
Certified Hardness vs. Randomness for Log-Space

Edward Pyne
CSAIL

MIT
Cambridge, USA

epyne@mit.edu

Ran Raz
Department of Computer Science

Princeton University
Princeton, USA

ranr@cs.princeton.edu

Wei Zhan
Department of Computer Science

Princeton University
Princeton, USA

weizhan@cs.princeton.edu

Abstract—Let L be a language that can be decided in linear
space and let ε > 0 be any constant. Let A be the exponential
hardness assumption that for every n, membership in L for inputs
of length n cannot be decided by circuits of size smaller than
2εn. We prove that for every function f : {0, 1}∗ → {0, 1},
computable by a randomized logspace algorithm R, there exists
a deterministic logspace algorithm D (attempting to compute f),
such that on every input x of length n, the algorithm D outputs
one of the following:

1) The correct value f(x).
2) The string: “I am unable to compute f(x) because the

hardness assumption A is false”, followed by a (provenly
correct) circuit of size smaller than 2εn

′
for membership

in L for inputs of length n′, for some n′ = Θ(log n); that
is, a circuit that refutes A.

Moreover, D is explicitly constructed, given R.
We note that previous works on the hardness-versus-

randomness paradigm give derandomized algorithms that rely
blindly on the hardness assumption. If the hardness assumption
is false, the algorithms may output incorrect values, and thus
a user cannot trust that an output given by the algorithm is
correct. Instead, our algorithm D verifies the computation so
that it never outputs an incorrect value. Thus, if D outputs a
value for f(x), that value is certified to be correct. Moreover, if
D does not output a value for f(x), it alerts that the hardness
assumption was found to be false, and refutes the assumption.

Our next result is a universal derandomizer for BPL (the
class of problems solvable by bounded-error randomized logspace
algorithms)1: We give a deterministic algorithm U that takes as
an input a randomized logspace algorithm R and an input x and
simulates the computation of R on x, deteriministically. Under
the widely believed assumption BPL = L, the space used by U
is at most CR · log n (where CR is a constant depending on R).
Moreover, for every constant c ≥ 1, if BPL ⊆ SPACE[(log(n))c]
then the space used by U is at most CR · (log(n))c.

Finally, we prove that if optimal hitting sets for ordered
branching programs exist then there is a deterministic logspace
algorithm that, given a black-box access to an ordered branching
program B of size n, estimates the probability that B accepts
on a uniformly random input. This extends the result of (Cheng
and Hoza CCC 2020), who proved that an optimal hitting set
implies a white-box two-sided derandomization.

Index Terms—pseudorandomness, space-bounded computation

E.P. is supported by an Akamai Presidential Fellowship. Part of this work
was done while visiting the Simons Institute Program on Meta-Complexity.
R.R. is supported by a Simons Investigator Award and by the National
Science Foundation grant No. CCF-2007462. W. Z. is supported by a Simons
Investigator Award and by the National Science Foundation grant No. CCF-
2007462.

1Our result is stated and proved for promise-BPL, but we ignore this
difference in the abstract.

I. INTRODUCTION

In a recent work, Girish, Raz and Zhan studied the power

of untrusted randomness [GRZ23]. One of their main obser-

vations was that randomized logspace computations are veri-

fiable using only O(log n) random bits. More precisely, every

problem in BPL has a streaming proof between a randomized

logspace prover and a randomized logspace verifier, where the

verifier uses only O(log n) random bits and has a read-once

one-way access to the proof that is streamed by the prover. In

other words, the prover provides a polynomial-length proof

that is streamed to the verifier and the verifier can check

whether the computation was performed correctly using only

O(log n) random bits.

This raises the following intriguing possibility. Try to re-

place the random string of the prover by, say, the digits of π.

In most cases, that should work and the computation should

be performed correctly, as the digits of π seem unrelated to

most computations. In the rare cases that the computation is

not performed correctly, the verifier will figure that out, as

the verification will fail with high probability, so no harm is

done. Moreover, since the digits of π can be generated de-

terministically in small space, the prover is now deterministic

so the verifier can fully simulate the prover. Since the verifier

uses only O(log n) random bits, the verifier can just try all

possibilities for these random bits so that the verifier is also

deterministic2, and thus the entire interaction is now simulated

by a deterministic logspace algorithm.

This approach won’t derandomize all randomized logspace

computations, since the digits of π can be generated by a

small space algorithm. The digits of π were not designed to

fool randomized computations. The next logical step is to try

to use sequences that were designed to fool randomized com-

putations, namely, candidate constructions of pseudorandom

generators, such as pseudorandom generators that are based on

the hardness-versus-randomness paradigm [Sha81], [Yao82],

[BM84], [NW94], [IW97], [STV01], [KvM02]. Such pseu-

dorandom generators fool randomized computations, within a

certain complexity class, assuming that certain widely-believed

hardness assumptions hold.

2Derandomizing the verifier by trying all possibilities for its random bits
is not possible when the prover is randomized, or when the prover cannot be
simulated by the verifier, since the verifier needs multi-access to the output
of the prover in order to do that.

989

2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)

DOI 10.1109/FOCS57990.2023.00061

20
23

 IE
EE

 6
4t

h
A

nn
ua

l S
ym

po
si

um
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
C

S)
 |

97
9-

8-
35

03
-1

89
4-

4/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
FO

C
S5

79
90

.2
02

3.
00

06
1

979-8-3503-1894-4/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

Let G be a candidate construction for a pseudorandom

generator, designed to fool randomized logspace computations,

and assume that G uses logarithmic space and O(log n)
random bits. We can try to replace the random string of the

prover by pseudorandom sequences that are generated by G.

Since, if we do so, both the prover and the verifier use a

logarithmic number of random bits, the verifier can simulate

the entire interaction by a deterministic logspace algorithm. If

one of the poly(n) possibilities for the O(log n) random bits

of the generator results in a valid proof that the computation

was performed correctly, the verifier will figure that out and

accept that computation. If all poly(n) possibilities fail, the

verifier will alert that the generator failed. Thus, the algorithm

never outputs an incorrect value.
If the generator G is based on the hardness-versus-

randomness paradigm, a failure of the generator implies that

the hardness assumption that the generator is based on is

false. Moreover, proofs that are based on the hardness-versus-

randomness paradigm are typically constructive, in the sense

that they show that if the generator fails then one can construct

a circuit that refutes the hardness assumption. If we can prove

that constructing that circuit can be done in deterministic

logspace then the verifier can obtain a circuit that refutes the

hardness assumption that G is based on.
We use a variant of the hardness-versus-randomness pseu-

dorandom generator of Klivans and van Melkebeek [KvM02]

that builds on [NW94], [IW97], [STV01] to derandomize BPL
(assuming an exponential hardness assumption). Based on this

generator, we obtain the following result.

Theorem I.1. Let L be a language that can be decided in
linear space and let ε > 0 be a constant. Let A be the
exponential hardness assumption that for every n, membership
in L for inputs of length n cannot be decided by circuits of
size smaller than 2εn. Let f : {0, 1}∗ → {0, 1} be a function
computable by a randomized logspace algorithm R. Then,
there exists a deterministic logspace algorithm D (explicitly
given from R), such that on every input x of length n, the
algorithm D outputs one of the following:

1) The correct value f(x).
2) The string: “Unable to compute f(x) because the hard-

ness assumption A is false”, followed by a (provenly
correct) circuit of size smaller than 2εn

′
for membership

in L for inputs of length n′, for some n′ = Θ(log n);
that is, a circuit that refutes A.

In other words, while the algorithms given by all previ-

ous derandomization results based on the hardness-versus-

randomness paradigm rely blindly on the hardness assumption,

and may output incorrect values if the hardness assumption is

false, our algorithm D never outputs an incorrect value: If

the hardness assumption is true, D always outputs the correct

value f(x). If the hardness assumption is false D still outputs

the correct value f(x), or alerts that the hardness assumption

is false, and refutes the assumption.
In particular, if the hardness assumption used in Theorem I.1

is true (and there are several such assumptions that are

widely believed to be true), Theorem I.1 gives a deterministic

logspace algorithm that always outputs the correct value of

f(x) and that value is certified to be correct. In that sense,

if the hardness assumption is true, the algorithm given by

Theorem I.1 effectively functions as a full derandomizer for

the class BPL.

We note that in previous works, the, so called, reconstruc-

tion step, in which a circuit that refutes the hardness assump-

tion is constructed (when the generator fails), required the use

of randomness in multiple places and was not known to be

computable in logspace. Our main technical contribution in the

proof of Theorem I.1 is carefully designing the pseudorandom

generator and proving that for that generator, all parts of the

reconstruction step can be done in deterministic logspace.

We view this result, that the reconstruction can be done in

deterministic logspace, as a separate contribution of our work.

Let us go back to the observation that every problem in

BPL has a streaming proof between a randomized logspace

prover and a randomized logspace verifier, where the verifier

uses only O(log n) random bits and has a read-once one-way

access to the proof that is streamed by the prover [GRZ23].

The proof is based on a protocol where the prover computes

and streams the probability to reach each state of the branching

program, underlying a randomized algorithm, and the verifier

checks that these probabilities are consistent between each two

consecutive time steps.

While we can use this approach to prove Theorem I.1, we

give here a slightly different and more direct proof, where the

verification is done by verifying that the distribution of each

bit that the pseudorandom generator outputs, conditioned on

reaching each state of the underlying branching program, is

close to uniform. These conditional probabilities are computed

directly by checking all possible outputs of the pseudorandom

generator. This is possible because the generator uses only a

logarithmic number of random bits and hence the number of

possibilities is polynomial in n. This approach is related to the

work of Nisan [Nis93], who used a similar approach to check

if a given polynomial-size set of strings is sufficiently random

to simulate a randomized computation with high accuracy,

in his proof that BPL ⊂ ZP∗L (where ZP∗L is zero-error

randomized logspace, where the machine has two-way access

to the random tape).

The discussion above implies that the output of a candidate

pseudorandom generator G (that uses logarithmic space and

O(log n) random bits) can be verified as being sufficiently

random for a given randomized logspace computation. With

this in mind, it is natural to try to find a pseudorandom

generator that will be sufficiently good for a given randomized

logspace computation, by an exhaustive search over all possi-

ble generators (using the fact that the generator is described

by a constant size Turing machine). The final goal is to obtain

a universal derandomizer, that will do at least as good as the

best pseudorandom generator.

We explore this idea and discover that an even stronger

result can be proved. We explicitly construct a universal de-

randomizer U for prBPL (promise-BPL, the class of promise

990

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

problems solvable by bounded-error randomized logspace al-

gorithms) that runs in the best possible deterministic space

bound on prBPL.

More precisely, we give a deterministic algorithm U that

takes as an input a randomized logspace algorithm R and an

input x and simulates the computation of R on x. Under

the widely believed assumption prBPL = L, the space

used by U is at most CR · log n (where CR is a constant

depending on R). More generally, for every constant c ≥ 1,

if prBPL ⊆ SPACE[(log(n))c] then the space used by U is

at most CR · (log(n))c. We emphasize that the point here is

that U is deterministic and is explicitly given, rather than an

existential result. We remark that a similar result is not known

in the time bounded case, and seems hard to obtain. We also

remark that the best currently known space bound on BPL is

prBPL ⊆ SPACE[(log(n))1.5−o(1)] [SZ99], [Hoz21].

Theorem I.2. Let U be the deterministic algorithm that
is explicitly given in Section V, that takes as an input a
randomized logspace algorithm R and an input x. Assume
that the probability that R accepts on x is either ≤ 1/4
or ≥ 3/4. Then, if the probability that R accepts on x
is ≤ 1/4, the output of U on input R, x is 0 and if the
probability that R accepts on x is ≥ 3/4, the output of
Uon input R, x is 1. Moreover, for every constant c ≥ 1,
if prBPL ⊆ SPACE[(log(n))c] then the space used by U is
at most CR · (log(n))c, (where CR is a constant depending
on R).

We note that one can bound the space used by U , in

Theorem I.2, also by C · (log(N))c, where C is a universal

constant and N is an upper bound on both the length and width

of the branching program underlying the computation of R on

x (under the assumption prBPL ⊆ SPACE[(log(n))c]). (See

Theorem V.1).

Another prior work that is related to our work, as well as

to [Nis93], [GRZ23], is the work of Cheng and Hoza [CH22].

Cheng and Hoza proved that an optimal hitting set gener-

ator (the one-sided analogue of a pseudorandom generator)

for logspace would imply BPL = L (whereas the direct

conclusion of such a hitting set generator would only be

RL = L) [CH22]. To prove this result, they show how to

use the hitting set generator to guess (approximations of)

the probability to reach each state of a branching program,

and they then check that these probabilities are consistent

between each two consecutive time steps (similarly to and

prior to [GRZ23]).

The proof given by Cheng and Hoza uses the explicit

description of the underlying branching program. Our final

result is an extension of their result to the case where the

branching program is not given explicitly, but rather one only

has oracle access to it, that is, access as a black box.

Theorem I.3 (Informal: formally stated and proved in Sec-

tion VI). Assume that optimal explicit hitting set generators
for width n, length n ordered branching programs exist. Then
optimal deterministic samplers for width n, length n ordered

branching programs (with oracle access to the branching
program) exist.

The proof of this result relies on developing a “local

consistency” test that can be implemented (using a hitting set)

given black-box access to a branching program, in contrast to

all prior tests in the literature [Nis93], [CH22], [GRZ23].

We remark that Cheng and Hoza [CH22] prove a version of

this result for constant width branching programs (in addition

to their non-black-box result on length n, width n programs

that capture BPL). They state a black-box equivalence in the

BPL vs L regime as an open question, which we resolve. Our

result complements equivalent results in the BPP vs P regime;

several prior results [ACR96], [BF99], [ACRT99], [GVW11],

[CH22] show that a hitting set for general circuits implies

a deterministic sampler for general circuits. Thus, we close

the gap in understanding between time-bounded and space-

bounded derandomization with regards to this question.

One-Sided Two-Sided

Black-Box • •

White-Box •

[Theorem I.3]

[CH22]

We hope that our progress can eventually be used to get an

equivalence in the white-box regime, that is, that prRL =
L =⇒ prBPL = L. Such a result was established in the

time-bounded regime by [BF99].

A common theme in all of our results is that our proofs ex-

ploit, and further demonstrate, the intriguing idea that in some

settings randomized logspace computations can be verified.

A. Related Work

There have been four decades of work attempting to de-

randomize randomized logspace, that is, prove BPL = L.

This work has taken (at least) two major forms: constructions

of pseudorandom generators (PRGs) and their generaliza-

tions [Nis90], [INW94], [NZ96], [GR14], [FK18], [MRT19],

[HZ20] and white-box derandomizations [SZ99], [RR99],

[Rei08], [RTV06], [AKM+20], [Hoz21]. This has resulted

in a varied landscape, with explicit constructions of PRGs

that obtain highly nontrivial but (presumably) suboptimal seed

lengths, white-box derandomizations, and candidate construc-

tions. We emphasize that these candidate constructions consist

of both generators whose security follows from a certain

hardness assumption [KvM02], and candidates that are not

known to follow from a hardness assumption (for instance,

the XOR of two small-bias distributions has been proposed as

a candidate by Reingold and Vadhan [LV17]).

As mentioned above, besides [KvM02], the works most

relevant to ours are [Nis93], [CH22], [GRZ23]. All these

works have an element of verification that a randomized

computation was performed correctly (in various forms and

for various purposes), an idea that is also central in our work.

991

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

II. PRELIMINARIES

We first define notation related to pseudorandom generators

and branching programs.

Definition II.1. Given a distribution D over a space [S], let

x ← D represent drawing x ∈ [S] from D. We let Un denote

the uniform distribution over {0, 1}n.

Definition II.2. Given a pseudorandom generator (PRG) G :
{0, 1}s → {0, 1}n and a function f : {0, 1}n → R, we use

E[f] and EG[f] to denote the expectation of f under uniformly

distributed inputs and pseudorandom inputs generated by G
respectively, that is,

E[f] = E
x←Un

[f(x)], E
G
[f] = E

y←Us

[f(G(y))].

And we say that G ε-fools f if |E[f]− EG[f]| ≤ ε.

Definition II.3. An ordered branching program (OBP) B of

length n and width w is a directed acyclic graph whose vertices

(or states) V (B) are partitioned into n+ 1 layers V0, . . . , Vn

where |Vi| ≤ w. For each i < n and v ∈ Vi, there are two

outgoing edges, labeled with 0 and 1 respectively, that lead

into Vi+1. V0 constains a single state vst which is the starting

state, and each state in Vn is labeled with a real number as the

output of the branching program. Unless otherwise specified,

we assume that the labels are either 0 or 1. In that case, we

assume without loss of generality there is a single state labeled

with 1, which we denote vacc.

For each v ∈ Vi, σ ∈ {0, 1}k and u ∈ Vi+k, we say

B[v, σ] = u if B transitions from state v to state u following

the edges labeled by the bits in σ. We can think of B as a

function on {0, 1}n such that for every x ∈ {0, 1}n, B(x) is

the label on the output state B[v0, x]. For each v ∈ Vi, let B→v

be an OBP of length i and width w such that B→v(x) = 1 if

and only if B[v0, x1..i] = v.

For each v ∈ Vi, let

p→v = Pr[B[vst, Ui] = v], pv→ = Pr[B[v, Un−i] = vacc].

III. EFFECTIVE HARDNESS TO RANDOMNESS

We prove Theorem I.1 in several stages. In the first stage,

we show a testing procedure that, given a candidate PRG and

an ordered branching program, either certifies that the PRG

fools the branching program, or outputs a branching program

that acts as a next-bit predictor for G. We then show how to

go from such a next-bit predictor to a counterexample to the

hardness assumption.

A. Verifiable PRGs for Logspace

We first show that there is a logspace verifier for PRGs

(with logarithmic seed) against logspace OBPs, which detects

when a PRG fails and outputs an example OBP that the PRG

fails to fool. To formalize this, we recall the notion of a next-

bit-predictor.

Definition III.1. Given a function G : {0, 1}s → {0, 1}n,

a branching program T : {0, 1}i → {0, 1} for i < n

is an ε-next-bit-predictor for G if Prx←Us [T (G(x)1..i) =
G(x)i+1] > 1/2 + ε.

Note that the uniform distribution is 0-next-bit-predictable,

even for a computationally unbounded distinguisher.

We prove in this section the following lemma:

Lemma III.2. For every error function ε(n) computable in
space O(log n), there is a deterministic algorithm that, given
as input an OBP B of length n and width w, and the black-
box oracle access to a PRG G : {0, 1}s → {0, 1}n, runs in
space O(s+ log(nw)), and either

1) Confirms that G ε · n-fools B; Or
2) Outputs an OBP T of length at most n and width w that

is an ε/2-next-bit predictor for G.

The main idea behind this proof has appeared before for

different purposes [Nis93], [CH22], [GRZ23], and in fact

(modifications of) all these results can be used to prove

Theorem III.2. However, we give a self-contained proof.

To prove Theorem III.2, we first define a series of potential

distinguishers, with the property that each can be evaluated in

logspace. Each distinguisher measures the bias of the next bit

in the PRG upon reaching a particular state.

Definition III.3. Given an OBP B of length n, for every i < n
and v ∈ Vi, let Nv : {0, 1}i+1 → {−1, 0, 1} be the function

defined as:

Nv(x) =

⎧⎪⎨⎪⎩
1 if B→v(x) = 1 and xi+1 = 1

−1 if B→v(x) = 1 and xi+1 = 0

0 otherwise.

Furthermore, Nv is computable in logspace given B and v.

When x is uniformly random, B→v(x) and xi+1 are inde-

pendent, and therefore E[Nv] = 0 for all v. Consequentially,

our verifier checks that |EG[Nv]| is small for all v, where we

feed the first i+1 bits of the PRG output to Nv . We first show

its soundness:

Lemma III.4. Given an OBP B of length n, suppose that for
every i,

∑
v∈Vi

|EG[Nv]| ≤ ε. Then G ε · n-fools B.

Proof. As every edge from layer Vi goes into layer Vi+1, for

every i < n we have

∑
v∈Vi+1

∣∣∣E[B→v]− E
G
[B→v]

∣∣∣
≤
∑
v∈Vi

∑
b∈{0,1}

| Pr
x←Un

[B→v(x) = 1 ∧ xi+1 = b]

− Pr
x←G(Us)

[B→v(x) = 1 ∧ xi+1 = b]|.

992

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

Notice that by the definition of Nv , we have

E[Nv] = Pr
x←Un

[B→v(x) = 1 ∧ xi+1 = 1]

− Pr
x←Un

[B→v(x) = 1 ∧ xi+1 = 0]

= 2 Pr
x←Un

[B→v(x) = 1 ∧ xi+1 = 1]− E[B→v]

= E[B→v]− 2 Pr
x←Un

[B→v(x) = 1 ∧ xi+1 = 0],

and the above holds similarly under pseudorandomness gen-

erated by G. Therefore we further have∑
v∈Vi+1

∣∣∣E[B→v]− E
G
[B→v]

∣∣∣
≤
∑
v∈Vi

∣∣∣E[B→v]− E
G
[B→v]

∣∣∣+ ∑
v∈Vi

∣∣∣E[Nv]− E
G
[Nv]

∣∣∣
=
∑
v∈Vi

∣∣∣E[B→v]− E
G
[B→v]

∣∣∣+ ∑
v∈Vi

∣∣∣E
G
[Nv]

∣∣∣ .
With the assumption that

∑
v∈Vi

|EG[Nv]| ≤ ε and the

fact that E[B→v0] = EG[B→v0] = 1, we conclude that∑
v∈Vn

|E[B→v]− EG[B→v]| ≤ ε · n. As the output labels

are binary, this means that |E[B]− EG[B]| ≤ ε · n, i.e. G
ε · n-fools B.

Proof of Theorem III.2. For every i < n, the algorithm iter-

ates through every v ∈ Vi and all the possible seeds for G,

computes
∑

v∈Vi
|EG[Nv]| and checks if it is at most ε. This

can be done in space O(s+log(nw)). If all such checks pass,

we have by Theorem III.4 that G ε · n-fools B.

Otherwise, we find some i < n such that∑
v∈Vi

|EG[Nv]| > ε. Let T be an OBP of length i
that is the same as B from layer V0 to Vi, such that the

output label on each v ∈ Vi is 1 if EG[Nv] ≥ 0, and 0 if

EG[Nv] < 0. Such an OBP is of size at most that of B, and

can be constructed in space O(s+ log(nw)). We have

Pr
x←G(Us)

[T (x1..i) = xi+1]

=
∑
v∈Vi

EG[Nv]≥0

Pr
x←G(Us)

[B→v(x) = 1 ∧ xi+1 = 1]

+
∑
v∈Vi

EG[Nv]<0

Pr
x←G(Us)

[B→v(x) = 1 ∧ xi+1 = 0]

=
∑
v∈Vi

1

2

(
E
G
[B→v] +

∣∣∣E
G
[Nv]

∣∣∣)
>

1

2
(1 + ε).

B. Refutable Hardness Assumptions in Logspace

Theorem III.2 shows that, given an alleged PRG for

logspace, we can use it to either successfully derandomize

a logspace comptation, or explicitly output a counterexample

to the PRG. The results of the hardness-versus-randomness

paradigm claim that PRGs exist under certain hardness as-

sumptions. Combining these results with Theorem III.2, we

can derandomize logspace computations given any alleged

hard function, or determine that the hardness assumption does

not hold. However, Theorem I.1 requires a stronger guarantee

from the algorithm - if the hardness assumption does not hold,

the algorithm needs to output a small circuit that falsifies this

assumption. Obtaining this result is the primary contribution

of Section IV.

We first recall the result of Klivans and van Melkebeek

[KvM02].

Theorem III.5 ([KvM02]). If there is a family of boolean
functions f ∈ SPACE[n] that is not computable by circuits of
size 2εn for some ε > 0, then BPL = L.

Their proof is based on the worst-case hardness vs. ran-

domness results by Imagliazzo and Wigderson [IW97], and

shows how every step in the construction of the Imagliazzo-

Wigderson PRG can be executed in deterministic logspace.

However, their proof (and all other proofs of the hardness vs.

randomness paradigm) does not show that given a branching

program (or circuit) that distinguishes the PRG from random

(i.e. contradicts the original hardness assumption), there is

an efficient deterministic logspace algorithm to produce a

circuit for the supposedly hard function. This is for two

reasons. First, the conversion from a distinguisher to a next

bit predictor (which we address in Theorem III.2). Even once

we obtain such a predictor, prior approaches used space- and

randomness-inefficient probabilistic method arguments to go

from a predictor to a worst-case correct circuit for the original

function. Our primary contribution in Section IV is to care-

fully design the PRG and develop an efficient reconstruction
procedure, given a distinguisher for the constructed PRG.

This leads to the following theorem:

Theorem III.6. For every family of boolean functions f ∈
SPACE[n] and ε > 0, there is a deterministic algorithm that,
given as the input an OBP B of length n and width w = n,
runs in space O(log n), and either

1) Outputs E[B] with 1/4 error; Or
2) Outputs a circuit C of size 2εm that computes f on

{0, 1}m where m = Θ(log n).

Proof. Let G : {0, 1}s → {0, 1}n be the generator of

Theorem IV.1 with ε = ε and f = f and let m = m0 be

the instance size of f used to construct G.

We then apply Theorem III.2 on B and G with ε = 1/(4n).
Of the two possible outcomes:

1) If it is certified that G ε·n-fools B. In this case the algo-

rithm computes and outputs EG[B] which approximates

E[B] within additive error 1/4.

2) Otherwise we get for some i < n an explicit OBP T of

length i and width w, such that Prx←Us
[T (G(x)1..i) =

G(x)i+1] >
1
2 (1 + ε). In other words, T is an ε/2 =

1/8n next-bit predictor against G of size at most n2,

and T can be evaluated in space O(log n). Then by

Theorem IV.1, we can construct in space O(log n) a

circuit C for f on inputs of size m = Θ(log n) of size

at most 2εm.

993

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

Now Theorem I.1 follows:

Proof of Theorem I.1. Given a randomized logspace algo-

rithm R with error probability at most 1/10 and input x ∈
{0, 1}n, let B be the branching program representing how R
uses its random bits on input x, which can be constructed in

logspace. By assumption R uses s = O(log n) bits of space

and hence at most 2s+O(1) = poly(n) random coins, and

hence B has length and width poly(n). Pad B to have length

and width nc and apply Theorem III.6 with f = L and ε := ε.

Then we either obtain an estimate of E[B] up to ±1/4 (which

suffices to decide the language by correctness of R) or a

counterexample (in the form of a circuit of size at most 2εn
′

to

the hardness of L on inputs of size n′ = Θ(log nc) = Θ(log n)
bits, as desired.

We prove Theorem IV.1 in the following section.

IV. EFFICIENT RECONSTRUCTIVE DERANDOMIZATION

We first state our main theorem of this section.

Theorem IV.1. Given ε > 0, and a family of functions
fm : {0, 1}m → {0, 1} ∈ SPACE[m], there is a family of
explicit generators G : {0, 1}s → {0, 1}n with s = O(log n)
computable in space O(log n), and a deterministic logspace
algorithm that, given n ∈ N and a 1/(8n)-next-bit predictor B
for G of size at most n2 which is evaluable in space O(log n),
outputs a circuit C of size 2ε·m0 for fm0

with m0 = Θ(log n).

We prove this theorem in four stages. Following the frame-

work of [IW97], we first assume that f is a (worst-case) hard

function, and construct a PRG via hardness amplifications and

the Nisan-Wigderson PRGs [NW94]. The detailed steps are

slightly different from those in [IW97], and we adapt the

following strategy:

1) From f , construct (by low-degree extension) a function

f ′ that is hard-on-average on a 0.99 fraction of inputs.

2) From f ′, construct (by derandomized XOR Lemma) a

function f ′′ (with multiple bits of output) that is hard-

on-average on a 2−Ω(m) fraction of inputs.

3) From f ′′, construct (by Goldreich-Levin) a function f ′′′

with single-bit output that is hard-on-average on a 1/2+
2−Ω(m) fraction of inputs.

4) Use f ′′′ to instantiate a Nisan-Wigderson pseudorandom

generator G : {0, 1}s → {0, 1}n for s = O(m).

We make sure that f ′, f ′′, f ′′′ and G are all computable within

O(log n) space.

Furthermore, we prove that every step can be made logspace

reconstructive, in the sense that given a counterexample to

the conclusion (i.e. a small circuit that obtains some advan-

tage) we can produce a counterexample to the assumption in

deterministic logspace. This requires modifying the standard

reconstruction algorithms for the first three steps, all of which

use randomness-inefficient applications of the probabilistic

method. Over the next four subsections, we state and prove

the necessary components of the reconstructive PRG, and in

Section IV-F, combine these results to conclude Theorem IV.1.

A. Preliminaries

First, we recall some notation related to the advantage of

circuits.

Definition IV.2. Given f : {0, 1}n → {0, 1}m and a

circuit C, let SUC(C, f) = Prx←Un [C(x) = f(x)]. For

m = 1, let ADV(C, f) = 2SUC(C, f) − 1. Let ADVs(f) =
maxC:|C|≤s ADV(C, f) and likewise for SUCs(f).

We will repeatedly make use of an averaging sampler in

order to make probabilistic method arguments randomness

efficient. We first recall the definition of an averaging sampler,

and then recall the classical result in [RVW01] that there exist

highly efficient averaging samplers, even with exponentially

small error.

Definition IV.3. Given m ∈ N and ε, δ > 0, we say that

SAMP : {0, 1}l → ({0, 1}m)t is a t-query (m, ε, δ)-averaging
sampler with seed length l if for every g : {0, 1}m → [0, 1]
we have

Pr
q1,...,qt←SAMP(Ul)

[∣∣∣∣ Ei∈[t]
[g(qi)]− E[g]

∣∣∣∣ ≤ ε

]
≥ 1− δ.

Proposition IV.4 ([RVW01]). Given m ∈ N and ε > 0,
there exists t = poly(m/ε) and a t-query (m, ε, 2−2m)-
averaging sampler with seed length 4m. Moreover, the sampler
is evaluable in space O(m).

Another tool that is repeatedly used in our proof is the com-

binatorial design, which is a family of subsets S1, . . . , Sn ⊆
[s] such that |Si| = αs for some constant α ∈ (0, 1) and

all i ∈ [n], while |Si ∩ Sj | ≤ 2α2s for all i �= j. The

design will be used at two places: once in derandomized XOR

Lemma (Section IV-C) and once in the Nisan-Wigderson PRG

(Section IV-E). While the application in Section IV-C only

requires a linear-sized design, the application in Section IV-E

requires an exponential-sized design that is deterministically

constructible in linear pace. The later was formally given in

[KvM02], so we concurrently use it for both applications.

Proposition IV.5 ([KvM02]). For every α ∈ (0, 1), there
is β ∈ (0, 1) such that for s ∈ N one can deterministically
generate in space O(s) a combinatorial design of size n = 2βs

over [s], that is, a family of subsets S1, . . . , Sn ⊆ [s] such that
|Si| = αs and |Si ∩ Sj | ≤ 2α2s for all 1 ≤ i < j ≤ n.

B. Derandomizing the Polynomial Decoder

For step (a) in Theorem IV.1, we need to convert a worst-

case hard function to one with constant average-case hardness.

Lemma IV.6. Given f : {0, 1}m → {0, 1}, there is g :
{0, 1}m′ → {0, 1} where m′ = Θ(m) such that, for every
circuit B such that SUC(B, g) > 0.99, there is a circuit C of
size mO(1) · |B| such that

C(x) = f(x), ∀x ∈ {0, 1}m.

Moreover, when f is computable in space O(m), g is also
computable in space O(m), and there is a deterministic O(m)-
space algorithm that, given the circuit B which is evaluable

994

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

in space O(m), prints C, and C is also evaluable in space
O(m).

The proof for Theorem IV.6 is inspired by [STV01], where

we encode f through Reed-Muller codes and switch to boolean

domain via Hadamard codes. However, since we only need

the resulting function to be average-case hard on a constant

fraction of inputs, the code can be directly decoded instead

of list-decoded, and we derandomize the decoding procedure

with samplers.

We need the following two facts. The first is a folklore

fact on constructing low-degree extension, whose proof can

be found at [GKR15, Proposition 2.2]:

Proposition IV.7. Given a finite field F and a subset H ⊆ F,
and oracle access to a function f : H� → {0, 1}, one can
compute in space O(log |F|+ log) an 	-variable polynomial
p : F� → F that coincides with f on H�, and the degree of p
in each variable is smaller than |H|.

The second fact concerns decoding Reed-Solomon codes:

Proposition IV.8. Given a finite field F with |F| = N , whose
elements can be canonically listed as a1, . . . , aN where a1 =
0, there exists a circuit DEC : F

N → F
N that satisfies the

following: If there exists a univariate polynomial q : F → F

of degree at most d < N , such that q(ai) = bi for at least
(N + d)/2 of i ∈ [N], then

DEC(b1, . . . , bN) = (q(a1), . . . , q(aN)).

Furthermore, DEC is of size poly(N) and depth polylog(N),
and can be uniformly constructed in space O(logN) given
the arithmetics in F.

Proof. The circuit DEC instantiates the Berlekamp-Welch al-

gorithm [WB86], [GS92]. The algorithm involves solving

systems of O(N) linear equations on O(N) variables, for

which Csanky’s algorithm [Csa76] can be implemented in

logspace-uniform-NC.

Proof of Theorem IV.6. We assume without loss of generality

that m is a power of 2. Let 	 = m/ logm, and F be a finite

field of characteristic 2 and size m2. Take H ⊂ F to be a

subset of size m, and we identify the domain {0, 1}m of f
with H� as 2m = |H|�. The arithmetics in F can be done

in time O(|F|) and space O(m), and so does the bijection

between {0, 1}m and H� (and its reverse).

Let p : F� → F be the polynomial in Theorem IV.7, and let

g : F�+1 → {0, 1} be the function defined as

g(x1, . . . , x�, y) = 〈p(x1, . . . , x�), y〉,
where 〈·, ·〉 stands for inner product in F2 when taking the

binary representation of the two arguments in F. It is clear

that g can be computed in space O(m), and the input of g has

length (+ 1) log |F| = O(m) when represented in binary.

Now assume there is a circuit B such that SUC(B, g) > 0.99.

We first construct the circuit B′ : F� → F such that the i-th bit

of the output is B′
i(x1, . . . , x�) = MAJz∈F(B(x1, . . . , x�, ei +

z) − B(x1, . . . , x�, z)). Here ei is the element in F whose

binary representation has 1 on the i-th bit and 0 elsewhere.

Claim IV.9. SUC(B′, p) ≥ 0.96.

Proof. Since SUC(B, g) > 0.99, there are at least a 0.96-

fraction of (x1, . . . , x�) ∈ F
� such that B coincide with g on

more than 3/4 of y ∈ F, which contains both z and (ei + z)
with probability larger than 1/2 for a random z ∈ F. In such

cases we have B′
i(x1, . . . , x�) = 〈p(x1, . . . , x�), ei〉 for every

i, and thus B′(x1, . . . , x�) = p(x1, . . . , x�).

From B′, we reconstruct the circuit C : {0, 1}m → {0, 1}
as follows. Let SAMP : {0, 1}8m → (F�)t be the sampler in

Theorem IV.4 with ε = 0.01 and thus t = poly(m). We think

of SAMP as sampling t random vectors v = (v1, . . . , v�) ∈
F
�, and given the input x = (x1, . . . , x�) ∈ H� for C, each

vector v represents a line {x + λv | λ ∈ F}. On each line,

p(x + λv) is a univariate polynomial on λ of degree at most

	|H| = m2/ logm, and we use the decoder circuit DEC in

Theorem IV.8 to decode the Reed-Solomon code given by B′

on the line. We let the value of C(x) to be the most common

(breaking ties arbitrarily) decoded value among the t lines.

Notice that this process depends on the seed of the sampler,

and we actually go through all the seeds and choose the one

that makes C(x) correctly compute f on all x ∈ H�.

Formally, we present this linear space reconstruction algo-

rithm as Algorithm 1.

Algorithm 1: RM RECON(f,B)
1 Let SAMP : {0, 1}8m → (F�)t be the sampler of

Theorem IV.4 with ε = 0.01.

2 for y ∈ {0, 1}8m do
3 Let v1, . . . , vt ← SAMP(y).
4 Let C : {0, 1}m → {0, 1} be the circuit

C(x) = MAJi∈[t](DEC1((B′(x+ λvi))λ∈F)).

5 if C(x) = f(x) for all x ∈ {0, 1}m then return C
6 end

The circuit C constructed in the algorithm is of size

2t|F|2|B| + mO(1) = mO(1) · |B|, and has additional depth

polylog(m) compared to that of B. Therefore C can be

evaluated in space O(m).
Now we prove that the algorithm always returns a valid

circuit C. Notice that for uniformly random v ∈ F
�, x + λv

is also uniformly random after given x and λ �= 0. Since

SUC(B′, p) ≥ 0.96, it means that there are at least a 0.84-

fraction of v ∈ F
� such that B′ coincide with p on x + λv

for at least 3/4 of λ ∈ F, λ �= 0. Recall that the degree of

q(λ) = p(x+λv) is at most 	|H| = |F|/ logm, and therefore

by Theorem IV.8 we conclude that for every x ∈ {0, 1}�,
Pr
v∈F�

[DEC((B′(x+ λv))λ∈F) = (p(x+ λv))λ∈F] ≥ 0.84,

in which case we have DEC1((B′(x + λv))λ∈F) = p(x).
Viewing this probability as an expectation of the indicator

995

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

function on v, by the guarantee of the sampler in Theo-

rem IV.4 we have, letting v1, . . . , vt ← SAMP(U8m), that

Pr�v
[
Pri∈[t] [DEC1((B′(x+ λvi))λ∈F) = p(x)] ≥ 0.51

] ≥ 1 −
2−4m. By a union bound over x ∈ {0, 1}m, there must exist

a y ∈ {0, 1}8m such that C(x) = p(x) = f(x) for all

x ∈ {0, 1}m. Therefore the algorithm always returns such a

circuit C. Moreover, the algorithm can be implemented to run

in space O(m), as we can enumerate over seeds to the sampler

and construct the circuit (as a function of the sampler output)

in space O(m), and test if the circuit correctly computes f in

this space bound.

C. Derandomizing the Derandomized XOR Lemma
Our next step follows the approach of Impaggliazo and

Wigderson [IW97], who use a derandomized XOR lemma to

produce from a function that is hard on a constant fraction

of inputs, a function that is hard on any exponentially small

fraction of inputs. The construction is identical to the one in

[IW97], except that we modify the reconstruction algorithm

and analysis to make the circuit C constructible in deterministic

space O(m).

Lemma IV.10. For every γ ∈ (0, 1), there is an O(m)-space
computable function G : {0, 1}m′ → ({0, 1}m)m, where m′ =
Θ(m/γ), that satisfies the following: Given f : {0, 1}m →
{0, 1}, and a circuit B satisfying SUC(B, fm ◦ G) ≥ 2−γm,
there exists a circuit C of size 2O(γm) · |B| such that

SUC(C, f) > 0.99.

Moreover, when f is computable in space O(m), there is a
deterministic O(m)-space algorithm that, given the circuit B
which is evaluable in space O(m), prints C, and C is also
evaluable in space O(m).

We first give the construction of the function G, which is

called a direct-product generator in [IW97]. As in [IW97],

it consists of two components: an expander walk and a

combinatorial design. For the expander walk, we need an

explicit expander where the neighbors of a vertex can be

efficiently computed:

Proposition IV.11 (see e.g. [LPS88]). There is a constant
λ ∈ (0, 1), such that for every m ∈ N, there exists a 4-regular
graph Em on the vertex set {0, 1}m with spectral expansion
(second largest eigenvalue of the normalized adjacency ma-
trix) at most λ, such that given any vertex v ∈ {0, 1}m,
its neighbors can be computed in time poly(m) and space
O(logm).

Define the expander walk function EW : {0, 1}3m →
({0, 1}m)m as follows: Given the input v ∈ {0, 1}m and

d = (d1, . . . , dm) ∈ [4]m, the output is sequence of ver-

tices v1, . . . , vm in Em that starts with v1 = v, and take

vi+1 to be the di-th neighbor of vi. On the other hand, let

S1, . . . , Sm ⊆ [s] be the first m sets in the combinatorial

design from Theorem IV.5 with α = γ/2 and s = m/α. Then

we defined the function G : {0, 1}3m+s → ({0, 1}m)m as:

G(r, v, d) =
(
(r|S1)⊕ EW(v, d)1, . . . , (r|Sm)⊕ EW(v, d)m

)
.

Here r|S is the part of r ∈ {0, 1}s on indices S, and ⊕ is

bit-wise XOR. From the definition we have that G can be

computed in time poly(m) and space O(m). The input length

of G is m′ = 3m+ 2m/γ = O(m/γ).

Now given f : {0, 1}m → {0, 1}, assume there is a circuit

B such that SUC(B, fm ◦ G) ≥ 2−γm. Before we move on

and show how to reconstruct the circuit C efficiently and

deterministically from B, let us first review the reconstruction

step in [IW97]. For i ∈ [m], x ∈ {0, 1}m, a ∈ {0, 1}s−m,

v ∈ {0, 1}m and d ∈ [4]m, let h(i, x, a, v, d) = (r, v, d) where

r ∈ {0, 1}s such that

r|Si
= x⊕ EW(v, d)i and r|Si

= a.

The function h is called the restricting function of G. Given

x ∈ {0, 1}m, with i, a, v and d chosen uniformly at random,

they build a circuit F that first simulates B to compute

B(h(i, x, a, v, d)) = (y1, . . . , ym). Then it computes a number

t defined as

t =
∣∣{j �= i | yj �= f

(
Gj ◦ h(i, x, a, v, d)

)}∣∣ ,
and outputs yi with probability 2−t, while outputting a random

bit with probability 1 − 2−t. To compute t, for each j �= i,
f(Gj ◦ h(i, x, a, v, d)) is computed through a non-uniformly

constructed look-up table for f of size 2γm, containing the

values of f(xj) for all possible j-th output xj of G ◦ h with

the fixed i, a, v and d.

We could not resort to non-uniformity to construct the look-

up table. Nevertheless, when f is computable in space O(m),
we can compute the entire table in space O(m) and hardwire

it to the circuit. Even better, when i, a, v and d are given, each

output xj of G ◦ h is fixed except for γm bits (corresponding

to the coordinates in Si ∩Sj), so we only need to go through

all 2γm possibilities for these bits to compute the table.

The circuit F presented above uses a string R of |R| =
O(m) random bits, including i, a, v, d along with w ∈
{0, 1}m+1, the randomness used to decide the final output.

It was proved in [IW97] that:

Proposition IV.12 ([IW97, Theorem 15]). Suppose that
SUC(B, fm ◦G) ≥ 2−γm. There exists c > 0 (that depends on
γ), such that the fraction of inputs x ∈ {0, 1}m with

Pr
R
[F(x,R) = f(x)] ≥ 1/2 + 2−γm/c

is more than 0.99.

Therefore, the final circuit C takes O(m·22γm) independent

copies of F and outputs their majority, and there exists a fixing

of the randomness that provides the final deterministic circuit

C. We could not afford to store exponentially many random

bits if they are independently sampled. Instead, we employ

the efficient sampler in Theorem IV.4 that uses only O(m)
random bits as the seed to generate 2O(γm) samples, and we

can enumerate over all the seeds to find the one that makes

SUC(C, f) > 0.99. As shown in the proof below, such seed

always exists.

996

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

Proof of Theorem IV.10. Let F : {0, 1}m+|R| → {0, 1} be

the circuit described above, and c > 0 be the constant

in Theorem IV.12. We give the formal description of the

linear-space algorithm for the reconstruction procedure as

Algorithm 2.

Algorithm 2: XOR RECON(f,B)
1 Let SAMP : {0, 1}4|R| → ({0, 1}|R|)t be the sampler of

Theorem IV.4 with ε = 2−γm/(2c).
2 for y ∈ {0, 1}4|R| do
3 Let R1, . . . , Rt ← SAMP(y).
4 Let C : {0, 1}m → {0, 1} be the circuit

C(x) = MAJ(F(x,R1), . . . ,F(x,Rt)).

5 if SUC(C, f) > 0.99 then return C
6 end

By Theorem IV.4 we have t = poly(m/ε) = 2O(γm) for

ε = 2−γm/(2c). From the description we know that F has size

|B| + 2γm ·mO(1), and therefore C has size t|F| +mO(1) =
2O(γm) · |B|. When B is evaluable in space O(m), C is clearly

also evaluable in space O(m).
By the guarantee of the averaging sampler SAMP in The-

orem IV.4, for every x ∈ {0, 1}m, letting R1, . . . , Rt ←
SAMP(U4|R|):

Pr
�R

[∣∣∣∣ Ei∈[t]
[F(x,Ri)]− E

R
[F(x,R)]

∣∣∣∣ ≤ ε

]
≥ 1− 2−2|R|.

By Theorem IV.12, there exists a subset V ⊆ {0, 1}m such

that |V | > 0.99 · 2m, such that for every x ∈ V :∣∣∣E
R
[F(x,R)]− f(x)

∣∣∣ ≤ 1/2− 2−γm/c = 1/2− 2ε.

Therefore for every x ∈ V , it is implied that

Pr
�R

[∣∣∣∣ Ei∈[t]
[F(x,Ri)]− f(x)

∣∣∣∣ ≤ 1/2− 2ε+ ε

]
≥ 1− 2−2|R|,

which means that

Pr
�R
[MAJ(F(x,R1), . . . ,F(x,Rt)) = f(x)] ≥ 1− 2−2|R|

> 1− 1/|V |.
By a union bound over x ∈ V , there must exist a y ∈
{0, 1}4|R| such that C(x) = f(x) for all x ∈ V , which satisfies

SUC(C, f) > 0.99. Therefore the algorithm always returns a

valid C. Moreover, the algorithm runs in space O(m), as it

enumerates the seeds of length O(|R|) = O(m), constructs

and evaluates the circuit C and makes oracle calls to f , which

all can be done in space O(m).

D. Derandomizing the Goldreich-Levin Theorem

Lemma IV.13. Given f : {0, 1}m → {0, 1}m, let g :
{0, 1}m×{0, 1}m → {0, 1} be defined as g(x, r) = 〈f(x), r〉.
Then, given δ > 0, there is δ′ ≥ Ω(δ3/m) so that, for every

B satisfying ADV(B, g) > δ, there is a circuit C of size at most
|B| · (m/δ)O(1) satisfying

SUC(C, f) > δ′.

Moreover, when f is computable in space O(m), there is a
deterministic O(m)-space algorithm that, given the circuit B
which is evaluable in space O(m), prints C, and C is also
evaluable in space O(m).

Note that the original Goldreich-Levin theorem [GL89]

does not guarantee (and in fact does not give) an efficient

deterministic reconstructor, as it is not randomness efficient. A

later work of Hoza and Klivans [HK18] achieves this, though

with a significantly more involved proof. As such, we directly

show this using small-bias spaces, which we define now:

Definition IV.14. A function G : {0, 1}t → {0, 1}k is an ε-

biased generator if G(Ut) is a ε-biased probability space over

{0, 1}k, which formally means that for every T ∈ {0, 1}k,

Pr
y←Ut

[〈T,G(y)〉 = 1] ∈ [1/2− ε, 1/2 + ε].

We recall that small-bias generators exist with good seed

length, and moreover these generators can be evaluated in

small space:

Proposition IV.15 ([NN93]). Given k ∈ N and ε > 0, there is
an O(t)-space evaluable ε-biased generator BIAS : {0, 1}t →
{0, 1}k with seed length t = O(log(k/ε)).

We require a basic Fourier-analytic lemma, that states that

a small-bias space fools the conjunction of k parities.

Lemma IV.16. Let BIAS : {0, 1}t → {0, 1}k be an ε-biased
generator. Then for every collection T1, . . . , Td ∈ {0, 1}k and
v1, . . . , vd ∈ {0, 1}, let f(r) :=

∧
i∈[d](〈Ti, r〉 ⊕ vi). Then we

have
∣∣Er←BIAS(Ut)[f(r)]− Er←Uk

[f(r)]
∣∣ ≤ 2ε.

Proof. We have∧
i∈[d]

(〈Ti, r〉 ⊕ vi)

= 1− 2 · 2−d
∑
S⊆[d]

⊕
i∈S

¬ (〈Ti, r〉 ⊕ vi)

= 1− 2 · 2−d
∑
S⊆[d]

(〈⊕
i∈S

Ti, r

〉
⊕
⊕
i∈S

¬vi
)

and as BIAS fools all such parities to error ε in the summation

over S ⊆ [d], we have that the total error is at most 2ε.

Proof of Theorem IV.13. If δ < 2−m, we can choose δ′ =
2−m and the lemma trivially holds for a circuit C outputting

a constant. Therefore, from now on we assume that δ ≥ 2−m.

We formally state our algorithm as Algorithm 3, with δ′ to

be determined later. Note that 	 = O(m), and therefore in the

ε-biased generator BIAS : {0, 1}t → {0, 1}�×m we have t =
O(log(m/ε)) = O(m) with ε = 2−4m−1, and the algorithm

runs in space O(t+ 	+m) = O(m).

997

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: GL RECON(f,B)

1 Let 	 ← �log2(128m/δ2 + 1)�.

2 Let BIAS : {0, 1}t → {0, 1}�×m be the generator of

Theorem IV.15 with ε = 2−4m−1.

3 for y ∈ {0, 1}t do
4 Let r1, . . . , r� ← BIAS(y).
5 for (b1, . . . , b�) ∈ {0, 1}� do
6 Let C : {0, 1}m → {0, 1}m be the circuit that

for each i ∈ [m]:

Ci(x) = MAJJ⊆[�]:J
=∅(bJ ⊕ B(x, rJ ⊕ ei)).

7 if SUC(C, f) > δ′ then return C.

8 end
9 end

We view the output of BIAS as a tuple of 	 vectors:

BIAS(y) = (r1, . . . , r�), ri ∈ {0, 1}m.

For convenience, let �r := (r1, . . . , r�) and �b := (b1, . . . , b�).
For every J ⊆ [], let:

rJ :=
⊕
i∈J

ri, bJ =
⊕
i∈J

bi.

Note that in the original GL algorithm, all ri’s are i.i.d.

uniformly over {0, 1}m. We first argue that our distribution

over rJ ’s satisfies (approximately) the two properties used in

the analysis of the original algorithm:

Claim IV.17. The following two properties hold:

1) For every non-empty J , rJ is 2−2m-close to Um in 	1-
distance.

2) For every non-empty J and J ′ where J �= J ′, (rJ , rJ
′
)

is 2−2m close to U2m in 	1-distance.

Proof. For i ∈ [m], the i-th bit of rJ can be written as

〈Ti,J , BIAS(y)〉 where Ti,J indicates a non-empty subset of

bits. From Theorem IV.16 we know that for every v ∈ {0, 1}m,∣∣∣∣∣∣ Pr
r←BIAS(Ut)

[rJ = v]− Pr
r←U�m

⎡⎣ ∧
i∈[m]

(〈Ti,J , r〉 = vi)

⎤⎦∣∣∣∣∣∣ ≤ 2ε.

Notice that {Ti,J}i∈[m] are linearly independent, and thus

(〈Ti,J , r〉)i∈[m] is uniformly distributed over {0, 1}m. There-

fore taking the sum over v ∈ {0, 1}m we have that rJ is

2ε · 2m ≤ 2−2m-close to Um in 	1 distance.

When J �= J ′ are both non-empty, {Ti,J}i∈[m] ∪
{Ti,J ′}i∈[m] are still linearly independent. For the same reason

as above, (rJ , rJ
′
) is 2ε · 22m = 2−2m-close to U2m in 	1

distance.

Now recall that for i ∈ [m] the ith bit of the output of C is

Ci(x) = MAJJ:J
=∅(bJ ⊕ B(x, rJ ⊕ ei)).

Thus C has size |C| ≤ (|B|+O()) · 2�m ≤ |B| ·O(2�	m) =
|B| · (m/δ)O(1) as claimed. To analyze the performance of C,

let

S := {x ∈ {0, 1}m : Pr
z←Um

[B(x, z) = g(x, z)] ≥ 1/2 + δ/2}.

By a standard averaging argument, |S| ≥ (δ/2) · 2m.

Claim IV.18. For every x ∈ S and i ∈ [m], let (r1, . . . , r�) ←
BIAS(Ut). Then:

Pr
�r

[∣∣{J : B(x, rJ ⊕ ei) = g(x, rJ ⊕ ei)}
∣∣ ≤ 2� − 1

2

]
≤ 1

2m
.

Proof. For the remainder of the proof we fix x and i. Let A ⊂
{0, 1}m be the set of values r on which B(x, r) = g(x, r).
By the fact that x ∈ S we have |A| ≥ (1/2 + δ/2) · 2m.

Furthermore, for each y ∈ {0, 1}t (where y is the input to

BIAS) let

ζJ(y) = I[rJ ⊕ ei ∈ A]

and observe that ζJ = 1 is equivalent to B(x, rJ ⊕ ei) =
g(x, rJ ⊕ ei), i.e. B computes the inner product with f(x)
correctly on that input. Now observe that by Theorem IV.17,

E
y
[ζJ] = Pr

y
[ζJ(y) = 1] ≥ 1/2 + δ/2− 2−2m ≥ 1/2 + δ/4.

We now bound the variance of the number of such places

where we compute the inner product correctly. Let

σ2 = Var

(∑
J

ζJ

)
=
∑
J,J ′

Cov(ζJ , ζJ′)

≤
∑
J

Var(ζJ) +
∑
J,J ′

2−2m

≤ 2� + 22� · 2−2m ≤ 2�+1

where the first inequality follows from Theorem IV.17. Now

the result follows by Chebyshev’s inequality and a union

bound. For convenience let d = 2� − 1, and the probability

in the claim equals:

Pr
y

[∑
J

ζJ ≤ d

2

]
≤ Pr

y

[∣∣∣∣∣∑
J

ζJ − E[ζJ] · d
∣∣∣∣∣ ≥

(
dδ

4σ

)
· σ
]

≤ 16σ2

δ2(2� − 1)2

≤ 32σ2

δ222�
≤ 64

δ22�
≤ 1

2m
.

Notice that when B(x, rJ ⊕ ei) = g(x, rJ ⊕ ei) and for

every j ∈ [], bj = g(x, rj), we have

bJ⊕B(x, rJ⊕ei) = g(x, rJ)⊕g(x, rJ⊕ei) = g(x, ei) = fi(x).

998

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

Thus, using a union bound over i ∈ [m] on Theorem IV.18,

we have that for every x ∈ S,

Pr
�r←BIAS(Ut)

�b←Ul

[C(x) = f(x)]

≥ Pr
�r←BIAS(Ut)

[∀i ∈ [m],∣∣{J : B(x, rJ ⊕ ei) = g(x, rJ ⊕ ei)}
∣∣ > 1

2
(2l − 1)]

· Pr
�b←U�

[∀j ∈ [], bj = g(x, rj)
]

≥ 1

2
· Pr
�b←U�

[∀j ∈ [], bj = g(x, rj)
] ≥ 2−�−1.

Thus, there is an assignment of y and �b such that C computes

f correctly on at least |S| · 2−�−1 ≥ 2m · δ2−�−2 inputs.

Moreover, we can find such a circuit by enumerating the

assignments to y and �b, and verifying the success probability

by evaluating C and f over all x ∈ {0, 1}m. Therefore letting

δ′ = δ2−�−2 = Ω(δ3/m)

completes the proof.

E. Space-Efficient Nisan-Wigderson PRG

We recall the argument of [KvM02] that there is a space-

efficient implementation of the Nisan-Wigderson [NW94]

PRG, using the linear-space constructible combinatorial design

(Theorem IV.5). While we rephrase their result in our notation,

we make no changes to the construction, as (in contrast to all

other steps) the existing implementation satisfies our desired

reconstruction property.

Lemma IV.19. Given ρ > 0 and n ∈ N and a family of
functions fm : {0, 1}m → {0, 1} ∈ SPACE[m], there exists
an m = Θ(log n) and G : {0, 1}s → {0, 1}n with s = O(m)
such that, given a circuit B which is a next-bit predictor for G
with advantage ε, there is a circuit C of size |B| + O(n2ρm)
satisfying

ADV(C, fm) > ε.

Moreover, there is a deterministic O(m)-space algorithm that,
given the circuit B which is evaluable in space O(m), prints
C, and C is also evaluable in space O(m).

Proof of Theorem IV.19. Fix α ∈ (0, 1) such that α ≤ ρ/2,

and let β ∈ (0, 1) be the constant in Theorem IV.5. Choose

s = O(log n) such that 2βs = n, and let m = αs. Let

S = (S1, . . . , Sn) be the design of Theorem IV.5 over [s] with

parameter α, and let fm : {0, 1}m → {0, 1} be the function

on inputs of size m = O(log n).
We let G(x) := f(xS1

)f(xS2
) . . . f(xSn

). Now suppose B
is an ε-next-bit predictor for bit i of G, i.e.

Pr
x←Us

[B(G(x)1..i) = G(x)i+1] >
1

2
+ ε.

Then let S := Si+1 and T := [s] \ Si+1 and write the above

inequality as

Pr
(xS ,xT)←Us

[B(G(xS ∪ xT)1..i) = f(xS)] >
1

2
+ ε.

For each fixing of xT , we let the circuit C to be C(xS) =
B(G(xS ∪ xT)1..i). Then we have

E
xT

[ADV(C, fm)] > ε.

Thus, the algorithm can enumerate over all possible assign-

ments to xT in space |T | = O(m), and for each assignment

check the advantage of C. Once the algorithm has found the

fixing of xT such that the restricted circuit has advantage at

least ε, for every j ≤ i, the j-th bit of the output of G(xS∪xT),
which is f(xSj

), depends on |S ∩ Sj | ≤ 2α2s = ρm bits of

xS , and hence we can output a (O(m)-space constructible)

circuit for f(xSj) of size at most O(2ρm), and hence the total

size of C is at most |B|+O(n2ρm).

F. Putting It All Together

Proof of Theorem IV.1. Given ε, we first do the construction

steps. For each m ∈ N:

1) Let f ′ : {0, 1}m1 → {0, 1} be the function g of

Theorem IV.6 applied to fm.

2) Let f ′′ : {0, 1}m2 → {0, 1}m1 be the function f ′m1 ◦G
of Theorem IV.10 applied to f ′

m1
with the constant γ to

be chosen later.

3) Let f ′′′ : {0, 1}m3 → {0, 1} be the function g of

Theorem IV.13 applied to f ′′
m2

with the constant δ to

be chosen later.

4) Let G : {0, 1}s → {0, 1}n be the function of Theo-

rem IV.19 applied to f ′′′
m3

and B with the constant ρ to

be chosen later.

Notice that m1,m2,m3 and s are all Θ(m), and the functions

f ′, f ′′, f ′′′ and G are all computable in space O(m).
Suppose now we are given a 1/(8n) next-bit predictor B

for G of size n2. As n is given, we decide the value of

m3 = Θ(log n) through Theorem IV.19, which in turn decides

the value of m = Θ(log n). The reconstruction steps go as

follows:

4. By Theorem IV.19, we can construct in space O(m) a

circuit C3 such that ADV(C3, f ′′′
m3

) > 1/(8n), and C3 has

size s3 = n2 + O(n2ρm3) ≤ 2c3ρm for some constant

c3 > 0.

3. By Theorem IV.13, where we now set δ = 1/(8n),
we can construct in space O(m) a circuit C2 such that

SUC(C2, f ′′
m2

) > Ω(δ3/m2) ≥ 2−c2ρm, and C2 has size

s2 = s3 ·(m2/δ)
O(1) ≤ 2c2ρm for some constant c2 > 0.

2. By Theorem IV.10, where we now set γ = c2ρ, we

can construct in space O(m) a circuit C1 such that

SUC(C1, f ′
m1

) > 0.99 and C1 has size s1 = s2 ·
2O(γm1) ≤ 2c1ρm for some constant c1 > 0.

1. By Theorem IV.6, we can construct in space O(m) a

circuit C such that C(x) = fm(x) for every x ∈ {0, 1}m,

and C has size s = s1 ·mO(1) ≤ 2c0ρm for some constant

c0 > 0. By choosing ρ = ε/c0, we obtain the final

result.

V. UNIVERSAL DERANDOMIZATION OF BPL

Here we state the main theorem of this section, that there

exists a universal derandomizer for logspace computation.

999

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

Theorem V.1. There is a deterministic machine
UNIVDERAND such that:

• On input 1n and an OBP B of length and width at most
n, outputs δ := UNIVDERAND(1n, B) satisfying |δ −
E[B]| < n−1.

• For every space-constructible function S : N → N

satisfying S(n) ≥ log n, UNIVDERAND runs in space
O(S(n)) if and only if prBPL ⊆ SPACE[O(S(n))].

We first give the intuitive explanation of the algorithm

executed by the machine UNIVDERAND. It enumerates over

Turing machines 〈i〉 and space bounds j. At each step,

UNIVDERAND runs 〈i〉 on input (1n, B→v) for every v, where

B→v for v ∈ Vi is the program that is identical to B in

the first i layers, then accepts if the program reaches state

v. If 〈i〉 ever touches more than j spaces on the work tape,

UNIVDERAND halts and increments i or j. Otherwise, we have

a set of estimates {p̃→v} := {〈i〉(1n, B→v)} (and note that we

can generate these estimates on the fly in space O(j+log n)).
We then submit these estimates to the local consistency test

of Cheng and Hoza [CH22], and if the test passes, we return

the estimate of the probability of reaching the accepting state.

Theorem V.2 ([CH22]). There is a deterministic logspace
algorithm LCTEST that takes as input 1n and an OBP B
with length and width at most n and the estimates {p̃→v}v∈V .
If for every v, |p̃→v−p→v| ≤ n−3, the algorithm accepts, and
moreover if the algorithm accepts, |p̃→v − p→v| ≤ n−1 for
every v.

Note that the true probabilities p→v only appear in the

statement of the theorem, and are not part of the input to

the testing algorithm. We can now give the formal description

of the algorithm as Algorithm 4. By soundness of the test

LCTEST, if UNIVDERAND returns a value, the value must

be a good approximation of the acceptance probability, so it

suffices to show this occurs (and occurs in the desired space

bound).

Algorithm 4: UNIVDERAND(1n, B)

1 for j ← 0, 1 . . . , do
2 for i ← 0, 1, . . . , j do
3 for r ← 1 · n−5/2, 2 · n−5/2, . . . , 2n2 · n−5/2

do
4 Compute b ←

LCTEST(1n, B, {〈i〉(1n, B→v, r)}v∈V (B));
5 whenever 〈i〉 uses more than j space or

more than 2j time do
6 Abort the simulation of 〈i〉 and pass to

the next r.
7 end
8 if b = 1 then return 〈i〉(1n, B, r).
9 end

10 end
11 end

To do so, we rely on the promise search problem fc with

parameter c ∈ N (which we define as a function outputting a

value in [0, 1] for convenience) defined as follows. Given 1n,

an ordered branching program B of length and width at most

n, and a rounding threshold r with the promise that∣∣E[B]− k · n−c+2 + r
∣∣ > n−c

6
, ∀k ∈ Z,

i.e. E[B] + r is polynomially bounded away from every

multiple of n−c+2, the problem asks to output a (pseudo-

deterministic) number fc(1
n, B, r) that is within n−c+2 dis-

tance of E[B]. The presence of the rounding value, inspired by

the approach of Saks and Zhou [SZ99], is because when E[B]
is very close to a threshold, it becomes hard to determining

whether the expectation is above or below the cutoff.

We prove in Theorem V.3 that the task of computing fc
is promise-BPL complete for every c ≥ 3. Therefore, if

prBPL ⊆ SPACE[S(n)], there is a machine 〈i〉 that computes

fc in space j = O(S(n)). Finally, to accommodate the pres-

ence of the rounding threshold, UNIVDERAND additionally

enumerates over a polynomial number of choices for r. We

show that there exists a proper c ∈ N such that for every B, a

good r that satisfies the promise of fc exists. This is essentially

proved via the argument of Saks and Zhou [SZ99]. Hence, the

algorithm will always find a tuple (i, j, r) such that we obtain

good estimates of E[B→v] for every v, and thus the machine

will halt and return the correct value.

Proposition V.3. For every c ∈ N with c ≥ 3, let fc be the
problem where, given 1n and an ordered branching program
B of length and width at most n, and r ∈ [0, 1] such that for
every k ∈ Z, ∣∣E[B]− k · n−c+2 + r

∣∣ > n−c

6
,

return with probability at least 2/3 the same number δ that
satisfies |E[B]− δ| ≤ n−c+2. Then fc is prBPL-complete
under L reductions.

Proof Sketch. Fix arbitrary c ≥ 3. We first prove fc ∈ prBPL.

Let R(1n, B, r) be an algorithm that takes n2c+1 random

walks from vst over B, and let γ be the fraction of these

walks which reach vacc. Let k ∈ Z be the largest value such

that γ + r ≥ k · n−c+2, and return δ = k · n−c+2. Since this

algorithm clearly runs in randomized logspace, it suffices to

show that, for B and r that satisfy the promise, there is some

fixed k that R identifies with probability over 2/3. Note that

by the promise, we have that for some k0 ∈ Z,

k0 · n−c+2 +
n−c

6
< E[B] + r < (k0 + 1) · n−c+2 − n−c

6
.

On the other hand, using concentration bounds we can show

that with probability at least 2/3,

|(E[B] + r)− (γ + r)| = |E[B]− γ| ≤ n−c

6
.

In this case R always identifies k = k0 since k0 · n−c+2 <
γ + r < (k0 + 1) · n−c+2.

1000

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

We now prove that fc is prBPL-hard. We recall the standard

prBPL-complete problem: Given an OBP B of length and

width n, determine if E[B] < 1/3 or E[B] > 2/3, where

the promise is that one of these cases holds. We reduce this

problem to fc as follows. Let TB : {0, 1}dn → {0, 1} be the

OBP defined as

TB(x1, . . . , xd) = MAJ(B(x1), . . . , B(xd))

where d = O(c log n) such that if E[B] < 1/3 then

E[TB] < n−c/6, and if E[B] > 2/3 then E[TB] > 1−n−c/6.

Observe that TB has length and width N = poly(n) and is

constructible in deterministic logspace given B. Thus, let the

input to fc be (1N , TB , n
−c), which satisfies the promise of

fc, and hence if the answer is less than 1/2 we determine that

E[B] < 1/3, and otherwise determine that E[B] > 2/3.

We first prove that the values that the machine returns are

accurate (assuming the machine returns a value).

Lemma V.4. For every B, if UNIVDERAND halts on input
(1n, B), then |UNIVDERAND(1n, B)− E[B]| ≤ n−1.

Proof. This follows from Theorem V.2 applied to p̃→v =
〈i〉(1n, B→v, r).

We next prove the machine halts in the claimed space bound.

Lemma V.5. For every space-constructible function S : N →
N with S(n) ≥ log n, UNIVDERAND runs in space O(S(n))
if prBPL ⊆ SPACE[O(S(n))].

Proof. We prove that UNIVDERAND(1n, B) halts and returns

a value with i + j ≤ c · S(n) for an absolute constant c (in

particular, i, j < ∞), which suffices to establish the lemma

by the composition of space-bounded algorithms.

By Theorem V.3, there is a Turing machine 〈i〉 deciding the

language f5 in SPACE[O(S(n))]. We now show that there

exists r ∈ {1 · n−5/2, 2 · n−5/2, . . . , 2n2 · n−5/2} such that∣∣E[B→v]− k · n−3 + r
∣∣ > n−5/6 (�)

for every k and v. There are n2 different values E[B→v] over

v in the vertex set V (B) of the branching program, and for

each v, there is at most one assignment to r such that (�) fails

to hold for some k ∈ Z. As there are 2n2 possible values for

r, there must be one such that (�) holds for all k and v.

Finally, let j = O(S(|B|)) be such that 〈i〉(1n, B→v, r)
halts using at most j space for every v. Such a j exists per

assumption and the fact that the input (1n, B→v, r) satisfies the

promise of Theorem V.3 for every v. Thus, upon reaching the

tuple (i, j, r), the set of estimates p̃→v = 〈i〉(1n, B→v, r) must

satisfy |p̃→v − E[B→v]| ≤ n−3 for every v ∈ V (B). Then

running LCTEST(1n, B, {p̃→v}v∈V (B)) (where we wait for

the test to request a particular value p̃→v and then recompute

it from 〈i〉, avoiding the need to store all n2 values) will

result in LCTEST accepting, and hence UNIVDERAND halts

in the claimed space bound. Moreover, the returned value

δ = 〈i〉(1n, B, r) satisfies that |δ − E[B]| ≤ n−1.

We finally prove the converse.

Lemma V.6. For every space-constructible function S : N →
N satisfying S(n) ≥ log n, prBPL ⊆ SPACE[O(S(n))] if
UNIVDERAND runs in space S(n).

Proof. By Theorem V.3 it suffices to solve f3 using a logspace

reduction to UNIVDERAND. Given (1n, B, r) as the input

(where r is the rounding threshold, which we will ignore),

let δ := UNIVDERAND(1n, B) be the value returned by

UNIVDERAND on B. By Theorem V.4 we have |δ−E[B]| <
n−1, and hence δ is a desired deterministic output for f3.

We can then conclude the proof of Theorem V.1.

Proof of Theorem V.1. Let UNIVDERAND be the algorithm as

defined above. Theorem V.1 follows from Theorem V.4 (and

the fact that it returns a value follows from Theorem V.5). The

if direction of Theorem V.1 follows from Theorem V.5, and

the only if direction follows from Theorem V.6.

Finally, we conclude the proof of Theorem I.2.

Proof of Theorem I.2. Let U be the algorithm that, given the

description of a randomized logspace algorithm R and an input

x where |x| = n, constructs (in deterministic logspace) the

ordered branching program B := R(x, ·) of length and width

at most m = poly(n) that represents the action of R over its

random bits. Then let U call UNIVDERAND(1m, B), and if the

value returned is less than 1/2 return 0, and otherwise return

1. By the promise on R we have either Pr[B(Un) = 1] > 3/4
or Pr[B(Un) = 1] < 1/4, and as in both cases we estimate the

expectation of B up to error 1/n by Theorem V.1, we correctly

decide which case we are in, and the space consumption

follows from that of Theorem V.1.

VI. HITTING SETS IMPLY SAMPLERS FOR ORDERED

BRANCHING PROGRAMS

We now prove that hitting sets imply black-box two-sided

derandomization of ordered branching programs. To do so, we

first formally define hitting sets and deterministic samplers:

Definition VI.1. Given a class of functions F = {f :
{0, 1}n → {0, 1}}, an ε-hitting set generator (HSG) H :
{0, 1}s → {0, 1}n for F satisfies that for every f ∈ F with

E[f] ≥ ε, there exists y ∈ {0, 1}s where f(H(y)) = 1. We

say H is explicit if there is a uniform algorithm that computes

H(x) in space O(s) given 1n and x.

Definition VI.2. Given a class of functions F = {f :
{0, 1}n → {0, 1}}, an ε-(deterministic) sampler SAMP with

space complexity s(n) for F is a deterministic algorithm that

runs in space s(n) and, given oracle access to f ∈ F , makes

queries to f and outputs an estimate δ satisfying |δ−E[f]| ≤ ε.

A deterministic sampler captures the idea of a derandom-

ization algorithm that only accesses the branching program

in a black-box fashion, and such a notion has been explored

before in the context of small-space derandomization [HU22],

[CH22], [PV22].

We now give a formal statement of Theorem I.3. We state

it in terms of dependence on the seed length of the HSG, as

1001

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

our result generically converts a hitting set to a sampler with

comparable space complexity.

Theorem VI.3. Suppose there is a uniformly constructible
family H = {H1, . . . , } where Hn : {0, 1}s(n) → {0, 1}n is
an explicit 1/2-hitting set with seed length s(n) for width n,
length n OBPs. Then for every ε > 0, there is a uniformly
computable deterministic ε-sampler with space complexity
O(s(nw/ε)) for width w, length n OBPs.

We prove this by developing a local consistency test that

can be implemented given black-box access to a branching

program.

A. Proof Overview

The proof of Theorem VI.3 relies on developing a local

consistency test that can be implemented given black-box

access to a branching program (whereas all previous tests

required access to the internal states of the program). We first

describe how we can access the internal states of the program

in a black-box manner.

Given a branching program B : {0, 1}n → {0, 1} and a

hitting set H : {0, 1}s → {0, 1}n, for each seed x ∈ {0, 1}s
and layer i ∈ [n], the program reaches some state v on

input H(x)1..i. We can index this state in a black-box fashion

by writing down (x, i). However, as potentially many seeds

may reach the same state v, we would like to collapse these

duplicates back together. Since we cannot examine layer i of

the program, we can instead attempt to test if x and x′ reach

the same state, by plugging in every HSG output and see if the

programs starting from (x, i) and (x′, i) behave differently.

Definition VI.4 (Informal statement of Theorem VI.9). For

x, x′ ∈ {0, 1}s and i ∈ [n], tuples (x, i) and (x′, i) are

indistinguishable if for every y ∈ {0, 1}s,

B(H(x)1..iH(y)1..n−i) = B(H(x′)1..iH(y)1..n−i).

It is not the case that indistinguishable tuples always reach

the same state. However, Cheng and Hoza were able to show

the following:

Lemma VI.5 ([CH22] (Informal)). Suppose states v and v′

are reached by indistinguishable tuples. Then the probability
of accepting in B starting from v is similar to that of accepting
starting from v′.

Thus, the states have similar behavior from layer i onward.

Unfortunately, it is not the case that indistinguishable states

always have indistinguishable out-edges. Thus, a naive attempt

to learn the program using query access would print both
out-edges and output a nondeterministic branching program, a

model that is provably NL-hard to derandomize. It is likewise

unclear how to select a single edge to print in a way that

maintains the acceptance probability of the program. In the

constant-width regime, Cheng and Hoza [CH22] circumvented

this by remembering O(log n) bits of information about every

state in layer i+ 1 while constructing layer i, allowing them

to choose a good out-edge. However, this does not seem

feasible for super-constant width. Instead, we develop a local

consistency test that can tolerate conflating indistinguishable

states.

Suppose for every tuple (x, i) we are given an estimate p̃x,i,
which is supposedly close to the true probability of accepting

from v := B[vst, H(x)1..i].

Definition VI.6 (Black-Box Local Consistency Test (Infor-

mal)). Given black-box access to an ordered branching pro-

gram B : {0, 1}n → {0, 1} and a hitting set H : {0, 1}s →
{0, 1}n and estimates {p̃x,i}x∈{0,1}s,i∈[n], verify that the fol-

lowing conditions hold:

1) For every pair of indistinguishable tuples (x, i), (x′, i),
we have |p̃x,i − p̃x′,i| ≤ O(ε).

2) For every tuple (x, i), let (x0, i + 1) and (x1, i +
1) be arbitrary tuples that are indistinguishable from

B[vst, H(x)1..i0] and B[vst, H(x)1..i1] respectively.

Then ∣∣∣∣p̃x,i − p̃x0,i+1 + p̃x1,i+1

2

∣∣∣∣ ≤ O(ε).

If all such conditions hold, output the estimate p̃0,0, and

otherwise reject.

We think of all our tests as having a completeness and

soundness component, where completeness means that a set of

estimates which are sufficiently close to the true probabilities

are gauranteed to pass, and soundness means that the test

passing implies the returned estimate is close to the true value

(where the precise parameters are discussed later).

The tests of Theorem VI.6 can be implemented in space

O(s+ log n) given H and black-box access to B, as we can

enumerate over the seeds of the hitting set and layers in the

program, and all such tests are “local”, in the sense that they

deal with at most two layers and a constant number of seeds.

If every state is distinguishable from every other, and H
hits every state in the program, the test of Theorem VI.6 is

equivalent to the following white-box local consistency test:

Definition VI.7 (White-Box Local Consistency Test (Infor-

mal)).
1) For every v, all estimates of the accepting probability

from v must be within ε of each other.

2) For every v, estimates of the accepting probability from

v, v0 := B[v, 0], and v1 := B[v, 1] (which we denote

p̃v, p̃v0 , and p̃v1) must satisfy p̃v ≈ (p̃v1 + p̃v0)/2.

If all such conditions hold, output an arbitrary estimate p̃vst ,

and otherwise reject.

The test of Theorem VI.7 clearly accepts if the estimates are

exactly (or within ε/2 of) the true probabilities of accepting

from each vertex. Likewise, soundness is not difficult to show.

However, this idealized version of the test in Theorem VI.6

not exactly happen, for two reasons:

1) We may impose Item (1) checks between tuples that

reach different, yet indistinguishable, states, and likewise

for the 0 and 1 states of Item (2).

1002

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

2) We may fail to impose Item (2) checks between v and

B[v, 0] and B[v, 1] if no string output by the hitting set

reaches one of the latter states.

Issue (1) must be dealt with in the proof of completeness (as

we add some tests not in the white-box tester) and (2) in the

proof of soundness (as we sometimes fail to impose tests that

should be present). Issue (1) is the easier of the two to deal

with. Since indistinguishable states have similar probability of

accepting by Theorem VI.5, good estimates for the accepting

probabilities of indistinguishable vertices will still be within

O(ε) of each other. Issue (2), in contrast, seemingly presents

a real issue for the soundness. For state v := B[vst, H(x)1..i]
where there is no seed x′ where B[vst, H(x′)1..i+1] = B[v, 0],
we could run no local consistency test to verify p̃x,i. In fact,

the estimate of the probability of accepting from v could be

arbitrarily wrong, and we would have no ability to detect it.

However, we observe that every such v has low probability

of being reached from the start state. This is because if no

(ε-)HSG output reaches B[v, 0], v must have probability of

being reached from the start state at most 2ε. But then a

very bad estimate of the probability of accepting from v only

changes the overall probability of accepting by at most O(ε)
(and such an argument can be run for all non-verified states

simultaneously). Ultimately, we are able to show that the lack

of these checks can only change the accepting probability at

the start state by O(ε), which is tolerable.

Putting it all together, we show a black-box tester that,

given estimates p̃x,i for the probability of accepting from

B[vst, H(x)1..i] for every x and i, either outputs an approxi-

mation of the expectation of the program or rejects the input.

To conclude, we use an idea of Cheng and Hoza to find a

good set of estimates p̃x,i using a hitting set. First, to obtain a

better result for nontrivial yet suboptimal hitting set generators,

we slightly modify the tester to take in n · w estimates,

corresponding (essentially) to an estimate for the acceptance

probability from every state in the original branching program.

Then we show (essentially using the argument of [CH22]), that

there is a branching program T of length poly(nw/ε) and

width poly(nw/ε) that divides its input into n × w blocks,

and uses the block labeled with v as a long random string

to estimate p̃v for every state v in the program, and accepts

if all these estimates are within ε of the true acceptance

probability. The program uses the true probabilities to check

if the empirical average of the samples is within ε of the

true values, but we do not need to explicitly construct it -

we only need that it exists, and hence our HSG family will

contain some string hitting it. Finally, we argue that we can

compute the associated empirical averages with oracle access

to B, rather than T . A string that hits T will produce good

estimates p̃v for every v, and our black-box tester will accept

on these estimates. Then we can simply enumerate over hitting

set strings, and return the first accepted estimate.

B. Black-Box Local Consistency Tests

We now formally state the black-box local consistency test:

Theorem VI.8. There is a deterministic space O(s + log n)
algorithm that, given an explicit ε-HSG H : {0, 1}s → {0, 1}n
for length n, width w2 branching programs, oracle access
to an OBP B of width w and length n, and estimates
{p̃x,i}x∈{0,1}s,i∈[n], either outputs a value or rejects. More-
over:

1) If for every x, we have |pv→ − p̃x,i| ≤ 2ε where v =
B[vst, H(x)1..i] for every i < n and p̃x,n = B(H(x)),
then the algorithm outputs a value.

2) If the algorithm outputs δ, then |E[B]− δ| ≤ 6εn.

We remark that, despite this result being a black-box test

versus the white-box local consistency test of Cheng and Hoza,

it obtains an improved soundness loss (of εn rather than εnw),

which is relevant in the regime where the branching program

has width much larger than length. This is notable as obtaining

optimal error samplers in the Nisan-Zuckerman regime [NZ96]

(where optimal-error hitting sets are already known) is a well

known open question. Unfortunately, we do not obtain this

result, as the argument that we can obtain good accepting

probability estimates using a hitting set (Theorem VI.20)

requires a hitting set for ordered programs of length nw � n.

We first define notation related to using H to traverse the

branching program:

Definition VI.9. For every x ∈ {0, 1}s and i ∈ [n], let

vi(x) := B[vst, H(x)1..i].

Note that this implies vi(x) = vi(x
′) if B[vst, H(x)1..i] =

B[vst, H(x′)1..i], i.e. the two seeds reach the same vertex in

layer i. For convenience, we write px,i := pvi(x)→. Moreover,

for states u, u′ ∈ Vi we write u ∼ u′ if the two states are

indistinguishable under H , i.e. for all y ∈ {0, 1}s,

B[u,H(y)1..n−i] = B[u′, H(y)1..n−i].

We can now define the consistency test implemented by the

algorithm.

Definition VI.10 (Local Consistency Test). Given B and H
and the estimates p̃x,i, let the test be as follows:

1) For every x, i ∈ {0, 1}s × [n] and for every

x0, x1 ∈ {0, 1}s such that B[vi(x), 0] ∼ vi+1(x0) and

B[vi(x), 1] ∼ vi+1(x1), require∣∣∣∣p̃x,i − p̃x1,i+1 + p̃x0,i+1

2

∣∣∣∣ ≤ 5ε.

2) For every x, x′ ∈ {0, 1}s and i ∈ [n] such that vi(x) ∼
vi(x

′), require |p̃x,i − p̃x′,i| ≤ 5ε.
3) For every x ∈ {0, 1}s, require p̃x,n = B(H(x)).

Note that given H and oracle access to B and the estimates

p̃x,i, we can compute all such tests in space O(s+log n). We

first show this test is complete:

Lemma VI.11. Suppose for every x, |p̃x,i − px,i| ≤ 2ε for
i < n and p̃x,n = B(H(x)). Then the test of Theorem VI.10
passes.

1003

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

To show this we require the following, which follows from

arguments about the mass of the set difference.

Claim VI.12 (Lemma 3.2 [CH22]). If v ∼ v′, then |pv→ −
pv′→| ≤ ε.

We can then prove completeness.

Proof of Theorem VI.11. Consider an arbitrary Item 1 test:∣∣∣∣p̃x,i − p̃x1,i+1 + p̃x0,i+1

2

∣∣∣∣
Let v := vi(x) and for b ∈ {0, 1} let vb := B[v, b] be the

state actually reached following edge b from state v. Then for

b ∈ {0, 1} let ub := vi+1(xb) be the state reached by xb in

layer i+ 1. Note that ub does not necessarily equal vb, as we

could be conflating different states in layer i+1, but ub ∼ vb.

Thus:∣∣∣∣p̃x,i − p̃x1,i+1 + p̃x0,i+1

2

∣∣∣∣
≤ 4ε+

∣∣∣∣pv→ − pu0→ + pu1→
2

∣∣∣∣ (Assumption)

≤ 5ε+

∣∣∣∣pv→ − pv0→ + pv1→
2

∣∣∣∣ (Theorem VI.12)

= 5ε.

The proof of Item 2 is analogous, again using Theorem VI.12,

and Item 3 is immediate.

We now show soundness. The key issue is dealing with

states v such that no x satisfies v = vi(x), because we cannot

guarantee consistency for these states. However, these states

are precisely those that the HSG fails to hit, which must mean

they have low probability of being reached from the start

vertex, and hence their estimates being wrong does only a

small amount of harm.

Lemma VI.13. Suppose the test of Theorem VI.10 passes with
estimates p̃x,i. Then |p̃0,0 − pvst→| ≤ 6εn.

To prove Theorem VI.13, in the following three lemmas we

assume that the test of Theorem VI.10 passes. We first define

states that are not verified, and show that the probability of

reaching such states are small.

Definition VI.14. For every x ∈ {0, 1}s and i < n, let v =
vi(x) be an unverified state if there is some b ∈ {0, 1} such

that there is no x′ ∈ {0, 1}s satisfying B[v, b] = vi+1(x
′), and

otherwise let v be verified. Let vn(x) be verified for every x.

Note that for an unverified state there still could be x′ such

that B[v, b] ∼ vi+1(x
′), but we do not use this in the proof of

soundness.

Lemma VI.15. Let T be the event of reaching an unverified
state in B. Then Pr[T (Un) = 1] < 2ε.

Proof. Let R be the width w+1 program that is the same as B
except it accepts if and only if we reach a state not hit by the

HSG H . We have Pr[R(Un) = 1] < ε by the goodness of the

HSG. Furthermore, conditioned on reaching an unverified state

in B, we have probability at least 1/2 of reaching a state the

HSG does not hit. Thus, ε > Pr[R(Un) = 1] ≥ Pr[T (Un) =
1]/2.

We now construct a branching program such that the

estimates for unverified states are consistent with the true

probabilities of these states.

Lemma VI.16. There exists an ordered branching program
Q : {0, 1}n → {0, 1} on a superset of the vertices of B such
that:

1) |E[Q]− E[B]| ≤ 2ε.
2) Q is identical to B when restricted to edges between

verified states, and edges from verified states to unveri-
fied states.

3) For every unverified state v in B, for every x ∈ {0, 1}s
such that v = vi(x), we have |p̃x,i − qv→| ≤ 5ε, where
qv→ is the probability of accepting from v in Q.

Proof. We first construct Q. Let N be the set of unverified

states of B. For every v ∈ N in layer i, note that for every

x, x′ ∈ {0, 1}s satisfying v = vi(x) = vi(x
′) we have |p̃x,i −

p̃x′,i| ≤ 5ε by Item 2. Let qv→ be a number satisfying |qv→−
p̃x,i| ≤ 5ε for every such x. We now modify B by wiring both

edges from v to a new (arbitrarily complex) set of states such

that v now has probability of accepting exactly qv→,3 and we

do this for every unverified v. Let Q be this new branching

program. It is clear by construction that Q satisfies Property

2. Furthermore, by Theorem VI.15 we have Property 1.

We now prove Theorem VI.13 by showing that the estimates

p̃x,i are consistent with the modified program Q.

Lemma VI.17. Let Q be defined as in Theorem VI.16. Then
for every v in B and every x such that v = vi(x), we have
|p̃x,i−qv→| ≤ 5ε · (n− i). In particular, |p̃0,0−qvst→| ≤ 5εn.

Proof. The case i = n holds by Item 3 of Theorem VI.10

(and the fact that all final layer states are unmodified). Now

assume this holds for layer i + 1. Then for every v = vi(x)
in layer i, we have two possibilities:

• Case 1: v is unverified. In this case, |p̃x,i − qv→| ≤ 5ε
by Theorem VI.16.

• Case 2: v is verified. For b ∈ {0, 1}, let vb := B[v, b] and

by Theorem VI.16 we know that vb also coincides with

Q[v, b]. Let xb be such that vb = vi+1(xb) (and note that

3Technically this may not be possible without making Q a probabilistic
branching program. However, this construction purely exists to analyze the
probabilities qv→, so we ignore this minor complication.

1004

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

such x0, x1 exist because we are not in Case 1). Then:

|p̃x,i − qv→|
=

∣∣∣∣p̃x,i − qv0→ + qv1→
2

∣∣∣∣
≤ 5ε+

∣∣∣∣ p̃x0,i+1 + p̃x1,i+1

2
− qv0→ + qv1→

2

∣∣∣∣
≤ 5ε+

1

2
|qv0→ − p̃x0,i+1|+ 1

2
|qv1→ − p̃x1,i+1|

≤ 5ε · (n− i)

where the first inequality follows from Item 1 and the

third from induction.

We now conclude the proof of Theorem VI.13.

Proof of Theorem VI.13. We have:

|E[B]− p̃0,0| ≤ 2ε+ |E[Q]− p̃0,0| (Theorem VI.16)

≤ 2ε+ 5εn (Theorem VI.17).

Finally we conclude Theorem VI.8.

Proof of Theorem VI.8. Given H : {0, 1}s → {0, 1}n
and the estimates {p̃x,i}x∈{0,1}s,i∈[n], we run the tests as

specified in Theorem VI.10. All such tests can be im-

plemented in space O(s + log n), as we now explain.

Given x ∈ {0, 1}s and b ∈ {0, 1}, we can de-

termine if x′ ∈ {0, 1}s satisfies B[vst, H(x)1..ib] ∼
vi+1(x

′) by enumerating over y ∈ {0, 1}s and comput-

ing the predicate
∧

y∈{0,1}s [B(H(x)1..ibH(y)1..n−i−1) =
B(H(x′)1..i+1H(y)1..n−i−1)]. This can be implemented in

space O(s + log n) given black-box access to B, and hence

we can determine which Item 1 tests on {p̃x,i} to run in the

desired space bound. Similar reasoning applies to the Item 2

and Item 3 tests.

Finally, if all such tests pass, output p̃0,0. By Theorem VI.11

we have that the completeness condition holds, and by Theo-

rem VI.13 we have that the soundness condition holds.

C. Putting It All Together

We now prove Theorem VI.3 from Theorem VI.8. It re-

mains to show that we can generate a good set of estimates

{p̃x,i} using a hitting set. We first show that we can modify

Theorem VI.8 to only take in nw estimates, rather than n ·2s.

This is not required for Theorem VI.3, but it improves the

parameters in the case that H is a highly nontrivial yet non-

optimal hitting set.

To do so, we first observe that the indistinguishably relation

induces a set of equivalence classes on the seeds:

Definition VI.18. Given an OBP B of width w and length n
and H : {0, 1}s → {0, 1}n, for every i let C1,i, . . . , Cw,i ⊂
{0, 1}s be the (possibly empty) equivalence classes of {0, 1}s
under the indistinguishably relations x ∼i x′ iff vi(x) ∼
vi(x

′). Let yj,i ∈ {0, 1}s be the lexicographically first element

of Cj,i (and order the equivalence classes so that y1,i < y2,i <
. . . < yw,i for every i). Moreover, let vj,i := vi(yj,i). Note that

given B and H , yj,i (and hence an HSG output that reaches

vj,i) is constructible in space O(s+ log n) given i, j.

Corollary VI.19. There is a deterministic space O(s+log n)
algorithm that, given an explicit ε-HSG H : {0, 1}s → {0, 1}n
for length n, width w2 branching programs, oracle access
to an OBP B of width w and length n, and estimates
{p̃j,i}j∈[w],i∈[n−1], either outputs a value or rejects. More-
over:

1) If |pvj,i→ − p̃j,i| ≤ ε for every j, i, where vj,i is as
defined in Theorem VI.18, then the algorithm outputs a
value.

2) If the algorithm outputs δ, |E[B]− δ| ≤ 6εn.

Proof. The tester simply takes in the estimate p̃j,i for pvj,i→,

copies it to be the estimate for every seed in the j-th equiva-

lence class for layer i, perfectly computes px,n := B(H(x))
for every x ∈ {0, 1}s, and runs Theorem VI.8. Clearly if the

tester outputs a value it is within 6εn of δ, as we simply

restrict the inputs to Theorem VI.8. Furthermore, note that for

an arbitrary v := vi(x) in equivalence class Cj,i, we have by

Theorem VI.12:

|pv→ − p̃j,i| ≤ ε+ |pvj,i→ − p̃j,i| ≤ 2ε

and hence if |pvj,i→ − p̃j,i| ≤ ε is satisfied for all i and j we

satisfy the completeness condition of Theorem VI.8, and so

the tester will return a value.

We now argue that there is a hitting set string that can be

used to produce good estimates for pvj,i→, where vj,i is as

defined in Theorem VI.18. The argument that such an output

exists is a straightforward modification of the proof in Cheng

and Hoza [CH22] that there exists an HSG output inducing

estimates that satisfy their local consistency test.

Lemma VI.20 ([CH22]). For every OBP B of length n and
width w and H : {0, 1}s → {0, 1}n and ε > 0, there exists t =
O(log(nw)/ε2) and an OBP EST : {0, 1}n×w×tn → {0, 1} of
length and width poly(nw/ε) defined as follows:

EST(z1,1, . . . , zw,n) =
∧

i∈[n],j∈[w]

ESTj,i(zj,i)

where ESTj,i(zj,i) computes as follows. It interprets zj,i as t
samples of length n, and computes

ESTj,i(s1, . . . , st)

= I

[
Pr
k∈[t]

[B[vj,i, sk] = vacc] ∈ [pvj,i→ − ε, pvj,i→ + ε]

]
.

(where vj,i is as defined in Theorem VI.18 in terms of H).
Then E[EST] > 1/2, and for every z such that EST(z) = 1,
for every j, i, using the samples in block zj,i of z to estimate
the acceptance probability from vj,i produces an estimate with
at most ε additive error.

Proof Sketch. It is clear that ESTj,i can be computed by an

ordered branching program of the claimed length and width,

by duplicating the subprogram of B starting from vj,i and

counting the number of satisfied trials using an additional

1005

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

O(log(t)) bits of memory, and accepting if the final count

is within the specified range. Thus the conjunction EST can

be computed in the claimed space bound. We then choose t
sufficiently large such that a random input satisfies all these

checks with overwhelming probability. We note that EST is

defined in terms of the exact probabilities of acceptance, which

the tester does not have, but we only need that the program

exists, not that we can construct it.

Then the proof of Theorem VI.3 follows.

Proof of Theorem VI.3. By a standard reduction (see

e.g. [CH22]), H implies an explicit family of ε-hitting

sets for length n, width w OBPs with seed length

s(poly(nw/ε)) = O(s(nw/ε)) (where the final equality

follows as for any s(n) = Ω(log2 n) the theorem is trivial by

the fact that the Nisan PRG exists, so we may assume this is

not the case).

Let H be a ε/(6n)-HSG for length n and width w2 OBPs

with seed length O(s(nw/ε)). Let H2 be a 1/3-HSG for

length n2wt = poly(nw/ε), width (nw/ε)c OBPs, where

t is as in Theorem VI.20 with ε := ε/(6n). By choice

of parameters, H2 has seed length s2 := O(s(nw/ε)). The

sampler enumerates over every z ∈ {0, 1}s2 . For every such

z, the sampler calls the tester of Theorem VI.19, and when

an estimate p̃j,i for pvj,i→ = E[B[vj,i, Un−i]] is required by

the tester, we use the j, i block of H2(z) (as done by ESTj,i
in Theorem VI.20) to compute the estimate. Note that we can

find yj,i, the lexicographically first seed in equivalence class

j in layer i, in logspace, and by definition vj,i = vi(yj,i).
Thus, we can compute p̃j,i by enumerating over the samples

s1, . . . , st in block j, i in H2(z) and returning

E
k∈[t]

[B(H(yj,i)1..isk)] = E
k∈[t]

[B[vj,i, sk]].

If the tester accepts, return the value that the tester outputs, and

otherwise increment z. The space complexity is O(log(n)+s2)
by composition of space-bounded algorithms.

Now suppose the sampler returns a value. By Item 2 of

Theorem VI.8, the returned estimate is within ε/(6n) ·6n = ε
of the true expectation. To show the sampler returns a value,

note that by Item 1 of Theorem VI.8 it suffices to argue

that we give the tester a series of inputs {p̃j,i} such that

|pvj,i→− p̃j,i| ≤ ε/(6n) for every i, j. But these are precisely

the estimates generated by a string x such that EST(x) = 1,

and H2 hits this program by choice of parameters, so we

conclude.

REFERENCES

[ACR96] Alexander E. Andreev, Andrea E. F. Clementi, and José
D. P. Rolim. Hitting sets derandomize BPP. In Fried-
helm Meyer auf der Heide and Burkhard Monien, editors,
Automata, Languages and Programming, 23rd International
Colloquium, ICALP96, Paderborn, Germany, 8-12 July 1996,
Proceedings, volume 1099 of Lecture Notes in Computer Sci-
ence, pages 357–368. Springer, 1996.

[ACRT99] Alexander E. Andreev, Andrea E. F. Clementi, José D. P. Rolim,
and Luca Trevisan. Weak random sources, hitting sets, and BPP
simulations. SIAM J. Comput., 28(6):2103–2116, 1999.

[AKM+20] AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh,
John Peebles, Aaron Sidford, and Salil P. Vadhan. High-
precision estimation of random walks in small space. In Sandy
Irani, editor, 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November
16-19, 2020, pages 1295–1306. IEEE, 2020.

[BF99] Harry Buhrman and Lance Fortnow. One-sided versus two-
sided error in probabilistic computation. In Christoph Meinel
and Sophie Tison, editors, STACS 99, 16th Annual Symposium
on Theoretical Aspects of Computer Science, Trier, Germany,
March 4-6, 1999, Proceedings, volume 1563 of Lecture Notes
in Computer Science, pages 100–109. Springer, 1999.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographi-
cally strong sequences of pseudorandom bits. SIAM J. Comput.,
13(4):850–864, November 1984.

[CH22] Kuan Cheng and William M. Hoza. Hitting sets give two-sided
derandomization of small space. Theory of Computing, 18(21):1–
32, 2022.

[Csa76] L. Csanky. Fast parallel matrix inversion algorithms. SIAM J.
Comput., 5(4):618–623, 1976.

[FK18] Michael A. Forbes and Zander Kelley. Pseudorandom generators
for read-once branching programs, in any order. In Mikkel
Thorup, editor, 59th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2018, Paris, France, October 7-9,
2018, pages 946–955. IEEE Computer Society, 2018.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum.
Delegating computation: interactive proofs for muggles. Journal
of the ACM (JACM), 62(4):1–64, 2015.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for
all one-way functions. In Proceedings of the Twenty-First Annual
ACM Symposium on Theory of Computing, STOC ’89, page
25–32, New York, NY, USA, 1989. Association for Computing
Machinery.

[GR14] Anat Ganor and Ran Raz. Space pseudorandom generators
by communication complexity lower bounds. In APPROX-
RANDOM, volume 28 of LIPIcs, pages 692–703. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

[GRZ23] Uma Girish, Ran Raz, and Wei Zhan. Is untrusted randomness
helpful? In 14th Innovations in Theoretical Computer Science
Conference, ITCS, 2023.

[GS92] Peter Gemmell and Madhu Sudan. Highly resilient correctors
for polynomials. Information processing letters, 43(4):169–174,
1992.

[GVW11] Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. Simplified
derandomization of BPP using a hitting set generator. In Oded
Goldreich, editor, Studies in Complexity and Cryptography. Mis-
cellanea on the Interplay between Randomness and Computation
- In Collaboration with Lidor Avigad, Mihir Bellare, Zvika
Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid
Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan,
Salil Vadhan, Avi Wigderson, David Zuckerman, volume 6650
of Lecture Notes in Computer Science, pages 59–67. Springer,
2011.

[HK18] William M. Hoza and Adam R. Klivans. Preserving randomness
for adaptive algorithms. In Eric Blais, Klaus Jansen, José
D. P. Rolim, and David Steurer, editors, Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2018, August 20-22, 2018 -
Princeton, NJ, USA, volume 116 of LIPIcs, pages 43:1–43:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[Hoz21] William M. Hoza. Better pseudodistributions and derandom-
ization for space-bounded computation. In Mary Wootters
and Laura Sanità, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2021, August 16-18, 2021, University of Wash-
ington, Seattle, Washington, USA (Virtual Conference), volume
207 of LIPIcs, pages 28:1–28:23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

[HU22] William M. Hoza and Chris Umans. Targeted pseudorandom
generators, simulation advice generators, and derandomizing
logspace. SIAM J. Comput., 51(2):17–281, 2022.

[HZ20] William M. Hoza and David Zuckerman. Simple optimal hitting
sets for small-success RL. SIAM J. Comput., 49(4):811–820,
2020.

1006

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudo-
randomness for network algorithms. In Frank Thomson Leighton
and Michael T. Goodrich, editors, Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, 23-25
May 1994, Montréal, Québec, Canada, pages 356–364. ACM,
1994.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E
requires exponential circuits: Derandomizing the XOR lemma.
In Frank Thomson Leighton and Peter W. Shor, editors, Proceed-
ings of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 220–
229. ACM, 1997.

[KvM02] Adam R. Klivans and Dieter van Melkebeek. Graph nonisomor-
phism has subexponential size proofs unless the polynomial-time
hierarchy collapses. SIAM J. Comput., 31(5):1501–1526, 2002.

[LPS88] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanu-
jan graphs. Combinatorica, 8(3):261–277, 1988.

[LV17] Chin Ho Lee and Emanuele Viola. Some limitations of the sum
of small-bias distributions. Theory Comput., 13(1):1–23, 2017.

[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom
generators for width-3 branching programs. In Moses Charikar
and Edith Cohen, editors, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019,
Phoenix, AZ, USA, June 23-26, 2019, pages 626–637. ACM,
2019.

[Nis90] Noam Nisan. Psuedorandom generators for space-bounded
computation. In Harriet Ortiz, editor, Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing, May 13-17,
1990, Baltimore, Maryland, USA, pages 204–212. ACM, 1990.

[Nis93] Noam Nisan. On read-once vs. multiple access to randomness
in logspace. Theor. Comput. Sci., 107(1):135–144, 1993.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces:
Efficient constructions and applications. SIAM J. Comput.,
22(4):838–856, 1993.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Jour-
nal of Computer and System Sciences, 49(2):149–167, October
1994.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in
space. J. Comput. Syst. Sci., 52(1):43–52, 1996.

[PV22] Edward Pyne and Salil P. Vadhan. Deterministic approximation
of random walks via queries in graphs of unbounded size. In
Karl Bringmann and Timothy Chan, editors, 5th Symposium on
Simplicity in Algorithms, SOSA@SODA 2022, Virtual Confer-
ence, January 10-11, 2022, pages 57–67. SIAM, 2022.

[Rei08] Omer Reingold. Undirected connectivity in log-space. J. ACM,
55(4):17:1–17:24, 2008.

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of
states in space bounded computation. In Jeffrey Scott Vitter,
Lawrence L. Larmore, and Frank Thomson Leighton, editors,
Proceedings of the Thirty-First Annual ACM Symposium on
Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA,
pages 159–168. ACM, 1999.

[RTV06] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Pseudoran-
dom walks on regular digraphs and the RL vs. L problem. In
Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, Seattle, WA, USA, May
21-23, 2006, pages 457–466. ACM, 2006.

[RVW01] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy
waves, the zig-zag graph product, and new constant-degree
expanders. Annals of Mathematics, 155(1), January 2001.

[Sha81] Adi Shamir. The generation of cryptographically strong pseudo-
random sequences. In CRYPTO, page 1. U. C. Santa Barbara,
Dept. of Elec. and Computer Eng., ECE Report No 82-04, 1981.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudoran-
dom generators without the XOR lemma. J. Comput. Syst. Sci.,
62(2):236–266, 2001.

[SZ99] Michael E. Saks and Shiyu Zhou. BPHSpace(S) ⊆
DSPACE(S3/2). J. Comput. Syst. Sci., 58(2):376–403, 1999.

[WB86] Lloyd R Welch and Elwyn R Berlekamp. Error correction for
algebraic block codes, December 30 1986. US Patent 4,633,470.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor
functions (extended abstract). In FOCS, pages 80–91. IEEE
Computer Society, 1982.

1007

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

