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Abstract—In this paper, we introduce a new, spectral notion of
approximation between directed graphs, which we call singular
value (SV) approximation. SV-approximation is stronger than
previous notions of spectral approximation considered in the
literature, including spectral approximation of Laplacians for
undirected graphs [ST04], standard approximation for directed
graphs [CKP+17], and unit-circle (UC) approximation for di-
rected graphs [AKM+20]. Further, SV approximation enjoys
several useful properties not possessed by previous notions of
approximation, e.g., it is preserved under products of random-
walk matrices and bounded matrices.

We provide a nearly linear-time algorithm for SV-sparsifying
(and hence UC-sparsifying) Eulerian directed graphs, as well
as �-step random walks on such graphs, for any � ≤ poly(n).
Combined with the Eulerian scaling algorithms of [CKK+18],
given an arbitrary (not necessarily Eulerian) directed graph
and a set S of vertices, we can approximate the stationary
probability mass of the (S, Sc) cut in an �-step random walk
to within a multiplicative error of 1/ polylog(n) and an additive
error of 1/poly(n) in nearly linear time. As a starting point for
these results, we provide a simple black-box reduction from SV-
sparsifying Eulerian directed graphs to SV-sparsifying undirected
graphs; such a directed-to-undirected reduction was not known
for previous notions of spectral approximation.

Index Terms—graph algorithms

I. INTRODUCTION

Random walks on graphs play a central role in theoretical

computer science. In algorithm design, they have found a wide

range of applications including, maximum flow [CKM+11],

[LRS13], [KLOS14], [vdBGJ+22], [vdBLL+21], sampling

random spanning trees [KM09], [MST15], and clustering and

partitioning [AM85], [KVV04], [ACL06], [OSV12]. Corre-

spondingly, new algorithmic results on efficiently accessing

properties of random walks have the potential for broad

implications. In particular, in complexity theory, such algo-

rithms have attracted attention as a promising approach to

derandomizing space-bounded computation [SZ99], [Rei08],

[RTV06], [AKM+20].

In this paper we consider the well-studied problem of

estimating the �-step random walk on a directed graph. Given
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a strongly connected, weighted, directed graph G = (V,E,w),
its associated random walk matrix W ∈ R

V×V , and an

integer � > 0, we seek to approximate key properties of

the �-step random walk, W�, more efficiently than we could

computing W� explicitly. For example, we may wish to

estimate individual entries of W�, the conductance or cut

probabilities of subsets of vertices, or (expected) hitting times

between pairs of vertices.

In recent years, graph sparsification has emerged as a

powerful approach for efficiently solving such problems. When

the graph is undirected, we look for spectral sparsifiers of the

Laplacian L = D − A, where D is the diagonal matrix of

degrees and A is the adjacency matrix. It is known that for

all ε ∈ (0, 1), that there exist ε-spectral sparsifiers with sparsity

Õ(|V |ε−2); that is, a Laplacian matrix L̃ with Õ(|V |ε−2) non-

zero entries such that

(1− ε)x�Lx ≤ x�L̃x ≤ (1 + ε)x�Lx for all x ∈ R
V . (1)

Spectral sparsifiers can be computed in nearly linear

time [ST04], [SS08], [BSS12], [PS14]. Normalizing such a

sparsifier L̃ by D−1/2 on both sides, we obtain a spectral

approximation of the normalized Laplacian D−1/2LD−1/2,

which directly gives information about random walks because

it is equivalent (up to a change of basis) to the random-
walk Laplacian, LD−1 = I −W. Indeed, from any spectral

sparsifier L̃ satisfying Equation (1), we can approximate any

desired cut (S, Sc) in the original graph in nearly linear time

by evaluating x�L̃x for x equal to the indicator vector of

S. Furthermore, there are nearly linear-time algorithms for

computing sparse ε-spectral sparsifiers corresponding to the �-
step random walk, i.e., sparsifiers of the weighted graph whose

random-walk Laplacian is I−W�, for any polynomial length

� [CCL+15], [MRSV21].

Obtaining analogous results for sparsifying I−W� for di-

rected graphs has been more challenging. For a directed graph,

we consider the directed Laplacian [CKP+16] L = Dout−A�

where Dout is the associated diagonal matrix of out-degrees

and A� is the transpose of the associated weighted adjacency

matrix, A. In comparison to their symmetric counterparts for

undirected graphs, nearly linear-time sparsification algorithms

(which approximate more than the associated undirected

graph) were developedl more recently [CKP+17], [CGP+18]

and have yet to be extended to handle long random walks.
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Here we describe challenges in sparsifying I−W� for directed

graphs.

a) Unknown Stationary Distribution.: While the kernel

of an undirected Laplacian matrix is the all ones vector, com-

puting the kernel of a directed Laplacian matrix L corresponds

to computing the stationary distribution π of the random walk

on the directed graph (LD−1
outπ = 0). Without explicitly

knowing the kernel, it is not known how to efficiently perform

any kind of useful sparsification or approximately solve linear

systems in L. This difficulty was overcome in [CKP+16],

[AJSS19] which provide reductions from solving general

directed Laplacian systems to the case where the graph is

Eulerian, meaning that every vertex has the same in-degree

as out-degree. In Eulerian graphs, the stationary distribution

is simply proportional to the vertex degrees and the all ones

vector is both the left and right kernels of the associated

directed Laplacian.

b) Defining Approximation.: Undirected Laplacians L
are symmetric and positive semidefinite (PSD), i.e., x�Lx ≥ 0
for all x. This leads to the natural Spielman–Teng [ST04]

definition of multiplicative approximation given in Equa-

tion (1). That is, we say that L̃ is an ε-approximation of

L if (1 − ε)L � L̃ � (1 + ε)L, where � is the Löwner

order on PSD matrices. However, even though Laplacians of

directed graphs are potentially asymmetric, the quadratic form

x�Lx depends only on a symmetrization of the Laplacian

(x�Lx = x�((L + L�)/2)x). Consequently, the quadratic

form discards key information about the associated directed

graph (e.g. the quadratic form of a directed cycle and an

undirected cycle are the same). Thus, defining approximation

for directed graphs (even Eulerian ones) is more challenging

than for undirected graphs and a more complex notion of

approximation was introduced in [CKP+16]. This additional

complexity requires designing new sparsification algorithms

that take into account the directedness of the graph.

c) Preservation under Powering.: Even for undirected

graphs, the standard definition of spectral approximation in

Equation (1) is not preserved under powering. That is, I−W̃ ≈
I − W does not imply that I − W̃2 ≈ I − W2. Indeed,

in graphs that are bipartite (and connected), I − W2 has a

two-dimensional kernel, corresponding to the ±1 eigenvalues

of W, whereas I − W has only a one-dimensional kernel.

Standard spectral approximation requires perfect preservation

of the kernel of I −W, but not of I −W2. Graphs that are

nearly bipartite (i.e., where W has an eigenvalue near −1)

can also experience a large loss in quality of approximation

when squaring.

Cheng et al. [CCL+15] addressed this issue by (implic-

itly) strengthening spectral approximation to require that

I + W̃ ≈ I + W in addition to I − W̃ ≈ I − W. This

notion of approximation enabled algorithms for sparsifying

I−W� for undirected graphs in randomized near-linear time

[CCL+15], [MRSV21] and deterministic logspace [MRSV21],

[DMVZ20]. For directed graphs, the problem comes not just

from bipartiteness, but general periodic structures (e.g. a

directed cycle), which give W complex eigenvalues on or

near the unit circle. This led Ahmadenijad et al. [AKM+20] to

propose the notion of unit-circle (UC) approximation, which

amounts to requiring that I − zW̃ approximate I − zW for

all complex numbers z of magnitude 1, with respect to the

standard notion of approximation for directed graphs proposed

in [CKP+16]. UC approximation has the property that it is

preserved under taking arbitrary powers, with no loss in the

approximation error. As such, sparsification techniques for UC

and stronger notions must exactly preserve periodicity.

d) Preservation of Periodic Structures.: Sparsifying di-

rected graphs under UC approximation is more challenging

due to the need to preserve periodic structures in the graph,

which can be easily lost or introduced by common sparsifica-

tion techniques such as random sampling [SS08] or patching

to fix degrees. Thus in [AKM+20], it was only shown how

to partially sparsify the square of a graph; that is obtain a

graph with random-walk matrix W̃2 such that I − W̃2 UC-

approximates I−W2, but has fewer edges than the true square

W2. Still, the number of edges in W̃2 is larger than in W
by at least a constant factor, so if we iterate to obtain a

sparse approximation of W�, the number of edges will grow

by a factor of clog � = poly(�) and our approximations will

quickly become dense. This was affordable in the deterministic

logspace algorithms of [AKM+20], but is not in our setting

of nearly linear time.

Our Work: In this paper we provide several tools for

overcoming these challenges, advancing both algorithmic and

structural tools regarding graphs sparsification. First, we in-

troduce a new notion of directed graph approximation called

singular value (SV) approximation. We then show that that

this notion of approximation strictly strengthens unit-circle

approximation and show that it has a number of desirable

properties, such as preservation under not only powers but

arbitrary products of random-walk matrices, and implying

approximation of stationary probabilities of all cuts. Then

we provide an efficient near linear-time randomized algorithm

for computing nearly linear-sized SV-sparsifiers for arbitrary

Eulerian directed graphs; this implies the first proof that

nearly linear-sized UC-sparsifiers exist for Eulerian directed

graphs. As a starting point for this result, we provide a simple

reduction from SV-sparsifying Eulerian directed graphs to SV-

sparsifying undirected graphs; no such reduction was known

for the previous, weaker forms of spectral approximation

of directed graphs, and shows that SV approximation is a

significant strengthening even for undirected graphs.

Combined with the Eulerian scaling algorithms of

[CKK+18], we obtain an algorithm for approximating the

stationary probabilities of cuts (as well as “uncuts”) in random

walks on arbitrary directed graphs, which we define as follows:

Definition I.1 (Cut values). For a strongly connected,

weighted digraph G on n vertices, let μ be the unique

stationary distribution of the random walk on G, and let μedge

be the stationary distribution on edges (i, j) of G (i.e., pick i
according to μ and j by following an edge from i proportional

to its weight). For subsets S and T of vertices, define:
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• CutG(S, T ) = Pr(i,j)∼μedge
[i ∈ S, j ∈ T ],

• CutG(S) = CutG(S, S
c) = (CutG(S, S

c) +
CutG(S

c, S))/2, and

• UncutG(S) = (CutG(S, S) + CutG(S
c, Sc))/2.

If G has random-walk matrix W, we may write CutW and

UncutW instead of CutG and UncutG.

Definition I.2 (Powering). For a weighted digraph G with

adjacency matrix A, out-degree matrix Dout, and random-

walk matrix W = AD−1
out, we write G� for the weighted

digraph with adjacency matrix (AD−1
out)

� ·Dout (and thus out-

degree matrix Dout and random-walk matrix W�).

With these definitions, the main application of our SV

sparsification results is the following:

Theorem I.3 (informal). There is a randomized algorithm
that, given a strongly connected n-node m-edge directed
graph G with integer edge weights in [1, U ], a walk length
�, an error parameter ε > 0, and lower bound s on the
minimum stationary probability of the random walk on G,
runs in time O((m + nε−2) · poly(log(U�/s)) and outputs
an O(nε−2 · poly(log(U�/s)))-edge graph H such that for
every two sets S, T of vertices, we have:

|CutH(S, T )− CutG�(S, T )|
≤ ε

2
·
√

min {CutG�(S),UncutG�(S)}
·
√
min {CutG�(T ),UncutG�(T )}.

In particular:

(1− ε) · CutG�(S) ≤ CutH(S) ≤ (1 + ε) · CutG�(S),

and

(1− ε) ·UncutG�(S) ≤ UncutH(S) ≤ (1 + ε) ·UncutG�(S).

Note that when U, � ≤ poly(n), s ≥ 1/poly(n), and ε ≥
1/poly(log n), our algorithm runs in time Õ(m). For compari-

son, note that, given a set S, we can estimate the cut value for

S using random walks in time roughly Õ(�/(ε2CutG(S))),
which is slower when �/CutG(S) is m1+Ω(1). (Note that

CutG(S) can be as small as 1/m.)

It is also worth comparing to the following approaches

that yield high-precision estimates (i.e. replacing multiplicative

error ε with polynomially small additive error):

• Use matrix powering via repeated squaring to compute

W�. This takes time nω · log(�), where ω is the matrix

multiplication exponent. This is slower than our algorithm

assuming ω > 2 or m ≤ n2−Ω(1).

• Use the algorithm of [CKK+18] to obtain a high-

precision estimate of the stationary distribution μ of G in

time Õ(m), and then use repeated matrix-vector multi-

plication to compute W�μ. This takes time Õ(m�), so is

slower than our algorithm except when � = polylog(n).
• Use the algorithm of Ahmadenijad et al. [AKM+20].

This also gives high-precision estimates of W�, and does

so in nearly logarithmic space, but the running time

is superpolynomial. A running time of Ω(m · �) seems

inherent in the approach as it works by reducing to

solving a directed Laplacian system of size m · �.
It remains an interesting open problem to estimate any desired

entry of W� to high precision in nearly linear time.

e) Other Work on SV Approximation.: The definition of

SV approximation and some of our results on it (obtained in

collaboration between Jack Murtagh and the authors) were

first presented in the first author’s PhD thesis [Ahm20] in

August 2020. Independently, Kelley [Kel21] used a variant of

SV approximation to present an alternative proof of a result

of [HPV21], who used unit-circle approximation to prove

that the Impagliazzo-Nisan–Wigderson pseudorandom genera-

tor [INW94] fools permutation branching programs. Golowich

and Vadhan [GV22] used SV approximation and some of

our results (presented in the aforementioned thesis) to prove

new pseudorandomness properties of expander walks against

permutation branching programs. Most recently, Chen, Lyu,

Tal, and Wu [CLTW22] have used a form of SV approximation

to present alternative proofs of the results of [AKM+20],

[PV21].

A. Singular-Value Approximation

In this paper, we present a stronger and more robust

notion for addressing the challenge of defining approximation

between directed graphs. Specifically, we introduce a novel

definition of approximation for asymmetric matrices, which

we call singular-value approximation (or SV approximation).
For simplicity in the rest of this introduction, we focus

on the case of regular directed graphs, i.e. directed graphs

where for some value d ≥ 0, every vertex has in-degree d and

out-degree d. (In the case of digraphs with non-negative edge

weights, we obtain the in- and out-degrees by summing the in-

coming or out-going edge weights at each vertex.) However,

all of our results generalize to Eulerian digraphs and some

generalize to wider classes of complex matrices.

To introduce SV approximation, let A be the adjacency

matrix of a d-regular digraph, i.e., A is a non-negative real

matrix where every row and column sum equals d. Then the

(in- and out-) degree matrix is simply dI. Dividing by d, it is

equivalent to study approximation of the random-walk matrix
W = A/d, which is doubly stochastic, and has degree matrix

I.

Definition I.4 (SV approximation for doubly stochastic ma-

trices). For doubly stochastic matrices W, W̃ ∈ R
n×n we

say that W̃ is an ε-singular-value (SV) approximation of W,

written W̃
sv≈ε W, if for all “test vectors” x, y ∈ R

n, we have∣∣∣x�(W̃ −W)y
∣∣∣ (2)

≤ ε

4
· [x�(I−WW�)x+ y�(I−W�W)y

]
. (3)

This formulation of SV-approximation is one of several

equivalent formulations we provide in the full paper. We

can equivalently define SV approximation between doubly

stochastic matrices by requiring Equation (3) to hold for all
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complex test vectors x, y ∈ C
n. SV-approximation can also

be defined equivalently by replacing condition (3) with∣∣∣x�(W̃ −W)y
∣∣∣ (4)

≤ ε

4
·
√

[x�(I−WW�)x] · [y�(I−W�W)y]. (5)

These two formulations, (3) and (5), differ only in using

the geometric mean or the arithmetic mean of the terms

involving x and y on the right-hand side. The formulation

in terms of the geometric mean implies the one in terms

of the arithmetic mean (since the geometric mean is no

larger than the arithmetic mean); the converse follows by

optimizing over scalar multiples of x and y (as was done

in e.g. [CKP+17], [AKM+20]). Both formulations can be

rewritten more simply by noting that x�(I − WW�)x =
‖x‖2−‖x�W‖2 and y�(I−W�W)y = ‖y‖2−‖Wy‖2, but

the description in terms of quadratic forms will be more conve-

nient for comparison with previous notions of approximation.

In the full paper, we provide more general definitions of

SV approximation which also apply to unnormalized directed

Laplacians and even to complex matrices.

We prove that SV approximation is strictly stronger than

previous notions of spectral approximation considered in the

literature, even for undirected graphs, and enjoys several useful

properties not possessed by the previous notions. Most notably,

there is a simple black-box reduction from SV-sparsifying

Eulerian directed graphs to SV-sparsifying undirected graphs;

no such reduction is known for prior notions of asymmetric

spectral approximation.

Furthermore, we give efficient algorithms for working with

SV approximation. These include nearly linear-time algo-

rithms for SV-sparsifying undirected and hence also Eulerian

directed graphs (Theorem I.11), as well as random-walk

polynomials of directed graphs (Theorem I.11). We also show

that a simple repeated-squaring and sparsification algorithm

for solving Laplacian systems also works for Eulerian di-

graphs whose random-walk matrix is normal (i.e., unitarily

diagonalizable), if we use SV-sparsification at each step (The-

orem I.12). Prior Laplacian solvers for Eulerian graphs are

more complex. We elaborate on these results in the next several

subsections.

B. Comparison to Previous Notions of Approximation

Let us compare Theorem I.4 to previous definitions of

approximation.

a) Undirected spectral approximation.: Let’s start with

the undirected case, where W = W�. In this case, it can be

shown that we can without loss of generality restrict Theo-

rem I.4 to x = y, obtaining the following: W̃
sv≈ε W requires

that for all x ∈ R
n,∣∣∣x�(W̃ −W)x

∣∣∣ ≤ ε

2
· [x�(I−W2)x

]
. (6)

In contrast, the standard definition of spectral approximation

(introduced by Spielman and Teng [ST04]), which we denote

by W̃ ≈ε W, is equivalent to requiring that for all x ∈ R
n,

we have ∣∣∣x�(W̃ −W)x
∣∣∣ ≤ ε · [x�(I−W)x

]
. (7)

To compare inequalities (6) and (7), we write x =
∑

i civi,
where v1, . . . , vn is an orthonormal eigenbasis for W with

associated eigenvalues λ1, . . . , λn. Since W is stochastic,

|λi| ≤ 1 for all i ∈ [n], the right-hand side of SV inequality (6)

becomes
ε

2
·
∑
i∈[n]

c2i · (1− λ2
i ),

whereas the right-hand side of ST inequality (7) becomes

ε ·
∑
i∈[n]

c2i · (1− λi).

Since each |λi| ≤ 1, the fact that SV approximation implies

ST approximation then follows from

(1− λ2
i ) = (1− λi)(1 + λi) ≤ 2(1− λi).

However, we also see that inequality (6) can be much stronger

than inequality (7) when W has eigenvalues λi close to -1

(e.g. in a bipartite graph with poor expansion) because then

1 − λ2
i is close to 0, but 1 − λi is bigger than 2. More

generally, inequality (6) requires that W̃ approximates W
very well on every test vector x that is concentrated on the

eigenvectors whose eigenvalues have magnitude close to 1,

whereas inequality (7) only requires close approximation on

the (signed) eigenvalues that are close to 1.

We remark that another way of ensuring W̃ preserves unit

singular values is to replace W2 in the SV inequality (6) with

the matrix |W| where we replace all eigenvalues of W with

their absolute value rather than their square,1 so that we have:

x�(I− |W|)x =
∑
i∈[n]

c2i · (1− |λi|).

Using |W| instead of W2 results in an equivalent definition

up to a factor of 2 in ε, and W2 turns out to be convenient

to work with.2 This viewpoint also explains why we stop at

W2 in the definition and don’t explicitly use higher powers;

it is simply a convenient proxy for |W|, which captures all

powers. Indeed, for all k ∈ N

I−W2 � 2 · (1− |W|) � 2 · (I−Wk
)
.

b) Directed spectral approximation.: Turning to previous

notions of spectral approximation for directed graphs, standard
approximation [CKP+17] generalizes the definition of Spiel-

man and Teng [ST04] by saying W̃ ≈ε W if for all x, y ∈ R
n∣∣∣x�(W̃ −W)y

∣∣∣ ≤ ε

2
· [x�(I−W)x+ y�(I−W)y

]
. (8)

1Another way of describing |W| is as the psd square root of the psd matrix
W2.

2|W| = (W2)1/2, i.e., |W| is the PSD square root of W2. In
Definition I.4, we could similarly replace WW� and W�W with their
PSD square roots and obtain a definition that is equivalent up to a factor of
2 in ε.

849

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:41:36 UTC from IEEE Xplore.  Restrictions apply. 



Equivalently, we can require that for all x, y ∈ R
n,∣∣∣x�(W̃ −W)y

∣∣∣ ≤ ε ·
√

[x�(I−W)x] · [y�(I−W)y]. (9)

It can be shown that for undirected graphs, standard approx-

imation is equivalent to the condition of Equation 7, so we

will also refer to it as standard approximation.

The use of different left and right test vectors x and y
on the left-hand side is crucial for capturing the asymmetric

information in W̃ and W. As before, if x or y is concentrated

on eigenvectors of W whose eigenvalues are close to 1,

then the right-hand side of ST inequality (9) is close to 0

and W̃ must approximate W very well. However, like the

standard undirected ST inequality (7), not much is required

on eigenvalues near -1. Moreover, asymmetric matrices can

have eigenvalues that are not real and are equal to or close

to complex numbers of magnitude 1. For example, the eigen-

values of a directed n-cycle are the complex n’th roots of

unity.

To address this issue, unit-circle (UC) approxima-
tion [AKM+20], written W̃

◦≈ε W, requires that for all

complex test vectors x, y ∈ C
n, we have∣∣∣x∗(W̃ −W)y

∣∣∣ ≤ ε

2
· [‖x‖2 + ‖y‖2 − |x∗Wx+ y∗Wy|] .

(10)

That is, we take the complex magnitude of the terms involving

W on the right-hand side of ST inequality (8). That way, if

x and y are concentrated on eigenvectors of W that have

eigenvalue near some complex number μ of magnitude 1,

we require that W̃ approximates W very well. For example,

consider the case where W is normal, i.e., has an orthonormal

basis of complex eigenvectors v1, . . . , vn and with corre-

sponding complex eigenvalues λ1, . . . , λn. Then if we write

x =
∑

i civi and y =
∑

i divi, the right-hand side of UC

inequality (10) becomes:

ε

2
·
∑
i∈[n]

(|ci|2 + |di|2)−
∣∣∣∣∣∣
∑
i∈[n]

(|ci|2 + |di|2) · λi

∣∣∣∣∣∣ . (11)

If x and y are concentrated on eigenvalues λi ≈ μ where

|μ| = 1, then this expression will be close to 0. Unit-circle

approximation has valuable properties not enjoyed by standard

approximation, in particular being preserved under powering:

If W̃ is an ε-UC approximation of W, then for every positive

integer k, W̃k is an O(ε)-UC approximation of Wk; note

that the quality of approximation does not degrade with k.

This property was crucial for the results of [AKM+20].

However, UC approximation has two limitations compared

to SV approximation. First, UC expression (11) is only small

if x and/or y is concentrated on eigenvalues that are all close

to the same point μ on the complex unit circle. Even in the

undirected case, if x and y are mixtures of eigenvectors with

eigenvalue close to 1 and eigenvalue close to -1, then there

will be cancellations in the second term of UC expression (11)

and the result will not be small. Second, some properties of

asymmetric matrices are more directly captured by singular

values than eigenvalues, since singular values treat the domain

and codomain as distinct. For example, the second-largest

singular value of W equals 1 if and only if there is a

probability distribution π on vertices that does not mix at all

in one step (i.e., ‖Wπ − u‖ = ‖π − u‖, where u = �1/n
and π �= u), but the latter can hold even when all nontrivial

eigenvalues have magnitude strictly smaller than 1.

To see how SV approximation addresses these limita-

tions, let σ1, . . . , σn ≥ 0 be the singular values of W, let

u1, u2, . . . , un ∈ C
n the corresponding left-singular vectors of

W, and let v1, . . . , vn ∈ C
n the corresponding right-singular

vectors. If we write x =
∑

i ciui and y =
∑

i divi, then the

right-hand side of SV inequality (3) becomes:

ε

4
·
⎡
⎣∑
i∈[n]

(|ci|2 + |di|2) · (1− σ2
i )

⎤
⎦ . (12)

Consequently, SV-approximation requires high-quality approx-

imation if x is concentrated on left-singular vectors of singular

value close to 1 and/or y is concentrated on right-singular

vectors of singular value close to 1. (For the “or” interpre-

tation, use the formulation of SV approximation in terms of

inequality (5).) To compare with UC expression (11), let us

consider what happens with a normal matrix, where ui = vi
and σi = |λi|. In this case, SV expression (12) amounts

to bringing the absolute value of UC expression (11) inside

the summation (and squaring, which only makes a factor of

2 difference), to avoid cancellations between eigenvalues of

different phases.

Furthermore, for non-normal matrices, SV approximation

retains the asymmetry of W even on the right-hand side,

by always using x on the left of W (thus relating to its

decomposition into left singular vectors) and y on the right

of W (thus relating to its decomposition into right singular

vectors). Indeed, this feature allows us to even extend the

definition of SV approximation to non-square matrices.

Following the above intuitions, we prove that SV approxi-

mation is indeed strictly stronger than the previous notions of

approximation, even for undirected graphs:

Theorem I.5. For all doubly stochastic matrices W and W̃,
if W̃

svn≈ ε W, then W̃
◦≈ε W (and hence W̃ ≈ε W). On the

other hand, for every n ∈ N there exist random walk matrices
W̃,W for n-node undirected graphs such that W̃

◦≈O(1/
√
n)

W, but it is not the case that W̃
svn≈ .3 W.

Since UC approximation implies standard approximation,

we likewise separate SV from standard approximation. Finally,

we note that our separation implies that several useful proper-

ties enjoyed by SV approximation, such as preservation under

products, are not satisfied by UC approximation.

C. Properties of SV Approximation

SV approximation enjoys a number of novel properties not

known to be possessed by previous notions of spectral approx-

imation. Most striking is the fact that directed approximation
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reduces to undirected approximation. To formulate this, we

define the symmetric lift of a matrix:

Definition I.6. Given W ∈ C
m×n, let the symmetric lift of

W be defined as

slift (W)
def
=

[
0n×n W∗

W 0m×m

]
.

Graph theoretically, the symmetric lift of W is the following

standard operation: Given our directed graph G on n vertices

with random-walk matrix W, we lift G to an undirected

bipartite graph H with n vertices on each side, where we

connect left-vertex i to right-vertex j if there is a directed

edge from i to j in G. Then slift (W) is the random-walk

matrix of H .

Theorem I.7. Let W and W̃ be doubly stochastic matrices.
Then W

sv≈ε W̃ if and only if slift
(
W̃

)
sv≈ε slift (W).

Thus, for the first time (as far as we know), sparsification of

directed graphs reduces directly to sparsification of undirected

graphs. It would be very interesting to obtain a similar reduc-

tion for other algorithmic problems in spectral graph theory,

such as solving Laplacian systems.

Another novel property of SV approximation is that it is

preserved under products:

Theorem I.8. Let W1, . . . ,Wk and W̃1, . . . ,W̃k be doubly
stochastic matrices such that W̃i

sv≈ε Wi for each i ∈ [k].
Then W̃1W̃2 · · ·W̃k

sv≈ε+O(ε2) W1W2 · · ·Wk.

Notably the approximation error does not grow with the

number k of matrices being multiplied. This property does

not hold for UC approximation, only the weaker property of

preservation under powering, i.e., W1 = W2 = · · · = Wk

and W̃1 = W̃2 = · · · = W̃k.

In addition, SV approximation is preserved under multipli-

cation on the left and right by arbitrary matrices of bounded

spectral norm. Indeed, it can be seen as the “closure” of

standard approximation under this operation (up to a factor

of 2).

Theorem I.9. The following hold for all doubly stochastic
matrices W and W̃:

1) If W̃
sv≈ε W then for all complex matrices U and V of

spectral norm at most 1, we have UW̃V
sv≈ε UWV,

and hence UW̃V ≈ε UWV.
2) If for all complex matrices U and V of spectral norm

at most 1, we have UW̃V ≈ε UWV then W̃
sv≈2ε W.

Since UWV and UW̃V need not be doubly stochastic

matrices, Theorem I.9 uses the generalization of SV approx-

imation to more general matrices, which can be found in the

full version of the paper.

Recall that standard spectral sparsifiers [ST04] are also cut
sparsifiers [BK00]. That is, if G̃ is an ε-approximation of G,

then for every set S of vertices, the weight of the cut S in G̃
is within a (1± ε) factor of the weight of S in G. Indeed, if

we take the test vector x to be the characteristic vector of the

set S in inequality (7), we obtain∣∣Cut
˜G(S)− CutG(S)

∣∣ ≤ ε · CutG(S), (13)

where Cut(·) is as in Theorem I.1.

Similarly, we can obtain a combinatorial consequence of SV

approximation, by taking x to be a characteristic vector of a

set S of vertices and taking y to be a characteristic vector of

a set T of vertices. This yields:

Proposition I.10. Let W̃ and W be doubly stochastic n ×
n matrices and suppose that W̃

sv≈ε W. Then for every two
subsets S, T ⊆ [n], we have∣∣Cut

˜W
(S, T )− CutW(S, T )

∣∣
≤ ε

2
·
√

CutWW�(S) · CutW�W(T ).

Note that W�W (resp., WW�) is the transition matrix

for the forward-backward walk (resp. backward-forward walk),

namely where we take one step using a forward edge of the

graph followed by one step using a backward edge.

Let us interpret Proposition I.10. First, consider the case

that W = J, the matrix with every entry equal to 1/n (the

random-walk matrix for the complete graph with self-loops).

Then the distribution μedge on pairs (i, j) in the definition of

CutW (Theorem I.1) has i and j as uniform and independent

vertices, and the same is true for CutWW� and CutW�W.

Thus, Proposition I.10 says:∣∣Cut
˜W
(S, T )− μ(S) · μ(T )∣∣

≤ ε

2
·
√

μ(S) · (1− μ(S)) · μ(T ) · (1− μ(T )),

where μ(S) = |S|/n and μ(T ) = |T |/n are the stationary

probabilities of S and T , respectively. This amounts to a

restatement of the Expander Mixing Lemma (cf., [Vad12,

Lemma 4.15]); indeed W̃
sv≈ε J if and only if W̃ is a spectral

expander with all nontrivial singular values at most ε/2.

Next, let’s consider the case that T = Sc. Since

CutWW�(S) = CutWW�(Sc), SV approximation implies

that:∣∣Cut
˜W
(S)− CutW(S)

∣∣ ≤ ε

2
·
√
CutWW�(S) · CutW�W(S)

(14)

We claim that (14) is stronger than the standard notion of

a cut approximator (13). Indeed, it can be shown that

CutWW�(S) ≤ 2 · CutW(S),

and similarly for CutW�W(T ). The reason is that if a

backward-forward walk crosses between S and Sc, then it

must cross between S and Sc in either the first step or in the

second step. Similar reasoning shows that

CutWW�(S) ≤ 2 ·UncutW(S),

and similarly for CutW�W(T ). Thus SV approximation also

implies:∣∣Uncut
˜G(S)−UncutG(S)

∣∣ ≤ ε ·UncutG(S), (15)
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Thus, we conclude that an SV-approximator not only approx-

imates every cut to within a small additive error that is scaled

by the weight of the cut edges (as in (13)), but also scaled by

the weight of the uncut edges.

D. Algorithmic Results

Even though SV approximation is stronger than previously

considered notions of spectral approximation, we show that it

still admits sparsification:

Theorem I.11. There is a randomized nearly-linear time
algorithm that given a regular directed graph G with n
vertices and m edges, integer edge weights in [0, U ], and
random-walk matrix W, and ε > 0, whp outputs a weighted
graph G̃ with at most O(nε−2 · poly(log(nU))) edges such
that its random-walk matrix W̃ satisfies W̃

sv≈ε W.

A more general theorem that also applies to Eulerian

digraphs is stated in the full version of the paper. Prior to

this work, it was open whether or not even UC-sparsifiers

with O(n · poly(log n, 1/ε)) edges existed for all unweighted

regular digraphs. Instead, it was only known how to UC-

sparsify powers of a random walk matrix in such a way that

the number of edges increases by at most a polylogarithmic

factor compared to the original graph (rather than decrease the

number of edges) [AKM+20].

By Theorem I.7, it suffices to prove Theorem I.11 for

undirected bipartite graphs. We obtain the latter via an undi-

rected sparsification algorithms based on expander partition-

ing [ST04]. It remains an open question whether algorithms

based on edge sampling can yield SV approximation or unit

circle approximation, even in undirected graphs. The standard

approach to spectral sparsification of undirected graphs via

sampling, namely keeping each edge independently with prob-

ability proportional to its effective resistance [SS08], does not

work for SV or UC approximation. For example, this method

does not exactly preserve degrees, which we show is necessary

for SV sparsification.3

However, we remark that the work of Chu, Gao, Peng,

Sawlani, and Wang [CGP+18] does yield something closer

to sparsification via degree preserving sampling for standard

approximation [CKP+17] but not unit circle approximation.

They show that if one has a directed graph and decomposes it

into short “cycles” without regard for the direction of the edges

on the cycle, then one can sparsify by randomly eliminating

either the clockwise or counterclockwise edges on each such

cycle. We build on their procedure and use it to obtain SV

sparsification (and hence, unit circle) by showing that this

technique obtains SV approximation, even if the cycles are

not short, as long as (a) all the cycles are within expanding

subgraphs, and (b) the cycles alternate between forward and

backward edges. (Note that such alternating cycles in a di-

3Unlike standard spectral approximation, degrees cannot be fixed just by
adding self loops; indeed, self-loops ruin bipartiteness and periodicity, which
are properties that UC and SV approximation retain (as they are captured by
eigenvalues like -1 or other roots of unity).

rected graph correspond to ordinary cycles in the undirected

lift given by Theorem I.7.)

Given Theorem I.11, we obtain our algorithm for longer

walks (Theorem I.3) as follows:

1) First, we show that we can SV-sparsify the squares of

random-walk matrices of Eulerian digraphs; we follow

the approach of [CKK+18] by locally sparsifying the

bipartite complete graphs that form around each vertex

when squaring, and then applying Theorem I.11 to

globally sparisfy further. We likewise show the “de-

randomized square” approach used in [RV05], [PS14],

[MRSV21], [AKM+20] gives a square sparsifier.

2) Then we SV-sparsify arbitrary powers of 2 by repeatedly

squaring and sparsifying, using the fact that SV approxi-

mation is preserved under powering. During this process,

we need to ensure that the ratio between the largest and

smallest edge weights remains bounded. We do this by

restricting to graphs that have second-largest singular

value bounded away from 1 by 1/poly(nU�), which

allows us to discard edge weights that get too small and

make small patches to preserve degrees. We can achieve

this assumption on the second-largest singular value by

adding a small amount of laziness to our initial graph.

3) Then to sparsify arbitrary powers W�, we can multiply

sparsifiers for the powers of 2 appearing in the binary

representation of �. For example, to get a sparsifier for

W7, we multiply sparsifiers for W4, W2, and W1,

sparsifying and eliminating small edge weights again in

each product. The use of SV approximation plays an

important role in the analysis of this algorithm, because

it has the property that the product of the approximations

of the powers still approximates the product of the true

powers (Theorem I.8).

4) Given Theorem I.11, we obtain Theorem I.3 for general

directed graphs by using [CKK+18] to compute a high-

precision estimate of the stationary distribution, which

allows us to construct an Eulerian graph whose random-

walk matrix closely approximates that of the original

graph. SV-sparsifying the �’th power of the Eulerian

graph gives us a graph all of whose Cut and Uncut val-

ues approximate the �’th power of our input graph. The

use of [CKK+18] to estimate the stationary distribution

and the introduction of laziness to W both incur a small

additive error δ, but we can absorb that into ε by setting

δ = 1/poly(nU/s) and observing that CutG�(S) and

UncutG�(S) are at least 1/poly(nU/s) (if nonzero).

Our final contribution concerns algorithms for solving di-

rected Laplacian systems. The recursive identities used for

solving undirected Laplacian systems, while behaving nicely

with respect to PSD approximation, do not behave as nicely

with respect to the previous approximation definitions for

directed graphs. This led to different, more sophisticated re-

cursions with a more involved analysis of the error [CKP+17],

[CKK+18], [AKM+20], [KMG22]. We make progress to-

wards simplifying the recursion and analysis of solving di-
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rected Laplacian linear systems in the following way. We

show that a simpler recursion, a variant of the one used

by Peng and Spielman [PS14] (Equation (17) below), and a

simpler analysis suffice if the directed Laplacian is normal

(i.e., unitarily diagonalizable) and we perform all sparsification

with respect to SV approximation. Note that this result is the

only result in our paper that relies on a normality assumption;

the aforementioned sparsification results hold for all Eulerian

directed graphs.

Theorem I.12. For a doubly stochastic normal matrix W ∈
R

n×n with ‖W‖ ≤ 1, let W = W0, . . . ,Wk−1 be a
sequence of matrices such that for ε ≤ 1/4k we have

Wi
sv≈ε W

2
i−1 ∀0 < i < k, (16)

and

Pi =
1

2
[I+ (I+Wi)Pi+1(I+Wi)] ∀0 ≤ i < k (17)

defining the Peng-Spielman squaring recursion.
Then, for a matrix Pk, such that∥∥∥(I−W2k)

1
2

[
Pk − (I−W2k)+

]
(I−W2k)

1
2

∥∥∥ ≤ O(kε),
we have

‖P0(I−W)− I‖B
=

∥∥∥(I−W)
1
2

[
P0 − (I−W)+

]
(I−W)

1
2

∥∥∥ ≤ O(k2ε)

where B = ((I−W)1/2)∗(I−W)1/2.

Theorem I.12 says that that we can compute a good precon-
ditioner P0 for the Laplacian I−W by repeatedly computing

SV-approximate squares (eq. 16) and use the simple recurrence

(eq. 17, starting with a preconditioner Pk for a sufficiently

large power of W. Generally, Pk is easy to obtain for a large

enough k = O(log n) since W2k is well-approximated by a

complete graph (assuming the original graph is connected and

aperiodic).

E. Open Problems

One open problem is to determine whether or not it is

possible to obtain linear-sized sparsifiers. Recall that undi-

rected graphs have sparsifiers with respect to standard spec-

tral approximation that have only O(n/ε2) nonzero edge

weights [BSS12]. If this result could be extended to obtain

linear-sized SV-sparsifiers of undirected graphs, we would

also have linear-sized sparsifiers for directed graphs by The-

orem I.7, which would be a new result even for standard

approximation [CKP+17].
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