
Agnostic proper learning of monotone
functions: beyond the black-box correction

barrier

Jane Lange
CSAIL

MIT
Cambridge, USA

jlange@mit.edu

Arsen Vasilyan
CSAIL

MIT
Cambridge, USA

vasilyan@mit.edu

Abstract—We give the first agnostic, efficient, proper
learning algorithm for monotone Boolean functions. Given
2Õ(

√
n/ε) uniformly random examples of an unknown

function f : {±1}n → {±1}, our algorithm outputs a
hypothesis g : {±1}n → {±1} that is monotone and
(opt + ε)-close to f , where opt is the distance from f
to the closest monotone function. The running time of the
algorithm (and consequently the size and evaluation time of
the hypothesis) is also 2Õ(

√
n/ε), nearly matching the lower

bound of [13]. We also give an algorithm for estimating up
to additive error ε the distance of an unknown function f
to monotone using a run-time of 2Õ(

√
n/ε). Previously, for

both of these problems, sample-efficient algorithms were
known, but these algorithms were not run-time efficient.
Our work thus closes this gap in our knowledge between
the run-time and sample complexity.

This work builds upon the improper learning algorithm
of [17] and the proper semiagnostic learning algorithm
of [40], which obtains a non-monotone Boolean-valued
hypothesis, then “corrects” it to monotone using query-
efficient local computation algorithms on graphs. This
black-box correction approach can achieve no error better
than 2opt + ε information-theoretically; we bypass this
barrier by

a) augmenting the improper learner with a convex opti-
mization step, and

b) learning and correcting a real-valued function before
rounding its values to Boolean.

Our real-valued correction algorithm solves the “poset
sorting” problem of [40] for functions over general posets
with non-Boolean labels.

Index Terms—learning theory, monotone functions,
property testing, sublinear algorithms, Boolean functions

Jane is supported in part by NSF Graduate Research Fellowship
under Grant No. 2141064 and NSF Awards CCF-2006664, DMS-
2022448. Arsen is supported in part by NSF awards CCF-2006664,
DMS-2022448, CCF-1565235, CCF-1955217, Big George Fellowship
and Fintech@CSAIL.

I. INTRODUCTION

The class of monotone functions over {±1}n is an

object of major interest in theoretical computer sci-

ence. In consequence, the study of learning and testing

algorithms for monotone functions [1], [4], [8], [15],

[17], [19], [20], [22]–[25], [32], [37], [39], [40], [45],

[46] and various subclasses of monotone functions [5],

[14], [35], [52] is a major research direction. In this

work, we consider two fundamental problems in this

line of work: approximating the distance of unknown

functions to monotone, and agnostic proper learning of

monotone functions. For each of these problems we are

given independent uniform samples {xi} labeled by an

arbitrary function f : {±1} → {±1} and we are required

to perform the following tasks:

1) Estimating distance to monotonicity is the task of

estimating up to some additive error ε the distance

dist(f, fmon) from f to the monotone function fmon

that is closest to f .

2) Agnostic proper learning of monotone functions
is the task of obtaining a description of a monotone

function gmon, whose distance dist(f, gmon) approx-

imates dist(f, fmon) up to additive error ε.

Prior to our work, it was known that information-

theoretically these tasks can be solved using only

2Õ(
√
n/ε) samples. However, all known algorithms had

a run-time of 2Ω(n), thus dramatically exceeding the

known sample complexity of 2Õ(
√
n/ε). In this work, we

close this gap in our knowledge and give algorithms for

the two tasks above that not only use 2Õ(
√
n/ε) samples,

but also run in time 2Õ(
√
n/ε). This nearly matches the

2Ω̃(
√
n) lower bound of [13].

1149

2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)

DOI 10.1109/FOCS57990.2023.00068

20
23

 IE
EE

 6
4t

h
A

nn
ua

l S
ym

po
si

um
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
C

S)
 |

97
9-

8-
35

03
-1

89
4-

4/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
FO

C
S5

79
90

.2
02

3.
00

06
8

979-8-3503-1894-4/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

A. Previous work

We note that the work of [40] largely concerns itself

with the problem of realizable learning of monotone

functions, i.e. learning a function f that is itself promised

to be monotone. In contrast, the focus of our work

is the harder setting when the function f we access

is arbitrary and we want to obtain a description of

a monotone function gmon that predicts f best among

monotone functions (up to an additive slack of ε).

Still, as noted in [40], their work does give mixed

additive-multiplicative approximation guarantees in the

settings we study here. Specifically, [40] gives algo-

rithms that also run in time 2Õ(
√
n/ε) and achieve the

following:

1) Obtain a (3, ε)-approximation of dist(f, fmon).
In other words, the estimate is in the inter-

val between dist(f, fmon) and 3 · dist(f, fmon) +
ε. (We also note that [40] additionally present

an algorithm that gives a distance estimate in

[dist(f, fmon), 2 · dist(f, fmon) + ε] but also re-

quires query access to function f).

2) Obtain a succinct description of a monotone func-

tion gmon, whose distance dist(f, gmon) is a (3, ε)-
approximation to dist(f, fmon). In other words,

it is in the interval between dist(f, fmon) and

3 · dist(f, fmon) + ε. As it is noted in [40], this

yields a fully agnostic learning algorithm only if

dist(f, fmon) ≤ O(ε).

B. Main results

The following are our main results: learning and

distance approximation of Boolean functions, and local

correction of real-valued functions.

Theorem 1. [Agnostic proper learning of monotone
functions1] There is an algorithm that runs in time

2
Õ
(√

n
ε

)
and, given uniform sample access to an un-

known function f : {±1}n → {±1}, with probability
at least 1 − 1

2n , outputs a succinct representation of
a monotone function g : {±1}n → {±1} that is
opt+O(ε)-close to f , where opt is the distance from
f to the closest monotone function (i.e. the fraction of
elements of {±1}n on which f and its closest monotone
function disagree).

The corollary below follows immediately by the stan-

dard method of [47] that runs the learning algorithm in

Theorem 1 and estimates the distance between g and f .

1See Appendix B for an extension to functions with randomized
labels.

Corollary I.1 (Additive distance-to-monotonicity ap-

proximation). There is an algorithm with running time

and sample complexity 2
Õ
(√

n
ε

)
that outputs some esti-

mate est of the distance from f to the closest monotone
function fmon. With probability at least 1− 2−n+1, this
estimate satisfies the guarantee

dist(f, fmon) ≤ est ≤ dist(f, fmon) +O(ε).

Our main result, Theorem 1, builds on an algorithm

that is also of independent interest. It it a local compu-

tation algorithm for solving the “poset sorting problem”

as described in [41] for real-valued functions (note that

[41] only handled Boolean-valued functions). In other

words, the algorithm gives local access to a monotone

approximation of a real-valued function that is close

to the optimal monotone approximation in �1 distance.

(See Section I-C2 for background on local computation

algorithms.)

Theorem 2. [Local monotonicity correction of real-
valued functions] Let P be a poset with N elements,
such that every element has at most Δ predecessors or
successors and the longest directed path has length h.
Let f : P → [−1, 1] be α-close to monotone in �1
distance. There is an LCA that makes queries to f and
outputs queries to g : P → [−1, 1], such that g is
monotone and ||f − g||1 ≤ 2α + 3ε. The LCA makes
(Δ logN)O(log h log(1/ε)) queries, uses a random seed
of length poly(Δ logN), and succeeds with probability
1−N−10.

C. Our techniques: beyond the black-box correction
barrier.

The algorithms of [40] follow the following pattern

(which we also summarize in Figure 1):

1) Use [17], [28], [36] to obtain a succinct de-

scription of a (possibly non-monotone) function

fimproper whose distance dist(f, fimproper) is at

most dist(f, fmon) + ε. The issue now is that

fimproper is not necessarily monotone, and therefore

the distance dist(f, fimproper) might dramatically

underestimate the true distance to monotonicity

dist(f, fmon).
2) Design and use a monotonicity corrector, in order

to transform the succinct description of fimproper into

a succinct description of some monotone function

gmon that is close to fimproper. Formally, [40] de-

velop a corrector that guarantees that the distance

dist(fimproper, gmon) satisfies

dist(fimproper, gmon) ≤ c min
monotone f’

dist(fimproper, f
′)+ε,

(1)

1150

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

where the constant c is 2. They achieve this by

a novel use of Local Computation Algorithms
(LCAs) on graphs.

This way, [40] obtain a succinct polytime-evaluable

description of a monotone function gmon for which2

dist(f, gmon) ≤ 3 · dist(f, fmon) + ε.

However, one can see that even if the correction

constant c in Equation (1) were equal to 1 (which is the

best it can be) this approach could only yield a guarantee

of dist(f, gmon) ≤ 2 · dist(f, fmon) + ε.
1) Description of our approach: We overcome this

barrier by using a different approach, summarized in

Figure 2. As before, there is an improper learning phase

and a correction phase; however in both phases we work

with real-valued functions. We have essentially three

steps:

1) Find a real-valued polynomial P that is ε-close to

some monotone function, (opt + ε)3-close to the

unknown function f in �1 distance, and bounded in

[−1, 1].
2) Obtain a succinct description of a real-valued func-

tion PCORRECTED that is monotone, and O(ε)-close

to P in �1 distance.

3) Round the real-valued function PCORRECTED to be

{±1}-valued, while preserving monotonicity and

closeness to f .

In contrast to the approach of [40], the improper

learning phase is constrained to produce a good predictor

that is ε-close to some monotone function, regardless of

how far f may be from monotone. Existing improper

learning algorithms are far from satisfying this new

requirement. We design a new improper learner by com-

bining the polynomial-approximation based techniques

of [17], [28], [36] with graph LCAs and the ellipsoid
method for convex optimization.

The improper learning task is a convex feasibility

problem; the set of polynomials satisfying the constraints

we give in step (1) is a convex subset of the initial convex

set of low-degree real polynomials. The ellipsoid method

requires a separation oracle, i.e. some way to efficiently

generate a hyperplane separating a given infeasible poly-

nomial from the feasible region. Such hyperplanes are

themselves low-degree real polynomials, which have

high inner product with the infeasible polynomial and

low inner product with every point in the feasible region.

2Strictly speaking, the properties of the corrector described so far
yield only a guarantee of dist(f, gmon) ≤ 4 · dist(f, fmon) + ε. To
improve the multiplicative error constant from 4 to 3 the work of [40]
uses an additional property of the corrector.

3Since opt is unknown, we instead guess values of opt in increments
of ε.

The separator for the set of polynomials that are (α+ε)-
close to f is, as shown in Figure 2, just the gradient

of the prediction error; the more interesting case is the

separator for the set of polynomials that are ε-close to

monotone.

With an argument inspired by the characterization of

Lipschitz functions given in [9], we observe that if a real-

valued polynomial P is far from monotone, this can be

witnessed by a large matching on the pairs of elements

on which P violates monotonicity. Given any description

of the matching, we show how to extract a separating

hyperplane for P by evaluating the matching on a set

of sample points. Therefore, the challenge is to find a

description of a sufficiently large matching that can also

be evaluated quickly. We elaborate on this in the next

section.

Step (2) requires another technical contribution, which

is an extension of the poset-sorting LCA of [40] to

real-valued functions. This extension is crucial for us to

achieve the overall agnostic learning guarantee, because

in the improper learning phase we obtain a real-valued

function that is only close to monotone in �1 distance.4

For step (3) we use the rounding procedure of [36] that

rounds real-valued functions to {±1}-valued functions,

and we show that this procedure also preserves mono-

tonicity.

2) LCAs and succinct representations of large objects:
In this work we employ heavily the concept of a succinct
representation. The succinct representations we deal with

will have size and evaluation time 2Õ(
√
n/ε). To be fully

specific, we consider succinct representations of two

types of objects:

• A succinct representation of a function f :
{±1}n → R is an algorithm that, given x ∈ {±1}n,

computes f(x) in time 2Õ(
√
n/ε).

• A succinct representation of a (possibly weighted)

graph G with the vertex set {±1}n is an algorithm

that, given v ∈ {−1, 1}n, outputs all its neighbors

and the weights of corresponding edges in time

2Õ(
√
n/ε).

A polynomial of degree O(
√
n) is an example of a

succinct representation, but another type of representa-

tion that makes frequent appearances in this work is a

local computation algorithm, or LCA [3], [50]. An LCA

efficiently computes a function over a large domain. For

example, an LCA for an independent set takes as input

4One can construct functions that are arbitrarily close to monotone
in �1 norm but a constant fraction of their values needs to be changed
for them to become monotone. Because of this, the corrector of [40]
was not fit for our correction stage.

1151

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Control-flow diagram of the semiagnostic algorithm of [40]

Fig. 2: Control-flow diagram of the fully agnostic learning algorithm presented in this work (the final rounding step

is omitted).

some vertex v, makes some lookups to the adjacency

list of the graph, then outputs “yes” or “no” so that the

set of vertices for which the LCA would output “yes”

form an independent set. Typically, its running time and

query complexity are each sublinear in the domain size.

We require that all LCAs used in this work have outputs

consistent with one global object, regardless of the order

of user queries, and without remembering any history

from previous queries. This property allows us to use

the LCA, in conjunction with any succinct representation

of the graph, as a succinct representation of the object it

computes. We formalize this relationship in Section II-D.

D. Other related work

The local correction of monotonicity was studied in

[2], [7], [10], [51] and [40] (see [40] for an overview of

previously available algorithms for monotonicity correc-

tion and lower bounds).

The work of [18] gives an improper learning algo-

rithm for a function class that is larger than monotone

functions. Additionally, we note that testing of monotone

functions has also been studied over hypergrids [9], [11],

[12], [19].

In addition to [30], there have been many exciting

recent works on local computation algorithms (LCAs).

Some examples include [50], [3], [44], [34], [49], [27],

1152

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

[29], [21], [26] , [48], [31], [43], [6], [16] and [33].

II. PRELIMINARIES

A. Posets and {−1, 1}n
Let P be a partially-ordered set. We use � to denote

the ordering relation on P . We say x ≺ y (“x is a

predecessor of y”) if x � y and x �= y, and use the

analogous symbols 	 and
 for successorship. If x ≺ y
and there is no z in P for which x ≺ z ≺ y, then x is

an immediate predecessor of y and y is an immediate
successor of x. We refer to the poset P and its Hasse

diagram (DAG) interchangeably. The transitive closure

TC(P) is the graph on the elements of P that has

an edge from each vertex to each of its successors. A

succinct representation of P with size s is any computa-

tional procedure whose description is stored in s bits of

memory that takes a vertex as input, outputs the sets of

immediate predecessors and immediate successors, and

runs in time O(s) in the worst case over vertices.

Specific posets of interest in this work are the Boolean

cube and the weight-truncated cube. We give a definition

and a size-O(n/ε) representation computing the trun-

cated cube.5

Definition 1. The n-dimensional Boolean hypercube is
the set {−1, 1}n. For x, y ∈ {−1, 1}n, we say x � y if
for all i ∈ {1, · · · , n} one has xi ≤ yi. It is immediate
that {−1, 1}n is a poset with 2n elements.

We also define the truncated hypercube

Hn
ε :=

{
x ∈ {−1, 1}n :

∣∣∣∣∣∑
i

xi

∣∣∣∣∣ ≤
√
2n log

2

ε

}
,

Via Hoeffding’s bound, we have that the fraction of
elements in {0, 1}n that are not also in Hε

n is at most
2 exp

(
− 2t2

4n

)
= ε.

Algorithm 1 LCA: TRUNCATEDCUBE(x, ε)

Given: Input x ∈ {−1, 1}n, truncation parameter ε
return {y | y differs from x in one bit and

|∑j yj | ≤
√

2n log 2
ε}

1) Fourier analysis over {±1}n.: Let [n] denote

the set {1, 2, · · · , n}. We define for every S ⊆ [n]
the function χS : {±1}n → R as χS(x) :=∏

i∈S xi. We define the inner product between two

5See Algorithm 1 for the computational procedure that provides
access to immediate successors and predecessor of a given element.
Note that only size O(n/ε) is necessary because one can, for example,
store a circuit that implements Algorithm 1.

functions g1, g2 : {±1}n → R as follows: 〈g1, g2〉 :=
Ex∼{±1}n [g1(x)g2(x)]. It is known that 〈χS1

, χS2
〉 =

�S1=S2 . For a function g : {±1}n → R we denote

ĝ(S) := 〈g, χS〉. It is known that

g(x) =
∑
S⊆[n]

ĝ(S)χS(x) 〈g1, g2〉 =
∑
S⊆[n]

ĝ1(S)ĝ2(S).

B. Monotone functions

Part of our algorithm concerns monotonicity of func-

tions over general posets. For a function f : P → R, we

say that a pair of elements x, y ∈ P forms a violated
pair if we have x � y but f(x) > f(y), and we

define the violation score vs(x, y) := f(x) − f(y).
The violation graph viol(f) is the subgraph of TC(P)
induced by violated pairs in f . The weight of an edge

is the difference f(x)− f(y).
The �1 distance of f to monotonicity dist(f,mono) is

the �1 distance of f to the closest real-valued monotone

function.

Definition 2 (Distance to monotonicity). The �1 distance
of f : P → R to monotonicity is its distance to the
closest real-valued monotone function.

dist1(f,mono) := min
monotone g:P→R

[
1

|P |
∑
x∈P

|f(x)−g(x)|
]

The Hamming distance to monotonicity of f : P →
{−1, 1} is defined analogously.

dist0(f,mono) := min
monotone g:
P→{−1,1}

[
1

|P |
∑
x∈P

1[f(x) �= g(x)]

]
We will need a bound on how well monotone func-

tions can be approximated by low-degree polynomials.

The following fact follows6 from [17], [36] and a refine-

ment by [28].

Fact II.1. For every monotone f : {−1, 1}n → {−1, 1}
and ε > 0, there exists a multilinear polynomial p of
degree � 4·√n

ε log 4
ε� such that

||f − p||1 ≤ ε.

C. Convex optimization

The following notion is standard in convex optimiza-

tion.

Definition 3. A separation oracle for a convex set
Cconvex is an oracle that given a point x does one of
the following things:

6see [41] for more explanation on how these references yield the
fact below.

1153

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

• If x ∈ Cconvex, then the oracle outputs “Yes”.
• If x /∈ Cconvex, then the oracle outputs
(No, Qseparation), where Qseparation ∈ Rd represents
a direction along which x is separated from Cconvex.
Formally, 〈Qseparation, x〉 > 〈Qseparation, x

′〉 for any
x′ in Cconvex.

We will need the following well-known fact from

convex optimization:

Fact II.2. [38] There is an algorithm
ELLIPSOIDALGORITHM that takes as inputs positive
real values r and R, and access to a separation oracle
for some convex set Cconvex ⊂ {x ∈ Rd : ‖x‖ ≤ R}.
The algorithm runs in time poly

(
d, log R

r

)
and

either outputs an element in Cconvex or outputs FAIL.
Furthermore, if Cconvex contains a ball of radius r, the
algorithm is guaranteed to succeed.

Also see [42] for an overview of algorithms building

on [38].

D. LCAs and succinct representations

We use the following LCAs in this work:

Theorem 3 (LCA for maximal matching7 [30]). There is
an algorithm GhaffariMatching that takes adjacency lists
access to a graph G, with N vertices and largest degree
at most Δ, a random string r ∈ {0, 1}poly(Δ,log(N/δ)),
parameter δ ∈ (0, 1) and a vertex v ∈ G. The algorithm
outputs the identity of a vertex u : (u, v) ∈ E(G) or
⊥. The algorithm runs in time poly(Δ, log(N/δ)) and
with probability at least 1 − δ over the choice of r the
condition of global consistency holds i.e. the set of edges
{(u, v) ∈ G : GhaffariMatching(G, r, δ, u) = v} is a
maximal matching in the graph G.

Theorem 4 (LCA for monotonicity correction of

Boolean-valued functions [40]). There is an algorithm
BooleanCorrector that takes access to a function f :
P → {−1, 1} and adjacency lists access to a poset
P with N vertices, such that each element has at
most Δ predecessors and successors and the longest
directed path has length h, a random string r ∈
{0, 1}poly(Δ,log(N/δ)), a parameter δ ∈ (0, 1) and an el-
ement x in P . The algorithm outputs a value in {−1, 1}.
The algorithm runs in time ΔO(log h) · polylog(N/δ)
and with probability at least 1 − δ over the choice
of r the condition of global consistency holds i.e.
the function g : P → {−1, 1} defined as g(x) :=

7To be fully precise, [30] gives an LCA for the task of maximal
independent set. The reduction to maximal matching is standard, see
e.g. [40].

BooleanCorrector(P, r, δ, x) is monotone and is such
that Prx∼P [g(x) �= f(x)] ≤ 2 · dist(f,mono).

An important idea in [40] is that LCAs (i.e. algorithms

that achieve global consistency) can be used to operate

on succinct representations of combinatorial objects. To

explain further, we need the following definition:

Definition 4 (Succinct representation). A succinct rep-
resentation of a function f of size s is a description of f
that is stored in s bits of memory and can be evaluated
on an input in O(s) time.

For example, circuits of size s and polynomials of

degree log s are examples of succinct representations of

size s and nlog s respectively. The following fact follows

immediately from the definition:

Fact II.3 (Composition of representations). If a function
f has a description that uses t bits of memory and
evaluates in time O(t) given q oracle queries to a
function g, and g has a succinct representation of size
s, then there is a succinct representation of f of size
O(t+ sq).

Now, for example, combining8 Fact II.3 and Theo-

rem 3 we see immediately that for a graph G, with

N vertices and largest degree at most Δ, using the

algorithm in Theorem 3 we can transform a size-s repre-

sentation9 of a function computing all-neighbor access to

G into a size-
(
ΔO(log h) · polylog(N/δ) · s) representa-

tion10 of a function that determines membership in some

maximal matching over G. Note that this transformation

itself runs in time ΔO(log h) · polylog(N/δ) · s. Analo-

gously, in an exact same fashion it is possible to combine

Fact II.3 and Theorem 4.

III. OUR ALGORITHMS

In this section we give descriptions of the agnostic

learning algorithm and its major components (we will

analyze the algorithms in the subsequent sections). The

algorithm MONOTONELEARNER makes calls to

ELLIPSOIDALGORITHM, where the optimization domain

is the ≤ n

⌈
4·√n

ε log 4
ε

⌉
-dimensional space of degree-⌈

4·√n
ε log 4

ε

⌉
polynomials over Rn, and constraints

8A note on the description sizes of LCAs: because LCAs are uniform
(i.e. Turing-machine) algorithms, they can be simulated with a uniform
circuit family. For each input size, the size of the corresponding circuit
is polynomial in the running time of the LCA for that input size.

9For simplicity, in the rest of the paper we will refer to such
functions as a “succinct representation of G.”

10For simplicity, in the rest of the paper we will refer to such
functions simply as “representation of a maximal matching.”

1154

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

given by ORACLEα,n,ε. It also makes calls to HYPER-

CUBECORRECTOR, which is given in Corollary IV.7.

The subroutine ORACLE takes as input a polynomial

and provides the separating hyperplane required by EL-

LIPSOIDALGORITHM. It makes calls to HYPERCUBE-

MATCHING (see Lemma V.4), which provides a high-

weight matching over the pairs of labels that violate

monotonicity.

The algorithm MATCHVIOLATIONS finds a high-

weight matching on the violation graph of a poset. It is

the main component of HYPERCUBEMATCHING, which

is just a wrapper that calls MATCHVIOLATIONS on the

truncated cube. FILTEREDGES removes vertices that are

either incident to M or have weight below the threshold

t, and GHAFFARIMATCHING is the maximal matching

algorithm of Theorem 3. More implementation details

and analysis are given in Section V.

The following is the core of HYPERCUBECORREC-

TOR, given as a “global overview” for convenience.

Analysis and local implementation are given in Sec-

tion IV. The algorithm corrects monotonicity of a k-

valued function over a poset. HYPERCUBECORRECTOR

is a wrapper that discretizes a real-valued function and

then calls this corrector with the truncated hypercube as

the poset.

IV. ANALYSIS OF THE LOCAL CORRECTOR

In this section, we prove Theorem 2 by analyzing

our algorithm for correcting a real-valued function over

a poset in a way that preserves the �1 distance to

monotonicity within a factor of 2. This extends the

monotonicity corrector of [40] to handle functions with

non-Boolean ranges.

Lemma IV.1 (�1 correction of k-valued functions). Let
P be a poset and f : P → [k] be α-close to monotone
in �1 distance. There is an LCA that makes queries
to f and outputs queries to g : P → [k], such that
g is monotone and ||f − g||1 ≤ 2α. The LCA makes
(Δ logN)O(log h log k) queries, where Δ is the maximum
number of predecessors or successors of any element in
P , N is the number of vertices, and h is the length of the
longest directed path.. It uses a random seed of length
poly(Δ logN), and succeeds with probability 1−N−10.

The following lemmas are used in the proof of cor-

rectness of our algorithm. Their proofs are deferred to

the appendix.

Lemma IV.2 (Equivalence of k-valued and bitwise

monotonicity). Let f : P → [k] be a function and fi
be the projection of f onto the ith most significant bit

of k, i.e. fi(x) = 1 if the ith bit of f(x) is 1, for each
i ∈ [�log k�]. Let Pi be the poset on the elements of P
with the relation

x ≺Pi
y := x ≺P y and fj(x) = fj(y) for all j < i.

Then f is monotone if and only if each fi is monotone
over the corresponding Pi.

Lemma IV.3 (Preservation of closeness to monotone

functions). Let g be obtained from f by swapping the
labels of a pair x ≺P y that violates monotonicity. Then
for any monotone function m, ||g −m||1 ≤ ||f −m||1.

The corollary follows from repeated application of

Lemma IV.3 and the triangle inequality.

Corollary IV.4 (�1 error preservation). Let g be obtained
from f by a series of swaps of label pairs that violate
monotonicity in f . Then ||g− f ||1 ≤ 2 · dist1(f,mono).

We also require a modification to the LCA claimed

in Theorem 4 for correcting Boolean functions. That

algorithm works by performing a sequence of label-

swaps on pairs that violate monotonicity in the poset,

then outputting the function value that ends up at the

queried vertex x. It can instead track the swaps and

output the identity of the vertex that x receives its final

label from. The modified algorithm can be thought of as

an LCA that gives query access to a label permutation.

Fact IV.5 (Poset sorting algorithm implicit in [40]). Let
P be a poset with N vertices such that every element
has at most Δ predecessors and successors, and the
longest directed path has length h. Let f : P → {−1, 1}
be α-close to monotone in Hamming distance. There is
an algorithm BOOLEANCORRECTOR that gives query
access to a permutation π of P such that fπ is a
monotone function and Prx∼P [f(x) �= (fπ)(x)] ≤ 2α.
The LCA implementation of BOOLEANCORRECTOR uses
(Δ logN)O(log h) queries and running time, has a ran-
dom seed of length poly(Δ logN), and succeeds with
probability 1−N−11.

Here we present the LCA implementation of Algo-

rithm 5.

Lemma IV.6 (Correctness and query complexity of

Algorithm 6). With probability 1 − i · N−11 over a
random seed r of length poly(Δ logN), the algorithm
k-CORRECTOR(x, P, f, i, r) gives query access to a
function g that is monotone when truncated to the
first i most significant bits. Its query complexity is

1155

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Algorithm MONOTONELEARNER (n, ε, T)

1: Given: Integer n, ε ∈ (0, 1), and uniform sample access to an unknown function f : {±1}n → {±1}.

2: Output: Circuit C : {±1}n → {±1}.

3: for α ∈ {ε, 2ε, 3ε, · · · 1− ε, 1 + 200ε} do

4: OptimizationResult ← ELLIPSOIDALGORITHM

(
1, ε · n− 1

2

⌈
4·√n

ε log 4
ε

⌉
, ORACLEα,n,ε

)
.

5: if OptimizationResult�=FAIL then
6: PGOOD = OptimizationResult

7: PGOOD
TRIMMED ← representation of a function that takes input x and outputs the value⎧⎪⎨⎪⎩

PGOOD(x) if PGOOD(x) ∈ [−1,+1]

1 if PGOOD(x) > 1

−1 if PGOOD(x) < −1

8: PGOOD
CORRECTED ← representation of a function that takes input x and returns the value

HYPERCUBECORRECTOR(x, PGOOD
TRIMMED, r)

9: T ← 200
ε2 log

(
20
ε

)
log(20n) i.i.d. pairs (xi, f(xi)), with xi sampled uniformly from {−1, 1}n.

10: ThresholdCandidates← {
1
ε i.i.d. uniformly random elements in [−1, 1]

}
.

11: t∗ := argmint∈ThresholdCandidates

[
1
|T |

∑
x∈T

[∣∣sign(PGOOD
CORRECTED(x)− t)− f(x)

∣∣]]
12: return representation of a function that takes input x and returns the value

sign(PGOOD
CORRECTED(x)− t∗)

13: end if
14: end for

(Δ logN)O(i log h+1), and ||g − f ||1 ≤ 2α, where α is
the �1 distance of f to the nearest monotone function.

Proof. Fix the random seed r and assume all calls to

BOOLEANCORRECTOR succeed with r, then we proceed

by induction. In the base case, f is certainly monotone

when truncated to 0 bits and the algorithm makes only 1

query. In the inductive case, suppose the claim holds for

i− 1; in other words k-CORRECTOR(y, P, f, i− 1, r1 ◦
. . . ◦ ri−1) makes (Δ logN)O((i−1) log h+1) queries and

returns a function that is monotone in the first i − 1
bits. Then when k-CORRECTOR is called with iteration

number i, the function f ′
j is monotone over P ′

j for all

j < i. BOOLEANCORRECTOR(x, P ′
i , f

′
i , ri) returns a

vertex to swap labels with x such that the resulting

function is monotone in the ith bit, over the poset P ′
i .

Then the function returned by k-CORRECTOR satisfies

the conditions of Lemma IV.2 for the first i bits, so it

must be monotone in the first i bits.

We now bound the failure probability and distance to

f . The failure probability of BOOLEANCORRECTOR is

N−11 and we call BOOLEANCORRECTOR on i different

graphs, so by union bound the total failure probability

is ≤ i · N−11 as desired. The fact that ||g − f ||1 ≤ 2α
follows from Corollary IV.4.

We can now prove Theorem 2.

Theorem 2. [Local monotonicity correction of real-
valued functions] Let P be a poset with N elements,
such that every element has at most Δ predecessors or
successors and the longest directed path has length h.
Let f : P → [−1, 1] be α-close to monotone in �1
distance. There is an LCA that makes queries to f and
outputs queries to g : P → [−1, 1], such that g is
monotone and ||f − g||1 ≤ 2α + 3ε. The LCA makes
(Δ logN)O(log h log(1/ε)) queries, uses a random seed
of length poly(Δ logN), and succeeds with probability
1−N−10.

Proof of Theorem 2. Given some ε ∈ (0, 1/2), let

fε(x) := �f(x)/ε�; certainly queries to fε can

be simulated by queries to f . On input x, run k-

CORRECTOR(x, P, fε, �log(2/ε)�, r) with a random

seed r of length poly(Δ logN). By Lemma IV.6,

this makes (Δ logN)O(log(1/ε) log h) queries to

fε and outputs gε(x), where g is monotone and

||gε − fε||1 ≤ 2 · dist1(fε,mono). Since f is α-close to

some monotone function m, we have dist1(fε,mono) ≤
||fε−m/ε||1 ≤ ||f/ε−m/ε||1+||f/ε−fε||1 ≤ α/ε+1.

1156

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Subroutine ORACLEα,n,ε(P)

1: Given: ε, α ∈ (0, 1), degree-
⌈
4·√n

ε log 4
ε

⌉
polynomial P over Rn with ‖P‖2 ≤ 1, and

uniform sample access to an unknown function f : {±1}n → {±1}.

2: Output: ”Yes” or (”No”, Qseparator), where Qseparator is a degree-
⌈
4·√n

ε log 4
ε

⌉
polynomial over Rn.

3: PTRIMMED ← representation of a function that takes input x and outputs

⎧⎪⎨⎪⎩
P (x) if P (x) ∈ [−1,+1]

1 if P (x) > 1

−1 if P (x) < −1

.

4: T ← set of n
C

√
n

ε log 1
ε i.i.d. pairs (xi, f(xi)), with xi sampled uniformly from {−1, 1}n (for sufficiently large

constant C).

5: r ← string of 2C
√
n(logn·log 1

ε)
C

random i.i.d. bits (for sufficiently large constant C).

6: Mseparator ← representation of a function that takes input x and outputs⎧⎪⎨⎪⎩
0 if HYPERCUBEMATCHING(PTRIMMED, ε/4, r) does not match x to any other vertex

1 if HYPERCUBEMATCHING(PTRIMMED, ε/4, r) matches x to some vertex z, s.t. z � x

−1 if HYPERCUBEMATCHING(PTRIMMED, ε/4, r) matches x to some vertex z, s.t. z 	 x

7: if 1
|T |

∑
x∈T [Mseparator(x) · PTRIMMED(x)] > 5ε then

8: Qseparator ←
∑

S⊂[n]: |S|≤
⌈

4·√n
ε log 4

ε

⌉ (1
|T |

∑
x∈T [Mseparator(x) · χS(x)]

)
χS

9: return (“No”, Qseparator)

10: else if 1
|T |

∑
x∈T [|f(x)− P (x)|] > α+ 50ε then

11: Qseparator ←
∑

S⊂[n]|S|≤
⌈

4·√n
ε log 4

ε

⌉ (Ex∼T

[
P̂ (S)χS(x)sign(P (x)− f(x))

])
χS

12: return (“No”, Qseparator)

13: else
14: return “Yes”

15: end if

Return g(x) := ε · gε(x). Then

||g−f ||1 = ||εgε−f ||1 ≤ ||εgε−εfε||1+||εfε−f ||1 ≤
≤ 2ε(α/ε+ 1) + ε ≤ 2α+ 3ε.

The failure probability is N−11 · �log(2/ε)� by

Lemma IV.6, but we will assume that �log(2/ε)� < N .

Otherwise, the allowed query complexity and running

time would exceed ΔN , which is > ΔN for any

Δ, N > 1. With O(ΔN) query complexity and running

time, a trivial algorithm would suffice: one could solve

the linear program with ΔN monotonicity constraints,

minimizing ||g−f ||1. Under our assumption, the failure

probability is at most N−10.

Corollary IV.7 (Monotonizing a representation of a

function on the Boolean cube). Let f : {−1, 1}n →
[−1, 1] be α-close to monotone in �1 distance, given
as a succinct representation of size sf . There is an
algorithm that runs in time 2Õ(

√
n log3/2(1/ε)) · sf time

and outputs a monotone function g such that ||f −
g||1 ≤ 2α + 4ε. The size of the representation of g is

2Õ(
√
n log3/2(1/ε)) ·sf . The algorithm uses a random seed

of length 2Õ(
√
n log(1/ε)) and succeeds with probability

1− 2−10n.

The proof of Corollary IV.7 is deferred to Appendix E.

V. ANALYSIS OF THE MATCHING ALGORITHM

In this section we give an algorithm for generating a

succinct representation of a matching over the violated

pairs of the hypercube whose weight is a constant

factor of the distance to monotonicity. The core of the

algorithm is an LCA for finding such a matching over

the violated pairs of an arbitrary poset.

Lemma V.1 (Equivalence of distance to monotonicity

and maximum-weight matching). Let W be the total
weight of the maximum-weight matching of the violation
graph of f . Then dist1(f,mono) = W/N .

Proof. This proof is analogous to the proof of Lemma

3.1 of [9]; see Appendix F.

1157

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4 MATCHVIOLATIONS(P, f, ε, r = r1 ◦ . . .◦
r�log 2/ε�)

Given: Poset P and function f : P → [−1, 1]
given as succinct representations, weight threshold ε,

random seed r = r1 ◦ . . . ◦ r�log 2/ε�
Output: Succinct representation of a high-weight

matching on the violating pairs of P w.r.t. f
if ε < 1/|P | then

M ← representation of the greedy algorithm that

adds each edge (x, y) of TC(P) in decreasing order

of f(x)− f(y).
else

t ← 2
i ← 1
M ← representation of a function computing the

empty matching

while t > ε/2 do
P ′ ← representation of a function that takes

input x and outputs

FILTEREDGES(TC(P), f, t,M, x)
M ← representation of a function that takes

input x and outputs M(x) if M(x) �= ⊥, otherwise

GHAFFARIMATCHING(P ′, ri, x))
t ← t/2
i ← i+ 1

end while
end if
return M

Algorithm 5 Global view of sorting k-valued labels in

a poset

1: Given: Poset P of height h, function f : P → [k]
2: Output: monotone function g : P → [k]
3: Let i ← 0
4: for 0 ≤ i ≤ �log k� do
5: Let fi be the projection of f onto the ith most

significant bit of k, i.e. fi(x) = 1 if the ith bit of

f(x) is 1.

6: Let Pi be the poset on the elements of P with

the relation

x ≺Pi y := x ≺P y and fj(x) = fj(y) for all j < i.

7: Let πi ← BOOLEANCORRECTOR(fi, Pi).
8: Let f ← fπi.

9: end for
10: return f

Algorithm 6 LCA implementation of Algorithm 5, k-

CORRECTOR(x, P, f, i, r)

1: Given: Target vertex x, all-neighbors (immediate

predecessor and successor) oracle for P , query ac-

cess to f : P → [k], iteration number i, random

seed r = r1 ◦ . . . ◦ ri.
2: Output: query access to function g : P → [k]

which is monotone when truncated to the first i most

significant bits.

3: if i = 0 then return f(x)
4: else
5: S ← the set of all predecessors and successors

of x in P
6: for y ∈ S do
7: Let f ′(y) ←k-CORRECTOR(y, P, f, i −

1, r1 ◦ . . . ◦ ri−1).
8: end for
9: Let f ′

i be defined as in Algorithm 5, and P ′
i be

similarly defined with respect to f ′
i .

10: Remove any y from S such that f ′
i(y) = f ′

i(x)
or y and x are incomparable in P ′

i .

11: Let z ← BOOLEANCORRECTOR(x, P ′
i , f

′
i , ri)

12: return f ′(z)
13: end if

A. Details and correctness of MATCHVIOLATIONS

The algorithm MATCHVIOLATIONS given in Sec-

tion III makes calls to an algorithm called FIL-

TEREDGES, which removes vertices that have already

been matched or are not incident to any heavy edges.

We give the pseudocode for FILTEREDGES here.

Lemma V.2. Let P be a poset with N vertices, and let
Δ be an upper bound on the number of predecessors
and successors of any vertex in P . Then the output of
the LCA MATCHVIOLATIONS(P, f, ε, r) with a random
seed r of length poly(Δ, logN), is a matching of weight
at least N(14dist1(f,mono)−ε) with probability at least
1−N−10.

Proof. This is a small modification to the standard

greedy algorithm for high-weight matching; see Ap-

pendix F.

Lemma V.3 (Running time and output size). Let
P, f, ε,N,Δ, and r be as described in the lemma above.
Let sP be the size of the succinct representation of P ,
and sf be the size of the succinct representation of f .

Then MATCHVIOLATIONS(P, f, ε, r) runs in time
(Δ logN)O(log(1/ε))(sP +sf) and outputs a representa-
tion of size (Δ logN)O(log(1/ε))(sP + sf).

1158

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 7 HYPERCUBECORRECTOR(f, ε, r)

Given: function f : {−1, 1} → [−1, 1] given as succinct representation, additive error parameter ε > 0, random

seed r = r1 ◦ . . . ◦ r�log 1/ε�.

Output: succinct representation of monotone function g : {−1, 1} → [−1, 1].
P ← representation of a function that takes x and outputs TRUNCATEDCUBE(x, ε)
f ′ ← representation of a function that takes x and outputs �f(x)/ε�
f ′′ ← representation of a function that takes x and outputs⎧⎪⎨⎪⎩

ε · k-CORRECTOR(x, P, f ′, �log(1/ε)�, r) −√2n log 2/ε ≤ |x| ≤ √
2n log 2/ε

1 |x| ≥ √
2n log 2/ε

−1 |x| ≤ −√2n log 2/ε
return f ′′

Algorithm 8 LCA: FILTEREDGES(P, f, t,M, x)

1: Given: Poset P , function f : P → [−1, 1],
and matching M given as succinct representations,

weight threshold t, vertex x
2: Output: All neighbors of x in the graph of violation

score ≥ t and not in M
3: return

{y ∈ P (x) | M(y) = ⊥ and

[(x < y and f(x) ≥ f(y) + t) or

(x > y and f(x) ≤ f(y)− t)]}

Proof. If ε < 1/N , then MATCHVIOLATIONS con-

structs and outputs a representation of the standard

global greedy algorithm for 2-approximate maximum

matching. The representation size of this algorithm is

O(ΔN) ≤ (Δ logN)O(log(1/ε)), and the running time of

MATCHVIOLATIONS is polynomial in this representation

size.

If ε ≥ 1/N , then by induction on the number of itera-

tions i, we will show that the representation size of M at

the start of iteration i is at most (Δ logN)O(i)(sP +sf).
In the base case, we have an empty matching M which

has constant representation size.

In the inductive case, suppose the claim holds at the

start of iteration i. Then we set P ′ to be the function that

applies FILTEREDGES to TC(P). TC(P) has size O(Δ·
sP), as it makes O(Δ) calls to P . FILTEREDGES makes

one call to TC(P) and at most O(Δ) calls to M and f .

It also has overhead of size O(log t) = O(log(1/ε)) =
O(logN). By the inductive hypothesis, the size of P ′ is

then

O(Δ)·(Δ logN)O(i)(sP+sf)+O(logN)+O(Δ·sP)
≤ (Δ logN)O(i+1)(sP + sf).

Then we set M to be the function that applies GHAF-

FARIMATCHING to P ′. GHAFFARIMATCHING has con-

stant overhead and makes poly(Δ, logN) queries to

P ′. Then the new size of M is poly(Δ, logN) ·
(Δ logN)O(i)(sP + sf) = (Δ logN)O(i+1)(sP + sf).

The size bounds follow from the fact that there are

O(log 1/ε) iterations. The corresponding running time

bound for MATCHVIOLATIONS comes from the fact that

since it only constructs the succinct representations, its

running time in each iteration is polynomial in the size

of the representations it constructs.

Lemma V.4. With a random seed of length
2Õ(

√
n log(1/ε)), Algorithm 9 outputs a representation of

a matching on the weighted violation graph viol(f),
of weight at least 2n · (14dist1(f,mono) − 4ε),
with probability at least 1 − 2−10n. The size of the
representation is 2Õ(

√
n log(1/ε)) · sf , where sf is the

size of the representation of f .

Proof. HYPERCUBEMATCHING calls MATCHVIOLA-

TIONS on the truncated hypercube, which has parameters

N < 2n and Δ = 2O(
√
n logn log(1/ε)). The size of

the representation of TRUNCATEDCUBE is O(n). So

by Lemma V.3, the running time and output size of

HYPERCUBEMATCHING are 2O(
√
n logn log(1/ε)) ·sf , and

the random seed length is 2O(
√
n logn log(1/ε)).

Let f ′ be the restriction of f to the truncated

cube. Since f is bounded in [−1, 1] and the trun-

cated cube covers all but an ε fraction of vertices,

we have dist1(f
′,mono) ≥ dist1(f,mono) − 2ε. By

Lemma V.2, the weight of the matching is at least

(1 − ε) · 2n(14dist1(f
′,mono) − ε) ≥ (1 − ε) ·

2n(14dist1(f,mono) − 3ε/2) ≥ 2n(14dist1(f,mono) −
4ε).

1159

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 9 HYPERCUBEMATCHING(f, ε, r)

1: Given: Function f : {−1, 1}n → [−1, 1] given as succinct representation, weight threshold ε, random seed

r = r1 ◦ . . . ◦ r�log 2/ε�
2: Output: Succinct representation of a high-weight matching on the violating pairs w.r.t. f
3: P ← TRUNCATEDCUBE(n, ε)
4: M ← representation of a function that takes x and outputs

5:

{
MATCHVIOLATIONS(P, f, ε, r) −√2n log 2/ε ≤ |x| ≤ √

2n log 2/ε

⊥ otherwise
6: return M

VI. ANALYSIS OF THE AGNOSTIC LEARNING

ALGORITHM

By inspecting algorithm MONOTONELEARNER (i.e.

Algorithm 2 on page 8), we see immediately that the run-

time is 2Õ(
√
n/ε). We proceed to argue that the algorithm

indeed satisfies the guarantee of Theorem 1. First, we

will need the following standard proposition.

Claim VI.1. For any positive integers n and d, real
ε, δ ∈ (0, 1), and any function f : {±1}n → [−1, 1],
let T be a collection of at least n5d · 100

ε2 ln 1
ε ln

1
δ

i.i.d. uniformly random elements of {±1}n. Then, with
probability at least 1− δ

max
degree-d polynomial P

with ‖P‖2 ≤1

∣∣∣‖f − P‖1 − E
x∼T

[|f(x)− P (x)|]
∣∣∣ ≤ ε,

Proof. See Appendix G for the proof of this proposition.

Now, in the following lemma we prove that subroutine

Oracleα,n,ε(P) (i.e. Algorithm 3 on page 9) satisfies

some precise specifications with high probability. Infor-

mally, we show that Oracleα,n,ε(P) either

• Certifies that the polynomial P is both close to

monotone in L1 distance and has L1 prediction

error of α+O(ε).
• Outputs a hyperplane separating P from all such

polynomials.

Formally, we prove the following:

Lemma VI.2. For sufficiently large constant C in Sec-
tion III and Section III of procedure Oracleα,n,ε(P),
sufficiently large integer n, any function f : {−1, 1}n →
{−1, 1}, parameters ε, α ∈ (0, 1), and a degree-⌈
4·√n

ε log 4
ε

⌉
polynomial P satisfying ‖P‖2 ≤ 1 the

following is true. The procedure Oracleα,n,ε(P) runs in

time n
Õ
(√

n
ε

)
and will with probability at least 1− 1

25n

conform to the following specification:
1) If Oracleα,n,ε(P) outputs “yes”, then:

a) The function PTRIMMED =⎧⎪⎨⎪⎩
1 if P (x) > 1,

−1 if P (x) < −1,

P (x) otherwise.
is 100ε-close to monotone in L1 norm.

b) The L1 distance between P and the function f
is at most α+ 100ε.

2) If Oracleα,n,ε(P) instead outputs (”No”, Qseparator),
where Qseparator is a degree-

⌈
4·√n

ε log 4
ε

⌉
polyno-

mial over Rn, then we have 〈P ′, Qseparator〉 <

〈P,Qseparator〉 for any degree-
⌈
4·√n

ε log 4
ε

⌉
polyno-

mial P ′ with ‖P ′‖2 ≤ 1 that satisfies the following
two conditions:
• P ′ is ε-close in L1 distance to some monotone

function fmonotone : {±1}n → [−1, 1] and
• P ′ is (α+ ε)-close in L1 distance to the function
f which we are trying to learn.

In particular, this implies that if P itself is ε-close in L1

distance to some monotone function and is (α+ ε)-close
in L1 distance to the function f , then Oracleα,n,ε(P)
will say “yes” with probability at least 1− 1

210n .

Proof. We use the union bound to conclude that with

probability at least 1 − 1
25n all the following events

hold:

(a) The LCA from Lemma V.4 works as advertised

and the weight W of the resulting matching satisfies

W

2n
≥ 0.1 dist1(PTRIMMED,mono)− ε.

Another way to write the same thing is

〈Mseparator, PTRIMMED〉 ≥ 0.1 dist1(PTRIMMED,mono)−ε.
(2)

From Lemma V.4 it follows that this holds with

probability at least 1− 1
210n .

(b) The estimate of 〈Mseparator, PTRIMMED〉 in

Section III is indeed ε-close to the true value. From the

1160

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

standard Hoeffding bound, this holds with probability

at least 1− 1
210n .

(c) It is the case that∥∥∥∥∥∥∥∥∥∥
∑

S⊂[n]:

|S|≤
⌈

4·√n
ε log 4

ε

⌉
M̂separator(S)χS −Qseparator

∥∥∥∥∥∥∥∥∥∥
2

≤ ε

Substituting the expression for Qseparator, and using the

orthogonality of {χS} we see this is equivalent to∑
S⊂[n]: |S|≤

⌈
4·√n

ε log 4
ε

⌉
(
M̂separator(S)− 1

|T |
∑
x∈T

[Mseparator(x) · χS(x)]

)2

︸ ︷︷ ︸
≤ εn

−
⌈
4·√n

ε
log 4

ε

⌉
in absolute value w.p. ≥ 1

210n
via Hoeffding’s bound

≤ ε

Overall, the above holds with probability at least

1− 1
29n by taking a Hoeffding bound for each individual

summand and taking a union bound over them.

(d) The set T ⊂ {±1}n is such that

max
degree-

⌈
4·√n

ε log 4
ε

⌉
polynomial P ′ over {±1}n

with
∥∥P ′∥∥

2
≤1∣∣‖f − P ′‖1 − E(x,f(x))∼T [|f(x)− P ′(x)|]∣∣ ≤ ε. (3)

It follows from Claim A.2 that this happens with

probability at least to 1− 1
210n .

Now, we argue that if these conditions indeed hold,

then Oracleα,n,ε(P) will satisfy the specification given.

First, suppose Oracleα,n,ε(P) answered “yes”. Then,

since the estimate of 〈Mseparator, PTRIMMED〉 in Section III

is within ε of its true value, we have

〈Mseparator, PTRIMMED〉 ≤ 6ε.

Now, since we are assuming the matching LCA from

Lemma V.4 works as advertised, this means that

6ε ≥ 〈Mseparator, PTRIMMED〉
≥ 0.1 · dist1(PTRIMMED,mono)− ε

which can be rewritten as

dist1(PTRIMMED,mono) ≤ 70ε ≤ 100ε,

which is one of the two things we wanted to show. The

other one was showing that the L1 distance between P
and the function f , which we are trying to learn, is at

most α + 100ε. Since the algorithm returned “yes”, it

has to be that in Section III we have

Ex∼T [|f(x)− P (x)|] ≤ α+ 50ε.

From Equation (3) it then follows that

‖f − P‖1 ≤ Ex∼T [|f(x)− P (x)|] + ε

≤ α+ 51ε ≤ α+ 100ε,

which is the other condition we wanted to show for the

case when the oracle says “yes”.

Now, assume the oracle outputs “no” along with some

polynomial Qseparator and let P ′ be a degree
⌈
4·√n

ε log 4
ε

⌉
polynomial with ‖P ′‖2 ≤ 1 that satisfies the following

two conditions11:

• P ′ is ε-close in L1 distance to some monotone

function fmonotone : {±1}n → [−1, 1] and

• P ′ is (α+ ε)-close in L1 distance to the function

f which we are trying to learn.

Here, again, there are two cases. First, suppose we have

the case where Qseparator is generated from Mseparator. We

have that the oracle’s estimate of 〈Mseparator, PTRIMMED〉
is at least 5ε, which means that 〈Mseparator, PTRIMMED〉 ≥
4ε. We know that P ′ is ε-close in L1 distance to some

monotone function fmonotone : {±1}n → [−1, 1]. Since

Mseparator is defined to be so for every matched pair

(xi,yi) with xi ≺ yi we have Mseparator(xi) = 1
and Mseparator(yi) = −1 and is 0 otherwise, and for

each such pair fmonotone (xi) ≤ fmonotone (yi) we have

〈Mseparator, fmonotone〉 ≤ 0. This allows us to conclude

0 ≥ 〈Mseparator, fmonotone〉
= 〈Mseparator, P

′〉+ 〈Mseparator, fmonotone − P ′〉 ≥
〈Mseparator, P

′〉
−
(

max
x∈{−1,1}n

|Mseparator(x)|
)
‖fmonotone − P ′‖1

≥ 〈Mseparator, P
′〉 − ε,

11If no polynomial satisfying these conditions exists, the statement
we are seeking to prove holds vacuously.

1161

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

which means

ε ≥ 〈Mseparator, P
′〉

=

〈 ∑
S⊂[n]

|S|≤
⌈

4·√n
ε log 4

ε

⌉
M̂separator(S)

(∏
i∈S

xi

)
, P ′

〉

= 〈Qseparator, P
′〉−

−

∥∥∥∥∥∥∥∥∥∥
Q−

∑
S⊂[n]:

|S|≤
⌈

4·√n
ε log 4

ε

⌉
M̂separator(S)

(∏
i∈S

xi

)∥∥∥∥∥∥∥∥∥∥
2

‖P ′‖2

≥ 〈Qseparator, P
′〉 − ε. (4)

On the other hand, the oracle’s estimate of

〈Mseparator, PTRIMMED〉 is at least 5ε, which means

that it is the case that 〈Mseparator, PTRIMMED〉 ≥ 4ε. This

allows us to conclude

4ε ≤

Trimming the values of a function
only decreases weights of violated edges.︷ ︸︸ ︷

〈Mseparator, PTRIMMED〉 ≤ 〈Mseparator, P 〉

=

〈 ∑
S⊂[n]: |S|≤

⌈
4·√n

ε log 4
ε

⌉ M̂separator(S)

(∏
i∈S

xi

)
, P

〉

≤ 〈Qseparator, P 〉+∥∥∥∥∥∥∥∥∥∥
Q−

∑
S⊂[n]:

|S|≤
⌈

4·√n
ε log 4

ε

⌉
M̂separator(S)

(∏
i∈S

xi

)∥∥∥∥∥∥∥∥∥∥
2

‖P‖2

≥ 〈Qseparator, P 〉+ ε. (5)

Combining Equation 5 and Equation 4 we get

〈Qseparator, P
′〉 ≤ 2ε < 3ε ≤ 〈Qseparator, P 〉

as required.

Finally, we consider the case when Qseparator is gen-

erated on Section III. Since P ′ is (α+ ε)-close in L1

distance to the function f , by Equation (3) we have that

α+ ε ≤ ‖f(x)− P ′(x)‖1
≤ E(x,f(x))∼T [|f(x)− P ′(x)|]− ε,

which we can rewrite as E(x,f(x))∼T [|f(x)− P ′(x)|] ≤
α+ 2ε. At the same time, we have

E(x,f(x))∼T [|f(x)− P (x)|] > α + 50ε, which means

that

E
(x,f(x))∼T

[|f(x)− P (x)|] >
E(x,f(x))∼T [|f(x)− P ′(x)|] .

Therefore, as the function mapping a polynomial H to

the value E(x,f(x))∼T [|f(x)−H(x)|] is convex , it has

to be the case that12〈
P ′ − P,

∑
S⊂[n] :

|S|≤
⌈

4·√n
ε log 4

ε

⌉

(
E

x∼T

[
P̂ (S)χS(x)·

· sign(P (x)− f(x))

])
χS

〉
=

〈
P ′ − P,∇H

(
E

(x,f(x))∼T
[|H(x)− f(x)|]

) ∣∣∣∣
H=P

〉
< 0.

This implies that 〈Qseparator, P
′〉 ≤ 〈Qsepatator, P 〉, which

completes the proof.

A. Finishing the proof of the Main Theorem (Theo-
rem 1).

Recall that earlier by inspecting Algorithm 2 we

concluded that this algorithm runs in time 2
Õ
(√

n
ε

)
. Here

we use Lemma VI.2 to finish the proof of Theorem 1 by

showing that with probability at least 1− 1
2n the function

sign(PGOOD
TRIMMED(x) − t∗) is monotone and is opt+O(ε)-

close to f (where opt is the distance of f to the closest

monotone function).

We can further conclude that with probability at least

1− 1
23n the following events hold:

1) Every time an oracle Oracleα,n,ε is invoked (for

various values of α), its behavior will conform to

the specifications in Lemma VI.2.

2) The algorithm HypercubeCorrector from Corol-

lary IV.7 used on line 11 works as advertised, so

the function PGOOD
CORRECTED : {±1} → [−1, 1] is

monotone and we indeed have∥∥PGOOD
CORRECTED − PGOOD

TRIMMED

∥∥
1

≤ 10 · dist1(PGOOD
TRIMMED,mono) + ε. (6)

12To be fully precise, the expression above is a subgra-
dient of the convex function mapping a polynomial H to
E(x,f(x))∼T [|f(x)−H(x)|].

1162

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

3) In step (4), the function sign(PGOOD
CORRECTED(x)− t∗)

satisfies the guarantee from Fact A.1, i.e.

Prx∼{±1}n

[
sign(PGOOD

CORRECTED(x)− t∗) �= f
]

≤ 1

2

∥∥PGOOD
CORRECTED − f

∥∥
1
+ ε (7)

We argue that each of these events takes place with

probability at least 1− 1
24n :

• Note that the oracles Oracleα,n,ε for various values

of α are invoked at most 2
Õ
(√

n
ε

)
times. There-

fore, Lemma VI.2 tells us that for each of this

invocations the algorithm Oracleα,n,ε conforms to

its specification with probability at least 1 − 1
25n .

Via union bound we see that event (1) holds with

probability at least13 1− 1
24n .

• Event (2) holds with probability at least 1− 1
24n via

Corollary IV.7.

• Event (3) holds with probability at least 1− 1
24n via

Fact A.1

Via union bound, we see that with probability at least

1− 1
23n all these events hold, which we will assume for

the rest of the proof.

Recall that opt stands for the distance of f to the clos-

est monotone function. We first claim that the algorithm

will break out of the loop in Section III for some value

α∗ ≤ 2opt + 150ε, which we argue as follows: If α∗ >
2opt+150ε, then for some14 α ∈ [2opt+100ε,2opt+150ε]
the ellipsoid algorithm failed to find some polynomial P
on which Oracleα,n,ε returns “Yes”. We claim that this

is impossible. Indeed, let Cconvex be the set consisting

of degree-
⌈
4·√n

ε log 4
ε

⌉
polynomials P ′ with ‖P ′‖2 ≤ 1

that satisfies the following two conditions:

• P ′ is ε-close in L1 distance to some monotone

function fmonotone : {±1}n → [−1, 1], and

• P ′ is (α+ ε)-close in L1 distance to the function

f which we are trying to learn.

We make the following observations:

• The set Cconvex is a convex set, because (a) the set of

all monotone functions fmonotone : {±1}n → [−1, 1]

13We assume that ε is such that 20.1n exceeds the number 2
Õ
(√

n
ε

)

of times that Oracleα,n,ε is invoked (for different values of α.
Otherwise, the run-time budget is sufficient to store entire truth-tables
of functions over {−1, 1}n and statement in Algorithm 7 is achieved
by the trivial algorithm that uses a linear program to fit the best
montone real-valued function and then rounds it to be {−1, 1}-valued.
See Appendix C for further details.

14Note that opt ≤ 1/2, because the function f is at least 1/2-close
to either the all-ones or all-zeroes functions, which are both monotone.
Therefore some value of α in the range [2opt+100ε,2opt+150ε] is
necessarily considered by the algorithm as it is trying all values α =
ε, 2ε, 3ε, · · · 1− ε, 1 + 200ε.

is convex, (b) the set of points (α+ ε)-close in

L1 distance to some specific convex set is itself

convex, and (c) the intersection of two convex sets

is a convex set (in this case one convex set is the set

functions {±1}n → [−1, 1] that are (α+ ε)-close

in L1 distance a monotone functions and the other

convex set is is the set of all degree-
⌈
4·√n

ε log 4
ε

⌉
polynomials with with ‖P ′‖2 ≤ 1).

• The set Cconvex contains an L2 ball of radius at

least ε · n− 1
2

⌈
4·√n

ε log 4
ε

⌉
. In other words, in Cconvex

there is some degree
⌈
4·√n

ε log 4
ε

⌉
polynomial P0

such that any degree-
⌈
4·√n

ε log 4
ε

⌉
polynomial P ′

that is ε-close to P0 in L2 norm is also in Cconvex.

Let fmonotone, optimal : {±1}n → {±1} be the

monotone function for which it is the case that

Prx∼{±1}n [fmonotone, optimal(x) �= f(x)] = opt, and

let P0 be a degree-
⌈
4·√n

ε log 4
ε

⌉
polynomial that

is ε-close to fmonotone, optimal in L1 norm (such

polynomial has to exist by Fact II.1). Then, P0 is

(2opt + ε)-close to f in L1 norm and ε-close to

monotone in L1 norm. In other words, the set Cconvex

contains an L1-ball of radius ε. Via the standard

inequality between the L1 and L2 norms, in d
dimensions every L1 ball or radius ε contains an

L2 ball of radius at most ε/
√
d. Our claim follows,

since the space of degree-
⌈
4·√n

ε log 4
ε

⌉
over Rd has

dimension at most n

⌈
4·√n

ε log 4
ε

⌉
.

• Since the procedure Oracleα,n,ε is assumed to sat-

isfy the specifications given in Lemma VI.2 and for

this specific value of α it never gave the response

“yes”, then for every query P to Oracleα,n,ε, the

oracle returned some halfspace that separates P
from the convex set Cconvex.

From Fact II.2 we know that under these conditions the

ellipsoid algorithm will necessarily in time

poly

(
n

⌈
4·√n

ε log 4
ε

⌉
, log (R/r)

)
= n

O
(⌈

4·√n
ε log 4

ε

⌉)

find some polynomial P that is in Cconvex. For this

particular polynomial, the specifications in Lemma VI.2

require the oracle Oracleα,n,ε to give a response “yes”,

which gives us a contradiction. Thus, the function

PGOOD
TRIMMED will be O(ε)-close to monotone in L1 norm

and will satisfy
∥∥PGOOD

TRIMMED − f
∥∥
1

≤ 2opt + O(ε).
Combining this with Equation (6) yields∥∥PGOOD

CORRECTED − f
∥∥
1
≤

2opt +O(ε) +
∥∥PGOOD

TRIMMED − PGOOD
CORRECTED

∥∥
1

= 2opt +O(ε).

1163

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

We know that
∥∥PGOOD

TRIMMED − PGOOD
CORRECTED

∥∥
1

≤ O(ε)
because PGOOD

TRIMMED is O(ε)-close to monotone by Equa-

tion (6). Now, combining the inequality above with

Equation 7 gives us

Prx∼{±1}n

[
sign(PGOOD

CORRECTED(x)− t∗) �= f
] ≤

1

2

∥∥PGOOD
CORRECTED − f

∥∥
1
+ ε ≤ opt +O(ε).

Finally, we see that since the function

PGOOD
CORRECTED {±1}n → [−1,+1] is monotone we have

that the {±1}-valued function sign(PGOOD
CORRECTED(x)−t∗)

is also monotone, which finishes our argument.

VII. ACKNOWLEDGMENTS

We thank Ronitt Rubinfeld and Mohsen Ghaffari

for helpful conversations about local computation algo-

rithms. We additionally thank Ronitt Rubinfeld for useful

comments regarding the manuscript and Adam Klivans

for a helpful discussion of the algorithm of [28]. Finally,

we thank Ephraim Linder for pointing out an inaccuracy

in a previous version of this work.

REFERENCES

[1] Nir Ailon, Bernard Chazelle, C. Seshadhri, and Ding Liu.
Estimating the distance to a monotone function. Ran-
dom Structures & Algorithms, 31(3):371–383, 2007. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rsa.20167.

[2] Nir Ailon, Bernard Chazelle, C. Seshadhri, and Ding
Liu. Property-Preserving Data Reconstruction. Algorithmica,
51(2):160–182, 2008.

[3] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-
efficient Local Computation Algorithms. In Proceedings of the
2012 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), Proceedings, pages 1132–1139. Society for Industrial
and Applied Mathematics, January 2012.

[4] Kazuyuki Amano and Akira Maruoka. On learning monotone
Boolean functions under the uniform distribution. Theor. Comput.
Sci., 350(1):3–12, 2006.

[5] Dana Angluin. Queries and Concept Learning. Mach. Learn.,
2(4):319–342, April 1988. Place: USA Publisher: Kluwer Aca-
demic Publishers.

[6] Rubi Arviv and Reut Levi. Improved LCAs for constructing
spanners. CoRR, abs/2105.04847, 2021.

[7] Pranjal Awasthi, Madhav Jha, Marco Molinaro, and Sofya
Raskhodnikova. Limitations of local filters of Lipschitz and
monotone functions. ACM Transactions on Computation Theory,
7(1), December 2014. Publisher: Association for Computing
Machinery (ACM).

[8] Aleksandrs Belovs and Eric Blais. A polynomial lower bound
for testing monotonicity. In Proceedings of ACM Symposium on
Theory of Computing (STOC), pages 1021–1032, 2016.

[9] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev.
$L p$-testing. In Proceedings of ACM Symposium on Theory of
Computing (STOC), pages 164–173, 2014.

[10] Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Kyomin
Jung, Sofya Raskhodnikova, and David P. Woodruff. Lower
bounds for local monotonicity reconstruction from transitive-
closure spanners. In Approximation, Randomization, and Com-
binatorial Optimization, pages 448–461, 2010.

[11] Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. A o(d)
· polylog n Monotonicity Tester for Boolean Functions over the
Hypergrid [n]d. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,
New Orleans, LA, USA, January 7-10, 2018, pages 2133–2151.
SIAM, 2018.

[12] Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. Do-
main Reduction for Monotonicity Testing: A o(d) Tester for
Boolean Functions in d-Dimensions. In Proceedings of ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1975–
1994, 2020.

[13] Eric Blais, Clément L Canonne, Igor C Oliveira, Rocco A Serve-
dio, and Li-Yang Tan. Learning Circuits with Few Negations.
Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, page 512, 2015.

[14] Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan. Properly
learning decision trees in almost polynomial time. 2021 IEEE
62nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 920–929, 2022.

[15] Avrim Blum, Carl Burch, and John Langford. On Learning
Monotone Boolean Functions. In 39th Annual Symposium on
Foundations of Computer Science, FOCS ’98, November 8-
11, 1998, Palo Alto, California, USA, pages 408–415. IEEE
Computer Society, 1998.

[16] Sebastian Brandt, Christoph Grunau, and Václav Rozhon. The
randomized local computation complexity of the Lovász local
lemma. CoRR, abs/2103.16251, 2021.

[17] Nader H Bshouty and Christino Tamon. On the Fourier spectrum
of monotone functions. Journal of the ACM (JACM), 43(4):747–
770, 1996. Publisher: ACM New York, NY, USA.

[18] Clément L. Canonne, Elena Grigorescu, Siyao Guo, Akash
Kumar, and Karl Wimmer. Testing k-Monotonicity. CoRR,
abs/1609.00265, 2016.

[19] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds
for monotonicity and Lipschitz testing over hypercubes and
hypergrids. In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 419–428.
ACM, 2013.

[20] Deeparnab Chakrabarty and C. Seshadhri. Adaptive Boolean
Monotonicity Testing in Total Influence Time. In Proceedings
of Innovations in Theoretical Computer Science (ITCS), pages
20:1–20:7, 2019.

[21] Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto,
and Yufan Zheng. The Complexity of (\(\Delta\)+1) Coloring
in Congested Clique, Massively Parallel Computation, and Cen-
tralized Local Computation. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, PODC 2019,
Toronto, ON, Canada, July 29 - August 2, 2019, pages 471–480.
ACM, 2019.

[22] Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New Algorithms
and Lower Bounds for Monotonicity Testing. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, October
2014.

[23] Xi Chen and Erik Waingarten. Testing unateness nearly op-
timally. In Proceedings of ACM Symposium on Theory of
Computing (STOC), pages 547–558, 2019.

[24] Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond Talagrand
functions: new lower bounds for testing monotonicity and unate-
ness. In Proceedings of the 49th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2017, New York, NY,
USA, June 2017. Association for Computing Machinery.

[25] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhod-
nikova, Dana Ron, and Alex Samorodnitsky. Improved Testing
Algorithms for Monotonicity. In RANDOM-APPROX’99, Berke-
ley, CA, USA, August 8-11, 1999, Proceedings, volume 1671
of Lecture Notes in Computer Science, pages 97–108. Springer,
1999.

1164

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

[26] Guy Even, Reut Levi, Moti Medina, and Adi Rosén. Sublinear
Random Access Generators for Preferential Attachment Graphs.
ACM Trans. Algorithms, 17(4):28:1–28:26, 2021.

[27] Guy Even, Moti Medina, and Dana Ron. Best of Two Local
Models: Local Centralized and Local Distributed Algorithms.
CoRR, abs/1402.3796, 2014. arXiv: 1402.3796.

[28] Vitaly Feldman, Pravesh Kothari, and Jan Vondrák. Tight bounds
on l1 approximation and learning of self-bounding functions.
Theoretical Computer Science, 808:86–98, February 2020.

[29] Mohsen Ghaffari. An Improved Distributed Algorithm for Max-
imal Independent Set. In Proceedings of the 2016 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), Proceedings,
pages 270–277. Society for Industrial and Applied Mathematics,
December 2015.

[30] Mohsen Ghaffari. Local Computation of Maximal Independent
Set. In 2022 IEEE 62nd Annual Symposium on Foundations of
Computer Science, 2022.

[31] Mohsen Ghaffari and Jara Uitto. Sparsifying Distributed Algo-
rithms with Ramifications in Massively Parallel Computation and
Centralized Local Computation. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages
1636–1653. SIAM, 2019.

[32] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property
Testing and its Connection to Learning and Approximation. J.
ACM, 45(4):653–750, 1998.

[33] Jan Grebı́k and Václav Rozhon. Classification of Local Problems
on Paths from the Perspective of Descriptive Combinatorics.
CoRR, abs/2103.14112, 2021.

[34] Mika Göös, Juho Hirvonen, Reut Levi, Moti Medina, and Jukka
Suomela. Non-Local Probes Do Not Help with Graph Problems.
CoRR, abs/1512.05411, 2015.

[35] Jeffrey C. Jackson, Homin K. Lee, Rocco A. Servedio, and
Andrew Wan. Learning random monotone DNF. Discret. Appl.
Math., 159(5):259–271, 2011.

[36] A. T. Kalai, A. R. Klivans, Yishay Mansour, and R. A. Servedio.
Agnostically learning halfspaces. In 46th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS’05), pages
11–20, October 2005.

[37] Michael J. Kearns and Leslie G. Valiant. Cryptographic Limi-
tations on Learning Boolean Formulae and Finite Automata. In
Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washington, USA, pages
433–444. ACM, 1989.

[38] Leonid G Khachiyan. Polynomial algorithms in linear pro-
gramming. USSR Computational Mathematics and Mathematical
Physics, 20(1):53–72, 1980.

[39] Subhash Khot, Dor Minzer, and Muli Safra. On Monotonicity
Testing and Boolean Isoperimetric Type Theorems. In 2015 IEEE
56th Annual Symposium on Foundations of Computer Science,
October 2015.

[40] Jane Lange, Ronitt Rubinfeld, and Arsen Vasilyan. Properly
learning monotone functions via local correction. In 2022 IEEE
63rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 75–86, October 2022. ISSN: 2575-8454.

[41] Jane Lange, Ronitt Rubinfeld, and Arsen Vasilyan. Properly
learning monotone functions via local reconstruction, March
2023. arXiv:2204.11894 [cs].

[42] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster
cutting plane method and its implications for combinatorial and
convex optimization. In 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science, pages 1049–1065. IEEE,
2015.

[43] Reut Levi, Dana Ron, and Ronitt Rubinfeld. Local Algorithms
for Sparse Spanning Graphs. Algorithmica, 82(4):747–786, 2020.

[44] Reut Levi, Ronitt Rubinfeld, and Anak Yodpinyanee. Local
Computation Algorithms for Graphs of Non-constant Degrees.
Algorithmica, 77(4):971–994, 2017.

[45] Ryan O’Donnell and Karl Wimmer. KKL, Kruskal-Katona, and
Monotone Nets. In 50th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta,
Georgia, USA, pages 725–734. IEEE Computer Society, 2009.

[46] Ramesh Krishnan S Pallavoor, Sofya Raskhodnikova, and Erik
Waingarten. Approximating the distance to monotonicity of
Boolean functions. Random Structures & Algorithms, 60(2):233–
260, 2022. Publisher: Wiley Online Library.

[47] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant prop-
erty testing and distance approximation. Electron. Colloquium
Comput. Complex., 2004.

[48] Merav Parter, Ronitt Rubinfeld, Ali Vakilian, and Anak Yod-
pinyanee. Local Computation Algorithms for Spanners. In 10th
Innovations in Theoretical Computer Science Conference, ITCS
2019, January 10-12, 2019, San Diego, California, USA, volume
124 of LIPIcs, pages 58:1–58:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

[49] Omer Reingold and Shai Vardi. New techniques and tighter
bounds for local computation algorithms. J. Comput. Syst. Sci.,
82(7):1180–1200, 2016.

[50] Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast
Local Computation Algorithms. In ICS, 2011.

[51] Michael Saks and C. Seshadhri. Local Monotonicity Reconstruc-
tion. SIAM J. Comput., 39:2897–2926, January 2010.

[52] Liu Yang, Avrim Blum, and Jaime Carbonell. Learnability of
DNF with Representation-Specific Queries. In Proceedings of the
4th Conference on Innovations in Theoretical Computer Science,
ITCS ’13, pages 37–46, New York, NY, USA, 2013. Association
for Computing Machinery. event-place: Berkeley, California,
USA.

APPENDIX

A. Rounding of real-valued functions to Boolean.

Fact A.1. Suppose we have two functions g : {±1}n →
R and f : {±1}n → {±1}. Let T be a set of at
least 40

ε2 log
(
20
εδ log

1
δ

)
i.i.d. uniformly random elements

of {−1, 1}n, and let ThresholdCandidates ⊂ [−1, 1] be
a set of 20

ε log 1
δ i.i.d. uniformly random elements of

[−1, 1]. Let

t∗ := argmin
t∈ThresholdCandidates

1

|T |
∑
x∈T

|sign(g(x)− t)− f(x)|

Then, with probability at least 1− δ it is the case that

Prx∼{±1}n [sign(g(x)− t∗) �= f] ≤ 1
2 ‖f − g‖1 + ε

Proof. We get that

Et∼[−1,1]

[
Ex∼{±1}n [|sign(g(x)− t)− f(x)|]]

≤ ‖f − g‖1
directly via linearity of expectation. Now, the random

variable Ex∼{±1}n [|sign(g(x)− t)− f(x)|] (with ran-

domness taken over t) is always in [0, 2] and has some

1165

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

expectation E ∈ [0, 2] which is at most ‖f − g‖1. By

Markov’s inequality, we have

Pr
t∼[−1,1]

[E
x∼{±1}n

[|sign(g(x)− t)− g(x)|] ≥ E+ε/2]

≤ E

E + ε/2
≤ 2

2 + ε/2
≤ 1− ε

4
.

Since the set ThresholdCandidates consists of 20
ε log 1

δ
i.i.d. uniform elements in [−1, 1], then with probability

1−δ or more, some t in ThresholdCandidates will satisfy

the condition that Ex∼{±1}n [|sign(g(x)− t)− g(x)|] is

in [0, E + ε/2].
Finally, from the Hoeffding bound and union bound

we observe that with probability at least 1− δ
2 it is the

case that

max
t∈ThresholdCandidates

∣∣∣∣ 1

|T |
∑
x∈T

|sign(g(x)− t)− f(x)| −

Ex∼{−1,1}n |sign(g(x)− t)− f(x)|
∣∣∣∣ ≤ ε

4
.

Overall, we see that with probability at least 1− δ it is

the case that

Prx∼{±1}n [sign(g(x)− t∗) �= f]

≤ 1

|T |
∑
x∈T

|sign(g(x)− t∗)− f(x)|+ ε

4

≤ 1
2 ‖f − g‖1 + ε

This finishes the proof.

B. Agnostic learning algorithms handling randomized
labels.

It is customary in the agnostic learning literature to

consider a setting that is slightly more general than the

one in Theorem 1. Specifically, one is given pairs of

i.i.d. elements {(xi, yi)} from a distribution Dpairs, where

the distribution of each xi by itself is uniform. The

aim here is to output an efficiently-evaluable succinct

representation of a function g for which

Pr(x,y)∼Dpairs
[g(x) �= y]

≤ min
monotonefmon:

{−1,1}n→{−1,1}
Pr(x,y)∼Dpairs

[fmon(x) �= y]+O(ε).

(8)

The only difference between this setting and the one in

Theorem 1 is that here the label y doesn’t have to be

a function of example x; it is possible to receive the

same example x twice accompanied by different labels.

Here we argue that Theorem 1 extends directly into this

slightly more general setting. Formally, we show that

Theorem 5. For all sufficiently large integers n the
following holds. There is an algorithm that runs in time

2
Õ
(√

n
ε

)
and given i.i.d. samples of pairs {(xi, yi)} from

a distribution Dpairs, where the marginal distribution
over x is uniform, does the following. With probability at
least 1− 1

20.5n the algorithm outputs a representation of

a monotone function g : {±1}n → {±1} of size 2
Õ
(√

n
ε

)

that satisfies Equation (8).

C. Case 1: ε is very small.

We will consider two cases. First of all, suppose ε is

so small that the run-time of the algorithm in Theorem 1

exceeds 20.1n. In this case, the following algorithm

runs in time poly(2n, 1/ε) and outputs and efficiently-

evaluable succinct representation of a function g for

which Equation (8) holds:

1) Draw two sets T1 and T2, each of 100n5 · 2n/ε2
example-label pairs from Dpairs.

2) For each x ∈ {−1, 1}n let h(x) be
1

|(xi,yi)∈T1 s.t.: xi=x|
∑

(xi,yi)∈T1 s.t. xi=x yi.

3) Via a size-2O(n) linear program, find the monotone

function q : {−1, 1}n → [−1, 1] that is closest to h
is �1 distance.

4) Output the function g defined so g(x) :=
sign(q(x)− t∗), where t∗ is obtained as in Fact A.1

using the samples in T2.

The function g we output above with high probability

satisfies Theorem 1 for the following reason. First of

all, via the standard coupon-collector argument with

probability at least 1 − 1
25n for every x ∈ {−1, 1}n

there will be at least 102/ε2 elements in (xi, yi) in T for

which xi = x. Using the Hoeffding bound and the union

bound, we see that with probability at least 1− 1
22n we

have ∣∣∣∣h(x)− E(x′,y′)∼Dpairs

[
y′
∣∣∣∣x′ = x

]∣∣∣∣ ≤ ε

2
. (9)

Now, from steps (3) and (4) we have

‖h− g‖1
2

≤ 1
2dist1(h,mono) + ε. (10)

Therefore, we can combine Equation (9) and Equa-

tion (10) to obtain

Pr(x,y)∼Dpairs
[g(x) �= y] ≤

min
monotonefmon:

{−1,1}n→{−1,1}
Pr(x,y)∼Dpairs

[fmon(x) �= y] +O(ε),

(11)

which finishes the proof for this case.

1166

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

D. Case 2: ε is not too small.

Now, we proceed to the other case when ε is not too

small and the algorithm in Theorem 1 runs in time at

most 20.1n (and therefore uses at most 20.1n samples).

In this case, we claim that simply running the algorithm

in Theorem 1 will give an efficiently evaluable succinct

description of a function g that satisfies the guarantee in

Equation (8).

We now proceed to show that the guarantee in

Equation (8) will indeed be achieved. Define a ran-

dom function frandom : {−1, 1}n → {−1, 1}, so for

all x ∈ {−1, 1}n the value frandom(x) is chosen in-

dependently such that frandom(x) = 1 with probabil-

ity Pr(x′,y′)∼Dpairs
[y′ = 1 | x′ = x] and frandom(x) =

−1 with probability Pr(x′,y′)∼Dpairs
[y′ = −1 | x′ = x].

Consider the following two scenarios:

• Scenario I: The samples {(xi,yi)} given to the

algorithm from Theorem 1 are indeed i.i.d. samples

coming from Dpairs.

• Scenario II: The samples {(xi,yi)} given to the

algorithm from Theorem 1 are sampled as follows:

(i) xi are i.i.d. uniform from {−1, 1}n (ii) yi =
frandom(xi).

First we argue that in Scenario II with probability at

least 1− 2
2n the function g given by the algorithm from

Theorem 1 satisfies Equation (8), (here the probability

is over the choice of frandom, choice of the samples,

and the randomness of the algorithm itself). Indeed, let

f∗
mon be the function that minimizes the right side of

Equation (8). From the Hoeffding’s bound, it follows

that with probability at least15 1− 1
2n over the choice of

frandom it is the case that∣∣∣∣ Pr
x∼{−1,1}n

[frandom(x) �= f∗
mon(x)]−

Pr
(x,y)∼Dpairs

[f∗
mon(x) �= y]

∣∣∣∣ ≤ ε. (12)

Now, Theorem 1 implies that with probability at least

1− 1
2n

Pr
x∼{−1,1}n

[g(x) �= frandom(x)] ≤
dist0(frandom,mono) +O(ε) ≤
Pr

x∼{−1,1}n
[f∗

mon(x) �= frandom(x)] +O(ε). (13)

15Here we used that ε ≥ 1√
n poly logn

, because otherwise ε would

be too small and we would be in the other case when the run-time
of the algorithm in Theorem 1 exceeds 20.1n. Also, we note that a
much stronger bound can be deduced from the Hoeffding bound, but
we only need a bound of 1− 1

2n
.

Combining Equations 12 and 13 we we see that with

probability at least 1 − 2
2n , the function g given by

the algorithm from Theorem 1 satisfies Equation (8) in

Scenario II.

Finally, we argue that Equation (8) will be satisfied

also in Scenario I with probability at least 1 − 1
20.5n

for sufficiently large n. Conditioned on the absence of

sample pairs (xi,yi) and (xj ,yj) with xi = xj , the

distributions over samples in Scenario I and Scenario

II are the same, Hence it suffices to argue that the

collision probability is low, given that the value of ε
is such that the algorithm from Theorem 1 uses at most

20.1n samples. By taking a union bound over all pairs

of samples, we bound the probability of such colli-

sion by 20.2n

2n = 2−0.8n. Thus, information-theoretically,

any algorithm can distinguish between Scenario I and

Scenario II with an advantage of only at most 2−0.8n.

In particular, this is true of the algorithm that checks

whether Equation (8) applies. Thus, indeed Equation (8)

will be satisfied also in Scenario I with probability at

least 1 − 2
2n − 1

20.8n ≥ 1 − 1
20.5n , which finishes the

proof of Theorem 5.

E. Proofs deferred from Section IV

Proof of Lemma IV.2. Let x and y be comparable ele-

ments of P ; w.l.o.g. x ≺P y. It is sufficient to show

that f(x) > f(y) if and only if there is some i for

which x ≺Pi
y and fi(x) > fi(y). We claim that this

i is the most significant bit in which f(x) and f(y)
differ. It is certainly true that f(x) > f(y) if and only if

fi(x) > fi(y) for this i, and since fj(x) = fj(y) for all

j < i by the choice of i, we have x ≺Pi
y as well.

Proof of Lemma IV.3. Since m is monotone, certainly

m(x) ≤ m(y), and since f violates monotonicity on this

pair, certainly f(x) ≥ f(y) (and therefore g(y) ≥ g(x)).
We will examine the contribution of x and y to each of

||f −m||1 and ||g−m||1. We have the following cases:

• f(y) ≤ f(x) ≤ m(x) ≤ m(y): then

|m(x)− f(x)|+ |m(y)− f(y)|
=m(x) +m(y)− (f(x) + f(y))

=m(x) +m(y)− (g(x) + g(y))

=|m(x)− g(x)|+ |m(y)− g(y)|.

The distance of this pair does not change. The case

of m(x) ≤ m(y) ≤ f(x) ≤ f(y) is symmetric.

1167

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

• f(y) ≤ m(x) ≤ m(y) ≤ f(x): then

|m(x)− f(x)|+ |m(y)− f(y)|
=(f(x)−m(x)) + (m(y)− f(y))

≥(f(x)−m(y)) + (m(x)− f(y))

=|g(y)−m(y)|+ |g(x)−m(x)|.
The distance of this pair does not increase. The case

of m(x) ≤ f(y) ≤ f(x) ≤ m(y) is symmetric.

• f(y) ≤ m(x) ≤ f(x) ≤ m(y): then

|m(x)− f(x)|+ |m(y)− f(y)|
=(f(x)−m(x)) + (m(y)− f(y))

≥(m(x)− f(y)) + (m(y)− f(x))

=|g(x)−m(x)|+ |g(y)−m(y)|.
The distance of this pair does not increase. The case

of m(x) ≤ f(y) ≤ m(y) ≤ f(x) is symmetric.

Proof of Corollary IV.7. Let f : {−1, 1}n → [−1, 1] be

α-close to monotone in �1 distance. We call the algo-

rithm HYPERCUBECORRECTOR(f, ε, r) with a random

seed r of length 2O(
√

n log(1/ε) logn). First we set the

poset to be the truncated cube of width
√

2n log 2/ε,

which is a poset such that every element has at most

2O(
√

n log(1/ε) logn) predecessors and successors. The

representation of this poset (not its transitive closure) has

size poly(n, log(1/ε)). Then we set f ′ to be a function

that discretizes f to 2/ε possible values. This representa-

tion has size O(sf/ε). Then we set f ′′ to be a function

that computes the Hamming weight of x, then either

calls k-CORRECTOR or outputs a constant. So its size is

the size of the k-CORRECTOR representation times some

overhead that is polynomial in n and 1/ε. Since the Δ

parameter for the truncated cube is 2O(
√

n log(1/ε) logn),

the h parameter is O(
√
n), and the N parameter is < 2n,

the worst-case running time and query complexity of

this instance of k-CORRECTOR is 2O(
√
n logn log3/2(1/ε))

by Lemma IV.6. Thus the representation size of the

k-CORRECTOR instance is 2Õ(
√
n log3/2(1/ε)), and so

the representation size of f ′′ is 2Õ(
√
n log3/2(1/ε)) · sf .

With the random seed of length 2O(
√

n log(1/ε) logn) =
poly(Δ logN), k-CORRECTOR succeeds with probabil-

ity N−10 ≤ 2−10n.

F. Proofs deferred from Section V

Proof of Lemma V.1. The proof of dist1(f,mono) ≥
W/N is straightforward; for any edge (x, y), x ≺ y
in the matching, any monotone function must have

g(y) ≥ g(x) and thus (f(x)− g(x)) + (g(y)− f(y)) ≥
f(x) − f(y). So the contribution of x and y to the �1
distance is at least the weight of (x, y).

For the other direction, we give a proof exactly

analogous to the max-weight matching characterization

of distance to the class of Lipschitz functions, presented

in [9]. Let g be the closest monotone function to f in

�1-distance. We will partition the vertices of the cube

into three classes: V> := {x | f(x) > g(x)}, V< :=
{x | f(x) < g(x)}, and V= := {x | f(x) = g(x)}. We

will duplicate the vertices of V= and group one copy with

V> and one copy with V<, to form vertex sets V≥ and

V≤. The duplicated copies of x will be denoted x≥ and

x≤. We define the bipartite graph Bf,g to be the graph on

V≥ ×V≤ with an edge (x, y) if x ≺ y and g(x) = g(y).
The weight of the edge (x, y) is the same as it is in

viol(f); it is just f(x)− f(y). Intuitively, a matching in

Bf,g will represent a set of edges along which some a

minimal amount of label mass is transferred to correct

monotonicity. First, we claim that Bf,g has a matching

which matches every vertex in V>∪V<. This will follow

from Hall’s marriage theorem if we can show that for

every A ⊆ V> or A ⊆ V<, we have |A| ≤ |N(A)|.
Suppose for contradiction that the marriage condition

is false, and without loss of generality let A be the largest

subset of V> for which |A| > |N(A)|. We would like to

claim that for any x ∈ A ∪ N(A) and y �∈ A ∪ N(A),
if x ≺ y then g(x) < g(y). We consider four possible

cases:

a) If x ∈ A, y ∈ V>, x ≺ y, and g(x) = g(y), then

y ∈ A as well, by the choice of A to be the largest

set that fails the marriage condition. This is because

N(y) ⊆ N(x): any neighbor z of y must have

g(z) = g(y) = g(x), have x ≺ y ≺ z, and be

in V≤, which makes it a neighbor of x.

b) If x ∈ N(A), y ∈ V≤, x ≺ y, and g(x) = g(y),
then g(y) = g(x) = g(z) and z ≺ x ≺ y for some

z ∈ A, so y ∈ N(A).

c) If x ∈ A, y ∈ V≤, x ≺ y, and g(x) = g(y), then

y ∈ N(A).

d) If x ∈ N(A), y ∈ V>, x ≺ y, and g(x) = g(y),
then g(y) = g(x) = g(z) and z ≺ x ≺ y for some

z ∈ A, so as in case (a) we have N(y) ⊆ N(z) and

therefore y ∈ A.

We have shown that for any x ∈ A ∪N(A) and y �∈
A ∪ N(A), if x ≺ y then g(x) < g(y). Then there is

some δ > 0 for which g(x) can be increased by δ for

every x ∈ A ∪ N(A) without breaking monotonicity.

This decreases ||f − g||1 by δ(|A| −N(A)|) > 0, which

1168

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

contradicts the assumption that g is the closest monotone

function.

Having proven that Bf,g contains a matching M ′ on

all vertices in V>∪V<, we will now show that its weight

is equal to N ||f − g||1, using the fact that g(x) = g(y)
for all (x, y) ∈ M ′:∑

(x,y)∈M ′
f(x)− f(y)

=
∑

(x,y)∈M ′
f(x)− g(x) + g(y)− f(y)

=
∑

x∈V>∪V<

|f(x)− g(x)| = N ||f − g||1.

We will now find a matching M in viol(f) of

equal weight. First replace each x≤ and x≥ with x,

obtaining an edge set in viol(f) of equal weight that

is not necessarily a matching, but is a set of disjoint

paths. We replace each path with the edge between its

endpoints; i.e. if there is some pair of edges (y, x≤)
and (x≥, z), then we know that y ≺ x ≺ z and

f(y) − f(z) = ((f(y) − f(x) + (f(x) − f(z)), so

the matching edge (y, z) has weight equal to the total

weight of the path it replaces. Then M is a matching in

viol(f) of weight equal to N ||f − g||1, which is equal

to N · dist1(f,mono).

Proof of Lemma V.2. Fix the random seed r and assume

all calls to the algorithm of [30] using r succeed. Let

M ′ be a maximum-weight matching over viol(f), and

let M be a matching returned by MATCHVIOLATIONS.

We will use M to refer to the matching and its succinct

representation interchangeably. For each edge e ∈ M ′,
let we be the weight of e (i.e. the violation score of its

endpoints), and δe be the total weight of edges in M\M ′

that share an endpoint with e.

First we show by induction that at the start of each

iteration i, M is maximal over the subgraph of TC(P)
induced by edges of weight greater than 2−(i−1). In the

base case, M is initialized to be the empty matching,

which is maximal on the edges of weight > 2, as there

are no such edges. In the inductive case, we assume

the invariant is still true at the start of iteration i. Then

when FILTEREDGES (Section V-A) is called in iteration

i + 1, the vertices removed are exactly those that are

either already in M , or not incident to any edges of

weight greater than t = 2−i. Then by the maximality

of the matching computed by GHAFFARIMATCHING on

the filtered subgraph, any edge not in that matching must

satisfy one of the following criteria:

• it has weight at most 2−i,

• it has an endpoint in M ,

• it shares an endpoint with another edge in GHAF-

FARIMATCHING.

So after the new edges of in GHAFFARIMATCHING

are added to M , M is maximal over the 2−i-heavy edges

as desired.

Now we claim that δe ≥ we/2 for any edge e ∈
M ′\M of weight at least ε. This is because after the first

round for which t < we, M ′ must be maximal over the

t-heavy edges. This t is at least we/2, so if e �∈ M , then

either it shares an endpoint with some edge of weight at

least we/2 or its own weight is ≤ ε. We then have

w(M ′) = w(M ∩M ′) +
∑

e∈M ′\M
we

≤ w(M ∩M ′) +
∑

e∈M ′\M
max(2δe, ε)

≤ w(M ∩M ′) + 2
∑

e∈M ′\M
δe + εN

We claim that
∑

e∈M ′\M ≤ 2 · w(M \ M ′). This is

because each edge in M \M shares an endpoint with at

most 2 edges of M ′ \M , otherwise M ′ would not be a

matching. Therefore,

w(M ′) ≤ w(M ∩M ′) + 4
∑

e∈M\M ′
we + εN

≤ 4 · w(M) + εN

By Lemma V.1, w(M ′) = N ·dist1(f,mono); therefore

w(M) ≥ N(14dist1(f,mono)− ε) as desired.

We now bound the failure probability. When called

with a random seed of length poly(logN, log log(1/ε))
the algorithm of [30] can be made to succeed with

probability 1 − (N−10/ log(4/ε)). We use the random

seed on at most log(4/ε) different graphs, so by union

bound, with probability 1−N−10 all the calls succeed.

By the same argument as in the proof of Theorem 2, we

may assume that log(1/ε) ≤ N , and so the randomness

complexity is poly(Δ, logN).

G. Proof of Claim A.2.

Let us first recall the statement of the claim:

Claim A.2. For any positive integers n and d, real ε, δ ∈
(0, 1), and any function f : {±1}n → [−1, 1], let T be
a collection of at least n5d · 100ε2 ln 1

ε ln
1
δ i.i.d. uniformly

random elements of {±1}n. Then, with probability at
least 1− δ

max
degree-d polynomial P

with ‖P‖2 ≤1

∣∣∣‖f − P‖1 − E
x∼T

[|f(x)− P (x)|]
∣∣∣ ≤ ε,

1169

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

First we bound the probability that the condition above

holds for one specific P with ‖P‖2 ≤ 1. The condition

‖P‖2 ≤ 1 implies that maxx∈{±1}n |P (x)| ≤ nd. This

implies, via the Hoeffding bound, that

Pr
choice of T

[∣∣∣‖f − P‖1 − E
x∼T

[|f(x)− P (x)|]
∣∣∣ > ε

4

]
≤

exp

(
− ε2

32

|T |
n2d

)
.

We now move on to bounding the maximum over all

degree-d polynomials P over {±1}n with ‖P‖2 ≤ 1. We

will need a collection C of degree d polynomials over

{±1}n, such that |C| ≤ exp
(
nd ln 8nd

ε

)
so for every

degree d polynomial P with ‖P‖2 ≤ 1 there is some

element Pclosest ∈ C for which it is the case that

max
x∈{±1}n

|P (x)− Pclosest(x)| ≤ ε

4
.

Also, the L2 norm of every element in C is at most

1. Such a set can be constructed by putting into C
all polynomials of the form

∑
S⊂[n]
|S|≤d

cS (χS(x)) with

the coefficients cS taking values in [−1,+1] rounded

to the nearest multiple of ε
8nd , while discarding the

polynomials whose L2 norm is larger than 1. This way,

since χS(x) ∈ {±1}, when we round the coefficients of

P to a multiple of ε
8nd the value at any x ∈ {±1}n

cannot change by more than ε
4 , as there are at most

nd contributing monomials 16. The total number of such

polynomials is at most
(

8nd

ε

)nd

= en
d ln 8nd

ε .

Now, by taking a union bound on all elements of C
we get

Pr
choice of T

[
max
P∈C

∣∣∣∣ ‖f − P‖1 −

− E
x∼T

[|f(x)− P (x)|]
∣∣∣∣ ≤ ε

2

]
≥

1− exp

(
− ε2

32

|T |
n2d

+ nd ln
8nd

ε

)

Finally, if the above holds, by choosing a polynomial

Pclosest from C to minimize

16To have ‖Pclosest(x)‖2 ≤ ‖P‖2 ≤ 1 we should round to the
closest multiple of ε

8nd that is smaller in the absolute value of the
coefficient being rounded

maxx∈{±1}n |P (x)− Pclosest(x)| we get that

Prchoice of T

[
max

degree-d polynomial P over {±1}n

with ‖P‖2 ≤1

∣∣∣∣ ‖f − P‖1 −

Ex∼T [|f(x)− P (x)|]
∣∣∣∣ ≤ ε

]
≥

1− exp

(
−ε2

8

|T |
n2d

+ nd ln
4nd

ε

)
.

Substituting |T | ≥ n5d 100
ε2 ln 1

ε ln
1
δ we see that the above

expression is at least 1− δ.

1170

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

