2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS) | 979-8-3503-1894-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/FOCS57990.2023.00061

2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)

Certified Hardness vs. Randomness for Log-Space

Edward Pyne Ran Raz

CSAIL
MIT
Cambridge, USA
epyne @mit.edu

Abstract—Let L be a language that can be decided in linear
space and let ¢ > 0 be any constant. Let A be the exponential
hardness assumption that for every n, membership in £ for inputs
of length n cannot be decided by circuits of size smaller than
2°". We prove that for every function f : {0,1}" — {0,1},
computable by a randomized logspace algorithm R, there exists
a deterministic logspace algorithm D (attempting to compute f),
such that on every input = of length n, the algorithm D outputs
one of the following:

1) The correct value f(z).

2) The string: “I am unable to compute f(z) because the
hardness assumption A is false”, followc;d by a (provenly
correct) circuit of size smaller than 2° for membership
in £ for inputs of length n’, for some n’ = ©(logn); that
is, a circuit that refutes A.

Moreover, D is explicitly constructed, given R.

We note that previous works on the hardness-versus-
randomness paradigm give derandomized algorithms that rely
blindly on the hardness assumption. If the hardness assumption
is false, the algorithms may output incorrect values, and thus
a user cannot trust that an output given by the algorithm is
correct. Instead, our algorithm D verifies the computation so
that it never outputs an incorrect value. Thus, if D outputs a
value for f(z), that value is certified to be correct. Moreover, if
D does not output a value for f(x), it alerts that the hardness
assumption was found to be false, and refutes the assumption.

Our next result is a universal derandomizer for BPL (the
class of problems solvable by bounded-error randomized logspace
algorithms)': We give a deterministic algorithm U that takes as
an input a randomized logspace algorithm R and an input = and
simulates the computation of R on z, deteriministically. Under
the widely believed assumption BPL = L, the space used by U
is at most C'r - logn (where Cr is a constant depending on R).
Moreover, for every constant ¢ > 1, if BPL C SPACE[(log(n))]
then the space used by U is at most Cr - (log(n))°.

Finally, we prove that if optimal hitting sets for ordered
branching programs exist then there is a deterministic logspace
algorithm that, given a black-box access to an ordered branching
program B of size n, estimates the probability that B accepts
on a uniformly random input. This extends the result of (Cheng
and Hoza CCC 2020), who proved that an optimal hitting set
implies a white-box two-sided derandomization.

Index Terms—pseudorandomness, space-bounded computation

E.P. is supported by an Akamai Presidential Fellowship. Part of this work
was done while visiting the Simons Institute Program on Meta-Complexity.
R.R. is supported by a Simons Investigator Award and by the National
Science Foundation grant No. CCF-2007462. W. Z. is supported by a Simons
Investigator Award and by the National Science Foundation grant No. CCF-
2007462.

'Our result is stated and proved for promise-BPL, but we ignore this
difference in the abstract.

Department of Computer Science

Princeton University
Princeton, USA

ranr @cs.princeton.edu

Wei Zhan
Department of Computer Science
Princeton University
Princeton, USA
weizhan @cs.princeton.edu

I. INTRODUCTION

In a recent work, Girish, Raz and Zhan studied the power
of untrusted randomness [GRZ23]. One of their main obser-
vations was that randomized logspace computations are veri-
fiable using only O(logn) random bits. More precisely, every
problem in BPL has a streaming proof between a randomized
logspace prover and a randomized logspace verifier, where the
verifier uses only O(logn) random bits and has a read-once
one-way access to the proof that is streamed by the prover. In
other words, the prover provides a polynomial-length proof
that is streamed to the verifier and the verifier can check
whether the computation was performed correctly using only
O(log n) random bits.

This raises the following intriguing possibility. Try to re-
place the random string of the prover by, say, the digits of .
In most cases, that should work and the computation should
be performed correctly, as the digits of 7= seem unrelated to
most computations. In the rare cases that the computation is
not performed correctly, the verifier will figure that out, as
the verification will fail with high probability, so no harm is
done. Moreover, since the digits of 7 can be generated de-
terministically in small space, the prover is now deterministic
so the verifier can fully simulate the prover. Since the verifier
uses only O(logn) random bits, the verifier can just try all
possibilities for these random bits so that the verifier is also
deterministic?, and thus the entire interaction is now simulated
by a deterministic logspace algorithm.

This approach won’t derandomize all randomized logspace
computations, since the digits of m can be generated by a
small space algorithm. The digits of m were not designed to
fool randomized computations. The next logical step is to try
to use sequences that were designed to fool randomized com-
putations, namely, candidate constructions of pseudorandom
generators, such as pseudorandom generators that are based on
the hardness-versus-randomness paradigm [Sha81], [YaoS82],
[BM84], [NW94], [IW97], [STVO01], [KvMO2]. Such pseu-
dorandom generators fool randomized computations, within a
certain complexity class, assuming that certain widely-believed
hardness assumptions hold.

2Derandomizing the verifier by trying all possibilities for its random bits
is not possible when the prover is randomized, or when the prover cannot be
simulated by the verifier, since the verifier needs multi-access to the output
of the prover in order to do that.

979-8-3503-1894-4/23/$31.00 ©2023 IEEE 989

DOI 10.1109/FOCS57990.2023.00061
Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

Let G be a candidate construction for a pseudorandom
generator, designed to fool randomized logspace computations,
and assume that G uses logarithmic space and O(logn)
random bits. We can try to replace the random string of the
prover by pseudorandom sequences that are generated by G.
Since, if we do so, both the prover and the verifier use a
logarithmic number of random bits, the verifier can simulate
the entire interaction by a deterministic logspace algorithm. If
one of the poly(n) possibilities for the O(logn) random bits
of the generator results in a valid proof that the computation
was performed correctly, the verifier will figure that out and
accept that computation. If all poly(n) possibilities fail, the
verifier will alert that the generator failed. Thus, the algorithm
never outputs an incorrect value.

If the generator G is based on the hardness-versus-
randomness paradigm, a failure of the generator implies that
the hardness assumption that the generator is based on is
false. Moreover, proofs that are based on the hardness-versus-
randomness paradigm are typically constructive, in the sense
that they show that if the generator fails then one can construct
a circuit that refutes the hardness assumption. If we can prove
that constructing that circuit can be done in deterministic
logspace then the verifier can obtain a circuit that refutes the
hardness assumption that G is based on.

We use a variant of the hardness-versus-randomness pseu-
dorandom generator of Klivans and van Melkebeek [KvMO02]
that builds on [NW94], [IW97], [STVO01] to derandomize BPL
(assuming an exponential hardness assumption). Based on this
generator, we obtain the following result.

Theorem L.1. Let L be a language that can be decided in
linear space and let ¢ > 0 be a constant. Let A be the
exponential hardness assumption that for every n, membership
in L for inputs of length n cannot be decided by circuits of
size smaller than 2°™. Let [: {0,1}* — {0, 1} be a function
computable by a randomized logspace algorithm R. Then,
there exists a deterministic logspace algorithm D (explicitly
given from R), such that on every input x of length n, the
algorithm D outputs one of the following:

1) The correct value f(x).

2) The string: “Unable to compute f(x) because the hard-
ness assumption A is false”, followed by a (provenly
correct) circuit of size smaller than gen’ for membership
in L for inputs of length n/, for some n' = O(logn);
that is, a circuit that refutes A.

In other words, while the algorithms given by all previ-
ous derandomization results based on the hardness-versus-
randomness paradigm rely blindly on the hardness assumption,
and may output incorrect values if the hardness assumption is
false, our algorithm D never outputs an incorrect value: If
the hardness assumption is true, D always outputs the correct
value f(z). If the hardness assumption is false D still outputs
the correct value f(z), or alerts that the hardness assumption
is false, and refutes the assumption.

In particular, if the hardness assumption used in Theorem I.1
is true (and there are several such assumptions that are

990

widely believed to be true), Theorem I.1 gives a deterministic
logspace algorithm that always outputs the correct value of
f(x) and that value is certified to be correct. In that sense,
if the hardness assumption is true, the algorithm given by
Theorem I.1 effectively functions as a full derandomizer for
the class BPL.

We note that in previous works, the, so called, reconstruc-
tion step, in which a circuit that refutes the hardness assump-
tion is constructed (when the generator fails), required the use
of randomness in multiple places and was not known to be
computable in logspace. Our main technical contribution in the
proof of Theorem I.1 is carefully designing the pseudorandom
generator and proving that for that generator, all parts of the
reconstruction step can be done in deterministic logspace.
We view this result, that the reconstruction can be done in
deterministic logspace, as a separate contribution of our work.

Let us go back to the observation that every problem in
BPL has a streaming proof between a randomized logspace
prover and a randomized logspace verifier, where the verifier
uses only O(logn) random bits and has a read-once one-way
access to the proof that is streamed by the prover [GRZ23].
The proof is based on a protocol where the prover computes
and streams the probability to reach each state of the branching
program, underlying a randomized algorithm, and the verifier
checks that these probabilities are consistent between each two
consecutive time steps.

While we can use this approach to prove Theorem .1, we
give here a slightly different and more direct proof, where the
verification is done by verifying that the distribution of each
bit that the pseudorandom generator outputs, conditioned on
reaching each state of the underlying branching program, is
close to uniform. These conditional probabilities are computed
directly by checking all possible outputs of the pseudorandom
generator. This is possible because the generator uses only a
logarithmic number of random bits and hence the number of
possibilities is polynomial in n. This approach is related to the
work of Nisan [Nis93], who used a similar approach to check
if a given polynomial-size set of strings is sufficiently random
to simulate a randomized computation with high accuracy,
in his proof that BPL C ZP*L (where ZP*L is zero-error
randomized logspace, where the machine has two-way access
to the random tape).

The discussion above implies that the output of a candidate
pseudorandom generator G (that uses logarithmic space and
O(logn) random bits) can be verified as being sufficiently
random for a given randomized logspace computation. With
this in mind, it is natural to try to find a pseudorandom
generator that will be sufficiently good for a given randomized
logspace computation, by an exhaustive search over all possi-
ble generators (using the fact that the generator is described
by a constant size Turing machine). The final goal is to obtain
a universal derandomizer, that will do at least as good as the
best pseudorandom generator.

We explore this idea and discover that an even stronger
result can be proved. We explicitly construct a universal de-
randomizer U for prBPL (promise-BPL, the class of promise

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

problems solvable by bounded-error randomized logspace al-
gorithms) that runs in the best possible deterministic space
bound on prBPL.

More precisely, we give a deterministic algorithm U that
takes as an input a randomized logspace algorithm R and an
input z and simulates the computation of R on z. Under
the widely believed assumption prBPL L, the space
used by U is at most Cp - logn (where Cr is a constant
depending on R). More generally, for every constant ¢ > 1,
if prBPL C SPACE](log(n))¢] then the space used by U is
at most C - (log(n))¢. We emphasize that the point here is
that U is deterministic and is explicitly given, rather than an
existential result. We remark that a similar result is not known
in the time bounded case, and seems hard to obtain. We also
remark that the best currently known space bound on BPL is
prBPL C SPACE|(log(n))'*~°(1] [SZ99], [Hoz21].

Theorem 1.2. Let U be the deterministic algorithm that
is explicitly given in Section V, that takes as an input a
randomized logspace algorithm R and an input x. Assume
that the probability that R accepts on x is either < 1/4
or > 3/4. Then, if the probability that R accepts on x
is < 1/4, the output of U on input R,z is O and if the
probability that R accepts on x is > 3/4, the output of
Uon input R,x is 1. Moreover, for every constant ¢ > 1,
if prBPL C SPACE]|(log(n))¢] then the space used by U is
at most Cr - (log(n))¢, (where Cg is a constant depending
on R).

We note that one can bound the space used by U, in
Theorem 1.2, also by C - (log(/N))¢, where C' is a universal
constant and N is an upper bound on both the length and width
of the branching program underlying the computation of R on
x (under the assumption prBPL C SPACE[(log(n))]). (See
Theorem V.1).

Another prior work that is related to our work, as well as
to [Nis93], [GRZ23], is the work of Cheng and Hoza [CH22].
Cheng and Hoza proved that an optimal hitting set gener-
ator (the one-sided analogue of a pseudorandom generator)
for logspace would imply BPL = L (whereas the direct
conclusion of such a hitting set generator would only be
RL = L) [CH22]. To prove this result, they show how to
use the hitting set generator to guess (approximations of)
the probability to reach each state of a branching program,
and they then check that these probabilities are consistent
between each two consecutive time steps (similarly to and
prior to [GRZ23]).

The proof given by Cheng and Hoza uses the explicit
description of the underlying branching program. Our final
result is an extension of their result to the case where the
branching program is not given explicitly, but rather one only
has oracle access to it, that is, access as a black box.

Theorem 1.3 (Informal: formally stated and proved in Sec-
tion VI). Assume that optimal explicit hitting set generators
Sfor width n, length n ordered branching programs exist. Then
optimal deterministic samplers for width n, length n ordered

991

branching programs (with oracle access to the branching
program) exist.

The proof of this result relies on developing a “local
consistency” test that can be implemented (using a hitting set)
given black-box access to a branching program, in contrast to
all prior tests in the literature [Nis93], [CH22], [GRZ23].

We remark that Cheng and Hoza [CH22] prove a version of
this result for constant width branching programs (in addition
to their non-black-box result on length n, width n programs
that capture BPL). They state a black-box equivalence in the
BPL vs L regime as an open question, which we resolve. Our
result complements equivalent results in the BPP vs P regime;
several prior results [ACR96], [BF99], [ACRT99], [GVW11],
[CH22] show that a hitting set for general circuits implies
a deterministic sampler for general circuits. Thus, we close
the gap in understanding between time-bounded and space-
bounded derandomization with regards to this question.

One-Sided Two-Sided
Black-Box ° [Theorem 1.3] R
White-Box R

We hope that our progress can eventually be used to get an
equivalence in the white-box regime, that is, that prRL =
L = prBPL = L. Such a result was established in the
time-bounded regime by [BF99].

A common theme in all of our results is that our proofs ex-
ploit, and further demonstrate, the intriguing idea that in some
settings randomized logspace computations can be verified.

A. Related Work

There have been four decades of work attempting to de-
randomize randomized logspace, that is, prove BPL = L.
This work has taken (at least) two major forms: constructions
of pseudorandom generators (PRGs) and their generaliza-
tions [Nis90], [INW94], [NZ96], [GR14], [FK18], [MRT19],
[HZ20] and white-box derandomizations [SZ99], [RR99],
[Rei08], [RTV06], [AKM™20], [Hoz21]. This has resulted
in a varied landscape, with explicit constructions of PRGs
that obtain highly nontrivial but (presumably) suboptimal seed
lengths, white-box derandomizations, and candidate construc-
tions. We emphasize that these candidate constructions consist
of both generators whose security follows from a certain
hardness assumption [KvMO02], and candidates that are not
known to follow from a hardness assumption (for instance,
the XOR of two small-bias distributions has been proposed as
a candidate by Reingold and Vadhan [LV17]).

As mentioned above, besides [KvMO02], the works most
relevant to ours are [Nis93], [CH22], [GRZ23]. All these
works have an element of verification that a randomized
computation was performed correctly (in various forms and
for various purposes), an idea that is also central in our work.

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

II. PRELIMINARIES

We first define notation related to pseudorandom generators
and branching programs.

Definition IL.1. Given a distribution D over a space [S], let
x < D represent drawing x € [S] from D. We let U,, denote
the uniform distribution over {0, 1}".

Definition II.2. Given a pseudorandom generator (PRG) G :
{0,1}* — {0,1}" and a function f : {0,1}" — R, we use
E[f] and E¢[f] to denote the expectation of f under uniformly
distributed inputs and pseudorandom inputs generated by G
respectively, that is,

E [f(2)],

U,

E

y«Us

Elf] E[f]

G

(&)

And we say that G e-fools f if |[E[f] — Eq[f]| <e.

Definition I1.3. An ordered branching program (OBP) B of
length n and width w is a directed acyclic graph whose vertices
(or states) V(B) are partitioned into n + 1 layers V,...,V,
where |V;| < w. For each i < n and v € V,, there are two
outgoing edges, labeled with 0 and 1 respectively, that lead
into V;41. Vj constains a single state v, which is the starting
state, and each state in V,, is labeled with a real number as the
output of the branching program. Unless otherwise specified,
we assume that the labels are either O or 1. In that case, we
assume without loss of generality there is a single state labeled
with 1, which we denote v,c..

For each v € Vi, 0 € {0,1}* and u € Vs, we say
Blv, o] = u if B transitions from state v to state u following
the edges labeled by the bits in o. We can think of B as a
function on {0, 1}" such that for every x € {0,1}", B(x) is
the label on the output state B[vg, z|. For each v € V;, let B_,,
be an OBP of length ¢ and width w such that B_,,(z) = 1 if
and only if Blvg,z1 ;] = v.

For each v € V, let

P—v = Pr[B[Ustv Uz] = U]7 Pv—s = PI’[B[U, UTL—I] = vacc]-

III. EFFECTIVE HARDNESS TO RANDOMNESS

We prove Theorem 1.1 in several stages. In the first stage,
we show a testing procedure that, given a candidate PRG and
an ordered branching program, either certifies that the PRG
fools the branching program, or outputs a branching program
that acts as a next-bit predictor for G. We then show how to
go from such a next-bit predictor to a counterexample to the
hardness assumption.

A. Verifiable PRGs for Logspace

We first show that there is a logspace verifier for PRGs
(with logarithmic seed) against logspace OBPs, which detects
when a PRG fails and outputs an example OBP that the PRG
fails to fool. To formalize this, we recall the notion of a next-
bit-predictor.

Definition IIL.1. Given a function G : {0,1}* — {0,1}",
a branching program 7 : {0,1}* — {0,1} for i < n

992

is an e-next-bit-predictor for G if Pr,.y [T(G(x)1.4)
G(@)iy1] > 1/2+e.

Note that the uniform distribution is 0-next-bit-predictable,
even for a computationally unbounded distinguisher.

We prove in this section the following lemma:

Lemma IIL.2. For every error function £(n) computable in
space O(logn), there is a deterministic algorithm that, given
as input an OBP B of length n and width w, and the black-
box oracle access to a PRG G : {0,1}* — {0,1}", runs in
space O(s + log(nw)), and either

1) Confirms that G ¢ - n-fools B; Or
2) Outputs an OBP T of length at most n and width w that
is an £ /2-next-bit predictor for G.

The main idea behind this proof has appeared before for
different purposes [Nis93], [CH22], [GRZ23], and in fact
(modifications of) all these results can be used to prove
Theorem II1.2. However, we give a self-contained proof.

To prove Theorem III.2, we first define a series of potential
distinguishers, with the property that each can be evaluated in
logspace. Each distinguisher measures the bias of the next bit
in the PRG upon reaching a particular state.

Definition IIL.3. Given an OBP B of length n, for every ¢ < n
and v € V;, let N, : {0,1}**! — {—1,0,1} be the function
defined as:

1 if By(x)=1and x;4; =1
Ny(z) =4 -1 if B,(z)=1and z;41 =0
0 otherwise.

Furthermore, N, is computable in logspace given B and v.

When 2 is uniformly random, B_,,(x) and z;41 are inde-
pendent, and therefore E[V,,] = 0 for all v. Consequentially,
our verifier checks that | Eg[N,]| is small for all v, where we
feed the first 7+ 1 bits of the PRG output to NV,,. We first show
its soundness:

Lemma II1.4. Given an OBP B of length n, suppose that for
every i, > cv. |EG[N,]| < e. Then G & - n-fools B.

Proof. As every edge from layer V; goes into layer V; 1, for
every ¢ < n we have

> |ElB] ~EIB-.]
veEVip1
< J—
<Y 1Py B
veV; be{0,1}

;y(—lC);st)[B*W(x) =1A Tit+1 = b”

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

Notice that by the definition of N,,, we have
E[N,] = Pr [Bow(z) = 1A 241 = 1]

zUn
— Pr [B_H,(JJ) =1A Ti4+1 = 0}
U,
=2 Pr [B_,,(x) =1 Awip1 = 1] — E[B,]
U,

[—>v]_2 Pr [B_w()—]./\ZL'Z‘_H:O],

zUn,

and the above holds similarly under pseudorandomness gen-
erated by G. Therefore we further have

Z ’E[B—»v] - ICE;’[B—HJ

veEVip1
<y \E[Bﬂ] —EBL|+ Y \E N,
veV; veV;
veV; veV;

With the assumption that 3 i [Eg[N,]| < ¢ and the
fact that E[B_,,,] = Eg[B_.,,] = 1, we conclude that
> vev, [E[Bo] —Eg[Boy]| < € n. As the output labels
are binary, this means that |E[B] —Eq[B]| < € -n, ie. G
¢ - n-fools B. O

Proof of Theorem II1.2. For every ¢ < n, the algorithm iter-
ates through every v € V; and all the possible seeds for G,
computes >, 1 |Eg[N,]| and checks if it is at most e. This
can be done in space O(s+log(nw)). If all such checks pass,
we have by Theorem II.4 that G ¢ - n-fools B.

Otherwise, we find some ¢ < n such that
Yvev; |Ec[Ny]| > e Let T be an OBP of length i
that is the same as B from layer Vj to V;, such that the
output label on each v € V; is 1 if Eg[N,] > 0, and 0 if
E¢[N,] < 0. Such an OBP is of size at most that of B, and
can be constructed in space O(s + log(nw)). We have

P T(x1.:) = @;
acerUs)[(21..4) = ®iy1]
= > Wl;](rUs)[B%(x) =1Azi =1]
veV;
Ec[N,]>0
B_,, =1Axz;01 =0
v Y B B @ =1 hwe =
IEG[N]<O
= 5 (BB + [
veV;
1

B. Refutable Hardness Assumptions in Logspace

Theorem IIl.2 shows that, given an alleged PRG for
logspace, we can use it to either successfully derandomize
a logspace comptation, or explicitly output a counterexample
to the PRG. The results of the hardness-versus-randomness
paradigm claim that PRGs exist under certain hardness as-
sumptions. Combining these results with Theorem III.2, we
can derandomize logspace computations given any alleged

993

hard function, or determine that the hardness assumption does
not hold. However, Theorem 1.1 requires a stronger guarantee
from the algorithm - if the hardness assumption does not hold,
the algorithm needs to output a small circuit that falsifies this
assumption. Obtaining this result is the primary contribution
of Section IV.

We first recall the result of Klivans and van Melkebeek
[KvMO2].

Theorem IILS ([KvMO2]). If there is a family of boolean
functions f € SPACE[n] that is not computable by circuits of
size 2°™ for some € > 0, then BPL = L.

Their proof is based on the worst-case hardness vs. ran-
domness results by Imagliazzo and Wigderson [IW97], and
shows how every step in the construction of the Imagliazzo-
Wigderson PRG can be executed in deterministic logspace.
However, their proof (and all other proofs of the hardness vs.
randomness paradigm) does not show that given a branching
program (or circuit) that distinguishes the PRG from random
(i.e. contradicts the original hardness assumption), there is
an efficient deterministic logspace algorithm to produce a
circuit for the supposedly hard function. This is for two
reasons. First, the conversion from a distinguisher to a next
bit predictor (which we address in Theorem III.2). Even once
we obtain such a predictor, prior approaches used space- and
randomness-inefficient probabilistic method arguments to go
from a predictor to a worst-case correct circuit for the original
function. Our primary contribution in Section IV is to care-
fully design the PRG and develop an efficient reconstruction
procedure, given a distinguisher for the constructed PRG.

This leads to the following theorem:

Theorem IIL.6. For every family of boolean functions f €
SPACE(n] and € > 0, there is a deterministic algorithm that,
given as the input an OBP B of length n and width w = n,
runs in space O(logn), and either

1) Outputs E[B] with 1/4 error; Or
2) Outputs a circuit C of size 2°™ that computes [on
{0,1}™ where m = ©(logn).

Proof. Let G : {0,1}* — {0,1}™ be the generator of
Theorem IV.1 with ¢ = ¢ and f = f and let m = mg be
the instance size of f used to construct G.

We then apply Theorem II.2 on B and G with € = 1/(4n).
Of the two possible outcomes:

1) If it is certified that G £-n-fools B. In this case the algo-
rithm computes and outputs E[B] which approximates
E[B] within additive error 1/4.

Otherwise we get for some ¢ < n an explicit OBP T" of
length ¢ and width w, such that Pr,. ¢ [T(G(x)1.,) =
G(z)i41] > 3(1 +¢). In other words, T is an £/2 =
1/8n next-bit predictor against G of size at most n?,
and T can be evaluated in space O(logn). Then by
Theorem IV.1, we can construct in space O(logn) a
circuit C for f on inputs of size m = O(logn) of size
at most 2°™.]

2)

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

Now Theorem 1.1 follows:

Proof of Theorem 1.1. Given a randomized logspace algo-
rithm R with error probability at most 1/10 and input 2 €
{0,1}", let B be the branching program representing how R
uses its random bits on input x, which can be constructed in
logspace. By assumption R uses s = O(logn) bits of space
and hence at most 25701 = poly(n) random coins, and
hence B has length and width poly(n). Pad B to have length
and width n¢ and apply Theorem III.6 with f = £ and € :=¢.
Then we either obtain an estimate of E[B] up to £1/4 (which
suffices to decide the language by correctness of R) or a
counterexample (in the form of a circuit of size at most 27" to
the hardness of £ on inputs of size n’ = O(logn®) = O(logn)
bits, as desired. O

We prove Theorem IV.1 in the following section.

IV. EFFICIENT RECONSTRUCTIVE DERANDOMIZATION

We first state our main theorem of this section.

Theorem IV.1. Given € > 0, and a family of functions

fm + {0,1}™ — {0,1} € SPACE[m)], there is a family of

explicit generators G : {0,1}° — {0,1}" with s = O(logn)
computable in space O(logn), and a deterministic logspace
algorithm that, given n € N and a 1/(8n)-next-bit predictor B
for G of size at most n? which is evaluable in space O(logn),
outputs a circuit C of size 2™ for fp, with mo = O(logn).

We prove this theorem in four stages. Following the frame-
work of [TW97], we first assume that f is a (worst-case) hard
function, and construct a PRG via hardness amplifications and
the Nisan-Wigderson PRGs [NW94]. The detailed steps are
slightly different from those in [IW97], and we adapt the
following strategy:

1) From f, construct (by low-degree extension) a function
f’ that is hard-on-average on a 0.99 fraction of inputs.

2) From f’, construct (by derandomized XOR Lemma) a
function f” (with multiple bits of output) that is hard-
on-average on a 2~ (™) fraction of inputs.
From f”, construct (by Goldreich-Levin) a function f’”
with single-bit output that is hard-on-average on a 1/2+
2-9(m) fraction of inputs.

4) Use f" to instantiate a Nisan-Wigderson pseudorandom

generator G : {0,1}° — {0,1}" for s = O(m).

We make sure that f’, f”, f"”" and G are all computable within
O(logn) space.

Furthermore, we prove that every step can be made logspace
reconstructive, in the sense that given a counterexample to
the conclusion (i.e. a small circuit that obtains some advan-
tage) we can produce a counterexample to the assumption in
deterministic logspace. This requires modifying the standard
reconstruction algorithms for the first three steps, all of which
use randomness-inefficient applications of the probabilistic
method. Over the next four subsections, we state and prove
the necessary components of the reconstructive PRG, and in
Section IV-F, combine these results to conclude Theorem IV.1.

3)

994

A. Preliminaries

First, we recall some notation related to the advantage of
circuits.

Definition IV.2. Given f {0,1}™ — {0,1}™ and a
circuit C, let SUC(C, f) = Pryp,[C(z) f(z)]. For
m = 1, let ADV(C, f) = 2SUC(C, f) — 1. Let ADV,(f)
maxc;|c|<s ADV(C, f) and likewise for SUC(f).

We will repeatedly make use of an averaging sampler in
order to make probabilistic method arguments randomness
efficient. We first recall the definition of an averaging sampler,
and then recall the classical result in [RVWO1] that there exist
highly efficient averaging samplers, even with exponentially
small error.

Definition IV.3. Given m € N and ¢,§ > 0, we say that
SAMP : {0,1} — ({0,1}™)* is a t-query (m, e, §)-averaging
sampler with seed length [if for every ¢ : {0,1}" — [0,1]
we have

E [g(q:)] — Elg]

i€[t]

Pr { < E:| >1-0.
q1,...,q¢<SAMP(U;)
Proposition 1V.4 ([RVWO1]). Given m € N and € > 0,
there exists t = poly(m/e) and a t-query (m,e,272™)-
averaging sampler with seed length 4m. Moreover, the sampler
is evaluable in space O(m).

Another tool that is repeatedly used in our proof is the com-
binatorial design, which is a family of subsets Sy,...,5, C
[s] such that |S;| = as for some constant o € (0,1) and
all i € [n], while |S; N Sj| < 2a’%s for all i # j. The
design will be used at two places: once in derandomized XOR
Lemma (Section I'V-C) and once in the Nisan-Wigderson PRG
(Section IV-E). While the application in Section IV-C only
requires a linear-sized design, the application in Section IV-E
requires an exponential-sized design that is deterministically
constructible in linear pace. The later was formally given in
[KvMO2], so we concurrently use it for both applications.

Proposition IV.5 ([KvMO02]). For every « € (0,1), there
is € (0,1) such that for s € N one can deterministically
generate in space O(s) a combinatorial design of size n = 2Ps
over [s], that is, a family of subsets Sy, ..., S, C [s] such that
ISi| = as and |S; N S;| < 2a?s forall 1 <i < j<n.

B. Derandomizing the Polynomial Decoder

For step (a) in Theorem IV.1, we need to convert a worst-
case hard function to one with constant average-case hardness.

Lemma IV.6. Given [: {0,1}"™ — {0,1}, there is g :
{0,1}™" — {0,1} where m' = ©(m) such that, for every
circuit B such that SUC(B, g) > 0.99, there is a circuit C of
size mOM) - |B| such that

C(z) = f(z), Vo € {0,1}™.

Moreover, when [is computable in space O(m), g is also
computable in space O(m), and there is a deterministic O(m)-
space algorithm that, given the circuit B which is evaluable

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

in space O(m), prints C, and C is also evaluable in space

O(m).

The proof for Theorem IV.6 is inspired by [STVO1], where
we encode f through Reed-Muller codes and switch to boolean
domain via Hadamard codes. However, since we only need
the resulting function to be average-case hard on a constant
fraction of inputs, the code can be directly decoded instead
of list-decoded, and we derandomize the decoding procedure
with samplers.

We need the following two facts. The first is a folklore
fact on constructing low-degree extension, whose proof can
be found at [GKR15, Proposition 2.2]:

Proposition IV.7. Given a finite field F and a subset H C T,
and oracle access to a function f : H® — {0,1}, one can
compute in space O(log |F|+log () an (-variable polynomial
p : F¢ — F that coincides with f on H, and the degree of p
in each variable is smaller than |H|.

The second fact concerns decoding Reed-Solomon codes:

Proposition IV.8. Given a finite field F with |F| = N, whose
elements can be canonically listed as aq, . ..,an where a3 =
0, there exists a circuit DEC : FN — FN that satisfies the
following: If there exists a univariate polynomial q : F — F
of degree at most d < N, such that q(a;) = b; for at least
(N +d)/2 of i € [N], then

,bN) = (q(al), e

Furthermore, DEC is of size poly(N) and depth polylog(N),
and can be uniformly constructed in space O(log N) given
the arithmetics in F.

DEC(by, . .. sq(an)).

Proof. The circuit DEC instantiates the Berlekamp-Welch al-
gorithm [WB86], [GS92]. The algorithm involves solving
systems of O(N) linear equations on O(N) variables, for
which Csanky’s algorithm [Csa76] can be implemented in
logspace-uniform-NC. O

Proof of Theorem IV.6. We assume without loss of generality
that m is a power of 2. Let £ = m/logm, and T be a finite
field of characteristic 2 and size m?. Take H C F to be a
subset of size m, and we identify the domain {0, 1} of f
with H* as 2™ = |H|*. The arithmetics in F can be done
in time O(|F|) and space O(m), and so does the bijection
between {0,1}™ and H* (and its reverse).

Let p : F* — F be the polynomial in Theorem IV.7, and let
g : T — 10,1} be the function defined as

g(xlv s 7ml’y) = (p(xlv .. ,$2)7y>7

where (-,-) stands for inner product in Fo when taking the
binary representation of the two arguments in F. It is clear
that ¢ can be computed in space O(m), and the input of g has
length (¢ 4 1)log|F| = O(m) when represented in binary.
Now assume there is a circuit 3 such that SUC(B, g) > 0.99.
We first construct the circuit B’ : F¢ — T such that the i-th bit
of the output is Bi(x1,...,x¢) = MAJ,er(B(21, ..., 20, €; +

995

z) — B(z1,...,24,2)). Here e; is the element in F whose
binary representation has 1 on the i-th bit and 0 elsewhere.

Claim IV.9. SUC(B',p) > 0.96.

Proof. Since SUC(B,g) > 0.99, there are at least a 0.96-
fraction of (x1,...,2,) € F* such that B coincide with g on
more than 3/4 of y € F, which contains both z and (e; + z)
with probability larger than 1/2 for a random z € F. In such
cases we have Bj(z1,...,z¢) = (p(x1,...,x¢), €;) for every
i, and thus B'(z1,...,2¢) = p(a1,...,z¢). O

From B’, we reconstruct the circuit C : {0,1}" — {0,1}
as follows. Let SAMP : {0,1}%¥™ — (F%)! be the sampler in
Theorem IV.4 with € = 0.01 and thus ¢ = poly(m). We think
of SAMP as sampling ¢ random vectors v = (v1,...,v7) €
F*, and given the input x = (x1,...,2¢) € H* for C, each
vector v represents a line {x + Av | A € F}. On each line,
p(x + Av) is a univariate polynomial on A of degree at most
(|H| = m?/logm, and we use the decoder circuit DEC in
Theorem IV.8 to decode the Reed-Solomon code given by 5’
on the line. We let the value of C(z) to be the most common
(breaking ties arbitrarily) decoded value among the ¢ lines.
Notice that this process depends on the seed of the sampler,
and we actually go through all the seeds and choose the one
that makes C(z) correctly compute f on all z € H.

Formally, we present this linear space reconstruction algo-
rithm as Algorithm 1.

Algorithm 1: RM_RECON(f,)

1 Let SAMP : {0, 1}*™ — (F*)! be the sampler of
Theorem IV.4 with ¢ = 0.01.
2 for y € {0,1}%™ do

3 Let vy, ...,vs < SAMP(y).
4 | LetC:{0,1}™ — {0,1} be the circuit
C(x) = MAJ;cp) (DEC1 ((B' (x4 Avg))xer))-
5 if C(x) = f(x) for all z € {0,1}™ then return C
6 end

The circuit C constructed in the algorithm is of size
2t[F2|B] + mP™M) = m©P) . |B], and has additional depth
polylog(m) compared to that of B. Therefore C can be
evaluated in space O(m).

Now we prove that the algorithm always returns a valid
circuit C. Notice that for uniformly random v € F 2+ Mo
is also uniformly random after given = and A\ # 0. Since
SUC(B’,p) > 0.96, it means that there are at least a 0.84-
fraction of v € F’ such that B’ coincide with p on x + A\v
for at least 3/4 of A € F,\ # 0. Recall that the degree of
q(A) = p(x+ M) is at most £|H| = |F|/logm, and therefore
by Theorem IV.8 we conclude that for every x € {0,1},

vfe’]gz [DEC((B'(x 4+ Av))rer) = (p(z + M) rer] > 0.84,
in which case we have DECi((B'(z + A\v))rer) = p(x).
Viewing this probability as an expectation of the indicator

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

function on v, by the guarantee of the sampler in Theo-
rem IV.4 we have, letting vy,...,v; < SAMP(Us,,), that
PI‘g [Prie[t] [DECl((B/(l‘ + >\U1)),\€]F) = p(x)} > 051} >1-—
274m_ By a union bound over z € {0,1}™, there must exist
ay € {0,1}%™ such that C(z) = p(x) = f(z) for all
x € {0,1}"™. Therefore the algorithm always returns such a
circuit C. Moreover, the algorithm can be implemented to run
in space O(m), as we can enumerate over seeds to the sampler
and construct the circuit (as a function of the sampler output)
in space O(m), and test if the circuit correctly computes f in
this space bound. O

C. Derandomizing the Derandomized XOR Lemma

Our next step follows the approach of Impaggliazo and
Wigderson [IW97], who use a derandomized XOR lemma to
produce from a function that is hard on a constant fraction
of inputs, a function that is hard on any exponentially small
fraction of inputs. The construction is identical to the one in
[TWO97], except that we modify the reconstruction algorithm
and analysis to make the circuit C constructible in deterministic
space O(m).

Lemma IV.10. For every v € (0, 1), there is an O(m)-space
computable function G : {0,1}™ — ({0, 1}™)™, where m/ =
O(m/7), that satisfies the following: Given [: {0,1}™ —
{0,1}, and a circuit B satisfying SUC(B, f™ o G) > 277™,
there exists a circuit C of size 2°0™) . |B| such that

suc(C, f) > 0.99.

Moreover, when f is computable in space O(m), there is a
deterministic O(m)-space algorithm that, given the circuit 1B
which is evaluable in space O(m), prints C, and C is also
evaluable in space O(m).

We first give the construction of the function G, which is
called a direct-product generator in [IW97]. As in [IW97],
it consists of two components: an expander walk and a
combinatorial design. For the expander walk, we need an
explicit expander where the neighbors of a vertex can be
efficiently computed:

Proposition IV.11 (see e.g. [LPS88]). There is a constant
A € (0, 1), such that for every m € N, there exists a 4-regular
graph E,, on the vertex set {0,1}™ with spectral expansion
(second largest eigenvalue of the normalized adjacency ma-
trix) at most), such that given any vertex v € {0,1}™,
its neighbors can be computed in time poly(m) and space

O(log m).

Define the expander walk function EW : {0,1}%" —
({0,1}™)™ as follows: Given the input v € {0,1}™ and
d = (dy,...,dy) € [4]™, the output is sequence of ver-
tices vy,...,v,, in E,, that starts with vy = v, and take
v;i4+1 to be the d;-th neighbor of v;. On the other hand, let
S1,...,Sm C [s] be the first m sets in the combinatorial
design from Theorem IV.5 with &« = v/2 and s = m/a. Then
we defined the function G : {0, 1}3™+5 — ({0,1}™)™ as:

G(r,v,d) = ((r|51) G®EW(v,d)1,...,(r|s,,) ®EW(v, d)m).

996

Here r|g is the part of r € {0,1}* on indices S, and @ is
bit-wise XOR. From the definition we have that G can be
computed in time poly(m) and space O(m). The input length
of Gis m' =3m +2m/y = O(m/7v).

Now given f : {0,1}™ — {0, 1}, assume there is a circuit
B such that SUC(B, f™ o G) > 277", Before we move on
and show how to reconstruct the circuit C efficiently and
deterministically from B, let us first review the reconstruction
step in [IW97]. For i € [m], x € {0,1}", a € {0,1}*~™,
v € {0,1}™ and d € [4]™, let h(i,z,a,v,d) = (r,v,d) where
r € {0,1}* such that

rls, =z ®EW(v,d); and |5 = a.

The function h is called the restricting function of G. Given
x € {0,1}™, with 4,a,v and d chosen uniformly at random,
they build a circuit F that first simulates B to compute
B(h(i,z,a,v,d)) = (y1,...,Ym). Then it computes a number
t defined as

t={i#ilu; # £(G; o hixa,v,d)}],

and outputs y; with probability 2%, while outputting a random
bit with probability 1 — 2~¢. To compute ¢, for each j # i,
f(Gj o h(i,z,a,v,d)) is computed through a non-uniformly
constructed look-up table for f of size 27", containing the
values of f(x;) for all possible j-th output z; of G o h with
the fixed ¢, a,v and d.

We could not resort to non-uniformity to construct the look-
up table. Nevertheless, when f is computable in space O(m),
we can compute the entire table in space O(m) and hardwire
it to the circuit. Even better, when 7, a, v and d are given, each
output z; of G oh is fixed except for ym bits (corresponding
to the coordinates in S; N S}), so we only need to go through
all 27 possibilities for these bits to compute the table.

The circuit F presented above uses a string R of |R| =
O(m) random bits, including i,a,v,d along with w €
{0,1}™*+L, the randomness used to decide the final output.
It was proved in [IW97] that:

Proposition IV.12 ([IW97, Theorem 15]). Suppose that
SUC(B, f™oG) > 277™. There exists ¢ > 0 (that depends on
), such that the fraction of inputs x € {0,1}™ with

PriF(z, R) = f(x)] =2 1/2+277" /e

is more than 0.99.

Therefore, the final circuit C takes O(m-227™) independent
copies of F and outputs their majority, and there exists a fixing
of the randomness that provides the final deterministic circuit
C. We could not afford to store exponentially many random
bits if they are independently sampled. Instead, we employ
the efficient sampler in Theorem IV.4 that uses only O(m)
random bits as the seed to generate 29V samples, and we
can enumerate over all the seeds to find the one that makes
SUC(C, f) > 0.99. As shown in the proof below, such seed
always exists.

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

Proof of Theorem IV.10. Let F : {0,1}™+El — {01} be
the circuit described above, and ¢ > 0 be the constant
in Theorem IV.12. We give the formal description of the
linear-space algorithm for the reconstruction procedure as
Algorithm 2.

Algorithm 2: XOR_RECON(f, B)

1 Let SAMP : {0, 1}41% — ({0, 1}/E1)? be the sampler of
Theorem IV.4 with e = 277™/(2¢).

2 for y € {0, 1}*1%l do

3 Let Ry,..., R; < SAMP(y).

4 | LetC:{0,1}™ — {0,1} be the circuit

C(x) =MAJ(F(z,R1),...,F(z,R:)).

5 if SUC(C, f) > 0.99 then return C
6 end

By Theorem IV.4 we have t = poly(m/e) = 2°00™) for
€ = 277" /(2¢). From the description we know that F has size
|B| + 27 - m©1), and therefore C has size t|F| +m°1) =
20(ym) . |B|. When B is evaluable in space O(m), C is clearly
also evaluable in space O(m).

By the guarantee of the averaging sampler SAMP in The-
orem IV4, for every z € {0,1}"™, letting Ry,...,R; <«
SAMP(U4|R|)

Pr [
B
By Theorem IV.12, there exists a subset V' C {0,1}"™ such
that |V| > 0.99 - 2™, such that for every z € V:

z‘gt] [}—(x? Rl)]

~ElF(r, R)]] < } > 1 g2ll
[EF @ R) -)| <1227 e =172 2
Therefore for every x € V/, it is implied that

Pr{
R

which means that

E [F(z, R)] - f(x)

i€(t]

< 1/2—25+e] >1—27 2%l

PrMAJ(F(z, Ry), ..., F(z,Ry)) = f(x)] > 1 — 2727
R
>1-1/|V].

By a union bound over z € V, there must exist a y €
{0, 1}41%l such that C(x) = f(x) for all = € V, which satisfies
SuC(C, f) > 0.99. Therefore the algorithm always returns a
valid C. Moreover, the algorithm runs in space O(m), as it
enumerates the seeds of length O(|R|) = O(m), constructs
and evaluates the circuit C and makes oracle calls to f, which
all can be done in space O(m). O

D. Derandomizing the Goldreich-Levin Theorem

Lemma IV.13. Given [: {0,1}™ — {0,1}™, let g
{0,1}™x{0,1}™ — {0, 1} be defined as g(xz,r) = (f(x),r).
Then, given § > 0, there is &' > Q(63/m) so that, for every

997

B satisfying ADV(B, g) > 0, there is a circuit C of size at most
IB| - (m/8)°WM) satisfying

suc(C, f) > &'

Moreover, when f is computable in space O(m), there is a
deterministic O(m)-space algorithm that, given the circuit B
which is evaluable in space O(m), prints C, and C is also
evaluable in space O(m).

Note that the original Goldreich-Levin theorem [GL89]
does not guarantee (and in fact does not give) an efficient
deterministic reconstructor, as it is not randomness efficient. A
later work of Hoza and Klivans [HK18] achieves this, though
with a significantly more involved proof. As such, we directly
show this using small-bias spaces, which we define now:

Definition IV.14. A function G : {0,1}* — {0,1}* is an &-
biased generator if G(U,) is a e-biased probability space over
{0, 1}*, which formally means that for every T € {0, 1}*,
Pr [(T,G(y)) =1] € [1/2 —¢,1/2+¢].
y«Ut
We recall that small-bias generators exist with good seed

length, and moreover these generators can be evaluated in
small space:

Proposition IV.15 ([NN93]). Given k € N and € > 0, there is
an O(t)-space evaluable e-biased generator BIAS : {0,1}% —
{0,1}* with seed length t = O(log(k/e)).

We require a basic Fourier-analytic lemma, that states that
a small-bias space fools the conjunction of k parities.

Lemma IV.16. Let BIAS : {0,1} — {0,1}* be an c-biased
generator. Then for every collection T}, ..., Ty € {0,1}* and
U1, 00 €{0,1}, let f(r) == N, (g (T3, r) @ ;). Then we
have ‘ETFBIAS(Uf,)[f(T)} —Eru, [f(r)]’ < 2e.

Proof. We have

N (Tir) @ v)

i€[d]

=1-2.27¢ Z @—\(<T¢,T>®vi)

SC[d] i€S
=1-2.27¢ Z <<@Tr> @@wi>
€S €S

5C[d)
and as BIAS fools all such parities to error € in the summation
over S C [d], we have that the total error is at most 2e. [

Proof of Theorem IV.13. If § < 2™, we can choose §' =
27 and the lemma trivially holds for a circuit C outputting
a constant. Therefore, from now on we assume that § > 27"
We formally state our algorithm as Algorithm 3, with ¢’ to
be determined later. Note that £ = O(m), and therefore in the
e-biased generator BIAS : {0, 1}* — {0,1}**™ we have t =
O(log(fm/e)) = O(m) with ¢ = 274m~1 and the algorithm
runs in space O(t + £+ m) = O(m).

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: GL_RECON(f, B)

1 Let £ + [log,(128m /6% +1)].

2 Let BIAS : {0, 1} — {0,1}**™ be the generator of
Theorem IV.15 with ¢ = 274m~1,

3 for y € {0,1}" do

4 Let r1,...,7¢ < BIAS(y).

s | for (by,...,b) € {0,1}* do

6 Let C: {0,1}™ — {0,1}"™ be the circuit that

for each i € [m]:

Ci(z) =MAJ jcig.g20(b” @ Bz, r! @ ¢;)).

7 if SUC(C, f) > ¢’ then return C.
8 end
9 end

We view the output of BIAS as a tuple of ¢ vectors:

BIAS(y) = (1,...,7¢), 7 € {0,1}™.

For convenience, let 7 := (ry,...,7¢) and b := (by,...,by).

For every J C [/], let:

r’ ::@m, b‘]:@bi.
ieJ icJ
Note that in the original GL algorithm, all r;’s are ii.d.
uniformly over {0,1}". We first argue that our distribution
over /s satisfies (approximately) the two properties used in
the analysis of the original algorithm:

Claim IV.17. The following two properties hold:
1) For every non-empty J, r is 272" close to U, in {1-
distance.
2) For every non-empty J and J' where J # J', (r',r7")
is 272™ close to Us,, in 0y -distance.

Proof. For i € [m], the i-th bit of 7/ can be written as
(T;,5,BIAS(y)) where T; ; indicates a non-empty subset of
bits. From Theorem IV.16 we know that for every v € {0, 1},

Pr [r/ =v]— Pr
r<BIAS(U;) rUpm

N (i) =) || < 2.

i€[m)]

Notice that {7 j};c[m) are linearly independent, and thus
({T3,5,7))icim is uniformly distributed over {0, 1}". There-
fore taking the sum over v € {0,1}™ we have that r” is
2e - 2™ < 272m_close to U, in ¢; distance.

When J # J' are both non-empty, {Tij}icim) U
{Ti, 1 }ic[m) are still linearly independent. For the same reason
as above, (r/, /") is 2 - 22m = 272" close to Uy, in /3
distance. |

Now recall that for ¢ € [m] the ith bit of the output of C is

Ci(x) = MAT y.y29(b” @ Blw,r! @ ¢y)).

Thus C has size |C| < (|B] + O(¢)) - 2m < |B| - O(2%m) =
IB| - (m/§)°™M) as claimed. To analyze the performance of C,
let

S:={ze{0,1}™: Zi’lgm[B(m,z) =g(x,2)] > 1/2+§/2}.

By a standard averaging argument, |S| > (§/2) - 2™.

Claim IV.18. For every x € S and i € [m), let (r1,...,7¢) <
BIAS(U;). Then:

Pr ‘{J'B(T r’ @e) =gz TJEDe-)}| < 21 < L
7 B ! ’ Y2 T oms

Proof. For the remainder of the proof we fix x and 7. Let A C
{0,1}™ be the set of values r on which B(z,r) = g(x,r).
By the fact that € S we have |A| > (1/2 + 6/2) - 2™.
Furthermore, for each y € {0,1}* (where y is the input to
BIAS) let

Cy) =1 @ € A

and observe that (; = 1 is equivalent to B(z,7/ @ ¢;) =
g(z,77 @ e;), i.e. B computes the inner product with f(x)
correctly on that input. Now observe that by Theorem IV.17,

El¢/]=PrlCs(y) =1 2 1/2+06/2 - 272 > 1/2 4 §/4.

We now bound the variance of the number of such places
where we compute the inner product correctly. Let

0% = Var (Z g,) =" Cov(¢r.Cr)
J

J,J!

< Z Var((y) + Z g—2m
J

J,J!
< 2@ 4 22@ . 272717, < 2€+l

where the first inequality follows from Theorem IV.17. Now
the result follows by Chebyshev’s inequality and a union
bound. For convenience let d = 2¢ — 1, and the probability
in the claim equals:

d do
<-|< — dl>— -
P;l" ;C(sz P;Y[;CJ E[(s]-d| > <40> 0}
1602
— 52(28_1)2
3202 64 1
< < < —

52226 = 5226 — 2m’
O

Notice that when B(z,r” @ e;) = g(x,7’ @ e;) and for
every j € [{], b; = g(z,7;), we have

b Bz, Bey) = g(a,r7)Dg(w, 1 @ei) = g(x,e5) = fi).

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

Thus, using a union bound over i € [m] on Theorem IV.18,
we have that for every = € S,

P C(z) = f(x
FHBIAIS‘(U,)[(T) f(T)}
EHUL
> Pr [Vie|m],
7 BIAS(U;)

[T Ble,r? @ e) = gl ! @ e} > (2!~ 1)

. Pr [Vje[l],b; = g(x,r;)]
b(ng

> [Vj € [6],b; = g(z,r;)] > 27

_Pr
b(ng

N | =

Thus, there is an assignment of y and b such that C computes
f correctly on at least |S| - 271 > 2™ . 5272 inputs.
Moreover, we can find such a circuit by enumerating the
assignments to y and 5 and verifying the success probability
by evaluating C and f over all 2 € {0, 1}™. Therefore letting

8 =022 = Q6% /m)

completes the proof. O

E. Space-Efficient Nisan-Wigderson PRG

We recall the argument of [KvMO02] that there is a space-
efficient implementation of the Nisan-Wigderson [NW94]
PRG, using the linear-space constructible combinatorial design
(Theorem IV.5). While we rephrase their result in our notation,
we make no changes to the construction, as (in contrast to all
other steps) the existing implementation satisfies our desired
reconstruction property.

Lemma IV.19. Given p > 0 and n € N and a family of
functions f., : {0,1}™ — {0,1} € SPACE[m], there exists
an m = O(logn) and G : {0,1}* — {0,1}" with s = O(m)
such that, given a circuit B which is a next-bit predictor for G
with advantage ¢, there is a circuit C of size |B| + O(n2f™)
satisfying

ADV(C, fm) > €.

Moreover, there is a deterministic O(m)-space algorithm that,
given the circuit B which is evaluable in space O(m), prints
C, and C is also evaluable in space O(m).

Proof of Theorem IV.19. Fix o € (0,1) such that o < p/2,
and let 8 € (0,1) be the constant in Theorem IV.5. Choose
s = O(logn) such that 2°¢ = n, and let m as. Let
S = (51,-..,5,) be the design of Theorem IV.5 over [s] with
parameter «, and let f,,, : {0,1}"™ — {0,1} be the function
on inputs of size m = O(logn).

We let G(z) := f(zs,)f(zs,) ... f(zs,). Now suppose B
is an e-next-bit predictor for bit ¢ of G, i.e.

1
Pr [B(G(2)1.4) = G(2)i41] > 5 +e.
x+Us, 2
Then let S := S;11 and T := [s] \ S;+1 and write the above
inequality as

Pr
(zs,x7)Us

IB(G(zs Uzr)rs) = flzs)] > % te.

999

For each fixing of z7, we let the circuit C to be C(xg)
B(G(xsg Uxy)i ;). Then we have

E [ADV(C, f,n)] > &.

T
Thus, the algorithm can enumerate over all possible assign-
ments to xp in space || = O(m), and for each assignment
check the advantage of C. Once the algorithm has found the
fixing of xp such that the restricted circuit has advantage at
least ¢, for every j < i, the j-th bit of the output of G(xgUzr),
which is f(zg,), depends on |S N S;| < 2a”s = pm bits of
g, and hence we can output a (O(m)-space constructible)
circuit for f(xg,) of size at most O(2°), and hence the total
size of C is at most |B| + O(n2°™). O

FE. Putting It All Together

Proof of Theorem IV.1. Given ¢, we first do the construction
steps. For each m € N:

1) Let f/ : {0,1} — {0,1} be the function g of
Theorem IV.6 applied to f,,.
Let f” :{0,1}™ — {0,1}™ be the function f"™ oG
of Theorem IV.10 applied to f;, ~with the constant 7 to
be chosen later.
Let f : {0,1}™ — {0,1} be the function g of
Theorem IV.13 applied to f;) with the constant § to
be chosen later.
Let G : {0,1}* — {0,1}" be the function of Theo-
rem IV.19 applied to f;7 and B with the constant p to
be chosen later.

2)

3)

4)

Notice that mq, ms, m3 and s are all ©(m), and the functions

/51", f” and G are all computable in space O(m).
Suppose now we are given a 1/(8n) next-bit predictor B

for G of size n%. As n is given, we decide the value of

ms = O(log n) through Theorem IV.19, which in turn decides

the value of m = O(logn). The reconstruction steps go as
follows:

4. By Theorem IV.19, we can construct in space O(m) a

circuit C3 such that ADV(Cs,) > 1/(8n), and C3 has

size s3 = n? + O(n2rms) < 2¢3P™ for some constant

c3 > 0.

By Theorem IV.13, where we now set § = 1/(8n),

we can construct in space O(m) a circuit Cy such that

SUC(Ca, f1),) > Q6% /m2) > 272P™ and C; has size

59 = s3-(mg/8)°) < 2¢2P™ for some constant ¢y > 0.

By Theorem IV.10, where we now set 7 = cap, wWe

can construct in space O(m) a circuit C; such that

SUC(Cy, fl,,) > 0.99 and C; has size s; = s3 -
20(ym1) < 9e1Pm for some constant ¢; > 0.

. By Theorem IV.6, we can construct in space O(m) a
circuit C such that C(z) = f,,,(z) for every z € {0,1}"™,
and C has size s = s1-mP() < 2¢0°™ for some constant
co > 0. By choosing p = /¢y, we obtain the final
result. O

V. UNIVERSAL DERANDOMIZATION OF BPL

Here we state the main theorem of this section, that there
exists a universal derandomizer for logspace computation.

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

Theorem V.. There is a
UNIVDERAND such that:

e On input 1™ and an OBP B of length and width at most
n, outputs § := UNIVDERAND(1", B) satisfying |6 —
E[B]| <n~L

o For every space-constructible function S : N — N
satisfying S(n) > logn, UNIVDERAND runs in space
O(S(n)) if and only if prBPL C SPACE[O(S(n))].

We first give the intuitive explanation of the algorithm
executed by the machine UNIVDERAND. It enumerates over
Turing machines (i) and space bounds j. At each step,
UNIVDERAND runs (i) on input (1", B_,,) for every v, where
B_,, for v € V; is the program that is identical to B in
the first ¢ layers, then accepts if the program reaches state
v. If (i) ever touches more than j spaces on the work tape,
UNIVDERAND halts and increments 7 or j. Otherwise, we have
a set of estimates {p_, } := {(i)(1", B_,)} (and note that we
can generate these estimates on the fly in space O(j 4+ logn)).
We then submit these estimates to the local consistency test
of Cheng and Hoza [CH22], and if the test passes, we return
the estimate of the probability of reaching the accepting state.

deterministic ~ machine

Theorem V.2 ([CH22]). There is a deterministic logspace
algorithm LCTEST that takes as input 1" and an OBP B
with length and width at most n and the estimates {p_, }vev-
If for every v, |p, —p—so| < n73, the algorithm accepts, and
moreover if the algorithm accepts, |p sy, — p—so| < n~1 for
every v.

Note that the true probabilities p_,, only appear in the
statement of the theorem, and are not part of the input to
the testing algorithm. We can now give the formal description
of the algorithm as Algorithm 4. By soundness of the test
LCTEST, if UNIVDERAND returns a value, the value must
be a good approximation of the acceptance probability, so it
suffices to show this occurs (and occurs in the desired space
bound).

Algorithm 4: UNIVDERAND(1", B)
1 for j < 0,1...,do

2 for : < 0,1,...,5 do
3 for r < 1-n7°/2,2-n75/2,...,2n% - n=5/2
do
4 Compute b +
LCTEST(1", B, {(i)(1", Bov, 1) oev(B))s
5 whenever (i) uses more than j space or
more than 27 time do
6 Abort the simulation of (i) and pass to
the next r.
7 end
8 if b = 1 then return (i)(1™, B, r).
9 end
10 end

11 end

To do so, we rely on the promise search problem f. with

parameter ¢ € N (which we define as a function outputting a
value in [0, 1] for convenience) defined as follows. Given 1",
an ordered branching program B of length and width at most
n, and a rounding threshold r with the promise that

|E[B] — k-n~*? + 7| > % Vk € Z,

ie. E[B] + r is polynomially bounded away from every
multiple of n~¢*2, the problem asks to output a (pseudo-
deterministic) number f.(1", B,r) that is within n=t? dis-
tance of E[B]. The presence of the rounding value, inspired by
the approach of Saks and Zhou [SZ99], is because when E[B]
is very close to a threshold, it becomes hard to determining
whether the expectation is above or below the cutoff.

We prove in Theorem V.3 that the task of computing f,.
is promise-BPL complete for every ¢ > 3. Therefore, if
prBPL C SPACE[S(n)], there is a machine (i) that computes
fe in space j = O(S(n)). Finally, to accommodate the pres-
ence of the rounding threshold, UNIVDERAND additionally
enumerates over a polynomial number of choices for r. We
show that there exists a proper ¢ € N such that for every B, a
good r that satisfies the promise of f. exists. This is essentially
proved via the argument of Saks and Zhou [SZ99]. Hence, the
algorithm will always find a tuple (4, 7,) such that we obtain
good estimates of E[B_,,] for every v, and thus the machine
will halt and return the correct value.

Proposition V.3. For every ¢ € N with ¢ > 3, let f. be the
problem where, given 1™ and an ordered branching program
B of length and width at most n, and r € [0, 1] such that for
every k € Z,
n*C

[E[B] =k -n™" 47| > =,
return with probability at least 2/3 the same number 0 that
satisfies |E[B] — 8| < n=*2. Then f. is prBPL-complete
under L reductions.

Proof Sketch. Fix arbitrary ¢ > 3. We first prove f. € prBPL.
Let R(1", B,r) be an algorithm that takes n2°*t! random
walks from v over B, and let + be the fraction of these
walks which reach v,... Let k € Z be the largest value such
that v +7 > k-n~°"2, and return § = k - n~"2. Since this
algorithm clearly runs in randomized logspace, it suffices to
show that, for B and r that satisfy the promise, there is some
fixed k that R identifies with probability over 2/3. Note that
by the promise, we have that for some ky € Z,

<E[B]+r< (ko+1)-nct2— ”T
On the other hand, using concentration bounds we can show
that with probability at least 2/3,

ko m—ct2 4 -
0 6

5
In this case R always identifies k& = kg since ko - n=¢T2 <
y4+7r < (ko + 1) -n=ct2

n

(E[B] +7) = (v +7)| = [E[B] = 7] <

1000

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

We now prove that f. is prBPL-hard. We recall the standard
prBPL-complete problem: Given an OBP B of length and
width n, determine if E[B] < 1/3 or E[B] > 2/3, where
the promise is that one of these cases holds. We reduce this
problem to f. as follows. Let T : {0,1}9" — {0,1} be the
OBP defined as

Tp(x1,...,2q) =MAJ(B(21),...,B(zq))

where d O(clogn) such that if E[B] < 1/3 then
E[Tg] < n=¢/6, and if E[B] > 2/3 then E[Ts] > 1 —n"¢/6.
Observe that Tz has length and width N = poly(n) and is
constructible in deterministic logspace given B. Thus, let the
input to f, be (1, Tg,n~°), which satisfies the promise of
fe» and hence if the answer is less than 1/2 we determine that
E[B] < 1/3, and otherwise determine that E[B] > 2/3. [

We first prove that the values that the machine returns are
accurate (assuming the machine returns a value).

Lemma V4. For every B, if UNIVDERAND halts on input
(1%, B), then |UNIVDERAND(1", B) — E[B]| < n~*.

Proof. This follows from Theorem V.2 applied to p_, =
(i)(1™, B_yy, 7). O

We next prove the machine halts in the claimed space bound.

Lemma V.5. For every space-constructible function S : N —
N with S(n) > logn, UNIVDERAND runs in space O(S(n))
if prBPL C SPACE[O(S(n))].

Proof. We prove that UNIVDERAND(1", B) halts and returns
a value with ¢ + j < ¢- S(n) for an absolute constant ¢ (in
particular, ¢,j < o0), which suffices to establish the lemma
by the composition of space-bounded algorithms.

By Theorem V.3, there is a Turing machine (i) deciding the
language f5 in SPACE[O(S(n))]. We now show that there
exists 7 € {1-n7°/2,2-n75/2,...,2n2 - n=°/2} such that

|E[Boy] —k-n"? +7r|>n""/6 *)

for every k and v. There are n? different values E[B_,,] over
v in the vertex set V(B) of the branching program, and for
each v, there is at most one assignment to r such that (x) fails
to hold for some k € Z. As there are 2n? possible values for
r, there must be one such that (x) holds for all k& and v.
Finally, let j = O(S(|B|)) be such that (i)(1™, B_,,,r)
halts using at most j space for every v. Such a j exists per
assumption and the fact that the input (1", B_,,,) satisfies the
promise of Theorem V.3 for every v. Thus, upon reaching the
tuple (4, j,), the set of estimates p_,,, = (i)(1™, B_,,,r) must
satisfy [p—, — E[B,]| < n=3 for every v € V(B). Then
running LCTEST(1", B, {p_v}vev(p)) (Where we wait for
the test to request a particular value p_,,, and then recompute
it from (i), avoiding the need to store all n? values) will
result in LCTEST accepting, and hence UNIVDERAND halts
in the claimed space bound. Moreover, the returned value
§ = (i)(1", B, r) satisfies that |§ — E[B]| < n~. O

We finally prove the converse.

1001

Lemma V.6. For every space-constructible function S : N —
N satisfying S(n) > logn, prBPL C SPACE[O(S(n))] if
UNIVDERAND runs in space S(n).

Proof. By Theorem V.3 it suffices to solve f3 using a logspace
reduction to UNIVDERAND. Given (1", B,r) as the input
(where 7 is the rounding threshold, which we will ignore),
let 0 UNIVDERAND(1™, B) be the value returned by
UNIVDERAND on B. By Theorem V.4 we have |0 — E[B]| <
n~!, and hence 0 is a desired deterministic output for f5. [

We can then conclude the proof of Theorem V.1.

Proof of Theorem V.1. Let UNIVDERAND be the algorithm as
defined above. Theorem V.1 follows from Theorem V.4 (and
the fact that it returns a value follows from Theorem V.5). The
if direction of Theorem V.1 follows from Theorem V.5, and
the only if direction follows from Theorem V.6. O

Finally, we conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. Let U be the algorithm that, given the
description of a randomized logspace algorithm R and an input
x where |x| = n, constructs (in deterministic logspace) the
ordered branching program B := R(x,-) of length and width
at most m = poly(n) that represents the action of R over its
random bits. Then let U call UNIVDERAND(1™, B), and if the
value returned is less than 1/2 return 0, and otherwise return
1. By the promise on R we have either Pr[B(U,,) = 1] > 3/4
or Pr[B(U,) = 1] < 1/4, and as in both cases we estimate the
expectation of B up to error 1/n by Theorem V.1, we correctly
decide which case we are in, and the space consumption
follows from that of Theorem V.1. O

VI. HITTING SETS IMPLY SAMPLERS FOR ORDERED
BRANCHING PROGRAMS

We now prove that hitting sets imply black-box two-sided
derandomization of ordered branching programs. To do so, we
first formally define hitting sets and deterministic samplers:

Definition VI.1. Given a class of functions F {f :
{0,1}™ — {0,1}}, an e-hitting set generator (HSG) H :
{0,1}® — {0,1}™ for F satisfies that for every f € F with
E[f] > &, there exists y € {0,1}* where f(H(y)) = 1. We
say H is explicit if there is a uniform algorithm that computes
H(zx) in space O(s) given 1" and z.

Definition VI.2. Given a class of functions F {f :
{0,1}™ — {0,1}}, an e-(deterministic) sampler SAMP with
space complexity s(n) for F is a deterministic algorithm that
runs in space s(n) and, given oracle access to f € F, makes
queries to f and outputs an estimate ¢ satisfying |0 —E[f]| < e.

A deterministic sampler captures the idea of a derandom-
ization algorithm that only accesses the branching program
in a black-box fashion, and such a notion has been explored
before in the context of small-space derandomization [HU22],
[CH22], [PV22].

We now give a formal statement of Theorem 1.3. We state
it in terms of dependence on the seed length of the HSG, as

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

our result generically converts a hitting set to a sampler with
comparable space complexity.

Theorem VI.3. Suppose there is a uniformly constructible
family H = {Hy,...,} where H, : {0,1}*(") — {0,1}" is
an explicit 1/2-hitting set with seed length s(n) for width n,
length n. OBPs. Then for every € > 0, there is a uniformly
computable deterministic e-sampler with space complexity
O(s(nw/e)) for width w, length n. OBPs.

We prove this by developing a local consistency test that
can be implemented given black-box access to a branching
program.

A. Proof Overview

The proof of Theorem VI.3 relies on developing a local
consistency test that can be implemented given black-box
access to a branching program (whereas all previous tests
required access to the internal states of the program). We first
describe how we can access the internal states of the program
in a black-box manner.

Given a branching program B : {0,1}" — {0,1} and a
hitting set H : {0,1}* — {0,1}", for each seed z € {0,1}*
and layer i € [n], the program reaches some state v on
input H(x); ;. We can index this state in a black-box fashion
by writing down (z,%). However, as potentially many seeds
may reach the same state v, we would like to collapse these
duplicates back together. Since we cannot examine layer ¢ of
the program, we can instead attempt to test if 2 and 2’ reach
the same state, by plugging in every HSG output and see if the
programs starting from (z,4) and (z’,4) behave differently.

Definition VI.4 (Informal statement of Theorem VI.9). For
z,x’ € {0,1}* and i € [n], tuples (x,7) and (2',i) are
indistinguishable if for every y € {0,1}%,

B(H(x)1.:H(Y)1.n—i) = B(H(2")1.:H(Y)1..n—1)-

It is not the case that indistinguishable tuples always reach
the same state. However, Cheng and Hoza were able to show
the following:

Lemma VL5 ([CH22] (Informal)). Suppose states v and v’
are reached by indistinguishable tuples. Then the probability
of accepting in B starting from v is similar to that of accepting
starting from v’

Thus, the states have similar behavior from layer ¢ onward.
Unfortunately, it is not the case that indistinguishable states
always have indistinguishable out-edges. Thus, a naive attempt
to learn the program using query access would print both
out-edges and output a nondeterministic branching program, a
model that is provably NL-hard to derandomize. It is likewise
unclear how to select a single edge to print in a way that
maintains the acceptance probability of the program. In the
constant-width regime, Cheng and Hoza [CH22] circumvented
this by remembering O(log n) bits of information about every
state in layer ¢ + 1 while constructing layer ¢, allowing them
to choose a good out-edge. However, this does not seem

1002

feasible for super-constant width. Instead, we develop a local
consistency test that can tolerate conflating indistinguishable
states.

Suppose for every tuple (z,7) we are given an estimate p, ;,
which is supposedly close to the true probability of accepting
from v := Blvgs, H(x)1.4].

Definition VI.6 (Black-Box Local Consistency Test (Infor-
mal)). Given black-box access to an ordered branching pro-
gram B : {0,1}" — {0,1} and a hitting set H : {0,1}* —
{0,1}™ and estimates {Pxi}zc (0,1} ic[n]» Verify that the fol-
lowing conditions hold:

1) For every pair of indistinguishable tuples (z,1%), (2’,1%),
we have [D,; — par.i| < O(e).

2) For every tuple (x,i), let (z9,¢ + 1) and (z1,7 +
1) be arbitrary tuples that are indistinguishable from
Blvst, H(x)1.,0] and Blvst, H(z)1.;1] respectively.
Then

 Pao,i+1l + Payitl

5 < O(e).

Pz,i

If all such conditions hold, output the estimate pg o, and
otherwise reject.

We think of all our tests as having a completeness and
soundness component, where completeness means that a set of
estimates which are sufficiently close to the true probabilities
are gauranteed to pass, and soundness means that the test
passing implies the returned estimate is close to the true value
(where the precise parameters are discussed later).

The tests of Theorem VI.6 can be implemented in space
O(s +logn) given H and black-box access to B, as we can
enumerate over the seeds of the hitting set and layers in the
program, and all such tests are “local”, in the sense that they
deal with at most two layers and a constant number of seeds.

If every state is distinguishable from every other, and H
hits every state in the program, the test of Theorem VI.6 is
equivalent to the following white-box local consistency test:

Definition VI.7 (White-Box Local Consistency Test (Infor-
mal)).

1) For every v, all estimates of the accepting probability
from v must be within € of each other.
2) For every v, estimates of the accepting probability from
v,vp := Bv,0], and v; := B[v,1] (which we denote
Doy Dug»> and Py,) must satisfy py, & (Do, + Poy) /2-
If all such conditions hold, output an arbitrary estimate p,_,,
and otherwise reject.

The test of Theorem VI.7 clearly accepts if the estimates are
exactly (or within /2 of) the true probabilities of accepting
from each vertex. Likewise, soundness is not difficult to show.
However, this idealized version of the test in Theorem VI.6
not exactly happen, for two reasons:

1) We may impose Item (1) checks between tuples that
reach different, yet indistinguishable, states, and likewise
for the 0 and 1 states of Item (2).

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

2) We may fail to impose Item (2) checks between v and
Blv,0] and Blv, 1] if no string output by the hitting set
reaches one of the latter states.

Issue (1) must be dealt with in the proof of completeness (as
we add some tests not in the white-box tester) and (2) in the
proof of soundness (as we sometimes fail to impose tests that
should be present). Issue (1) is the easier of the two to deal
with. Since indistinguishable states have similar probability of
accepting by Theorem VL5, good estimates for the accepting
probabilities of indistinguishable vertices will still be within
O(e) of each other. Issue (2), in contrast, seemingly presents
a real issue for the soundness. For state v := Blvg, H(x)1]
where there is no seed «’ where Blvgt, H(2')1. i+1] = Blv, 0],
we could run no local consistency test to verify p, ;. In fact,
the estimate of the probability of accepting from v could be
arbitrarily wrong, and we would have no ability to detect it.
However, we observe that every such v has low probability
of being reached from the start state. This is because if no
(e-)HSG output reaches B[v,0], v must have probability of
being reached from the start state at most 2e. But then a
very bad estimate of the probability of accepting from v only
changes the overall probability of accepting by at most O(¢)
(and such an argument can be run for all non-verified states
simultaneously). Ultimately, we are able to show that the lack
of these checks can only change the accepting probability at
the start state by O(g), which is tolerable.

Putting it all together, we show a black-box tester that,
given estimates p,; for the probability of accepting from
Blvst, H(x)1. 4] for every z: and i, either outputs an approxi-
mation of the expectation of the program or rejects the input.
To conclude, we use an idea of Cheng and Hoza to find a
good set of estimates p, ; using a hitting set. First, to obtain a
better result for nontrivial yet suboptimal hitting set generators,
we slightly modify the tester to take in n - w estimates,
corresponding (essentially) to an estimate for the acceptance
probability from every state in the original branching program.
Then we show (essentially using the argument of [CH22]), that
there is a branching program 7' of length poly(nw/e) and
width poly(nw/e) that divides its input into n x w blocks,
and uses the block labeled with v as a long random string
to estimate p, for every state v in the program, and accepts
if all these estimates are within ¢ of the true acceptance
probability. The program uses the true probabilities to check
if the empirical average of the samples is within € of the
true values, but we do not need to explicitly construct it -
we only need that it exists, and hence our HSG family will
contain some string hitting it. Finally, we argue that we can
compute the associated empirical averages with oracle access
to B, rather than 7. A string that hits 7" will produce good
estimates p, for every v, and our black-box tester will accept
on these estimates. Then we can simply enumerate over hitting
set strings, and return the first accepted estimate.

B. Black-Box Local Consistency Tests

We now formally state the black-box local consistency test:

Theorem VL8. There is a deterministic space O(s + logn)
algorithm that, given an explicit e-HSG H : {0,1}* — {0,1}"
for length n, width w? branching programs, oracle access
to an OBP B of width w and length n, and estimates
{Pa,itre(o,1}s icin), either outputs a value or rejects. More-
over:

1) If for every x, we have |p,—, — Dyi| < 2e where v =
Blvgi, H(x)1.4] for every i < n and Py, = B(H(z)),
then the algorithm outputs a value.

2) If the algorithm outputs 0, then |E[B] — 4| < Gen.

We remark that, despite this result being a black-box test
versus the white-box local consistency test of Cheng and Hoza,
it obtains an improved soundness loss (of en rather than enw),
which is relevant in the regime where the branching program
has width much larger than length. This is notable as obtaining
optimal error samplers in the Nisan-Zuckerman regime [NZ96]
(where optimal-error hitting sets are already known) is a well
known open question. Unfortunately, we do not obtain this
result, as the argument that we can obtain good accepting
probability estimates using a hitting set (Theorem VI.20)
requires a hitting set for ordered programs of length nw > n.

We first define notation related to using H to traverse the
branching program:

Definition VI.9. For every = € {0,1}° and i € [n], let
vi(x) := Blust, H(x)1.4].

Note that this implies v;(x) = v;(2') if Blvst, H(x)1 4] =
Blvst, H(x")1. 4], i.e. the two seeds reach the same vertex in
layer i. For convenience, we write p; ; := Py, (). Moreover,
for states u,u’ € V; we write u ~ v’ if the two states are
indistinguishable under H, i.e. for all y € {0,1}°,

Blu, H(y)1.n—i] = B[ula H(y)1..n—i)-

We can now define the consistency test implemented by the
algorithm.

Definition VI.10 (Local Consistency Test). Given B and H
and the estimates p,. ;, let the test be as follows:
1) For every z,i € {0,1}* x [n] and for every
xg, 21 € {0,1}® such that Blv;(x),0] ~ v;41(x0) and
Blvi(x),1] ~ v;41(x1), require

~ Dayitl F Pagitl

pz,i < He.

5 <

2) For every x,2’ € {0,1}* and i € [n] such that v;(x) ~
vi(x'), require [y ; — Pari| < Se.

3) For every = € {0, 1}*, require p, ,, = B(H(x)).

Note that given H and oracle access to B and the estimates
Da,i» We can compute all such tests in space O(s+logn). We
first show this test is complete:

Lemma VL11. Suppose for every x, |py; — Dyil < 2¢ for
i <nand py, = B(H(x)). Then the test of Theorem VI.10
passes.

1003

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

To show this we require the following, which follows from
arguments about the mass of the set difference.

Claim VL12 (Lemma 3.2 [CH22]). If v ~ v/, then |py— —
pv’—>| <e

We can then prove completeness.
Proof of Theorem VI.11. Consider an arbitrary Item 1 test:

_ Day ikl + Do, it1
Pz — f

Let v := v;(z) and for b € {0,1} let v, := Blv,b] be the
state actually reached following edge b from state v. Then for
b € {0,1} let up := v;41(wp) be the state reached by xp in
layer 7 + 1. Note that u; does not necessarily equal vy, as we
could be conflating different states in layer ¢ + 1, but up ~ vp.
Thus:

~ ﬁzl,i-‘rl + ﬁIn,i-H
Pei— ——5

2
puo% + pula .
<de+ |py— — T S— (Assumption)
< He+ Py — W’ (Theorem VI.12)

= He.

The proof of Item 2 is analogous, again using Theorem VI.12,
and Item 3 is immediate. O

We now show soundness. The key issue is dealing with
states v such that no x satisfies v = v;(z), because we cannot
guarantee consistency for these states. However, these states
are precisely those that the HSG fails to hit, which must mean
they have low probability of being reached from the start
vertex, and hence their estimates being wrong does only a
small amount of harm.

Lemma VIL.13. Suppose the test of Theorem VI.10 passes with
estimates Py ;. Then oo — po,,—| < 6en.

To prove Theorem VI.13, in the following three lemmas we
assume that the test of Theorem VI.10 passes. We first define
states that are not verified, and show that the probability of
reaching such states are small.

Definition VI.14. For every x € {0,1}* and i < n, let v =
v;(z) be an unverified state if there is some b € {0, 1} such
that there is no 2’ € {0, 1}° satisfying B(v, b] = v;41(2’), and
otherwise let v be verified. Let v, (x) be verified for every x.
Note that for an unverified state there still could be z’ such
that Blv, b] ~ v;+1(z"), but we do not use this in the proof of
soundness.

Lemma VL15. Let T be the event of reaching an unverified
state in B. Then Pr[T(U,) = 1] < 2e.

Proof. Let R be the width w+1 program that is the same as B
except it accepts if and only if we reach a state not hit by the
HSG H. We have Pr[R(U,) = 1] < € by the goodness of the
HSG. Furthermore, conditioned on reaching an unverified state

in B, we have probability at least 1/2 of reaching a state the
HSG does not hit. Thus, e > Pr[R(U,,) = 1] > Pr[T'(U,,) =
1]/2. O

We now construct a branching program such that the
estimates for unverified states are consistent with the true
probabilities of these states.

Lemma VIL.16. There exists an ordered branching program
Q :{0,1}™ — {0,1} on a superset of the vertices of B such
that:

1) [E[Q] —E[B]| < 2.

2) Q is identical to B when restricted to edges between
verified states, and edges from verified states to unveri-
fied states.

3) For every unverified state v in B, for every z € {0,1}*
such that v = v;(x), we have |py; — qu—| < be, where
Quv—s 1s the probability of accepting from v in Q.

Proof. We first construct (). Let N be the set of unverified
states of B. For every v € N in layer ¢, note that for every
xz, 2’ € {0,1}* satisfying v = v;(x) = v;(«’) we have |p,; —
D il < 5e by Item 2. Let g,,—, be a number satisfying |g,—, —
Da.i| < be for every such x. We now modify B by wiring both
edges from v to a new (arbitrarily complex) set of states such
that v now has probability of accepting exactly ¢,_,,> and we
do this for every unverified v. Let) be this new branching
program. It is clear by construction that @) satisfies Property
2. Furthermore, by Theorem VI.15 we have Property 1. [

We now prove Theorem VI.13 by showing that the estimates
Da,; are consistent with the modified program).

Lemma VI.17. Let QQ be defined as in Theorem VI.16. Then
for every v in B and every x such that v = v;(x), we have
|Pai — qu—| < Be-(n—1i). In particular, |po.o — qu,,—| < Den.

Proof. The case ¢ = n holds by Item 3 of Theorem VI.10
(and the fact that all final layer states are unmodified). Now
assume this holds for layer ¢ + 1. Then for every v = v;(x)
in layer 7, we have two possibilities:

e Case 1: v is unverified. In this case,
by Theorem VI.16.

o Case 2: v is verified. For b € {0, 1}, let v, := Blv, b] and
by Theorem VI.16 we know that v} also coincides with
Q[v,b]. Let x, be such that v, = v;41(zp) (and note that

ﬁw,i - quﬁl < be

3Technically this may not be possible without making @ a probabilistic
branching program. However, this construction purely exists to analyze the
probabilities g,—s, so we ignore this minor complication.

1004

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

such xg, r1 exist because we are not in Case 1). Then:

|ﬁx,i - QU%‘
= Pos — Quo— + Qv, —
2
S 58 + ﬁwo,i+1 ;ﬁ$17i+1 o q’UoH ;qvlﬁ

1 5 1 N
§&+§mﬁ—mwm+§mﬁ—mmﬂ
<be-(n—1)

where the first inequality follows from Item 1 and the
third from induction. O

We now conclude the proof of Theorem VI.13.
Proof of Theorem VI.13. We have:

[E[B] = po,o| < 2¢ + [E[Q] — Po,o
< 2¢ + Hen

(Theorem VI.16)
(Theorem VI.17). [

Finally we conclude Theorem VI.8.

Proof of Theorem VI.8. Given H {0,1}* — {o0,1}"
and the estimates {pzi}ze{0,1}+,ic[n]> We run the tests as
specified in Theorem VI.10. All such tests can be im-
plemented in space O(s + logn), as we now explain.
Given * € {0,1}* and b € {0,1}, we can de-
termine if 2/ € {0,1}* satisfies Blvg, H(x)1 ;0] ~
v;41(2") by enumerating over y € {0,1}° and comput-
ing the predicate /\ye{oyl}s[B(H(ac)1_,in(y)1,_n_i_1) =
B(H(2")1.i+1H(y)1..n—i—1)]- This can be implemented in
space O(s + logn) given black-box access to B, and hence
we can determine which Item 1 tests on {p,;} to run in the
desired space bound. Similar reasoning applies to the Item 2
and Item 3 tests.

Finally, if all such tests pass, output pg o. By Theorem VI.11
we have that the completeness condition holds, and by Theo-
rem VI.13 we have that the soundness condition holds. [

C. Putting It All Together

We now prove Theorem VI.3 from Theorem VIL.8. It re-
mains to show that we can generate a good set of estimates
{Ds,i} using a hitting set. We first show that we can modify
Theorem VI.8 to only take in nw estimates, rather than n - 2°.
This is not required for Theorem VI.3, but it improves the
parameters in the case that [is a highly nontrivial yet non-
optimal hitting set.

To do so, we first observe that the indistinguishably relation
induces a set of equivalence classes on the seeds:

Definition VI.18. Given an OBP B of width w and length n
and H : {0,1}* — {0,1}", for every ¢ let Cy,...,Cy,; C
{0,1}* be the (possibly empty) equivalence classes of {0, 1}*
under the indistinguishably relations = ~; ' iff v;(z) ~
vi(2'). Let y;,; € {0,1}° be the lexicographically first element
of C}; (and order the equivalence classes so that y; ; < y2; <
... < Yu,; for every 7). Moreover, let v; ; := v;(y;,;). Note that

given B and H, y;; (and hence an HSG output that reaches
v;,;) is constructible in space O(s + logn) given 1, j.

Corollary VI.19. There is a deterministic space O(s+logn)
algorithm that, given an explicit e-HSG H : {0,1}* — {0,1}"
for length n, width w? branching programs, oracle access
to an OBP B of width w and length n, and estimates
{Pj.i}jciw) icin—1), either outputs a value or rejects. More-
over:

1) If \pvj_iH — pji| < € for every j,i, where vj; is as
defined in Theorem VI.18, then the algorithm outputs a
value.

2) If the algorithm outputs ¢, |E[B] — d| < 6en.

Proof. The tester simply takes in the estimate p; ; for p,, ,,
copies it to be the estimate for every seed in the j-th equiva-
lence class for layer 4, perfectly computes p, , := B(H(z))
for every = € {0,1}*, and runs Theorem VL8. Clearly if the
tester outputs a value it is within 6en of §, as we simply
restrict the inputs to Theorem VI.8. Furthermore, note that for
an arbitrary v := v;(z) in equivalence class C; ;, we have by
Theorem VI.12:

|pv~> 7ﬁj7i| <e+ |p'ijr,‘,*> 7ﬁj,i| < 2

and hence if |p,, ,, — P;| < € is satisfied for all i and j we
satisfy the completeness condition of Theorem VI8, and so
the tester will return a value. O

We now argue that there is a hitting set string that can be
used to produce good estimates for p,; ., where v;; is as
defined in Theorem VI.18. The argument that such an output
exists is a straightforward modification of the proof in Cheng
and Hoza [CH22] that there exists an HSG output inducing
estimates that satisfy their local consistency test.

Lemma VIL.20 ([CH22]). For every OBP B of length n and
width w and H : {0,1}* — {0,1}" and € > 0, there exists t =
O(log(nw)/e?) and an OBP EST : {0, 1}"*w>tn — [0,1} of
length and width poly(nw/e) defined as follows:

. 7Z711,n) = /\

i€[n],j€w]

ES'I‘(ZLl7 .. EST]‘J;(Z]'J;)

where EST; ;(2;:) computes as follows. It interprets z;; as t
samples of length n, and computes

ESTjJ(Sl, ey St)

=1I|Pr [B[Uj,iv Sk] = Uacc] € [pvj.i—> =& Pvji— + E]
kelt]
(where v;; is as defined in Theorem VI.I8 in terms of H).
Then E[EST| > 1/2, and for every z such that EST(z) = 1,
for every j,i, using the samples in block z;; of z to estimate
the acceptance probability from v; ; produces an estimate with
at most € additive error.

Proof Sketch. Tt is clear that EST;; can be computed by an
ordered branching program of the claimed length and width,
by duplicating the subprogram of B starting from v;; and
counting the number of satisfied trials using an additional

1005

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

O(log(t)) bits of memory, and accepting if the final count
is within the specified range. Thus the conjunction EST can
be computed in the claimed space bound. We then choose ¢
sufficiently large such that a random input satisfies all these
checks with overwhelming probability. We note that EST is
defined in terms of the exact probabilities of acceptance, which
the tester does not have, but we only need that the program

exists, not that we can construct it. O
Then the proof of Theorem VI.3 follows.
Proof of Theorem VI.3. By a standard reduction (see

e.g. [CH22]), H implies an explicit family of e-hitting
sets for length n, width w OBPs with seed length
s(poly(nw/e)) O(s(nw/e)) (where the final equality
follows as for any s(n) = Q(log®n) the theorem is trivial by
the fact that the Nisan PRG exists, so we may assume this is
not the case).

Let H be a ¢/(6n)-HSG for length n and width w? OBPs
with seed length O(s(nw/e)). Let Hy be a 1/3-HSG for
length n?wt = poly(nw/e), width (nw/e)¢ OBPs, where
t is as in Theorem VI.20 with ¢ ¢/(6n). By choice
of parameters, Hy has seed length s; := O(s(nw/e)). The
sampler enumerates over every z € {0,1}%2. For every such
z, the sampler calls the tester of Theorem VI.19, and when
an estimate p;; for p,, ,» = E[Blv;;, U,_]] is required by
the tester, we use the 7,7 block of Hs(z) (as done by EST;;
in Theorem VI.20) to compute the estimate. Note that we can
find y;;, the lexicographically first seed in equivalence class
J in layer i, in logspace, and by definition v;; = v;(y;,:).
Thus, we can compute p;; by enumerating over the samples
S1,...,8¢ in block 7,7 in Ho(z) and returning

kg:[t] [B(H (yj,i)1..i56)] = kg[t][B[UijkH
If the tester accepts, return the value that the tester outputs, and
otherwise increment z. The space complexity is O(log(n)+s2)
by composition of space-bounded algorithms.

Now suppose the sampler returns a value. By Item 2 of
Theorem VL8, the returned estimate is within £/(6n)-6n = ¢
of the true expectation. To show the sampler returns a value,
note that by Item 1 of Theorem VI8 it suffices to argue
that we give the tester a series of inputs {p;;} such that
|Du,; ,— — Dj.i| < e/(6n) for every i, j. But these are precisely
the estimates generated by a string « such that EST(z) = 1,
and Hs hits this program by choice of parameters, so we
conclude. O

REFERENCES

[ACR96] Alexander E. Andreev, Andrea E. F. Clementi, and José
D. P. Rolim. Hitting sets derandomize BPP. In Fried-
helm Meyer auf der Heide and Burkhard Monien, editors,
Automata, Languages and Programming, 23rd International
Colloquium, ICALP96, Paderborn, Germany, 8-12 July 1996,
Proceedings, volume 1099 of Lecture Notes in Computer Sci-
ence, pages 357-368. Springer, 1996.

Alexander E. Andreev, Andrea E. F. Clementi, José D. P. Rolim,
and Luca Trevisan. Weak random sources, hitting sets, and BPP
simulations. SIAM J. Comput., 28(6):2103-2116, 1999.

[ACRT99]

1006

[AKM*20] AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh,
John Peebles, Aaron Sidford, and Salil P. Vadhan. High-
precision estimation of random walks in small space. In Sandy
Trani, editor, 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November
16-19, 2020, pages 1295-1306. IEEE, 2020.

Harry Buhrman and Lance Fortnow. One-sided versus two-
sided error in probabilistic computation. In Christoph Meinel
and Sophie Tison, editors, STACS 99, 16th Annual Symposium
on Theoretical Aspects of Computer Science, Trier, Germany,
March 4-6, 1999, Proceedings, volume 1563 of Lecture Notes
in Computer Science, pages 100-109. Springer, 1999.

Manuel Blum and Silvio Micali. How to generate cryptographi-
cally strong sequences of pseudorandom bits. SIAM J. Comput.,
13(4):850-864, November 1984.

Kuan Cheng and William M. Hoza. Hitting sets give two-sided
derandomization of small space. Theory of Computing, 18(21):1—
32, 2022.

L. Csanky. Fast parallel matrix inversion algorithms. SIAM J.
Comput., 5(4):618-623, 1976.

Michael A. Forbes and Zander Kelley. Pseudorandom generators
for read-once branching programs, in any order. In Mikkel
Thorup, editor, 59th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2018, Paris, France, October 7-9,
2018, pages 946-955. IEEE Computer Society, 2018.

Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum.
Delegating computation: interactive proofs for muggles. Journal
of the ACM (JACM), 62(4):1-64, 2015.

Oded Goldreich and Leonid A. Levin. A hard-core predicate for
all one-way functions. In Proceedings of the Twenty-First Annual
ACM Symposium on Theory of Computing, STOC ’89, page
25-32, New York, NY, USA, 1989. Association for Computing
Machinery.

Anat Ganor and Ran Raz. Space pseudorandom generators
by communication complexity lower bounds. In APPROX-
RANDOM, volume 28 of LIPIcs, pages 692-703. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2014.

Uma Girish, Ran Raz, and Wei Zhan. Is untrusted randomness
helpful? In 14th Innovations in Theoretical Computer Science
Conference, ITCS, 2023.

Peter Gemmell and Madhu Sudan. Highly resilient correctors
for polynomials. Information processing letters, 43(4):169-174,
1992.

Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. Simplified
derandomization of BPP using a hitting set generator. In Oded
Goldreich, editor, Studies in Complexity and Cryptography. Mis-
cellanea on the Interplay between Randomness and Computation
- In Collaboration with Lidor Avigad, Mihir Bellare, Zvika
Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid
Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan,
Salil Vadhan, Avi Wigderson, David Zuckerman, volume 6650
of Lecture Notes in Computer Science, pages 59-67. Springer,
2011.

William M. Hoza and Adam R. Klivans. Preserving randomness
for adaptive algorithms. In Eric Blais, Klaus Jansen, José
D. P. Rolim, and David Steurer, editors, Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2018, August 20-22, 2018 -
Princeton, NJ, USA, volume 116 of LIPIcs, pages 43:1-43:19.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018.
William M. Hoza. Better pseudodistributions and derandom-
ization for space-bounded computation. In Mary Wootters
and Laura Sanita, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2021, August 16-18, 2021, University of Wash-
ington, Seattle, Washington, USA (Virtual Conference), volume
207 of LIPIcs, pages 28:1-28:23. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2021.

William M. Hoza and Chris Umans. Targeted pseudorandom
generators, simulation advice generators, and derandomizing
logspace. SIAM J. Comput., 51(2):17-281, 2022.

William M. Hoza and David Zuckerman. Simple optimal hitting
sets for small-success RL. SIAM J. Comput., 49(4):811-820,
2020.

[BF99]

[BMS84]

[CH22]

[Csa76]

[FK18]

[GKR15]

[GL89]

[GR14]

[GRZ23]

[GS92]

[GVWI1]

[HK18]

[Hoz21]

[HU22]

[HZ20]

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudo-
randomness for network algorithms. In Frank Thomson Leighton
and Michael T. Goodrich, editors, Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, 23-25
May 1994, Montréal, Québec, Canada, pages 356-364. ACM,
1994.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E
requires exponential circuits: Derandomizing the XOR lemma.
In Frank Thomson Leighton and Peter W. Shor, editors, Proceed-
ings of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 220-
229. ACM, 1997.

[KvMO02] Adam R. Klivans and Dieter van Melkebeek. Graph nonisomor-
phism has subexponential size proofs unless the polynomial-time
hierarchy collapses. SIAM J. Comput., 31(5):1501-1526, 2002.

[LPS88] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanu-
jan graphs. Combinatorica, 8(3):261-277, 1988.

[LV17] Chin Ho Lee and Emanuele Viola. Some limitations of the sum
of small-bias distributions. Theory Comput., 13(1):1-23, 2017.

[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom
generators for width-3 branching programs. In Moses Charikar
and Edith Cohen, editors, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019,
Phoenix, AZ, USA, June 23-26, 2019, pages 626-637. ACM,
2019.

[Nis90] Noam Nisan. Psuedorandom generators for space-bounded
computation. In Harriet Ortiz, editor, Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing, May 13-17,
1990, Baltimore, Maryland, USA, pages 204-212. ACM, 1990.

[Nis93] Noam Nisan. On read-once vs. multiple access to randomness
in logspace. Theor. Comput. Sci., 107(1):135-144, 1993.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces:
Efficient constructions and applications. SIAM J. Comput.,
22(4):838-856, 1993.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Jour-
nal of Computer and System Sciences, 49(2):149-167, October
1994.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in

space. J. Comput. Syst. Sci., 52(1):43-52, 1996.

[PV22] Edward Pyne and Salil P. Vadhan. Deterministic approximation
of random walks via queries in graphs of unbounded size. In
Karl Bringmann and Timothy Chan, editors, 5th Symposium on
Simplicity in Algorithms, SOSA@SODA 2022, Virtual Confer-
ence, January 10-11, 2022, pages 57-67. SIAM, 2022.

[Rei08] Omer Reingold. Undirected connectivity in log-space. J. ACM,
55(4):17:1-17:24, 2008.

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of
states in space bounded computation. In Jeffrey Scott Vitter,
Lawrence L. Larmore, and Frank Thomson Leighton, editors,
Proceedings of the Thirty-First Annual ACM Symposium on
Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA,
pages 159-168. ACM, 1999.

[RTVO06] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Pseudoran-
dom walks on regular digraphs and the RL vs. L problem. In
Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, Seattle, WA, USA, May
21-23, 2006, pages 457-466. ACM, 2006.

[RVWOI] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy
waves, the zig-zag graph product, and new constant-degree
expanders. Annals of Mathematics, 155(1), January 2001.

[Sha81] Adi Shamir. The generation of cryptographically strong pseudo-
random sequences. In CRYPTO, page 1. U. C. Santa Barbara,
Dept. of Elec. and Computer Eng., ECE Report No 82-04, 1981.

[STVOI1] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudoran-
dom generators without the XOR lemma. J. Comput. Syst. Sci.,
62(2):236-266, 2001.

[SZ99] Michael E. Saks and Shiyu Zhou. BPpySpace(S) C
DSPACE(S3/?). J. Comput. Syst. Sci., 58(2):376-403, 1999.

[WBS86] Lloyd R Welch and Elwyn R Berlekamp. Error correction for
algebraic block codes, December 30 1986. US Patent 4,633,470.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor
functions (extended abstract). In FOCS, pages 80-91. IEEE
Computer Society, 1982.

1007

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:35:34 UTC from IEEE Xplore. Restrictions apply.

