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Abstract

The ability to remove features from the input of machine
learning models is very important to understand and inter-
pret model predictions. However, this is non-trivial for vi-
sion models since masking out parts of the input image typ-
ically causes large distribution shifts. This is because the
baseline color used for masking (typically grey or black)
is out of distribution. Furthermore, the shape of the mask
itself can contain unwanted signals which can be used by
the model for its predictions. Recently, there has been some
progress in mitigating this issue (called missingness bias)
in image masking for vision transformers. In this work,
we propose a new masking method for CNNs we call layer
masking in which the missingness bias caused by masking
is reduced to a large extent. Intuitively, layer masking ap-
plies a mask to intermediate activation maps so that the
model only processes the unmasked input. We show that
our method (i) is able to eliminate or minimize the influ-
ence of the mask shape or color on the output of the model,
and (ii) is much better than replacing the masked region
by black or grey for input perturbation based interpretabil-
ity techniques like LIME. Thus, layer masking is much less
affected by missingness bias than other masking strategies.
We also demonstrate how the shape of the mask may leak in-
formation about the class, thus affecting estimates of model
reliance on class-relevant features derived from input mask-
ing. Furthermore, we discuss the role of data augmentation
techniques for tackling this problem, and argue that they are
not sufficient for preventing model reliance on mask shape.
The code for this project is publicly available at https:
//github.com/SriramB-98/layer_masking.

1. Introduction
While deep learning methods have become extremely

successful in solving many computer vision tasks, they are
generally opaque, and they do not admit easy debugging
of errors. Many novel interpretability methods have been
developed in recent years which attempt to analyze the ra-
tionale behind a model’s predictions. In particular, it is

natural to analyze the dependence of the model prediction
on its input by perturbing parts of its input and observing
corresponding changes in the output [22, 16, 38]. Com-
mon perturbations include adding Gaussian noise, Gaus-
sian blurring, replacing with a baseline color, etc. How-
ever, many of these perturbation methods come with cer-
tain downsides. Partial perturbations, like Gaussian noise
or blurring, attempt to slightly corrupt parts of the image,
while still preserving much of the information present in
those parts. While this has the advantage of not changing
the input distribution drastically, we can only measure the
local sensitivity of the model - if the model were to be ro-
bust to these perturbations, it would be locally insensitive
to perturbations on certain parts of the image but it might
still rely heavily on them for its prediction [27, 31]. Full
perturbation methods remove the parts completely, and re-
place it with a baseline color like black or grey. In discrete
domains like natural language, this is often the most pop-
ular method, as it is easy to remove words from the input
[17]. In images, however, this creates a large shift in input
distribution, leading the model to perform poorly on such
inputs [29, 30]. For example, if we randomly mask out 16
× 16 sized patches from the image, ResNets are more likely
to predict that the image is a maze or crossword [12]

In recent work [21, 25, 8], it has been observed that vi-
sion transformers [6] are highly robust to many kinds of
large magnitude input perturbations like occlusions and do-
main shifts, maintaining upto 60% accuracy on ImageNet
even if 80% of the input is randomly blacked out. Jain et
al [12] argue that this property can make interpretability
methods based on full perturbation especially effective for
transformers. They further propose to simply drop tokens
corresponding to masked out input parts instead of black-
ing out or greying out image portions, just like dropping
BPE tokens in a transformer-based language model. This
would make the transformer model completely insensitive
to choice of baseline color and the shape of the mask.

Motivated by the same intuition, we devise a new mask-
ing technique for CNNs which mitigates the drawbacks
of full perturbation to a large extent, which we call layer
masking. Layer masking (as depicted in Fig. 1) works by
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Figure 1: An outline of layer masking, our proposed method, for a convolutional layer. The image is first masked and then
padded using neighbor padding. The convolutional layer then acts on the padded image, and a maxpool of the same kernel
size and stride acts on the mask. These are then propagated forward through the CNN. The mask boundary is highlighted in
the padded image for illustrative purposes.

running the CNN only on the unmasked portion of the im-
age, thus avoiding any large distribution shift. This is done
by carefully masking and padding the input of each layer
to make the model focus only on the unmasked input re-
gions. Using this technique, we are able to randomly re-
move upto 50 % of the input to a ResNet-50 (in the form
of 16 × 16 sized patches) while maintaining the top-1 ac-
curacy on ImageNet over 70%. We are also able to mask
out objects from images precisely without leaking any in-
formation about those objects via the shape of the mask.
In addition, layer masking operates at the pixel level and
is thus much more flexible than token dropping for vision
transformers which only acts on a patch level. We also find
that LIME [22] scores obtained using our masking method
are more aligned with the most salient features of the image
as compared to simply blacking or greying out the masked
portion.

2. Related Work

Many interpretability methods designed for computer
vision [22, 16, 38, 7] and prior work which attempts to
quantify the reliance of the model on various features
[20, 36, 19, 34] analyze model predictions by implicitly
relying on the ability to remove features from the input.
Frequently, the removed input features are either masked
out and replaced by a “neutral” baseline color like black or
grey, or perturbed partially by blurring or adding Gaussian
noise. It has been shown in [30, 29] that many of these base-
line colors are not really neutral, and interpretability meth-
ods which rely on this notion can often be quite sensitive
to choice of color and the shape of the mask. While par-
tial perturbation methods like adding Gaussian noise may
not have the same issues, they can be misleading when the
model is insensitive to such perturbations and its output
doesn’t change significantly [27, 31]. To solve the prob-
lem of distribution shift created due to the masking patterns,

[10] suggested retraining the model with the input perturbed
according to the masks utilized in the interpretability meth-
ods. While this indeed solves the problem, there are two
downsides: (1) the retrained model is not the original model
and only a surrogate, and thus may not be very useful for
interpretability, (2) retraining the model on masked input
data is expensive and may even be infeasible if there is high
variation in the shape of the masks to be used at inference
time. We could also inpaint the masked region using a deep
generative model [3] to produce natural images, but this
requires training a generative model which can be expen-
sive. It also may leak hidden information - for example, if
a dog’s snout was masked out using this method, the gener-
ative model may regenerate the dog’s snout again if that is
the most likely completion.

Several recent works [21, 25, 8, 12] have shown that vi-
sion transformers can be very robust (especially compared
to CNNs) to many kinds of perturbations including occlu-
sions, patch permutation, adversarial perturbations, distri-
bution shift, etc. According to [12], interpretability methods
for vision transformers are less affected by masking patterns
and baseline colors. Additionally, it is possible to drop the
required patch tokens instead of replacing them with a base-
line color. We devise a similar method for CNNs in this
work and make progress towards bridging the interpretabil-
ity gap between CNNs and transformers.

While we focus on potential contributions to model inter-
pretability and explainability, image masking is important
in many other contexts. Image masking can be used to mit-
igate the reliance of the model on spurious correlations [2]
by masking out spurious features while training the model.
Several other works [33, 40, 26] have also proposed using
masks to eliminate irrelevant data using training. Defenses
against patch attacks [13, 23, 15, 37] also utilize random
masking to defend against adversaries. We believe that bet-
ter masking techniques may be useful in these cases too.



We also note that methods similar to layer masking like
partial convolution [14] have been proposed for image in-
painting. As we show in the supplementary, they do not
work as well in the context of model interpretability be-
cause of the added constraint we face that we cannot retrain
the model on our masking method.

3. Proposed Method: Layer Masking

3.1. Motivation

We design a novel feature masking technique for CNNs
which we call layer masking. Given a model, an input im-
age, and a mask for the input image, we aim to compute the
model output such that (1) it doesn’t depend on the masked
out portion of the input and (2) it only depends on the un-
masked portion of the input, and not the mask itself.

Modern CNNs primarily consist of convolutional layers,
along with other layers like batch normalization, max pool-
ing, average pooling, ReLU activations, etc. We can cate-
gorize these layers according to the size of their receptive
fields. Layers with small receptive fields include convolu-
tional layers, max-pooling and average pooling layers with
kernel size much smaller than the size of the image. Fully
connected layers, on the other hand, have a large receptive
fields as each output depends on all the inputs. Layers with
a small receptive field are in general more interpretable be-
cause they have fewer parameters and are implicitly hierar-
chical: for example, a stack of convolutional layers with a
small kernel size processes local information first and then
progressively expands its receptive field to encompass the
whole image. We exploit this structure by devising an al-
gorithm which carefully masks the input and output at each
layer with small receptive field such that information loss
and artifacts created by the masking procedure at each step
is minimal. We propagate both the input and the mask at
each layer so as to simulate running a CNN on an irreg-
ularly shaped input corresponding to the unmasked input
features, rather than substituting the masked inputs with a
baseline color. We are careful, however, to not propagate
forward any information in the masked out input regions.

Let the input to a convolutional layer with small recep-
tive field be x ∈ Rc×n×n with output y ∈ Rc′×n′×n′

and
binary input mask m ∈ {0, 1}n×n (m[u, v] = 1 implies
that cell (u, v) is unmasked, else it is masked out). Each
element of the output of this layer with kernel size k×k de-
pends on at most k2 input values. These input values may
either be all masked, all unmasked or partially masked and
unmasked (when the convolution is over the mask edge),
depending on the values of m over the receptive field.

It is clear that our masking procedure should propagate
forward the outputs which only depend on the unmasked
input, and discard those outputs which depend only on the
masked portion. However, it is not immediately obvious

how to handle the outputs from the convolutions over the
mask edge. The challenge here is that edge convolutions
contain valuable information about the edges, and if we dis-
card them at each layer, the unmasked portion of the image
can quickly vanish to zero. Thus, we choose to propagate
forward the edge convolutions. However, there is the danger
of them distorting the natural distribution of the layer acti-
vations, as the output unavoidably depends on the masked
out region which is filled with zeros. For example, in the
third figure (bottom row) of Fig. 2, we see a slice of the
activations obtained after applying the 1st residual block
of ResNet-50 on the image with the central square region
masked out at every layer, but including all the edge con-
volutions in the output. We see that the convolutions at the
top edge of the mask result in a brighter top edge which in-
dicates high activations. This is undesirable since this is an
artifact created due to the masking method. We hypothesize
that this is because the abrupt transition between the un-
masked input and zeros trigger the filters sensitive to edges,
thus creating a large activation.

To mitigate this issue, rather than just fill the masked
out portion with zeros, we pad the unmasked portion using
a variant of replication padding we call neighbor padding.
Specifically, we iteratively assign the masked input cells ad-
jacent to the mask edge with the average value of its imme-
diate non-zero neighbors. This process is continued till the
width of the padding is at least k, the kernel size of the
layer. In Fig. 3, we see that after the cells near the edge are
progressively filled using the values of its neighbors, the
resultant image looks very natural and there is no sharp dis-
continuity near the edge. In an ablation study (see supple-
mentary), we find that this works much better than padding
with zeros.

Algorithm 1 Neighbor padding algorithm (Padk(x,m))

Input: Input to be padded x, Mask m, padding width k
Output: Padded input x′

Initialize x′ ← x⊙m, ϵ← 10−8

Initialize f ← 13×3, a 3× 3 filter filled with ones
for i = 1 to k do
n← x′ ∗ f // Numerator of the neighbor average
d←m ∗ f // Denominator of the neighbor average
e← (1−m)⊙ n/(d+ ϵ) // Fill masked inputs
x′ ← x′ + e
m← min(1,m+ d) // Update masks

end for

We also have to propagate the masks forward, such that
for the output of any layer, the corresponding mask is of the
same shape as the output and indicates which output values
need to be masked out by the following layers. Since edge
convolutions are not discarded at any step, the propagated
mask must contain 1 for all output cells which depends on



the unmasked portion of the input, and 0 everywhere else.

3.2. Formal Description

We now describe our method more formally. Suppose
we are given a CNN f which is structured like a directed
acyclic graph. Each node of the DAG represents a layer
or operation which acts on the outputs of the nodes with
which it has an incoming edge. We replace each layer with
its masking version (subscripted with m) which acts on an
input-mask pair. Let gk be a layer with receptive field of
size k. Then, we define its masking version:

gk,m(x,m) = (gk(Padk(x,m)),MaxPoolk(m)))

In this equation, gk could be any convolutional or pool-
ing layer with kernel size k and some stride s. MaxPoolk is
a max pooling layer with the same kernel size and stride as
gk. Padk(x,m) is a function which neighbor pads x ⊙m
with padding width k (described in Algorithm 1). Here, ⊙
is the Hadamard product (with suitable broadcasting), and
∗ is convolution with zero padding. The max pool layer en-
sures that the output masks contains a 1 for all convolutions
where even a single input was unmasked.

Layers which act independently on each element (like
ReLU and BatchNorm) can be considered to be a special
case of the above with k = 1. In this case, the above equa-
tion is greatly simplified and becomes:

gm(x,m) = (g(x⊙m),m)

In models which use residual connections, two input -
mask pairs can be added together as:
(x1,m1)+(x2,m2) = ((x1+x2)⊙(m1⊙m2),m1⊙m2)

We lose some information here by taking the Hadamard
product of the masks, but this is negligible in practice.

The penultimate layer is generally a global average pool-
ing layer which averages over the height and width of the
activation maps and return a single number. If h is a global
average pooling layer, then we define its masking version:

hm(x,m) = h(x⊙m)/h(m)

The layer’s output is rescaled by the mean value of the
mask, which ensures that the output’s magnitude is com-
parable to when there is no masking. Such layers may also
be utilized for recalibrating channel-wise features by mul-
tiplying the activation maps with the output of the average
pooling layer (like in Squeeze Excitation blocks [11]). Lay-
ers after the penultimate global average pooling layer act on
the input as normal.

We can now create a new model fm which has the same
DAG structure of the original model f , except each layer
gi or hi has been replaced with the corresponding masking
version gim or hi

m. fm acts on an image - mask pair and
produces an output which depends only on the unmasked
portion of the image.

Figure 2: Top row: A dog image, sample activations af-
ter the first residual block, and mask to be applied to the
image. Bottom row: The same activations when using
grey-out masking, layer masking with neighbor padding
(our method), and layer masking without neighbor padding
(using zero padding). Neighbor padding helps in eliminat-
ing undesirable edge artifacts encountered in zero padding
and greying out. Layer masking completely zeros out the
masked out region unlike greying out which has non-zero
values after a few layers

Figure 3: A visual depiction of neighbor padding on a part
of the image as k increases. The grey line is the mask edge
(added in for illustrative purposes), the cells near the edge
are filled progressively with the average of their neighbors’
values

4. Experiments

We examine the performance of layer masking compared
to baselines on three dimensions: (1) the robustness of mod-
els as increasingly larger portions of the image are masked
out; (2) the effect of mask shape on model prediction when
the shape of the mask reveals information about the hid-
den object; and (3) the effect of masking method on LIME.
We also examine the role of data augmentation during pre-
training on missingness bias of different masking methods.
We use grey-out (replace the masked out input with a grey
color equal to the ImageNet mean) and black-out (replace
the masked out input with a black color) as baselines, and
focus on ResNet-50 [9] in this section (results on other CNN



architectures in the supplementary). We evaluate all mod-
els on the ImageNet dataset, with segmentation masks from
Pixel ImageNet [39] and saliency maps from Salient Ima-
geNet [28].

4.1. Segment masking experiments

Figure 4: Metrics plotted as a function of fraction of 16×16
patches masked out in a random order using a given mask-
ing method and model. ResNet50 (Aug) refers to ResNet50
pretrained with grey missingness augmentations

To quantify the effect of feature masking methods on
the model predictions, we study the behavior of the model
when varying parts of the input are masked out. We first
segment the image using a segmentation algorithm. Then,
we analyze how the model output changes when more and
more segments are masked out using a given masking tech-
nique. We characterize the model behavior using 4 met-
rics: accuracy, class entropy (defined as entropy of pf (y) =
Ex∈D[1[f(x) = y]]), WordNet similarity [18] between pre-
dictions and true labels, and fraction of unchanged predic-
tions. The WordNet similarity measures how similar the
model predictions are to the true labels on a scale from 0
to 1 in place of a binary hit / miss. The fraction of un-
changed predictions is a measure of the number of predic-
tions changed by masking out parts of the input image. The
class entropy indicates if the predictions are skewed towards
a particular class or if they are equally distributed.

We also use the following segmentation algorithms to
extract the segments from the image (1) Square patches:
Segment the 224 × 224 image into smaller 16 × 16 square
patches , (2) SLIC [1], and (3) Quickshift [32]. We tune
hyperparameters for these algorithms such that they divide
the image into approximately the same number of segments.

As in previous work [21, 12], we mask out these seg-
ments in three orders using their saliency scores: (1) Ran-

domly, (2) Most salient first, (3) Least salient first. To
compute the saliency scores, we select saliency maps from
Salient ImageNet [28]. Each saliency map m ∈ Rd×d is a
pixel level saliency attribution array where 0 ≤ m[i, j] ≤ 1
denotes the importance of the (i, j)th pixel to predicting the
ImageNet class - the higher the value, the more salient the
pixel. We then compute saliency scores for each segment
by adding the saliency values for all pixels in that segment.

We then evaluate the metrics listed above, and plot them
as a function of the fraction of segments masked out. The
plots obtained by removing 16× 16 sized patches from the
images in a random order can be found in Fig. 4, while the
rest can be found in the supplementary. The area-under-
curve (AUC) of the accuracy and class entropy vs fraction
of the segments masked for different baselines and order os
masking can be found in Tab. 1.

Ideally, the masking technique should be such that the
model ignores the masked out region completely. Thus,
any performance drop of the model due to distribution shift
should be minimal. This distribution shift can come about
due to the unnatural baseline color and/or the shape of the
mask. The less rapidly the metrics degrade, the more robust
the model and the masking technique.

Fig. 4 and Tab. 1 indicate that ResNet-50 is much more
robust over all metrics when the segments are removed us-
ing layer masking as opposed to black-out/grey-out. Grey-
ing out is also found to be better than blacking out, as ex-
pected. This difference in robustness persists across various
segmentation and order of segment removal, and is the high-
est when 16 × 16 sized patches are removed. Surprisingly,
removing random 16 × 16 patches degrades accuracy and
class entropy more rapidly as compared to masking out the
most salient regions first. This is because scattered black-
out patches strongly resemble a maze or crossword pattern,
while most salient regions are contiguous and do not re-
semble a maze as much. Thus, the model is confused by the
shape of the mask and predicts incorrectly. This shows that
the shape of the mask may also be a factor which contributes
to missingness bias. We discuss this issue in Sec. 4.2.

Consistent with [21], we find that DeiTs are still more
robust than ResNets - even when utilizing layer masking.
Also, when ResNet-50 is pre-trained with data augmenta-
tions like RandAugment containing grey missingness ap-
proximations as in [35], performance drop due to distribu-
tion shifts is reduced dramatically. DeiTs also benefit from
these data augmentations which makes them more robust
than plain ViTs. However, we argue that data augmenta-
tion is only a partial solution for the problem of missingness
bias. We discuss this in more detail in Sec. 4.3

4.2. Effect of mask shape on model prediction

We now examine the extent to which the model output
relies on the shape of the mask itself when only the rel-



Quickshift segments 16× 16 patches SLIC superpixels
Random Most sal.

first
Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Accuracy
Blackout 0.395 0.124 0.767 0.181 0.340 0.582 0.347 0.200 0.657
Greyout 0.463 0.137 0.787 0.240 0.374 0.621 0.418 0.234 0.702
Layer masking 0.551 0.159 0.806 0.577 0.484 0.703 0.542 0.294 0.756

Class entropy
Blackout 4.988 2.224 5.824 2.574 4.570 5.406 4.815 3.976 5.661
Greyout 5.327 2.362 5.875 3.289 4.807 5.642 5.022 4.229 5.808
Layer masking 5.698 2.572 5.892 5.651 5.782 5.879 5.607 4.763 5.876

Table 1: AUC of the accuracy (top) and class entropy of the predictions (bottom) vs fraction of segments masked out

Figure 5: (Left) Two sample images from ImageNet,
(Middle) with their relevant objects masked out, and
(Right) the images with masks broken into four pieces and
switched around

evant objects are masked out from the input. For exam-
ple, the sunglasses-shaped mask in Fig. 5 may signal to the
model that the object being masked out is sunglasses. Using
a different mask shape can potentially decrease or remove
this shape dependence but there is a possibility that this ap-
proach might unintentionally conceal areas of the input im-
age that were meant to remain visible. In many cases, this
is not a significant problem. However, when two significant
objects are in close proximity, we may need to mask out one
object while leaving the other unmasked. For example, we
might require the sunglasses mask to not cover the nose or
ears to evaluate the model’s dependence on these features.
We also do not know if the chosen mask shape (say a rect-
angle) is associated with any class (like ‘box’ or ‘crate’).
Thus, we require a masking technique which can precisely
remove specific regions of the input but not leak any infor-
mation about the masked input. Layer masking seems like
a promising candidate, as it ensures that the masked regions
are not processed by the model at all.

To quantify this effect, let us analyze the distribution
shift introduced by masking in detail. There are primar-
ily three components to it: (a) the removal of salient image
content from the masked out region, (b) introduction of a
new baseline color in place of the original content, and (c)
the shape of the mask. All three can contribute to drop in
accuracy after masking. However, our goal is to evaluate the
effect of (c) on the accuracy. Suppose that we now compute
the accuracy of the model on correctly classified images af-
ter masking the relevant objects using segmentation masks
(second column, Fig. 5). All masking methods apply the
same mask and remove the content completely, so we al-
ready control for (a). However, different masking methods
can differ w.r.t (b), which means that the differences in ac-
curacy drop after masking cannot be attributed to (c) alone.
We control for this by also computing accuracy after break-
ing up the mask into four pieces (of size 112 × 112) and
sending them to the opposite corners (third column, Fig. 5).
We expect there to be little useful signal in the shape of the
broken mask and any accuracy drop should arise from (a)
and (b) only. Effect of (a) is the same across masking meth-
ods, so (a) is controlled. The effect of (b) in both cases is
very similar as the area of the broken mask is the same as
the original mask’s area, so the difference in accuracy be-
tween the two cases (broken mask vs. object mask) should
capture the effect of (c) on the model predictions. We expect
(c) to have a positive impact on the accuracy (and thus neg-
ative impact on the extent of accuracy drop), as the shape of
the object mask is a useful signal which can help with class
prediction. Therefore, the larger the accuracy difference be-
tween the object mask and broken mask cases, the lower the
effect of (c) on the model prediction after masking.

We carry out this experiment using images and segmen-
tation masks from Pixel ImageNet [39]. We observe in
Fig. 6 that layer masking has the lowest average accuracy on
the object masked images, but the highest accuracy on the
broken mask baseline which indicates that it has the lowest
reliance on mask shape. We then pick a few classes over



Figure 6: Accuracy of ResNet-50 over some salient classes when the relevant object(s) is masked out with various masking
techniques (in dark colors) as compared to when the mask is broken into four (in light colors). ‘Average’ denotes average
accuracy over all classes. The accuracy difference between broken mask and object mask cases is printed on the bars.

which the accuracy difference is either much lower or much
higher for layer masking as compared to grey-out and black-
out. For classes such as sunglasses and obelisk in which
the shape carries a lot of information, the accuracy drop
for blackout or greyout is much smaller than layer mask-
ing. This issue is exacerbated by the fact that the baseline
grey or black color is relatively close to the true color of
the objects for many of these classes, for e.g. obelisks are
generally grey, sunglasses are black, etc. In some classes
like T-shirt, the accuracy difference can even be negative!
This could lead us to overestimate the model’s reliance on
unmasked features.

Surprisingly, there are a few classes in which the accu-
racy drop for greyout and blackout is much higher than for
layer masking. It turns these classes have other closely re-
lated classes which are also associated with grey or black.
For example, the priarie grouse (a bird) gets frequently
misclassified as the black grouse under black out masking.
Similarly, the bee eater (a bird) gets misclassified as a kite or
vulture. This could lead us to underestimate the model’s re-
liance on unmasked features. Layer masking removes such
strong misleading signals, thus the accuracy is higher.

4.3. Effect of data augmentation on missingness bias

Figure 7: Same as Fig. 6 but for ResNet-50 pretrained with
data augmentations with grey missingness approximations

Data augmentation strategies like AutoAugment[4],
RandAugment[5] and RandomErasing [41] are sometimes

used in the pretraining process for improved performance
and generalization. They typically use a grey baseline color
as a missingness approximation. Thus, models using these
augmentations are very robust to greying out large parts
of the input image (see Fig. 4). However, they may still
rely the shape of the mask for their predictions. This is-
sue is not as easily fixable by more training. We evalu-
ate the shape sensitivity of a ResNet-50 trained with data
augmentations[35] as in Sec. 4.2 and show results in Fig. 7.
We observe that although the average accuracy of grey-
out/blackout baselines is now comparable to or higher than
layer masking, the accuracy drop for layer masking is still
a bit higher than that of blackout or greyout. Looking at
accuracy over selected classes as before, we find that for
some classes like sunglasses and megalith, the accuracy
drop is still lower for blackout/greyout which implies that
the model is relying on the mask shape to make its predic-
tions. However, for classes like crate or pizza, the object
mask covers most of the image and its shape does not re-
veal a lot of information about the class (Fig. 5). For these
classes, all masking techniques have low accuracies when
the object is masked. But when the mask is broken and parts
of the object are visible, greyout works best as the model
is exposed to grey color frequently during pre-training and
is robust to such occlusions. Thus, the masking technique
should be chosen with care depending on the specific image
and use case.

4.4. Impact of masking techniques on LIME

We investigate the effect of masking methods on inter-
pretability methods in this section using the example of
LIME. Local Interpretable Model-Agnostic Explanations
[22] or LIME is an interpretability method used to explain
the predictions of black-box machine learning models by
providing locally faithful and human-interpretable explana-
tions. It works by approximating the decision boundary of
a model in the vicinity of a particular instance or predic-



Top-20 ablation accuracy (↓) Alignment score (↑) Top-20 Jaccard similarity (↑)
Quickshift 16×16 SLIC Quickshift 16×16 SLIC Quickshift 16×16 SLIC

Blackout 0.570 0.701 0.740 0.138 0.020 0.092 0.186 0.087 0.131
Greyout 0.348 0.609 0.574 0.231 0.078 0.171 0.231 0.113 0.172
Layer masking 0.229 0.334 0.406 0.324 0.250 0.280 0.273 0.186 0.216

Table 2: Top-20 ablation accuracy, alignment score, and top-20 Jaccard similarity of LIME scores over 512 random images

tion using a local, interpretable model. The local model is
trained on images where the image features are randomly
masked out. The weights of the local model represents the
importance of each feature in the prediction.

4.4.1 Visual inspection

Figure 8: Visualization of LIME scores for the top two pre-
dictions of ResNet-50 on a sample image. Columns corre-
spond to the masking techniques (blacking out, greying out,
and layer masking), rows are the top 2 predictions. The top
two predictions are Bernese mountain dog and tabby cat.
Green regions contribute to the prediction, red regions de-
tract from the prediction.

We first visually illustrate the impact of masking tech-
nique on LIME using an example of an image of a cat
and a dog, (Fig. 8). For the LIME explanations, the top
10 segments with the highest magnitude LIME score are
highlighted. Red segments detract from the prediction,
and a green segments contribute to the prediction. LIME
with greyout or blackout masking assigns parts of the cat
high positive scores (in green) and parts of the dog nega-
tive scores (in red) in the explanation of the prediction of

Bernese mountain dog, and vice versa for the explanation
of the tabby prediction. The third column containing the
LIME explanations obtained using layer masking is much
more aligned with human intuition. Visually, LIME with
layer masking seems to produce better explanations. We
present more examples in the supplementary.

4.4.2 Quantitative evaluation

We use these metrics for evaluating LIME explanations:
(a) Top-k ablation test [24, 29]: Choose the k most

important segments according to the explanation, remove
them by substituting with a missingness approximation (we
use grey), and compute the accuracy on the masked images.
The more the accuracy drops, the better the explanations.

(b) Alignment score: Cosine similarity between impor-
tance scores returned by LIME and mean normalized seg-
mentation mask. Formally, assuming we have access to seg-
mentation mask m ∈ [0, 1]d×d for an image of dimension
d, we compute gi =

∑
(u,v)∈segment i (m[u, v]− m̄) for

each segment i where m̄ is the mean of the segmentation
mask. If the importance scores are s, then the alignment
score is the cosine similarity between g and s

(c) Top-k Jaccard similarity: Jaccard similarity be-
tween the top k features and the segmentation mask m.

While (a) does not depend on any “ground truth” for
evaluation purposes, (b) and (c) use the object segmentation
mask as a substitute for the ground truth. We use 512 ran-
dom images and segmentation masks from Pixel ImageNet
[39] for calculating the above metrics. In these images, the
correct class is within the top 3 predictions of the model. We
find that layer masking is much superior to blacking or grey-
ing out the input across different segmentation algorithms
and different metrics, which confirms our intuitions from
the visual inspection. As before, the improvement is most
significant when the segments are 16× 16 sized patches.

5. Conclusion
In this paper, we have presented a new masking tech-

nique such that the model output is both (a) perfectly in-
sensitive to the masked out portion of the input and (b)
only focused on the unmasked input and not the masking
pattern. We find that layer masking can make CNNs like
ResNets very robust to removal of large parts of input with-



out retraining, especially when the masking patterns can get
confused with output classes like 16× 16 patch occlusions.
Layer masking also does not depend on the shape of the
mask, which can be important if we need to precisely mask
out only a specific object from the image and the shape of
the object carries some useful signal. We further find that
LIME scores obtained using layer masking are better com-
pared to blacking or greying out on multiple metrics like
top-k ablation test, top-k Jaccard similarity, and alignment
score. We show that this technique can be of great use in
both manual feature/object removal for model debugging,
and for interpretability techniques like LIME which rely on
the ability to remove features from the input without any
major distribution shift.
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Appendix

1. Implementation details
In order to fairly compare the masking techniques, we fix the number of segments that the segmentation algorithm par-

titions the image into to approximately equal around 200. We use the sklearn implementation for SLIC and quickshift.
For SLIC, we fix the approximate number of segments to 196. For quickshift, we set kernel size=2, max dist=200 ,
ratio=0.2, which produces approximately 200 segments per image. For LIME, we use 500 random samples to train the
linear classifier.

For the token dropping variant of Vision Transformers (ViT and DeiT), we use code from https://github.com/
MadryLab/missingness.

2. Comparison of layer masking with partial convolution
Partial convolution is a method for image inpainting introduced by Liu et al, 2018. Partial convolution handles convolution

over images with irregular holes by using a method similar to layer masking. However, instead of doing neighbor padding
as in layer masking, the convolutions over the edge is scaled up by a factor of k2

m⊙1k×k
(where m is the binary mask

corresponding to the field of the convolution and k is the size of the filter). This means that the edge convolutions are given
a higher weight than normal. While this may be useful for inpainting purposes, where most of the important information
is concentrated around the edges and parameters of the neural network can be trained, it is exactly the opposite of what we
want, as this worsens the edge artifact problem which we cannot fix by training. Thus, naively using partial convolution is
worse than even zero padding as far as accuracy or unchanged predictions are concerned. We thus find that the AUC for the
accuracy (or class entropy) vs fraction of masked image is only 0.1922 (or 3.8589) when we use partial convolution layers,
which is much lower than corresponding numbers for layer masking (see Fig. 9).

Figure 9: Accuracy and class entropy vs fraction of 16× 16 patches of the image masked out in random order using various
masking methods on ResNet-50

https://github.com/MadryLab/missingness
https://github.com/MadryLab/missingness


3. Ablation study
To further investigate the effect of layer masking and neighbor padding on model behavior, we construct 3 variants of layer

masking: (a) With zero padding instead of neighbor padding (b) Masking and padding only the first two residual blocks, (c)
Masking and padding only the first convolutional layer, ReLU and BatchNorm layer

Using a similar setup as in Sec. 4.1, we compute the area under curve (AUC) for each plot of metric vs fraction of segments
dropped. The AUC values are averaged over different segmentation algorithms (SLIC, quickshift, etc) and masking orders
(random, salient first, etc)(refer Tab. 3).

We find that both neighbor padding and masking all layers are important to the masking technique. Layer masking with
zero padding is still better than blackout or greyout, but much worse than with neighbor padding. Layer masking only the
first two residual blocks is also inferior to masking through all layers, but we find that there are diminishing returns, as we
are able to obtain much of the improvement by masking only half of the layers.

Accuracy Class Wordnet Unchanged
Entropy Similarity Predictions

Blackout 0.3881 4.6473 0.6930 0.4094
Greyout 0.4398 4.9408 0.7167 0.4636
Layer masking:
On all layers 0.5604 5.6021 0.7881 0.5907
On 1st and 2nd
residual blocks

0.5103 5.0962 0.7616 0.5391

Zero padding 0.4502 5.0388 0.7262 0.4747

Table 3: Average AUC for different variants of layer masking alongside the black out and grey out baselines (model: ResNet-
50). Higher the better



4. Extended results for segment masking experiments (Section 4.1)
We also measure the degradation of WordNet similarity and change in predictions as segments are removed for models

like ResNet-50, ResNet-50 with augmentations, DenseNet, SqueezeNet, AlexNet, EfficientNet and MobileNet. Note that
EfficientNet and MobileNet are also trained with grey missingness data augmentations, thus greyout is disproportionately
more robust for these models. Most significant differences are found in random 16× 16 patch removal

ResNet-50 Quickshift segments 16× 16 patches SLIC superpixels
Random Most sal.

first
Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.415 0.134 0.832 0.193 0.359 0.608 0.362 0.213 0.699
Greyout 0.484 0.146 0.853 0.253 0.393 0.648 0.437 0.247 0.746
Layer masking 0.580 0.169 0.877 0.608 0.511 0.741 0.569 0.311 0.808

Wordnet Sim
Blackout 0.705 0.547 0.889 0.571 0.672 0.802 0.669 0.591 0.838
Greyout 0.748 0.517 0.892 0.604 0.696 0.821 0.718 0.606 0.857
Layer masking 0.785 0.549 0.904 0.800 0.757 0.865 0.779 0.642 0.884

Accuracy
Blackout 0.395 0.124 0.767 0.181 0.340 0.582 0.347 0.200 0.657
Greyout 0.463 0.137 0.787 0.240 0.374 0.621 0.418 0.234 0.702
Layer masking 0.551 0.159 0.806 0.577 0.484 0.703 0.542 0.294 0.756

Class entropy
Blackout 4.988 2.224 5.824 2.574 4.570 5.406 4.815 3.976 5.661
Greyout 5.327 2.362 5.875 3.289 4.807 5.642 5.022 4.229 5.808
Layer masking 5.698 2.572 5.892 5.651 5.782 5.879 5.607 4.763 5.876

Table 4: AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the
accuracy of predictions, and class entropy of the predictions vs fraction of segments masked out for plain ResNet-50



ResNet-50 (aug-
mented)

Quickshift segments 16× 16 patches SLIC superpixels

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.552 0.169 0.872 0.671 0.632 0.831 0.513 0.297 0.791
Greyout 0.734 0.232 0.894 0.746 0.644 0.838 0.708 0.417 0.854
Layer masking 0.621 0.186 0.884 0.622 0.557 0.775 0.603 0.348 0.828

Wordnet Sim
Blackout 0.787 0.577 0.912 0.838 0.823 0.903 0.770 0.654 0.886
Greyout 0.866 0.610 0.919 0.872 0.830 0.906 0.858 0.714 0.910
Layer masking 0.789 0.493 0.904 0.795 0.761 0.862 0.782 0.624 0.887

Accuracy
Blackout 0.534 0.162 0.831 0.651 0.612 0.799 0.498 0.289 0.760
Greyout 0.708 0.225 0.851 0.723 0.624 0.807 0.687 0.405 0.821
Layer masking 0.603 0.180 0.843 0.605 0.540 0.749 0.585 0.338 0.798

Class entropy
Blackout 5.520 2.458 5.878 5.742 5.807 5.892 5.438 4.511 5.834
Greyout 5.875 2.628 5.895 5.860 5.865 5.898 5.862 4.849 5.896
Layer masking 5.603 2.258 5.893 5.554 5.630 5.789 5.554 4.305 5.887

Table 5: AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the
accuracy of predictions, and class entropy of the predictions vs fraction of segments masked out for ResNet-50 trained with
data augmentations

WideResNet-50 Quickshift segments 16× 16 patches SLIC superpixels
Random Most sal.

first
Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.445 0.129 0.862 0.226 0.401 0.666 0.389 0.227 0.731
Greyout 0.515 0.141 0.877 0.293 0.447 0.707 0.472 0.263 0.778
Layer masking 0.596 0.158 0.891 0.620 0.526 0.769 0.584 0.323 0.823

Wordnet Sim
Blackout 0.718 0.544 0.906 0.602 0.695 0.826 0.693 0.603 0.855
Greyout 0.757 0.529 0.909 0.624 0.727 0.846 0.733 0.618 0.874
Layer masking 0.798 0.569 0.919 0.810 0.768 0.878 0.793 0.661 0.897

Accuracy
Blackout 0.435 0.125 0.835 0.220 0.394 0.652 0.379 0.222 0.711
Greyout 0.504 0.137 0.851 0.288 0.440 0.694 0.461 0.258 0.758
Layer masking 0.587 0.154 0.864 0.609 0.516 0.754 0.574 0.317 0.802

Class entropy
Blackout 5.161 2.102 5.865 2.706 4.855 5.585 4.967 4.224 5.706
Greyout 5.372 2.177 5.884 3.299 5.204 5.718 5.165 4.408 5.815
Layer masking 5.734 2.354 5.891 5.668 5.790 5.884 5.664 4.819 5.878

Table 6: AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the
accuracy of predictions, and class entropy of the predictions vs fraction of segments masked out for WideResNet-50



AlexNet Quickshift segments 16× 16 patches SLIC superpixels
Random Most sal.

first
Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.278 0.104 0.789 0.128 0.224 0.431 0.234 0.147 0.573
Greyout 0.364 0.111 0.830 0.197 0.268 0.501 0.326 0.183 0.663
Layer masking 0.437 0.120 0.853 0.487 0.358 0.597 0.458 0.226 0.733

Wordnet Sim
Blackout 0.629 0.526 0.856 0.499 0.584 0.704 0.590 0.551 0.774
Greyout 0.681 0.523 0.874 0.536 0.615 0.745 0.652 0.577 0.815
Layer masking 0.721 0.527 0.882 0.734 0.676 0.794 0.729 0.601 0.845

Accuracy
Blackout 0.256 0.091 0.696 0.115 0.205 0.397 0.215 0.132 0.517
Greyout 0.337 0.098 0.732 0.181 0.245 0.462 0.302 0.166 0.599
Layer masking 0.405 0.107 0.753 0.449 0.334 0.547 0.424 0.208 0.662

Class entropy
Blackout 4.587 1.917 5.790 2.794 4.444 5.243 4.342 3.930 5.522
Greyout 5.059 2.031 5.870 3.577 4.903 5.472 4.852 4.164 5.717
Layer masking 5.406 2.230 5.889 5.196 5.439 5.690 5.360 4.432 5.825

Table 7: AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the
accuracy of predictions, and class entropy of the predictions vs fraction of segments masked out for AlexNet

SqueezeNet Quickshift segments 16× 16 patches SLIC superpixels
Random Most sal.

first
Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.285 0.103 0.794 0.141 0.243 0.469 0.240 0.147 0.578
Greyout 0.355 0.110 0.823 0.182 0.279 0.515 0.312 0.175 0.648
Layer masking 0.408 0.113 0.844 0.544 0.362 0.592 0.405 0.203 0.694

Wordnet Sim
Blackout 0.627 0.524 0.842 0.515 0.579 0.721 0.599 0.545 0.767
Greyout 0.680 0.534 0.855 0.529 0.605 0.747 0.656 0.573 0.801
Layer masking 0.694 0.483 0.853 0.750 0.666 0.775 0.689 0.568 0.810

Accuracy
Blackout 0.251 0.083 0.645 0.117 0.207 0.416 0.208 0.124 0.488
Greyout 0.311 0.090 0.669 0.154 0.237 0.456 0.270 0.148 0.546
Layer masking 0.357 0.093 0.683 0.472 0.314 0.518 0.357 0.174 0.585

Class entropy
Blackout 4.593 1.832 5.801 2.360 4.379 5.183 4.410 3.667 5.491
Greyout 5.017 1.935 5.865 2.931 4.755 5.483 4.776 3.903 5.673
Layer masking 5.052 2.018 5.879 5.266 5.065 5.506 4.926 4.074 5.708

Table 8: AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the
accuracy of predictions, and class entropy of the predictions vs fraction of segments masked out for SqueezeNet



DenseNet Quickshift segments 16× 16 patches SLIC superpixels
Random Most sal.

first
Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.423 0.124 0.852 0.184 0.387 0.629 0.373 0.217 0.709
Greyout 0.481 0.134 0.865 0.272 0.403 0.652 0.449 0.247 0.751
Layer masking 0.483 0.127 0.873 0.503 0.434 0.671 0.497 0.256 0.774

Wordnet Sim
Blackout 0.712 0.543 0.888 0.555 0.686 0.805 0.686 0.600 0.838
Greyout 0.746 0.552 0.894 0.607 0.700 0.821 0.726 0.619 0.858
Layer masking 0.733 0.550 0.897 0.743 0.726 0.829 0.737 0.625 0.864

Accuracy
Blackout 0.400 0.115 0.776 0.173 0.366 0.594 0.351 0.204 0.656
Greyout 0.456 0.124 0.790 0.256 0.381 0.618 0.423 0.232 0.696
Layer masking 0.456 0.118 0.796 0.477 0.412 0.632 0.469 0.243 0.718

Class entropy
Blackout 4.987 1.999 5.861 2.606 5.090 5.555 4.868 4.092 5.667
Greyout 5.321 2.160 5.880 3.549 5.176 5.660 5.234 4.365 5.798
Layer masking 5.051 2.017 5.885 5.152 5.391 5.661 5.050 4.215 5.773

Table 9: AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the
accuracy of predictions, and class entropy of the predictions vs fraction of segments masked out for DenseNet

MobileNet-v3 Quickshift segments 16× 16 patches SLIC superpixels
Random Most sal.

first
Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.525 0.144 0.871 0.278 0.406 0.646 0.495 0.271 0.761
Greyout 0.661 0.181 0.888 0.633 0.576 0.779 0.633 0.355 0.815
Layer masking 0.516 0.135 0.873 0.619 0.441 0.644 0.531 0.271 0.767

Wordnet Sim
Blackout 0.769 0.557 0.910 0.612 0.702 0.822 0.751 0.636 0.872
Greyout 0.829 0.542 0.911 0.817 0.791 0.878 0.816 0.665 0.889
Layer masking 0.753 0.531 0.907 0.804 0.715 0.813 0.764 0.623 0.870

Accuracy
Blackout 0.515 0.139 0.837 0.272 0.398 0.632 0.486 0.266 0.738
Greyout 0.644 0.176 0.853 0.621 0.562 0.757 0.617 0.345 0.788
Layer masking 0.504 0.131 0.838 0.605 0.430 0.627 0.520 0.265 0.744

Class entropy
Blackout 5.560 2.204 5.897 4.069 5.319 5.679 5.490 4.504 5.848
Greyout 5.813 2.324 5.897 5.776 5.805 5.886 5.771 4.753 5.895
Layer masking 5.336 2.152 5.887 5.532 5.309 5.540 5.341 4.406 5.801

Table 10: AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the
accuracy of predictions, and class entropy of the predictions vs fraction of segments masked out for MobileNet



EfficientNet Quickshift segments 16× 16 patches SLIC superpixels
Random Most sal.

first
Least
sal. first

Random Most sal.
first

Least
sal. first

Random Most sal.
first

Least
sal. first

Unchanged preds
Blackout 0.591 0.162 0.883 0.261 0.439 0.666 0.581 0.326 0.805
Greyout 0.729 0.204 0.896 0.686 0.605 0.804 0.723 0.411 0.849
Layer masking 0.553 0.146 0.881 0.581 0.476 0.692 0.572 0.302 0.802

Wordnet Sim
Blackout 0.804 0.569 0.910 0.595 0.716 0.824 0.800 0.667 0.887
Greyout 0.860 0.594 0.915 0.842 0.807 0.891 0.859 0.709 0.903
Layer masking 0.769 0.533 0.906 0.788 0.737 0.839 0.778 0.637 0.880

Accuracy
Blackout 0.570 0.154 0.835 0.252 0.424 0.641 0.559 0.314 0.768
Greyout 0.697 0.194 0.847 0.661 0.580 0.772 0.692 0.394 0.809
Layer masking 0.532 0.139 0.834 0.561 0.459 0.666 0.549 0.290 0.766

Class entropy
Blackout 5.642 2.222 5.893 3.772 5.378 5.661 5.654 4.610 5.868
Greyout 5.879 2.430 5.893 5.848 5.857 5.897 5.880 4.941 5.895
Layer masking 5.356 2.099 5.891 5.410 5.464 5.682 5.367 4.390 5.844

Table 11: AUC of (From top) Fraction of unchanged predictions, Wordnet similarity of the predictions to true label, the
accuracy of predictions, and class entropy of the predictions vs fraction of segments masked out for EfficientNet



5. Extended experiments on shape bias (Section 4.2 and Section 4.3)
We now show the bar plots for object masked and broken masked cases for different CNN architectures. Consistent with

the previous section, we observe that layer masking is more robust as compared to black-out or grey-out for Wide ResNet-50,
AlexNet, SqueezeNet and DenseNet (Fig. 11). Also, the object masked accuracy is typically lower on average. Looking
at specific classes, we see similar trends as mentioned in Section 4.2. There are many classes for like megalith, obelisk,
sunglasses, etc in which the object’s true color is very close to the masking color, and the shape of the object mask conveys
a lot of information about the class itself. Conversely, other classes like priarie grouse, bee eater, southern black widow, etc
get misclassified as other related classes when masked out using black or grey baseline colors at a higher -than-ideal rate as
compared to layer masking.

However, for EfficientNet and MobileNet-v3 (Fig. 10), we find that owing to its pretraining on data augmentations, it
is more robust grey-out masking, even compared to layer masking. Still, consistent with Section 4.3, we find classes like
megalith and hammerhead shark where layer masking can be more helpful, but also classes like pizza or carbonara where it
is not.

In conclusion, we should be cognizant of the missingness biases of a masking method when applied to a model, both
shape and color, when evaluating a model’s dependence on various image features. Layer masking can be particularly useful
in cases where the object to be masked has a distinctive shape with its color also being similar to the baseline color (for e.g:
obelisk, megalith, sunglasses). It may also be useful in situations where there exists another class closely related to the true
class which has a similar shape but different color which closely resembles the masking color (for e.g: ). It may not be so
useful in situations where shape is not very indicative of object and model is already robust to some color replacing masking
method like greyout (e.g: pizza, crate, carbonara).

(a) EfficientNet

(b) MobileNet

Figure 10: Effect of shape bias (measured as in Section 4.2) for EfficientNet and MobileNet ()



(a) Wide ResNet-50

(b) AlexNet

(c) SqueezeNet

(d) DenseNet

Figure 11: Effect of shape bias (measured as in Section 4.2) for Wide ResNet-50, AlexNet, SqueezeNet and DenseNet



6. Extended experiments on LIME (Section 4.4)
6.1. Qualitative

Figure 12: Visualization of LIME scores for the top two predictions of ResNet-50 on a sample image of a cat and a mouse.
Columns correspond to the masking techniques (blacking out, greying out, and layer masking), rows are the top 2 predictions.
The top two predictions are American black bear and mouse. Green regions contribute to the prediction, red regions detract
from the prediction.

We also include some more visualizations of LIME scores on random images from ImageNet, with most important seg-
ments highlighted in green (positive score) or red (negative score). These are not cherrypicked.



Figure 13: LIME scores using SLIC segmentation (5 samples). Top 15 segments are highlighted



Figure 14: LIME scores using SLIC segmentation (5 samples). Top 15 segments are highlighted



Figure 15: LIME scores using 16× 16 segmentation (5 samples). Top 20 segments are highlighted



Figure 16: LIME scores using 16× 16 segmentation (5 samples). Top 20 segments are highlighted



6.2. Quantitative

We compute the same metrics (Top-20 ablation accuracy, Alignment score, Top-20 Jaccard similarity) for different archi-
tectures and segmentation algorithms. The metrics are computed as follows:

1. Top-k ablation accuracy: As described in Strumfels et al, we choose the k most important segments according to the
explanation, remove them by substituting with a missingness approximation (we use grey), and compute the accuracy
on the masked images. The more the accuracy drops, the better the explanations. Let m′ be a mask such that if pixel
(u, v) lies in the top k features, then m′[u, v] = 1 otherwise 0. Then, the top-k ablation accuracy is the accuracy when
images are masked by m′ using a missingness approximation t (we use grey):

E(x,y)∼D[1[f(x⊙ (1−m′) +m′ ⊙ t) = y]]

2. Alignment score: Given a segmentation mask m ∈ [0, 1]d×d for an image of dimension d, we derive the “ground truth”
g for the explanation such that gi =

∑
(u,v)∈patch i (m[u, v]−mavg) where mavg is the mean of the segmentation mask.

We can then measure how aligned the explanations are with the ground truth by computing the alignment score, which
is the cosine similarity between gi and si, or

cos(g, s) =

∑
i gisi√

(
∑

i g
2
i )(

∑
i s

2
i )

The alignment score will be 1 if the LIME explanation s is perfectly aligned with g, and −1 if it is completely mis-
aligned.

3. Top-k Jaccard similarity: Take the top-k most contributing features according to the explanation and compute a mask
m′ such that if pixel (u, v) lies in the top k features, then m′[u, v] = 1 otherwise 0. Then, we compute Jaccard similarity
between the segmentation mask m and m′ as

JaccSim(m,m′) =

∑
u,v m[u, v] ·m′[u, v]∑

u,v 1[m[u, v] +m′[u, v] > 0]

All of these metrics have their pros and cons. Top k ablation accuracy does not require any supervision or ground truth,
but has an undesirable dependence on the missingness approximation used to compute it. The alignment score is designed
such that random attributions get a score of 0, but has an undesirable dependence on scale of the explanations. Top k Jaccard
similarity is not dependent on the scale, but only the relative ordering of importance of the features, but has a non-zero value
for random features. Together, they give a more complete picture of the performance of LIME.

We report our results in Tab. 12. For Wide ResNet-50, AlexNet, SqueezeNet, and DenseNet, the performance of layer
masking is the best across all metrics. For EfficientNet and MobileNet-v3, performance of layer masking is worse than
greyout in top-k ablation accuracy, but better in alignment score and top-k Jaccard similarity.



Top-20 ablation accuracy (↓) Alignment score (↑) Top-20 Jaccard similarity (↑)
Quickshift 16×16 SLIC Quickshift 16×16 SLIC Quickshift 16×16 SLIC

Wide ResNet-50
Blackout 0.668 0.736 0.767 0.128 0.028 0.091 0.177 0.089 0.128
Greyout 0.395 0.642 0.611 0.246 0.084 0.195 0.232 0.113 0.180
Layer masking 0.315 0.392 0.429 0.319 0.252 0.276 0.267 0.188 0.216
AlexNet
Blackout 0.550 0.506 0.681 0.039 0.006 0.020 0.139 0.085 0.097
Greyout 0.375 0.488 0.531 0.114 0.014 0.074 0.189 0.089 0.124
Layer masking 0.181 0.256 0.331 0.209 0.200 0.187 0.240 0.167 0.188
SqueezeNet
Blackout 0.479 0.552 0.615 0.058 0.002 0.031 0.154 0.081 0.101
Greyout 0.307 0.547 0.568 0.124 0.015 0.075 0.195 0.087 0.129
Layer masking 0.224 0.234 0.281 0.197 0.194 0.186 0.235 0.167 0.189
DenseNet
Blackout 0.562 0.745 0.682 0.156 0.029 0.122 0.203 0.089 0.149
Greyout 0.276 0.589 0.495 0.273 0.099 0.234 0.259 0.122 0.196
Layer masking 0.312 0.359 0.500 0.301 0.261 0.290 0.277 0.195 0.220
MobileNet
Blackout 0.562 0.896 0.719 0.214 0.072 0.173 0.225 0.108 0.168
Greyout 0.365 0.526 0.536 0.237 0.167 0.207 0.231 0.159 0.182
Layer masking 0.547 0.656 0.599 0.258 0.203 0.241 0.249 0.168 0.201
EfficientNet
Blackout 0.703 0.901 0.771 0.251 0.084 0.231 0.246 0.119 0.199
Greyout 0.500 0.646 0.604 0.236 0.175 0.198 0.244 0.167 0.192
Layer masking 0.661 0.688 0.750 0.291 0.231 0.266 0.268 0.185 0.216

Table 12: Top-20 ablation accuracy, alignment score, and top-20 Jaccard similarity of LIME scores over 200 random images



7. Other interesting properties of layer masking
In this section, we identify some more properties of layer masking that are important for model interpretability.

7.1. Linearity in masking:

Consider a model equipped with a masking technique fm which acts on an input - mask pair (x,m) and returns an
output y which depends only on the unmasked parts of the input. Then, we say that the model fm is linear in masking if
fm(x,m1 +m2) = fm(x,m1) + fm(x,m2) for any two binary masks m1,m2 such that m1 ·m2 = 0. This property is
useful for interpretability methods like LIME which train a linear model on (m,y) pairs and use its weights to explain the
model prediction. Modern vision models like CNNs and Vision Transformers are non-linear and include cross-interactions
between features in m1 and m2. Thus, it is not possible to design a perfectly linear masking technique for these architectures,
which means that only approximate linearity is possible. However, we can attempt to design more linear masking methods
for each model architecture, and thus obtain more interpretable masking techniques.

We measure linearity by sampling random images from ImageNet and dividing it into N smaller square patches. We can
then compute the cosine similarity between f(x) and

∑N
i=1 fm(x,mi) where mi corresponds to patch i (Tab. 13). We find

that layer masking is much more linear as compared to greying out or blacking out pixels, and in general, ResNet masking
methods are more linear than corresponding methods for ViTs. Because the attention heads in ViTs introduce a lot of cross
terms right from the beginning, including cross terms between distant patches, linearity in vision transformer masking is
much lower than CNN masking.

We also find that in layer masking, Ex∥fm(x,m)∥ scales linearly with |m|. We test this by measuring the magnitude
of fm(x,m) with m as a mask for square patches of side length n, so that ∥m∥ ∝ n2. We observe in Fig. 18 that layer
masking closely tracks the n2 curve, which implies that Ex∥fm(x,m)∥ scales almost linearly with ∥m∥ for layer masking.
However, the magnitude for ViT features remain approximately constant.

Figure 17: Average difference in cosine similarity vs image size. Since model features of ViTs can be negative unlike ResNet-
50, cosine similarity can vary from -1 to 1

ResNet-50 ViT-B/16
Patch
size

Blackout Greyout Layer
masking

Blackout Greyout Token
dropping

112 0.7975 0.8284 0.9485 0.6707 0.7063 0.7043
56 0.5124 0.5842 0.8310 0.2202 0.2506 0.1929
32 0.4282 0.4878 0.7094 0.1377 0.1365 0.1426
16 0.3848 0.4371 0.6490 0.0912 0.0876 0.0877

Table 13: Average cosine similarity between image features and their linear approximation



7.2. Avoidance of output collapse:

As the fraction of masked input approaches 1, it is desirable to avoid the model output collapsing to the same vector and
thus not being sensitive enough to the unmasked features. To test for this, we take two random images x1 and x2 of size
224 × 224 and compute the cosine similarity between their model features, c = cos(f(x1), f(x2)). Then, these images are
resized to a smaller size n, and padded with zeros to recover the original size . We now have images x1,n and x2,n of size
224 × 224 and a mask of the same shape mn which is 1 for a region of size n × n and 0 elsewhere. We then measure the
cosine similarity between x1,n and x2,n as cn = cos(fm(x1,n,mn), fm(x2,n,mn)) and plot Ex1,x2

[cn − c] as function
of n in Fig. 17. We clearly see that as the image size is decreased, the cosine similarity changes much more for greyout or
blackout as compared to layer masking for ResNet-50 or token dropping for ViTs.

Figure 18: Mean magnitude of output feature vectors vs image size



8. Other baseline colors
We also repeat the experiments in Section 4.1 with other baseline colors like red, blue and green. Grey baseline is included

for reference. Segments are removed out in random order. We find that the best constant baseline is either greyout or average
color of that image for both ResNet-50 and transformers.

(a) Accuracy (b) Class entropy

(c) WordNet Similarity (d) Unchanged predictions

Figure 19: Changes in model prediction for different model architectures


