighted proteins. The dashed red boxes outline the collection of proteins whose protein and transcript abundances did not significantly
differ in atg12-1 versus WT (FC < 2). The yellow crosses show the mean FC value for all detected protein from mitochondria and the
ribonucleoprotein complex. The number of proteins (but not mRNA) significantly up or down (FC = 2 or £-2) is shown

in parentheses. n, total number of selected proteins analyzed.

The enrichment for mitochondria was particularly
intriguing given that they are known autophagy substrates
(Lietal.2014; Ma et al. 2021; Kacprzak and Van Aken 2022).

percentage showed little change in both values (75.7% at 6
DAP and 67.9% at 18 DAP), indicating that most endosperm
proteins were not differentially regulated by either
transcription or autophagy (central sector; Fig. 6A).
Nonetheless, we identified a smaller group whose protein
levels were significantly affected by either or both
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processes. Of particular interest were proteins with
elevated levels in the atgl2 endosperm that were not
paralleled by increased mRNA (blue sector; Fig. 6A), which
likely represent autophagy cargo/adaptors/receptors
(11.7% of total proteins analyzed at 6 DAP and 21.4% at 18
DAP for atgl2-1). (However, we cannot discount the
possibilities that changes in translation efficiency or an
increase in another recycling route also contributed ([Li et
al. 2022a]). NBR1d was notably in this blue sector (Fig. 6A),
in agreement with its likely consumption during cargo

Barros et al.

clearance in wild type (Mcloughlin et al. 2018; Jung et al.
2020).

GO analysis of this blue sector (360 proteins at 6 DAP
and 569 proteins at 18 DAP) detected strong enrichment
based on P-values and FC for proteins associated with the
nucleolus, RNA processing, and ribosomes at 6 DAP and
for mitochondria, proteasomes, and various metabolic
functions including respiration at 18 DAP (Fig. 6B). The
early and later impact of the atgl2 mutations on
ribosomes and
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Figure 7. Maize endosperm mitochondria and their proteomes are affected by autophagy. A) Volcano plots showing the preferential
accumulation of proteins assigned by GO to mitochondria (total) or to specific mitochondrial sub-compartments/complexes in atg12-1 versus
wild-type (WT) endosperm at 6 and 18 DAP. Protein abundances were quantified by LC-MS/MS as in Fig. 5 and plotted based on their log, FC
in abundance (atg12-1/WT) and their —logio P-value in significance. The dashed yellow boxes outline those proteins whose abundances did
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not significantly differ in atg12-1 versus WT (FC < 1.5-fold or P > 0.05). Representative proteins specific for each sub-compartment/complex
with significantly altered levels (up or down) are labeled. The total number of detected proteins assigned to mitochondria or each sub-

compartment/complex (n) and those

that significantly increased or decreased are in parentheses. B) Simplified flow chart of the mitochondrial electron transport chain and TCA

cycle

mitochondria, respectively, became more evident when
plotting those proteins specifically. As seen in Fig. 6C, a
skew of ribosomal proteins toward increased protein
levels but not for mRNA was selectively seen at 6 DAP,
while a skew of mitochondrial proteins toward increased
protein levels but not for mRNA was evident at 18 DAP.
Also of interest were proteins whose levels declined in the
atg12 backgrounds but without a commensurate drop in
mRNA (yellow sector: Fig. 6, A and B). These might
represent substrates of other proteolytic routes that
activate in the absence of autophagy.

Atg12 endosperm hyperaccumulates mitochondrial

proteins and defective mitochondria

Given the possibility that mitochondria selectively
undergo autophagy as the endosperm matures by a
process referred to as mitophagy (Li et al. 2014; Ma et al.
2021; Nakamura et al. 2021; Kacprzak and Van Aken 2022,
2023; Li et al. 2022b), we more closely analyzed the
mitochondrial proteome using GO to identify proteins
uniquely assigned to this organelle. When their relative
levels were analyzed by volcano plots, a strong skew in
abundance toward the atgl12-1 background was clearly
evident at 18 DAP (90 of 205 proteins or 44% of this
collection) and to a lesser extent (6%) at 6 DAP, consistent
with a retention of mitochondria in the absence of
autophagy. Upon subdividing this collection by functional
categories, including mitochondrial membranes, TCA
cycle, and the respirasome supermolecular complex, we
found significant abundance increases of all 3in the atg12-
1 background at 18 DAP (49%, 66%, and 73% of each
subcategory, respectively, based on FC 21.5 and P-value <
0.05), implying that the entire mitochondrion was
impacted (Fig. 7A).

Similar  analysis of several other  major
organelles/complexes also detected increased protein
levelsinthe atg12-1 endosperm at 18 DAP, suggesting that
they are also autophagy substrates; examples included
proteins associated with plastids (24% of assigned total),
ribonucleoprotein complexes (18%), peroxisomes (53%),
and proteasomes (56%) (Supplemental Fig. S11). These
increases starkly compared to Golgi and ER proteins, in
which only a small fraction of their proteins changed in
abundance in the atg12-1 background; a modest spread
likely signifying noise

(continued)
Figure 7. (Continued)
(Supplemental Fig. S11). Of all the organelles/complexes
examined at 6 DAP, only nucleolar proteins were
significantly enriched in the atg12-1 background (28%),
possibly reflecting a disruption in ribosome biogenesis or
increased turnover (Supplemental Fig. S11).

For a deeper analysis of mitochondria, we generated a
simplified diagram of its metabolic, transcriptomic, and
proteomic profiles at 18 DAP, with a focus on the TCA cycle
and the protein complexes associated with oxidative
respiration (I to 1V) and ATP synthesis (V). As seen in Fig.
7B, strong abundance increases were observed in the
atg12-1 endosperm for proteins associated with the
NADH oxidase (I), succinate dehydrogenase (ll),
cytochrome-c reductase (lll), and ATP synthase (V)
complexes, which were not paralleled by mRNA increases.
Notable examples included the GAMMA CA-2 subunit of
Complex I, succinate dehydrogenase (SDH)-2 of Complex
[I, MITOCHONDRIAL PROTEIN PROCESSING (MPP) subunit
A of Complex Ill, and the ATPB subunit of Complex V (Fig.
7C). A similar but less pronounced response was also seen
for TCA cycle enzymes, where increases in protein
abundances for some components in the atgl2-1
background (e.g. malate dehydrogenase, citrate synthase,
and isocitrate dehydrogenase) were not coincident with
more mRNA (Fig. 7B). Surprisingly, most of these increases
in TCA cycle enzymes were not paralleled by changes in
the levels of their precursors/products, suggesting a
homeostatic mechanism modulating metabolite flow (Fig.
7B). Taken together, it was clear that the lack of autophagy
globally disrupted mitochondrial proteostasis in the
endosperm.

We anticipated that the higher levels of mitochondrial
proteins seen in atgl2-1 endosperm would follow an
increased number of mitochondria. To test this, we
measured mitochondria numbers and area in endosperm
harvested at 20 DAP by transmission electron microscopy.
Contrary to expectations, we actually found by cytology
less mitochondria by both numbers and area in the atg12-
1 endosperm (Fig. 7E). We also found an unusually large
number of aberrant mitochondria with dilated/abnormal
cristae, seen as electron-translucent areas within their
lumens (Fig. 7, D and E). Our most parsimonious
conclusion is that the atgl2-1 endosperm collects
dysfunctional mitochondria that hyperaccumulate
resident proteins.
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A

describing how levels of the associated metabolites and relevant proteins and their corresponding mRNAs were altered by the atg12-1
mutation in 18-DAP endosperm. FCs as compared to WT of each metabolite and associated protein and mRNA are indicated by the size of
the geometric shapes (see legend). NS and ND, not significant and not detected, respectively. C) Examples of specific proteins associated with
the mitochondrial respiratory Subcomplexes |, II, Ill, and V that differentially accumulated in atg12-1 endosperm. Log, FCs in protein
abundances were quantified by LC-MS/ MS as in A). Each bar represents the mean of 5 biological replicates each analyzed by 4 technical
replicates (+sp). All values were normalized to the mean value for WT at either 6 or 18 DAP. D) The atg12-1 mutation alters the morphology
of starchy endosperm mitochondria. Shown are transmission electron microscopic images from representative normal mitochondria in WT
and abnormal mitochondria with dilated/abnormal cristae (red stars) in atg12-1 starchy endosperm cells harvested at 20 DAP. Scale bars =
500 nm. E) Quantification of total, normal, and dilated mitochondria and mitochondrial area in WT and atg12-1 endosperm cells analyzed as
in D). Mitochondrial area per cell and numbers of normal/dilated mitochondria per um2were quantified from 32 cells from 2 to 3 kernels for
each genotype. In each box plot, the center orange box indicates the median, the green/blue box encompasses the upper and lower quartiles,
the error bar shows the maximum and minimum of the distribution, and circles indicate individual data points (n = 32). Asterisks indicate
significant differences based on the two-tailed Students’ t test.
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Figure 8. Atg12 mutations alter redox metabolism in maize endosperm. A) Simplified flow chart of various pathways involved in redox
metabolism describing how the associated metabolites are impacted by the atg12 mutations in 18-DAP endosperm and how relevant
enzymes changed with respect to their protein and corresponding mRNA levels. FCs as compared to wild type (WT) of each metabolite and
associated protein and corresponding mRNA are indicated by the size of the geometric shapes (see legend). NS and ND, not significant and
not detected, respectively. B) Examples of key redox metabolites that differentially accumulate in atg12-1 starchy endosperm. Each bar
represents the mean of 5 biological replicates (+sp). C) Examples of key redox enzymes that differentially accumulate in atg12-1 endosperm
at6and 18 DAP. Log, FCs in protein abundance were quantified by LC-MS/MS based on the MS1 precursor ion intensities. Each bar represents
the mean of 5 biological replicates (+sp), each analyzed by 4 technical replicates. All values were normalized to the mean value for WT
endosperm at 6 and 18 DAP. D) Levels of H,0, in 6- and 18- DAP endosperm. Each bar represents the mean of 5 biological replicates (sb),
each assayed in duplicate by the Amplex Red assay. Asterisks indicate

a significant difference based on the 2-tailed Students’ t test. might serve as a mitophagy receptor (Ma et al. 2021;
Kacprzak and Van Aken 2023). Searches of the maize
genome identified a putative maize ortholog with 59%
amino acid sequence identity, whose mRNA and protein
were evident in our endosperm transcriptomic and
proteomic data sets. Interestingly, its mRNA level rose in
the atg12-1 endosperm compared to wild type at 6 DAP,

While the mechanism(s) underpinning mitophagy in
maize are not understood, several reports have recently
showed that the Arabidopsis (Arabidopsis thaliana)
protein FRIENDLY helps clear depolarized mitochondria
possibly by clustering them for autophagy and thus
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while its protein level dropped by 3-fold at 18 DAP
(Supplemental Fig. S12).

Autophagy influences antioxidant and thiol

metabolism

The strong increases in metabolites associated with

redox metabolism in atg12-1 backgrounds implied that

mutant endosperm also experienced oxidative stress. To
further explore this possibility, we comprehensively
examined various aspects of redox metabolism with an
emphasis on glutathione/ROS-related pathways and
cysteine metabolism
(Fig. 8A). Particular attention was on the
ascorbate/glutathione cycle that uses ascorbate peroxidase
(APX) to convert hydrogen peroxide (H,0;) to water, thus
yielding monodehydroascorbate (MDHA), which is recycled
back to ascorbate by monodehydroascorbate reductase
(MDHR) or is spontaneously converted to
dehydroascorbate using reduced glutathione (GSH)
(Hasanuzzaman et al. 2019). The oxidized form of
glutathione (GSSG) is then regenerated back to GSH by
glutathione reductase (GR). As shown in Fig. 8, Ato C, lower
levels of ascorbate together with increases in
dehydroascorbate were observed in atg12-1 endosperm,
likely through increases in APX whose levels rose 5.8-fold in
atg12-1 mutant versus wild type at 18 DAP. Despite high
levels of dehydroascorbate, we measured less GSH and
GSSG (22.2- and 2.1-fold reduction) in the atgl2-1
endosperm, suggesting a dysregulation of glutathione
synthesis or increased consumption.

While uncertain about glutathione synthesis from
cysteine, increased glutathione use in the atg12 mutants
was supported by changes in several routes (Fig. 8, A to C).
One shunt was the conjugation of glutathione to various y-
glutamyl amino acids through transpeptidation of GSH by
y-glutamyl transferases (Noctor et al. 2012). The levels of
these y-glutamyl conjugates (10 of 12 measured)
collectively rose by ~1.5-fold in the atg12-1 endosperm
(Fig. 3A). Another shunt could involve cysteine which is
converted to glutathione by a complex conjugation cascade
(Fig. 8A). Our omic profiles implied that cysteine levels
were impacted by multiple events in the atgl2
backgrounds, including its oxidation to cystine whose level
rose 8.1-fold in the mutant, and its conversion to taurine-
and hypotaurine metabolites through cysteine dioxygenase
whose protein level increased 5.1-fold without a
concomitant increase in transcript level (Fig. 8A).

Apart from ascorbate and glutathione, plants adopt other
mechanisms to detoxify H,O, and ROS, such as the nitric
oxide-driven oxidation of glucose and galactose into
glucarate and galactarate, respectively, or by the
glutaperoxidase (GPX) and peroxiredoxin (PRX) scavenging
pathways operating in conjunction with thioredoxin

Barros et al.

(Smirnoff and Arnaud 2019). As described above, glucarate
and galactarate levels were both strongly elevated in the
atg12-1 background (Fig. 3, A and B), whereas, the levels of
PRX reductase and thioredoxin reductase increased by 2.3-
and 4.4-fold, respectively. H,0; can also be removed by
catalase (Smirnoff and Arnaud 2019), but the similar
catalase protein levels measured in wild type and the
atg12-1 mutant suggested that its activity cannot account
for the redox differences seen in the mutant endosperm
(Fig. 8A).

Predicting that changes in redox-thiol metabolism might
alter ROS accumulation in atg12 endosperm, we measured
H,0; levels in endosperm extracts using the Amplex Red
reagent (Brumbarova et al. 2016) (Fig. 8D). In wild-type
endosperm, H,0; levels rose ~3-fold from 6 to 18 DAP,
implying that oxidative stress increased as the endosperm
matured. Surprisingly, while the endosperm from the
atg12-1 and atgl12-2 mutants had similar H,0; levels as
compared to wild type at 6 DAP, they accumulated less
H,0; at 18 DAP (40% less in atg12-1), suggesting that this
oxidant is being consumed by end products such as cystine,
glucarate, and galactarate (Figs. 3B and 8, A and B).

Discussion

Numerous studies have connected autophagy to plant cell
homeostasis, source sink relationships, and metabolic and
proteomic dynamics through its roles in nutrient recycling
and the clearance of unwanted or dysfunctional
constituents (Avin-Wittenberg et al. 2015; Li et al. 2015,
2022a; Masclaux-Daubresse et al. 2017; McLoughlin et al.
2018, 2020; Naumann et al. 2019; Shinozaki et al. 2020;
Zhang et al. 2020; Mugume et al. 2022). Here, we extended
this view to the developing maize endosperm through
integrated omic profiling that compared tissue dissected
from wild type and autophagy-compromised mutants and
found that canonical autophagy dependent on ATGS is also
important to this nutritive tissue. The strength of our
approach was the analysis depth that simultaneously
interrogated 440 metabolites, the 20 common inorganic
elements, near 33,000 transcripts, and ~3,800 proteins
representing most, if not all, cellular compartments and
essential physiological processes. Consequently, our study
provides a comprehensive window into the metabolomic
and proteomic changes that occur during endosperm
maturation beyond the synthesis of starch and storage
proteins that dominate its physiology (Woo et al. 2001;
Sabelli and Larkins 2009; Reyes et al. 2011). Notably,
endosperm harvested at 6 and 18 DAP had substantially
different metabolomes and proteomes, implying that these
two time points are developmentally distinct in agreement
with prior transcriptomic studies (Chen et al. 2014; Yi et al.
2019; Dai et al. 2021). The collective picture is that
autophagy (i.e. macroautophagy) aids maturation of this
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A
nutritive tissue that becomes essential to the survival of the
germinating embryo.

Autophagic disruption could be directly observed in the
atg12 samples by the increased levels of both the core
component ATG8 (Chung et al. 2009; Li et al. 2015) and
the NBR1 autophagic receptor that directs protein
aggregate clearance (Jung et al. 2020). Although we might
have predicted that the metabolic, transcriptomic, and
proteomic profiles would have simplified as most of the
endosperm commits to nutrient storage and eventual
programmed cell death, our analysis of 18-DAP
endosperm failed to see this constriction, with wide
swaths of mRNAs and proteins still detectable beyond
those connected to starch and storage protein
biosynthesis. The collective outcome is that while
autophagy is relatively inconsequential to carbohydrate
and protein storage by the endosperm at least during the
early and middle stages of development, it does regulate
metabolic flow and promotes ROS protection and directs
the turnover of several organelles as the endosperm
develops. The impacted constituents include
mitochondria, plastids (likely amyloplasts), peroxisomes,
and possibly the ER, protein complexes such as
ribosomes, proteasomes and those involved in
mitochondrial respiration, and an array of individual
proteins that were more abundant in the atgl2
backgrounds.

It is likely that some of this turnover is a prelude to
programmed cell death and eventual seed dormancy as
the endosperm continues to mature. While many
elevated proteins are likely autophagic cargo, it is also
possible that some are yet-to-be identified adaptors that
promote vesicle dynamics or serve as ATG8-binding
autophagic receptors (Marshall and Vierstra 2018; Bu et
al. 2020; Stephani and Dagdas 2020). It is interesting to
note that the levels of some metabolites/proteins were
substantially impacted solely by the strong atg12-1 allele,
while others were also impacted by the weaker atg12-2
allele (e.g. glucarate/GAMMA
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CA-2/NBR1 versus cys-glutathionine disulfide/ATPB/ATGS,
respectively). In fact, punctual differences in metabolite
and proteins between the 2 maize atgl2 alleles were
observed previously in other developmental and stress
contexts (Li et al. 2015; McLoughlin et al. 2018, 2020). The
underpinning reasons for these variations are unclear
when considering that the overall influences of the two
alleles strongly aligned by Pearson correlation coefficient
and fit values. We speculate that mutant strength can
differentially impact metabolite/protein levels depending
on their positions within metabolism, roles in seed
maturation, and/or inherent synthesis/degradation rates.

Our data with atg12 endosperm at 6 and 18 DAP
support the view that autophagy driven by the ATG8-PE
adduct (i.e. macroautophagy) does not impact the
formation of protein bodies and protein storage vacuoles
(Li et al 2015; Ding et al. 2022) and starch accumulation
(this study) in the maize endosperm at least during these
stages of seed development. Just measuring seed weight,
we also saw only a modest reduction (~10%) at 18 DAP.
This is in contrast to the 25% drop in mature seed weight
at >40 DAP measured previously for atg12 seeds grown
under identical well-fertilized field conditions (Li et al.
2015). As we expect that starch and storage proteins
represent the bulk of mature seed weight, it is conceivable
that the lack of autophagy stalls further development
beyond 18 DAP, possibly by compromising mitophagy
and/or ROS regulation. We also acknowledge that our
conclusions with the maize endosperm might not
translate to other plant species. For example, Sera et al.
(2019) reported that rice (Oryza sativa) atg7-1 plants
blocked in macroautophagy have challenged seed yields
caused in part by less endosperm starch and more soluble
sugars, traits not seen with the maize atg12 mutants at
least at 18 DAP.

Comparisons of our omic data of atg12 versus wild type
revealed that autophagy strongly modifies the profile of
endosperm metabolites, especially those related to redox
metabolism, oxidative stress, and conjugated sulfur
metabolism, suggesting that it helps prevent cytotoxic
ROS accumulation. Elevated oxidation products in the
mutantsinclude cystine, glucarate, and galactarate, whose
metabolic functions are not well understood, and
increases in y-glutamyl conjugates of glutathione, which
coincide with a robust drop in ROS-protective glutathione.
Cystine hyperaccumulation is particularly striking,
suggesting a unique function for this enigmatic oxidant of
cysteine. Taurine and hypotaurine, which were identified
as significantly upregulated by MetaboAnalyst, have also
been described as antioxidants (Song et al. 2019). The
collective hyperaccumulation of these antioxidants and
oxidation products might explain why atg12-1 endosperm
actually contained less H,0; than wild type at 18 DAP. An
unanticipated link between these compounds and sulfur
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metabolism was also implied by GO term enrichments and
by elevated levels of S-methylcysteine and Cys-glutathione
disulfide, but not sulfate, in atgl2 endosperm. With
respect to amino acid metabolism, we also note that the
atg12-1 endosperm hyperaccumulated the tryptophan
precursor—anthranilic acid at 6 DAP (Supplemental Fig.
S6), which has been connected to stress and herbivory
defense (Kollner et al. 2010). While direct links between
some of these metabolites, ROS protection, and
autophagy are not yet clear (e.g. cystine, glucarate,
galacarate, and taurine), we imagine that associations will
eventually emerge as our picture of plant metabolism
improves.

Our connections between autophagy to oxidative stress
fits with prior studies connecting the two. For example, we
previously found that maize atg12 leaves under nitrogen
or carbon starvation accumulate oxidized fatty acids and
secondary compounds considered to be antioxidants,
including syringic acid, rutin, and secoisolariciresinol
(McLoughlin et al. 2018;, 2020), while Yoshimoto et al.
(2009) reported that autophagy-deficient Arabidopsis
leaves hyperaccumulate ROS. Protection against ROS
damage induced by intense light has also been connected
to the autophagic removal of oxidatively damaged
peroxisomes (Oikawa et al. 2022), which might explain the
increased peroxisome turnover inferred here. In
Arabidopsis, an inhibition of the NADPH oxidase, which
can generate ROS, also blocks autophagy (Liu et al. 2009),
while in  tomato  (Lycopersicum  esculentum),
overexpression of mitochondrial alternative oxidase,
which regulates mitochondrial ROS, was found to elevate
autophagic flux (Zhu et al. 2018). We presume that
heightened autophagy during oxidative stress helps
remove damaged proteins/organelles as part of a
protective homeostatic mechanism.

The sources for this ROS imbalance in the atgl2
backgrounds are currently unclear but could involve a
hyperaccumulation of defective mitochondria. A role for
ATG8-dependent autophagy in clearing dysfunctional
mitochondria agrees with prior studies in Arabidopsis that
observed mitophagy triggered by starvation-induced
senescence, hypoxia, heat, H,0,, UV-B damage, and
mitochondrial depolarization (Li et al. 2014; Ma et al.
2021; Nakamura et al. 2021; Kacprzak and Van Aken 2022).
A possible scenario is that nonfunctional mitochondria are
continually cleared from the endosperm as part of either
a normal housekeeping activity that purges dysfunctional
organelles or a larger developmental program that
transitions physiologically active starchy endosperm cells
into those developmentally restricted to nutrient storage
and then death. In the absence of mitophagy, the
proportion of dysfunctional mitochondria would increase
leading to release of cytotoxic ROS that are eventually
converted into a host of oxidized metabolites. In
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agreement, yeast and mammalian cells lacking autophagy
also contain aberrant mitochondria resulting in increased
ROS levels (Zhang et al. 2007; Tal et al. 2009). The
retention of potentially defective peroxisomes in atg12
endosperm might also enhance ROS accumulation.

Despite the limited knowledge of mitophagy regulators
in plants, recent studies have identified the Arabidopsis
FRIENDLY and TRAB (TRB) proteins as important factors
(Ma et al. 2021; Li et al. 2022b; Kacprzak and Van Aken
2023). While putative TRB1 and TRB2 orthologs were not
found in our maize proteomic data sets, we could detect a
possible FRIENDLY counterpart in both wild-type and
atg12 endosperm, with its levels dropping substantially in
atgl12-1 samples at 18 DAP. At present, it is unclear
whether FRIENDLY acts as a mitophagy receptor capable
of binding both mitochondria and ATGS.

Our observations by transmission electron microscope
that the atgl12 endosperm has less mitochondria at 18
DAP while containing more mitochondrial proteins as
quantified by LC-MS/MS appears contradictory. Insomuch
as there was a significant increase of abnormal
mitochondria in the mutant endosperm compared to wild
type, it is possible that these dysfunctional species in the
atg12 backgrounds actually have higher protein densities
due to a lack of autophagic recycling. Although less likely,
it is also possible that either the aberrant morphology of
atg12 mitochondria at 18 DAP complicated microscopic
identification given the extensive
fusion/fission/condensation/degradation dynamics of this
organelle (Ma et al. 2020) or the mitochondrial proteins
seen by MS were no longer compartmentalized and either
released into the cytoplasm or awaiting turnover inside
vacuoles. Clearly, immunocytological localization of
mitochondrial proteins will be necessary to resolve this
conundrum.

Taken together, our omic profiling of endosperm
revealed a complicated developmental history for this
nutritive tissue that exploits autophagy to minimize
oxidative stress and maintain cellular homeostasis as it
eventually transitions to a quiescent storage tissue. As
parts of its possible functions are to regulate the levels of
mitochondria, peroxisomes, plastids, ER, ribosomes, and
proteasomes, it would be informative to study fully
mature atg12 seeds to examine how far autophagy goes
in managing starchy endosperm biology prior to cell
death. Identifying bottlenecks in endosperm development
related to autophagy might then reveal opportunities for
improving maize grain quality and yield.
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Materials and methods

Plant growth

The maize (Z. mays) atgl12-1 (mu02975) and atgl2-2
(mu02196) mutants in the W22 inbred background were
as described (Li et al. 2015). For the omic studies, the
plants were field grown on well-fertilized soil (Li et al.
2015). The endosperm from each
genotype/developmental age was collected manually
from 30 to 50 seeds from self-pollinated cobs, rapidly
frozen at liquid nitrogen temperatures, and stored at -80
°C. Unless indicated otherwise, the resulting 5 biological
replicates were used for subsequent omic profiling and
other quantitative assays. For the seed morphometrics,
the plants were greenhouse grown in well-fertilized
Metro-Mix 360 (Sun Gro Horticulture) under 16-h light/ 8-
h dark photoperiod at 27 °C/21 °C day/night temperatures
(McLoughlin et al. 2018, 2020).

Metabolome and ionome profiling

Endosperm was subjected to unbiased metabolite
profiling by Metabolon (www.metabolon.com) using
optimized chromatographic platforms in conjunction with
a Q-Exactive Plus mass spectrometer (Thermo Fisher
Scientific) interfaced with a heated electrospray ionization
source and an Orbitrap mass analyzer operated at 35,000
mass resolution (Evans et al. 2009; Ohta et al. 2009). The
tissues were extracted, dried, and reconstituted in
compatible solvents, spiked with MS standards to assess
chromatographic consistency, and then separated by 4
chromatography columns designed to interrogate a range
of metabolites (see (McLoughlin et al. 2018, 2020) for
details). Metabolites (440 total) were identified by
automated comparisons with the retention times, ion
features, and MS/MS fragmentation patterns of a
reference chemical library (DeHaven et al. 2010).
Following log,- transformation and imputation of missing
values, analysis of variance (ANOVA) identified metabolite
abundances that differed significantly among
experimental groups (P < 0.05). To correct for multiple
testing, FDRs were estimated by calculating g-values to
then determine significant differences in metabolite
abundance. Compounds were clustered by Metabolon
into subpathways and plotted in Cytoscape (Shannon et al.
2003).

Pathway enrichments were calculated in R using
clusterProfiler (Wu et al. 2021) based on the mean
accumulation pattern of each metabolite. Metabolites
were assigned to specific pathways using the KEGG
pathway library for A. thaliana
(https://www.genome.jp/kegg-bin/show_organism?
org=ath) and were tested for overrepresentation by a
hypergeometric test. Metabolite heat maps were
generated in Perseus (Tyanova et al. 2016), while
overrepresentation and the topology of significantly
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altered metabolites were determined in MetaboAnalyst
(Chong et al. 2019).

Elemental ion profiles of the 5 biological replicates
above were generated by ICP-MS at the USDA Agricultural
Research Service Plant Genetics Facility at the Donald
Danforth Plant Science Center as described (McLoughlin
et al. 2018). Pulverized samples were lyophilized, digested
in HNO3, mixed with 113In (BDH Chemicals) as an internal
standard, and heated to 105 °C for 2 h before analysis
(Ziegler et al. 2013). ICP-MS employed an ELAN 6000
Dynamic Reaction Cell-e mass spectrometer (PerkinElmer
SCIEX) connected to a perfluoroalkoxy MicroFlow
nebulizer (Elemental Scientific) and an Apex HF desolvator
(Elemental Scientific).

Transcriptome analysis

Total RNA was extracted from 50 to 100 mg of tissue from
the 3 mean biological replicates based on the
metabolomic profiling using a RNeasy Plant Mini Kit
(Qiagen), enriched for mRNA by poly(A) selection, and
deep sequenced (20 to 27 million reads per sample) as
100-mers using the lllumina HiSeq-2500 platform (DNA
Sequencing Facility, University of Wisconsin
Biotechnology Center). FASTQ files were processed
with  Trimmomatic v0.36 as described
(McLoughlin et al. 2018), and the resulting reads were
aligned to the B73 reference genome files
Zea_mays_AGPv3.31.gff3 and
Zea_mays.AGPv3.31.dna.toplevel.fa from ENSEMBL Plants
(http://plants.ensembl.org). Transcript abundances were
quantified using RSEM v1.2.21 and Bowtie 2 (Langmead
and Salzberg 2012). The fragment-length-mean and
fragment-length-sp parameters are summarized in
Supplemental Data Set 4. See Supplemental Table S1 for
the GRMZM gene identifier numbers for the specific
proteins highlighted in this study.

DEGs were identified by EbSeq v1.12.075 (Leng et al.
2013) using pairwise comparisons (McLoughlin et al.
2018). Library sizes were median-normalized before 10
iterations of the EBtest algorithm set to a 5% FDR
threshold. Those DEGs (posterior probability of equal
expression <0.05 and a log; FC > 0.5) in both atg12-1 and
atg12-2 backgrounds versus wild type for both the 6- and
18-DAP samples were included in the comparisons. For
the network analyses, transcripts were grouped by
MapMan (Usadel et al. 2005) based on the
Zm_GENOME_RELEASE_09 mapping file
(https://mapman. gapipd.org). Pathway enrichment tests
for significance used the Fisher’s exact test and corrected
for multiple testing via the Holm—Bonferroni method.
Coefficients of variation among the biological replicates
for the transcriptome and proteome data sets were
determined using Perseus.
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Proteome profiling

Proteomic data were collected as described (McLoughlin
et al. 2018, 2020). Total endosperm protein (~300 mg)
was isolated from the 5 biological replicates above by
extraction in Tris-buffered phenol (pH 8.0) (Invitrogen),
mixed with 5 volumes of extraction buffer (50 mm Tris-HCI
(pH 7.5), 1 mm Na4EDTA, and 0.9 wm sucrose), and then
separated by centrifugation at 13,000 x g for 10 min at 4
°C. The top phenol phase was collected, and the aqueous
phase was extracted again in 5 volumes of Tris-buffered
phenol. Both phenol phases were combined and
precipitated at -80 °C for 1 h with 5 volumes of 0.1 m
ammonium acetate in methanol. Proteins were collected
by centrifugation at 4,500 x g for 10 min at 4 °C, vortexed,
and washed twice at -20 °C with 5 volumes of 0.1 m
ammonium acetate (w/v) in methanol, and once at -20 °C
with 5 volumes of 70% (v/v) methanol, each of which was
followed by centrifugal collection.

After the final wash, the pellets were lyophilized to
dryness, resuspended in 100 uL of 8 m urea, and reduced
and alkylated with iodoacetamide (McLoughlin et al.
2018). The reactions were quenched with dithiothreitol,
diluted with 25 mm ammonium bicarbonate to reduce the
urea concentrations below 1.5 m, and digested overnight
with sequencing-grade modified porcine trypsin
(Promega). The resulting peptides were lyophilized to a
final volume of 250 ul, acidified with 0.5% (v/v)
trifluoroacetic acid (pH < 3.0), and desalted using a 100-uL
Bond Elut OMIX C18 pipette tip (Agilent Technologies).
Final samples were resuspended in 20 ulL of 5% (v/v)
acetonitrile and 0.1% (v/v) formic acid.

Nano-scale LC separation of the tryptic peptides was
performed using a Dionex Ultimate 3000 Rapid Separation
system equipped with a 75 um x 25 cm Acclaim PepMap
RSLC C18 column (Thermo Fisher Scientific), in
combination with a 2-h linear 4% to 36% acetonitrile (v/v)
gradient in 0.1% (v/v) formic acid and a flow rate of 250
nL/min (McLoughlin et al. 2018). Eluted peptides were
analyzed online by a Thermo Fisher Scientific Q-Exactive
Plus spectrometer operated in the positive electrospray
ionization mode. Data-dependent acquisition of full MS
scans was collected using the automatic gain control,
intensity threshold, charge states, and dynamic exclusion
settings as described (McLoughlin et al. 2018). Each
biological replicate was analyzed in quadruplicate, and the
first two runs were performed without an exclusion list,
while the third and fourth runs were performed with
exclusion of the 5,000 most abundant peptides detected
in the first two runs to enhance peptide coverage.

The MS/MS data sets were queried by Proteome
Discoverer (version 2.0.0.802; Thermo Fisher Scientific)
against the maize B73 proteome (Zea-
mays.AGPv3.21.pep.all  from www. maizegdb.org).
Peptides were assigned by SEQUEST HT (Eng et al. 1994),
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allowing a maximum of 2 missed tryptic cleavages, a
minimum peptide length of 6, a precursor mass tolerance
of 10 ppm, and fragment mass tolerances of 0.02 Da.
Label-free quantification based on MS1 precursor ion
intensities was performed in Proteome Discoverer; the “3
Top N” peptides were used for area calculation (Silva et al.
2006).

Abundance comparisons based on the MS1 scans were
generated after normalizing the data by sample weight
and imputation as described (McLoughlin et al. 2018,
2020); the final values were scaled by the mean intensity
of all samples. The intensities were then normalized based
on the median values from 150 proteins considered least
variable among the samples at each development stage
(so/average) (MclLoughlin et al. 2018). Significant
differences in protein abundances were calculated by
ANOVA contrasts (P < 0.05) and displayed by volcano plots.
Proteins were assigned by GO to specific cellular
compartments, protein complexes and/or functions by
the AgriGo analysis toolkit (Tian et al. 2017) in
combination with the Z. mays AGPv3.21.pep.all database
(www.maizegdb.org).

GO and metabolic pathways maps

GO analyses were performed using the maize profile
database in g-:Profiler V3.10.1 (Raudvere et al. 2019) as
part of the ELIXIR Infrastructure package
(http://biit.cs.ut.ee). GO categories were selected based
on their P-value of significance, uniqueness, and degree of
completeness. Changes in metabolite, protein, and/or
transcript abundances were superimposed onto
metabolic pathway maps using the maizecyc v.2.2
(pathway.gramene.org) and KEGG databases. Transcripts
and proteins were associated with their corresponding
metabolic conversions using KEGG.

Storage protein extractions

Zein and non-Zein proteins were enriched from
endosperm as described (Wu and Messing 2012). For
Zeins, 50 mg of pulverized tissue were vortexed with 400
uL of Zein extraction buffer (70% (v/v) ethanol and 2%
(v/v) 2-mercaptoethanol) and incubated at room
temperature overnight. After clarification at 16,000 x g for
10 min, 100 uL of the supernatant was mixed with 10 uL
of 10% (w/v) SDS, dried, and resuspended in 100 uL of
deionized water. For the non-Zein fraction, the pellets
obtained as above were washed 3 times with the Zein
extraction buffer. The final pellets were resuspended in
400 uL of non-Zein extraction buffer (12.5 mm sodium
borate, 5% [w/v] SDS, and 2% [v/v] 2-mercaptoethanol),
incubated at 37 °C for 2 h, and clarified at 16,000 x g for
10 min.
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Immunoblot analysis

Immunoblot analysis of non-Zein fractions employed
antibodies at the indicated dilutions: ATG8 (1:1,000)
(Thompson et al. 2005) and NBR1 (1:3,000) (Jung et al.
2020), with the signals generated with antihistone H3
antibodies (1:10,000; Abcam AB1791) used to confirm
near equal protein loading. The Zein fractions were diluted
at 1:1,000 and probed with anti-o-Zein (1:10,000) and y-
Zein (1:2,000) antibodies (Woo et al. 2001).

Electron microscopy

Endosperm collected at 20 DAP was high-pressure frozen
in an ICE high-pressure freezer (Leica) and freeze-
substituted with 2% (w/v) OsO4 in anhydrous acetone at
-80 °C overnight followed by slow warming to room
temperature (Reyes et al. 2011). Samples were rinsed in
acetone, infiltrated in EPON resin (Ted Pella), and stained
with 2% (w/v) uranyl acetate in 70% methanol followed by
Reynold’s lead citrate (2.6% [w/v] lead nitrate and 3.5%
[w/v] sodium citrate [pH 12.0]). Mitochondrial nhumbers,
cross-sectional area, and morphology were quantified by
Imagel (http://imagej.nih.gov) from sections imaged by a
FEI CM120 electron microscope.

Peroxide quantification

H,0; content was measured from the 5 biological
replicates of field-grown endosperm described above
using the Amplex Red H;0,-peroxidase assay kit
(Molecular Probes). Thirty mg of pulverized frozen tissue
were resuspended in 20 mm K;HPO4 (pH 6.5) and clarified
at 16,000 x g. The resulting supernatants were incubated
in the dark with 25 uL of 100 mm 10-acetyl-3,7-
dihydrophenoxazine and 0.2 U/mL horseradish peroxidase
for 30 min at room temperature. The resorufin product
was quantified spectrophotometrically at 560 nm using an
Infinite M200 Pro plate reader (Tecan).

Starch quantification

Starch was heat extracted from 0.3 mg of endosperm for
3 minin 5 mL of 80% ethanol (v/v) from the 5 field-grown,
biological replicates described above and clarified by
centrifugation at 5,000 x g for 10 min. The pellets were
washed twice with 80% (v/v) ethanol, dried, resuspended
in 3 mL water, and boiled for 10 min. The gelatinized starch
(500 uL) was converted to glucose by mixing with 500 uL
of 200 mm sodium acetate (pH 5.5) and incubating at 37 °C
for 4 h either alone or with 6 units of amyloglucosidase
(Roche) and 1 wunit of a-amylase (Roche). After
clarification, glucose was measured
spectrophotometrically by the formation of NADH in the
presence of hexokinase and glucose-6- phosphate
dehydrogenase (Smith and Zeeman 2006).
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Accession numbers

Sequence data from this article can be found in the
GenBank/EMBL data libraries under the GRMZM gene
identifier numbers listed in Supplemental Table S1.
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