2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS) | 979-8-3503-1894-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/FOCS57990.2023.00068

2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)

Agnostic proper learning of monotone
functions: beyond the black-box correction
barrier

Jane Lange
CSAIL
MIT
Cambridge, USA
jlange @mit.edu

Abstract—We give the first agnostic, efficient, proper
learning algorithm for monotone Boolean functions. Given
20(Vn/e) uniformly random examples of an unknown
function f : {+1}" — {+£1}, our algorithm outputs a
hypothesis g : {£1}" — {£1} that is monotone and
(opt + €)-close to f, where opt is the distance from f
to the closest monotone function. The running time of the
algorithm (and consequently the size and evaluation time of
the hypothesis) is also 20(Vn/ 25 nearly matching the lower
bound of [13]. We also give an algorithm for estimating up
to additive error ¢ the distance of an unknown function f
to monotone using a run-time of 20(vn/e), Previously, for
both of these problems, sample-efficient algorithms were
known, but these algorithms were not run-time efficient.
Our work thus closes this gap in our knowledge between
the run-time and sample complexity.

This work builds upon the improper learning algorithm
of [17] and the proper semiagnostic learning algorithm
of [40], which obtains a non-monotone Boolean-valued
hypothesis, then “corrects” it to monotone using query-
efficient local computation algorithms on graphs. This
black-box correction approach can achieve no error better
than 2opt + ¢ information-theoretically; we bypass this
barrier by

a) augmenting the improper learner with a convex opti-
mization step, and

b) learning and correcting a real-valued function before
rounding its values to Boolean.

Our real-valued correction algorithm solves the ‘“poset
sorting” problem of [40] for functions over general posets
with non-Boolean labels.

Index Terms—learning theory, monotone functions,
property testing, sublinear algorithms, Boolean functions

Jane is supported in part by NSF Graduate Research Fellowship
under Grant No. 2141064 and NSF Awards CCF-2006664, DMS-
2022448. Arsen is supported in part by NSF awards CCF-2006664,
DMS-2022448, CCF-1565235, CCF-1955217, Big George Fellowship
and Fintech@CSAIL.

979-8-3503-1894-4/23/$31.00 ©2023 IEEE
DOI 10.1109/FOCS57990.2023.00068

1149

Arsen Vasilyan
CSAIL
MIT
Cambridge, USA
vasilyan@mit.edu

I. INTRODUCTION

The class of monotone functions over {£1}" is an
object of major interest in theoretical computer sci-
ence. In consequence, the study of learning and testing
algorithms for monotone functions [1], [4], [8], [15],
(171, [19], [201, [22]-[25], [32], [37], [39], [40], [45],
[46] and various subclasses of monotone functions [5],
[14], [35], [52] is a major research direction. In this
work, we consider two fundamental problems in this
line of work: approximating the distance of unknown
functions to monotone, and agnostic proper learning of
monotone functions. For each of these problems we are
given independent uniform samples {x;} labeled by an
arbitrary function f : {#1} — {£1} and we are required
to perform the following tasks:

1) Estimating distance to monotonicity is the task of
estimating up to some additive error ¢ the distance
dist(f, fmon) from f to the monotone function fion
that is closest to f.

2) Agnostic proper learning of monotone functions
is the task of obtaining a description of a monotone
function gmon, whose distance dist(f, gmon) approx-
imates dist(f, fmon) Up to additive error .

Prior to our work, it was known that information-
theoretically these tasks can be solved using only
20(*/5/ e) samples. However, all known algorithms had
a run-time of 2" thus dramatically exceeding the
known sample complexity of 20(V7/¢) n this work, we
close this gap in our knowledge and give algorithms for
the two tasks above that not only use 90(vn/e) samples,

but also run in time 20(v/2) This nearly matches the
22(v/1) Tower bound of [13].

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

A. Previous work

We note that the work of [40] largely concerns itself
with the problem of realizable learning of monotone
functions, i.e. learning a function f that is itself promised
to be monotone. In contrast, the focus of our work
is the harder setting when the function f we access
is arbitrary and we want to obtain a description of
a monotone function g, that predicts f best among
monotone functions (up to an additive slack of ¢).

Still, as noted in [40], their work does give mixed
additive-multiplicative approximation guarantees in the
settings we study here. Specifically, [40] gives algo-
rithms that also run in time 2°(V"/%) and achieve the
following:

1) Obtain a (3,¢)-approximation of dist(f, fmon)-
In other words, the estimate is in the inter-
val between dist(f, fmon) and 3 - dist(f, fmon) +
€. (We also note that [40] additionally present
an algorithm that gives a distance estimate in
[dist(f, fmon)s 2 - dist(f, fmon) +&] but also re-
quires query access to function f).

2) Obtain a succinct description of a monotone func-
tion gmon, Whose distance dist(f, gmon) is a (3,¢€)-
approximation to dist(f, fmon). In other words,
it is in the interval between dist(f, fmon) and
3 - dist(f, fmon) + €. As it is noted in [40], this
yields a fully agnostic learning algorithm only if

diSt(,ﬁ fmon) < 0(6)

B. Main results

The following are our main results: learning and
distance approximation of Boolean functions, and local
correction of real-valued functions.

Theorem 1. [Agnostic proper learning of monotone
functions'] There is an algorithm that runs in time

26(@) and, gi }

, given uniform sample access to an un-
known function f : {£1}" — {%1}, with probability
at least 1 — %, outputs a succinct representation of
a monotone function g : {£1}" — {£1} that is
opt+0(e)-close to f, where opt is the distance from
f to the closest monotone function (i.e. the fraction of
elements of {+1}" on which f and its closest monotone
function disagree).

The corollary below follows immediately by the stan-
dard method of [47] that runs the learning algorithm in
Theorem 1 and estimates the distance between ¢ and f.

ISee Appendix B for an extension to functions with randomized
labels.

Corollary I.1 (Additive distance-to-monotonicity ap-
proximation). There is an algorithm with running time

and sample complexity 20(c) that outputs some esti-
mate est of the distance from f to the closest monotone
function fon. With probability at least 1 — 2% this
estimate satisfies the guarantee

dist(f, finon) < est < dist(f, frmon) + O(e).

Our main result, Theorem 1, builds on an algorithm
that is also of independent interest. It it a local compu-
tation algorithm for solving the “poset sorting problem”
as described in [41] for real-valued functions (note that
[41] only handled Boolean-valued functions). In other
words, the algorithm gives local access to a monotone
approximation of a real-valued function that is close
to the optimal monotone approximation in ¢; distance.
(See Section I-C2 for background on local computation
algorithms.)

Theorem 2. [Local monotonicity correction of real-
valued functions] Let P be a poset with N elements,
such that every element has at most A predecessors or
successors and the longest directed path has length h.
Let f : P — [—1,1] be a-close to monotone in (4
distance. There is an LCA that makes queries to [and
outputs queries to g : P — [—1,1], such that g is
monotone and ||f — g||1 < 2« + 3e. The LCA makes
(Alog N)OUoehloe(1/2)) qyeries, uses a random seed
of length poly(Alog N), and succeeds with probability
1— N710

C. Our techniques: beyond the black-box correction
barrier.

The algorithms of [40] follow the following pattern
(which we also summarize in Figure 1):

1) Use [17], [28], [36] to obtain a succinct de-
scription of a (possibly non-monotone) function
Jimproper Whose distance dist(f, fimproper) 1S at
most dist(f, fmon) + €. The issue now is that
fimproper 18 NOt necessarily monotone, and therefore
the distance dist(f, fimproper) Mmight dramatically
underestimate the true distance to monotonicity
dist(f, fmon)-

2) Design and use a monotonicity corrector, in order
to transform the succinct description of fimproper into
a succinct description of some monotone function
gmon that is close to fimproper- Formally, [40] de-
velop a corrector that guarantees that the distance
dist(fimproper, gmon) satisfies

diSt(fimpropcn gmon) S ¢ min diSt(fimpropera f/)+57

monotone f’
(D

1150

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

where the constant ¢ is 2. They achieve this by
a novel use of Local Computation Algorithms
(LCAs) on graphs.
This way, [40] obtain a succinct polytime-evaluable
description of a monotone function gpo, for which?
dist(f, gmon) < 3 - dist(f, fmon) + €.

However, one can see that even if the correction
constant ¢ in Equation (1) were equal to 1 (which is the
best it can be) this approach could only yield a guarantee
of dist(f, gmon) < 2 - dist(f, fmon) + €.

1) Description of our approach: We overcome this
barrier by using a different approach, summarized in
Figure 2. As before, there is an improper learning phase
and a correction phase; however in both phases we work
with real-valued functions. We have essentially three
steps:

1) Find a real-valued polynomial P that is e-close to
some monotone function, (opt + £)*-close to the
unknown function f in ¢; distance, and bounded in
[—1,1].

2) Obtain a succinct description of a real-valued func-
tion Pcorrectep that is monotone, and O(e)-close
to P in /; distance.

3) Round the real-valued function Pcorrgectep to be
{£1}-valued, while preserving monotonicity and
closeness to f.

In contrast to the approach of [40], the improper
learning phase is constrained to produce a good predictor
that is e-close to some monotone function, regardless of
how far f may be from monotone. Existing improper
learning algorithms are far from satisfying this new
requirement. We design a new improper learner by com-
bining the polynomial-approximation based techniques
of [17], [28], [36] with graph LCAs and the ellipsoid
method for convex optimization.

The improper learning task is a convex feasibility
problem; the set of polynomials satisfying the constraints
we give in step (1) is a convex subset of the initial convex
set of low-degree real polynomials. The ellipsoid method
requires a separation oracle, i.e. some way to efficiently
generate a hyperplane separating a given infeasible poly-
nomial from the feasible region. Such hyperplanes are
themselves low-degree real polynomials, which have
high inner product with the infeasible polynomial and
low inner product with every point in the feasible region.

2Strictly speaking, the properties of the corrector described so far
yield only a guarantee of dist(f, gmon) < 4 - dist(f, fmon) + €. To
improve the multiplicative error constant from 4 to 3 the work of [40]
uses an additional property of the corrector.

3Since opt is unknown, we instead guess values of opt in increments
of e.

1151

The separator for the set of polynomials that are («+¢)-
close to f is, as shown in Figure 2, just the gradient
of the prediction error; the more interesting case is the
separator for the set of polynomials that are e-close to
monotone.

With an argument inspired by the characterization of
Lipschitz functions given in [9], we observe that if a real-
valued polynomial P is far from monotone, this can be
witnessed by a large matching on the pairs of elements
on which P violates monotonicity. Given any description
of the matching, we show how to extract a separating
hyperplane for P by evaluating the matching on a set
of sample points. Therefore, the challenge is to find a
description of a sufficiently large matching that can also
be evaluated quickly. We elaborate on this in the next
section.

Step (2) requires another technical contribution, which
is an extension of the poset-sorting LCA of [40] to
real-valued functions. This extension is crucial for us to
achieve the overall agnostic learning guarantee, because
in the improper learning phase we obtain a real-valued
function that is only close to monotone in ¢; distance.*
For step (3) we use the rounding procedure of [36] that
rounds real-valued functions to {#£1}-valued functions,
and we show that this procedure also preserves mono-
tonicity.

2) LCAs and succinct representations of large objects:
In this work we employ heavily the concept of a succinct
representation. The succinct representations we deal with
will have size and evaluation time 2°(vV/€)_To be fully
specific, we consider succinct representations of two
types of objects:

e A succinct representation of a function f
{£1}™ — R is an algorithm that, given x € {£1}",
computes f(z) in time 20(V7/),

o A succinct representation of a (possibly weighted)
graph G with the vertex set {1}" is an algorithm
that, given v € {—1,1}", outputs all its neighbors
and the weights of corresponding edges in time
20(Vn/e)

A polynomial of degree O(y/n) is an example of a
succinct representation, but another type of representa-
tion that makes frequent appearances in this work is a
local computation algorithm, or LCA [3], [50]. An LCA
efficiently computes a function over a large domain. For
example, an LCA for an independent set takes as input

4One can construct functions that are arbitrarily close to monotone
in 1 norm but a constant fraction of their values needs to be changed
for them to become monotone. Because of this, the corrector of [40]
was not fit for our correction stage.

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

Labeled examples

—

Improper learning

algorithm

Predictor

ﬁ

Monotonicity
correction LCA for

Monotone predictor

—

binary-valued
functions

Fig. 1: Control-flow diagram of the semiagnostic algorithm of [40]

High-weight

matching LCA

Polynomial P

Ellipsoid algorithm

Labeled examples

—

Succinct witness that P far from monotone

Estimating low-degree

component of withess

Monotonicity correction Monotone predictor

LCA for continuous-valued —

functions (w.r.t. L; norm)

Compute
subgradient of L;
prediction error

Fig. 2: Control-flow diagram of the fully agnostic learning algorithm presented in this work (the final rounding step

is omitted).

some vertex v, makes some lookups to the adjacency
list of the graph, then outputs “yes” or “no” so that the
set of vertices for which the LCA would output “yes”
form an independent set. Typically, its running time and
query complexity are each sublinear in the domain size.
We require that all LCAs used in this work have outputs
consistent with one global object, regardless of the order
of user queries, and without remembering any history
from previous queries. This property allows us to use
the LCA, in conjunction with any succinct representation
of the graph, as a succinct representation of the object it
computes. We formalize this relationship in Section II-D.

1152

D. Other related work

The local correction of monotonicity was studied in
[21, [71, [10], [51] and [40] (see [40] for an overview of
previously available algorithms for monotonicity correc-
tion and lower bounds).

The work of [18] gives an improper learning algo-
rithm for a function class that is larger than monotone
functions. Additionally, we note that testing of monotone
functions has also been studied over hypergrids [9], [11],
[12], [19].

In addition to [30], there have been many exciting
recent works on local computation algorithms (LCAS).
Some examples include [50], [3], [44], [34], [49], [27],

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

[29], [21], [26] , [48], [31], [43], [6], [16] and [33].

II. PRELIMINARIES
A. Posets and {—1,1}"

Let P be a partially-ordered set. We use < to denote
the ordering relation on P. We say « < y (“z is a
predecessor of y”) if © < y and = # y, and use the
analogous symbols > and > for successorship. If x < y
and there is no z in P for which © < z < y, then x is
an immediate predecessor of y and y is an immediate
successor of x. We refer to the poset P and its Hasse
diagram (DAG) interchangeably. The transitive closure
TC(P) is the graph on the elements of P that has
an edge from each vertex to each of its successors. A
succinct representation of P with size s is any computa-
tional procedure whose description is stored in s bits of
memory that takes a vertex as input, outputs the sets of
immediate predecessors and immediate successors, and
runs in time O(s) in the worst case over vertices.

Specific posets of interest in this work are the Boolean
cube and the weight-truncated cube. We give a definition
and a size-O(n/e) representation computing the trun-
cated cube.’

Definition 1. The n-dimensional Boolean hypercube is
the set {—1,1}". For z,y € {—1,1}", we say = =<y if
forall i € {1,--- ,n} one has x; < y;. It is immediate
that {—1,1}" is a poset with 2" elements.

We also define the truncated hypercube

/ 2
ZZL‘Z' < 2nlog},
- €

Via Hoeffding’s bound, we have that the fraction of
elements in {0,1}" that are not also in HE is at most

H!' = {x e{-1,1}":

2exp (—%) =

Algorithm 1 LCA: TRUNCATEDCUBE(z, €)

Given: Input = € {—1,1}", truncation parameter &
return {y | y differs from 2 in one bit and

13259l < y/2nlog 2}

1) Fourier analysis over {£1}".: Let [n] denote
the set {1,2,---,n}. We define for every S C [n]
the function xg {£1}" — R as xg(x)
[I;cgvi- We define the inner product between two

3See Algorithm 1 for the computational procedure that provides
access to immediate successors and predecessor of a given element.
Note that only size O(n/e) is necessary because one can, for example,
store a circuit that implements Algorithm 1.

1153

functions g1,¢92 : {+1}™ — R as follows: (g1,92) :=
EmN{:I:l}" [gl(a:)gz(a:)]. It is known that <X51,XS2>
Ig,—s,. For a function g : {£1}" — R we denote
9(S) := (g, xs)- It is known that

Z 9(S)xs(x) (g1,92) = Z 91(5)g2(5).

SC|[n] 5C[n]

g(x)

B. Monotone functions

Part of our algorithm concerns monotonicity of func-
tions over general posets. For a function f : P — R, we
say that a pair of elements x,y € P forms a violated
pair if we have x =< y but f(z) > f(y), and we
define the violation score vs(z,y) = f(x) — f(y).
The violation graph viol(f) is the subgraph of T'C'(P)
induced by violated pairs in f. The weight of an edge
is the difference f(x) — f(y).

The ¢; distance of f to monotonicity dist(f, mono) is
the ¢, distance of f to the closest real-valued monotone
function.

Definition 2 (Distance to monotonicity). The {1 distance
of f : P — R to monotonicity is its distance to the
closest real-valued monotone function.

distq (f, mono) := mnnotnIrBi_(I;:P%R [|]13| :;3 |f(a:)—g(a:)|}

The Hamming distance to monotonicity of f : P —
{—1,1} is defined analogously.

[1
1P|

We will need a bound on how well monotone func-
tions can be approximated by low-degree polynomials.
The following fact follows® from [17], [36] and a refine-
ment by [28].

Fact IL.1. For every monotone f : {—1,1}" — {—1,1}
and € > 0, there exists a multilinear polynomial p of
degree [@ log 2] such that

I|f —pll <e.

C. Convex optimization

min
monotone g:
P—{-1,1}

disto(f, mono) :=

> 1[f(z) # g(2)]

zeP

The following notion is standard in convex optimiza-
tion.

Definition 3. A separation oracle for a convex set
Ceomvex 15 an oracle that given a point x does one of
the following things:

6see [41] for more explanation on how these references yield the
fact below.

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

o If ¥ € Ceonvex» then the oracle outputs “Yes”.

o If =z ¢ then the oracle outputs
(NO, Qsepararion): where Qseparation €]Rd represents
a direction along which x is separated from Ceopyex.

Formally, <Qseparatiom $> > <Qsepamtion7 $/> fOV any
z" in Ceonvex-

Cconvex]

We will need the following well-known fact from
convex optimization:

Fact IL.2. [38] There is an algorithm
ELLIPSOIDALGORITHM that takes as inputs positive
real values r and R, and access to a separation oracle
for some convex set Copmer C {x € RY: |z < R}
The algorithm runs in time poly (d, log %) and
either outputs an element in Cooppex OF outputs FAIL.
Furthermore, if Ceonex contains a ball of radius r, the
algorithm is guaranteed to succeed.

Also see [42] for an overview of algorithms building
on [38].

D. LCAs and succinct representations

We use the following LCAs in this work:

Theorem 3 (LCA for maximal matching’ [30]). There is
an algorithm GhaffariMatching that takes adjacency lists
access to a graph G, with N vertices and largest degree
at most A, a random string r € {0, 1}p°ly(A’1°g(N/‘5)),
parameter ¢ € (0,1) and a vertex v € G. The algorithm
outputs the identity of a vertex u : (u,v) € E(G) or
L. The algorithm runs in time poly(A,log(N/d)) and
with probability at least 1 — § over the choice of r the
condition of global consistency holds i.e. the set of edges
{(u,v) € G : GhaffariMatching(G,r,5,u) = v} is a
maximal matching in the graph G.

Theorem 4 (LCA for monotonicity correction of
Boolean-valued functions [40]). There is an algorithm
BooleanCorrector that takes access to a function f :
P — {—1,1} and adjacency lists access to a poset
P with N vertices, such that each element has at
most A predecessors and successors and the longest
directed path has length h, a random string r €
{0, 1}pely(Alos(N/9)) g parameter & € (0,1) and an el-
ement x in P. The algorithm outputs a value in {—1,1}.
The algorithm runs in time ACU°8M) . polylog(N/6)
and with probability at least 1 — § over the choice
of r the condition of global consistency holds i.e.
the function g : P — {—1,1} defined as g(x) :=

"To be fully precise, [30] gives an LCA for the task of maximal
independent set. The reduction to maximal matching is standard, see
e.g. [40].

BooleanCorrector(P,r, 8, z) is monotone and is such
that Pryp[g(x) # f(x)] < 2 - dist(f, mono).

An important idea in [40] is that LCAs (i.e. algorithms
that achieve global consistency) can be used to operate
on succinct representations of combinatorial objects. To
explain further, we need the following definition:

Definition 4 (Succinct representation). A succinct rep-
resentation of a function f of size s is a description of f
that is stored in s bits of memory and can be evaluated
on an input in O(s) time.

For example, circuits of size s and polynomials of
degree log s are examples of succinct representations of
size s and n'°8* respectively. The following fact follows
immediately from the definition:

Fact I1.3 (Composition of representations). If a function
f has a description that uses t bits of memory and
evaluates in time O(t) given q oracle queries to a
function g, and g has a succinct representation of size
s, then there is a succinct representation of f of size
O(t + sq).

Now, for example, combining® Fact 1.3 and Theo-
rem 3 we see immediately that for a graph G, with
N vertices and largest degree at most A, using the
algorithm in Theorem 3 we can transform a size-s repre-
sentation’ of a function computing all-neighbor access to
G into a size-(ACUeM) . polylog(N/§) - s) representa-
tion'” of a function that determines membership in some
maximal matching over . Note that this transformation
itself runs in time ACU°8") . polylog(N/6) - 5. Analo-
gously, in an exact same fashion it is possible to combine
Fact I1.3 and Theorem 4.

III. OUR ALGORITHMS

In this section we give descriptions of the agnostic
learning algorithm and its major components (we will
analyze the algorithms in the subsequent sections). The
algorithm MONOTONELEARNER makes calls to

ELLIPSOIDALGORITHM, where the optimization domain
. EIRVATN Tyt
is the < n(e 8 W

Pflog ﬂ polynomials over R™, and constraints

-dimensional space of degree-

8 A note on the description sizes of LCAs: because LCAs are uniform
(i.e. Turing-machine) algorithms, they can be simulated with a uniform
circuit family. For each input size, the size of the corresponding circuit
is polynomial in the running time of the LCA for that input size.

9For simplicity, in the rest of the paper we will refer to such
functions as a “succinct representation of G.”

10For simplicity, in the rest of the paper we will refer to such
functions simply as “representation of a maximal matching.”

1154

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

given by ORACLE,, ,, .. It also makes calls to HYPER-
CUBECORRECTOR, which is given in Corollary IV.7.

The subroutine ORACLE takes as input a polynomial
and provides the separating hyperplane required by EL-
LIPSOIDALGORITHM. It makes calls to HYPERCUBE-
MATCHING (see Lemma V.4), which provides a high-
weight matching over the pairs of labels that violate
monotonicity.

The algorithm MATCHVIOLATIONS finds a high-
weight matching on the violation graph of a poset. It is
the main component of HYPERCUBEMATCHING, which
is just a wrapper that calls MATCHVIOLATIONS on the
truncated cube. FILTEREDGES removes vertices that are
either incident to M or have weight below the threshold
t, and GHAFFARIMATCHING is the maximal matching
algorithm of Theorem 3. More implementation details
and analysis are given in Section V.

The following is the core of HYPERCUBECORREC-
TOR, given as a “global overview” for convenience.
Analysis and local implementation are given in Sec-
tion IV. The algorithm corrects monotonicity of a k-
valued function over a poset. HYPERCUBECORRECTOR
is a wrapper that discretizes a real-valued function and
then calls this corrector with the truncated hypercube as
the poset.

IV. ANALYSIS OF THE LOCAL CORRECTOR

In this section, we prove Theorem 2 by analyzing
our algorithm for correcting a real-valued function over
a poset in a way that preserves the /; distance to
monotonicity within a factor of 2. This extends the
monotonicity corrector of [40] to handle functions with
non-Boolean ranges.

Lemma IV.1 (¢; correction of k-valued functions). Let
P be a poset and [: P — [k] be a-close to monotone
in {1 distance. There is an LCA that makes queries
to f and outputs queries to g : P — [k|, such that
g is monotone and ||f — g||1 < 2a. The LCA makes
(Alog N)OUoehlogk) gyeries, where A is the maximum
number of predecessors or successors of any element in
P, N is the number of vertices, and h is the length of the
longest directed path.. It uses a random seed of length
poly(Alog N), and succeeds with probability 1 — N 10,

The following lemmas are used in the proof of cor-
rectness of our algorithm. Their proofs are deferred to
the appendix.

Lemma IV.2 (Equivalence of k-valued and bitwise
monotonicity). Let f : P — [k] be a function and f;
be the projection of f onto the iy, most significant bit

of k, ie. fi(x) =1 if the iy, bit of f(x) is 1, for each
i € [[logk]]. Let P; be the poset on the elements of P
with the relation

x<p,y:=x<pyand fj(x) = f;(y) forall j <i.

Then f is monotone if and only if each f; is monotone
over the corresponding P;.

Lemma IV.3 (Preservation of closeness to monotone
functions). Let g be obtained from f by swapping the
labels of a pair x <p y that violates monotonicity. Then
for any monotone function m, ||g — m||1 < ||f —m]]1.

The corollary follows from repeated application of
Lemma IV.3 and the triangle inequality.

Corollary 1V.4 (¢; error preservation). Let g be obtained
from f by a series of swaps of label pairs that violate
monotonicity in f. Then ||g — f]|1 < 2-dist;(f, mono).

We also require a modification to the LCA claimed
in Theorem 4 for correcting Boolean functions. That
algorithm works by performing a sequence of label-
swaps on pairs that violate monotonicity in the poset,
then outputting the function value that ends up at the
queried vertex x. It can instead track the swaps and
output the identity of the vertex that x receives its final
label from. The modified algorithm can be thought of as
an LCA that gives query access to a label permutation.

Fact IV.5 (Poset sorting algorithm implicit in [40]). Let
P be a poset with N vertices such that every element
has at most A predecessors and successors, and the
longest directed path has length h. Let f : P — {—1,1}
be a-close to monotone in Hamming distance. There is
an algorithm BOOLEANCORRECTOR that gives query
access to a permutation w of P such that fr is a
monotone function and Pr,.p[f(x) # (fr)(x)] < 20
The LCA implementation of BOOLEANCORRECTOR uses
(Alog N)©Uoeh) gueries and running time, has a ran-
dom seed of length poly(Alog N), and succeeds with
probability 1 — N 11,

Here we present the LCA implementation of Algo-
rithm 5.

Lemma IV.6 (Correctness and query complexity of
Algorithm 6). With probability 1 — i - N~ over a
random seed v of length poly(Alog N), the algorithm
k-CORRECTOR(z, P, f,i,r) gives query access to a
function g that is monotone when truncated to the
first © most significant bits. Its query complexity is

1155

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Algorithm MONOTONELEARNER (n,&,T)

1: Given: Integer n, € € (0,1), and uniform sample access to an unknown function f : {£1}" — {£1}.

2: Output: Circuit C : {+1}" — {£1}.
3. for a« € {£,2¢,3¢,--- 1 —¢,14 200} do

4.

_1
OptimizationResult - ELLIPSOIDALGORITHM <1,5 “n 2(

4y

€

log%
] , ORACLEOC’,L’E) .

5: if OptimizationResultFAIL then
6: POOOD — OptimizationResult
7: PSOOD - < representation of a function that takes input & and outputs the value
PGOOD () if POOOD(z) € [—1,+1]
1 if PSOOP(z) > 1
-1 if POOP (1) < —1
8: PSSR rgp < representation of a function that takes input = and returns the value
HYPERCUBECORRECTOR (2, P ot)
9: T «+ 22 log (%) log(20n) i.i.d. pairs (z;, f(;)), with @; sampled uniformly from {—1,1}".
10: ThresholdCandidates<— {% i.i.d. uniformly random elements in [—1,1]}.
L1 = arg mintEThresholdCandidatcs [ﬁ ZmGT Hslgn(PCGOol?lgECTED(w> - t) - f(w)H:|
12: return representation of a function that takes input and returns the value
sign(P&orrEcTep(T) — 1)
13: end if
14: end for

(Alog N)OGlogh+D) " and ||g — f||1 < 20, where o is
the 01 distance of f to the nearest monotone function.

Proof. Fix the random seed r and assume all calls to
BOOLEANCORRECTOR succeed with r, then we proceed
by induction. In the base case, f is certainly monotone
when truncated to O bits and the algorithm makes only 1
query. In the inductive case, suppose the claim holds for
i — 1; in other words k-CORRECTOR(y, P, f,i — 1,71 o
...or;_1) makes (Alog N)O(—Dlogh+1) gueries and
returns a function that is monotone in the first + — 1
bits. Then when k-CORRECTOR is called with iteration
number 4, the function fj’- is monotone over P]’» for all
j < i. BOOLEANCORRECTOR(x, P/, f/,r;) returns a
vertex to swap labels with x such that the resulting
function is monotone in the i, bit, over the poset P;.
Then the function returned by k-CORRECTOR satisfies
the conditions of Lemma IV.2 for the first ¢ bits, so it
must be monotone in the first 7 bits.

We now bound the failure probability and distance to
f. The failure probability of BOOLEANCORRECTOR is
N~ and we call BOOLEANCORRECTOR on i different
graphs, so by union bound the total failure probability
is <i- N7 as desired. The fact that ||g — f||; < 2«
follows from Corollary 1V.4. O

We can now prove Theorem 2.

1156

Theorem 2. [Local monotonicity correction of real-
valued functions] Let P be a poset with N elements,
such that every element has at most A predecessors or
successors and the longest directed path has length h.
Let [: P — [-1,1] be a-close to monotone in {y
distance. There is an LCA that makes queries to f and
outputs queries to g : P — [=1,1], such that g is
monotone and ||f — g||1 < 2« + 3e. The LCA makes
(Alog N)©OUoehloe(1/e)) gueries, uses a random seed
of length poly(Alog N), and succeeds with probability
1- N1

Proof of Theorem 2. Given some ¢ € (0,1/2), let
fe(x) | f(z)/e]; certainly queries to f. can
be simulated by queries to f. On input z, run k-
CORRECTOR(z, P, f., [log(2/¢)],r) with a random
seed r of length poly(Alog N). By Lemma IV.0,
this makes (Alog N)OUos(l/e)logh) gueries to
f- and outputs g.(x), where ¢ is monotone and
llge — fell1 < 2-disty(f., mono). Since f is a-close to
some monotone function m, we have dist; (f., mono) <
fe=m/elly < |If/e—m/ellhi+IIf/e=fells < afe+1.

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Subroutine ORACLE,, ,, - (P)

1:

Given: ¢, € (0, 1), degree- [@ log g—‘ polynomial P over R with ||P||, <1, and

uniform sample access to an unknown function f: {£1}" — {£1}.

constant ().

OUtPUt: ”Yes” or (”No”v Qseparator)’ where Qseparator is a degree'

Prrimvep ¢— representation of a function that takes input and outputs

4'f log 2| polynomial over R™.

P(z) if P(z) € [-1,+1]
1 if Pa) > 1
1 if P(a) < —1

T« setof n“¥" 18 ¢ iid. pairs (x;, f(x;)), with x; sampled uniformly from {—1,1}" (for sufficiently large

r <« string of 2€V7(logn-log 2 random i.i.d. bits (for sufficiently large constant C).

5:
6: Mieparator <— Tepresentation of a function that takes input = and outputs
0 if HYPERCUBEMATCHING (Prrivmeps €/4,) does not match x to any other vertex
1 if HYPERCUBEMATCHING(Prrivmep; €/4,) matches = to some vertex z, s.t. z Xz
—1 if HYPERCUBEMATCHING(PrrimMED; €/4,) matches x to some vertex z, s.t. z = x
7 if ﬁ Z:}:GT [Mseparalor(m) ’ PTRIMMED(mH > 5¢ then
1
8: Qseparator — ZSC[n]: 1S|< [4-;/% log é" (m ZmeT [Mseparator(w) . XS(m)]) XS
9: return (“No”, Qseparator)
10: else if ‘%' > wer [|f(x) — P(x)|] > a + 50¢ then
11: Qseparator — ZSC[n]lSlS{Al';/E log g" (EmNT [P(S)XS(w)Slgn(P(w) - f(m))j|) XS
12: return (“No”, Qseparator)
13: else
14: return “Yes”
15: end if

Return g(z) := ¢ - g-(x). Then

lg=fllr = llege=Fll < llege—efelli+llefe=fll1 <
<2(afe+1)+e<2a+ 3e.

The failure probability is N—'1 . [log(2/e)] by
Lemma IV.6, but we will assume that [log(2/¢)] < N.
Otherwise, the allowed query complexity and running
time would exceed AY, which is > AN for any
A, N > 1. With O(AN) query complexity and running
time, a trivial algorithm would suffice: one could solve
the linear program with AN monotonicity constraints,
minimizing ||g — f||1. Under our assumption, the failure
probability is at most N 10, O

Corollary IV.7 (Monotonizing a representation of a
function on the Boolean cube). Let f : {—1,1}" —
[—1,1] be a-close to monotone in {1 distance, given
as a succinct representation of size sy. There is an
algorithm that runs in time 20(vnlog*(1/e)) . sy time
and outputs a monotone function g such that ||f —
glli < 2a+ 4e. The size of the representation of g is

1157

26(\/5103?3/251/5)) -sy. The algorithm uses a random seed
of length 20(vnlog(1/€)) and succeeds with probability
1—2710m,

The proof of Corollary I'V.7 is deferred to Appendix E.

V. ANALYSIS OF THE MATCHING ALGORITHM

In this section we give an algorithm for generating a
succinct representation of a matching over the violated
pairs of the hypercube whose weight is a constant
factor of the distance to monotonicity. The core of the
algorithm is an LCA for finding such a matching over
the violated pairs of an arbitrary poset.

Lemma V.1 (Equivalence of distance to monotonicity
and maximum-weight matching). Let W be the total
weight of the maximum-weight matching of the violation
graph of f. Then dist(f, mono) = W/N.

Proof. This proof is analogous to the proof of Lemma
3.1 of [9]; see Appendix F. O

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4 MATCHVIOLATIONS(P, f,e,7 =rjo0...0
TNog 2/¢])
Given: Poset P and function f : P — [—1,1]
given as succinct representations, weight threshold ¢,
random seed T =171 0... 0T 5g2/¢]
Qutput: Succinct representation of a high-weight
matching on the violating pairs of P w.r.t. f
if £ < 1/|P| then
M < representation of the greedy algorithm that
adds each edge (x,y) of T'C'(P) in decreasing order
of f(x) = f(y).
else
142
141
M < representation of a function computing the
empty matching
while ¢ > /2 do

P’ <« representation of a function that takes
input x and outputs
FILTEREDGES(T'C(P), f,t, M, x)

M < representation of a function that takes
input = and outputs M (x) if M(z) # L, otherwise
GHAFFARIMATCHING(P’ 1, x))

t <+ t/2

1 1+1

end while
end if
return M

Algorithm 5 Global view of sorting k-valued labels in
a poset
Given: Poset P of height h, function f: P — [K]
Output: monotone function g : P — [k]
Leti2<0
for 0 <i < [logk]| do

Let f; be the projection of f onto the i;, most
significant bit of k, i.e. f;(x) = 1 if the iz, bit of
f(z)is 1.

Let P; be the poset on the elements of P with
the relation

AN S R

x <p,y:=x<pyand fj(x) = f;(y) for all j <.

Let 7m; «+ BOOLEANCORRECTOR(f;, ;).
Let f — fﬂ'i.

9: end for

10: return f

1158

Algorithm 6 LCA implementation of Algorithm 5, k-
CORRECTOR(z, P, f,i,7)
1:

Given: Target vertex x, all-neighbors (immediate
predecessor and successor) oracle for P, query ac-
cess to f : P — [k], iteration number i, random
seed " =r10...07;.
Output: query access to function g : P — [k]
which is monotone when truncated to the first ¢ most
significant bits.
if i = 0 then return f(z)
4: else

S « the set of all predecessors and successors
of x in P

6: for y € S do

7: Let f'(y) <« k-CORRECTOR(y,P,f,i —
1,7“1 0-~~Ori—1)-

8: end for

9: Let f! be defined as in Algorithm 5, and P be

similarly defined with respect to f.

10: Remove any y from S such that f/(y) = f/(z)
or y and x are incomparable in P;.

11: Let z < BOOLEANCORRECTOR(z, P/, f!,r;)

12: return f'(z)

13: end if

A. Details and correctness of MATCHVIOLATIONS

The algorithm MATCHVIOLATIONS given in Sec-
tion III makes calls to an algorithm called FIL-
TEREDGES, which removes vertices that have already
been matched or are not incident to any heavy edges.
We give the pseudocode for FILTEREDGES here.

Lemma V.2. Let P be a poset with N vertices, and let
A be an upper bound on the number of predecessors
and successors of any vertex in P. Then the output of
the LCA MATCHVIOLATIONS(P, f,e,r) with a random
seed r of length poly(A,log N), is a matching of weight
at least N(%distl (f, mono)—e) with probability at least
1 - N1

Proof. This is a small modification to the standard
greedy algorithm for high-weight matching; see Ap-
pendix F. O

Lemma V.3 (Running time and output size). Let
P, f,e, N, A, and r be as described in the lemma above.
Let sp be the size of the succinct representation of P,
and sy be the size of the succinct representation of f.

Then MATCHVIOLATIONS(P, f,e,r) runs in time
(Alog N)©Uoe(1/e) (s p+s4) and outputs a representa-
tion of size (Alog N)OUosL/9)) (sp + 5¢).

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 7 HYPERCUBECORRECTOR(f, &, 1)

Given: function f : {—1,1} — [—1, 1] given as succinct representation, additive error parameter ¢ > 0, random

seed 7 =710...07[10g1/¢]-

Output: succinct representation of monotone function g : {—1,1} — [—1,1].

P < representation of a function that takes x and outputs TRUNCATEDCUBE(x, €)
f' < representation of a function that takes x and outputs | f(z)/e]

f" <« representation of a function that takes x and outputs

¢ - k-CORRECTOR (z, P, f/, [log(1/e)],7) —+/2nlog2/e < |z| < \/2nlog2/e

1
—1
return "/

|x| > /2nlog2/e
|z] < —+/2nlog2/e

Algorithm 8 LCA: FILTEREDGES(P, f,t, M, x)

1: Given: Poset P, function f : P — [-1,1],
and matching M given as succinct representations,
weight threshold ¢, vertex z

2: Output: All neighbors of x in the graph of violation
score > t and not in M

3: return

{ye P(z) | M(y) =L and
[(z <yand f(z) > f(y) +1) or
(z>yand f(z) < f(y) — O]}

Proof. If ¢ < 1/N, then MATCHVIOLATIONS con-
structs and outputs a representation of the standard
global greedy algorithm for 2-approximate maximum
matching. The representation size of this algorithm is
O(AN) < (Alog N)©Uee(1/2)) "and the running time of
MATCHVIOLATIONS is polynomial in this representation
size.

If ¢ > 1/N, then by induction on the number of itera-
tions ¢, we will show that the representation size of M at
the start of iteration i is at most (Alog N)°®) (sp+s7).
In the base case, we have an empty matching A which
has constant representation size.

In the inductive case, suppose the claim holds at the
start of iteration 7. Then we set P’ to be the function that
applies FILTEREDGES to T'C'(P). TC(P) has size O(A-
sp), as it makes O(A) calls to P. FILTEREDGES makes
one call to TC'(P) and at most O(A) calls to M and f.
It also has overhead of size O(logt) = O(log(1/¢))
O(log N). By the inductive hypothesis, the size of P’ is
then

O(A)-(Alog N)°D (sp+s;)+0(log N)+O(A-sp)
< (Alog N)OUHD (sp 4 54).

1159

Then we set M to be the function that applies GHAF-
FARIMATCHING to P’. GHAFFARIMATCHING has con-
stant overhead and makes poly(A,log N) queries to
P’. Then the new size of M is poly(A,logN) -
(Alog N)OW (sp +5¢) = (Alog N)OUHD (sp + s4).

The size bounds follow from the fact that there are
O(log1/¢) iterations. The corresponding running time
bound for MATCHVIOLATIONS comes from the fact that
since it only constructs the succinct representations, its
running time in each iteration is polynomial in the size
of the representations it constructs.

O

Lemma V4. With a random seed of length
20(v/nlog(1/e)) Algorithm 9 outputs a representation of
a matching on the weighted violation graph viol(f),
of weight at least 2" - (idisti(f, mono) — 4e),
with probability at least 1 — 271°". The size of the
representation is 200V 108(/2)) . ywhere sp is the
size of the representation of f.

Proof. HYPERCUBEMATCHING calls MATCHVIOLA-
TIONS on the truncated hypercube, which has parameters
N < 2" and A = 20(/nlognlog(1/€)) The size of
the representation of TRUNCATEDCUBE is O(n). So
by Lemma V.3, the running time and output size of
HYPERCUBEMATCHING are 20(Vlognlog(1/€)) 5. and
the random seed length is 20(v7legnlog(1/e))

Let f’ be the restriction of f to the truncated
cube. Since f is bounded in [—1,1] and the trun-
cated cube covers all but an & fraction of vertices,
we have dist;(f’,mono) > dist;(f, mono) — 2e. By
Lemma V.2, the weight of the matching is at least
(1 — &) - 27(idist1(f/,mono) — &) > (1 — ¢) -
2"(4disty (f, mono) — 3¢/2) > 2"(4disty(f, mono) —
4e).

O

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 9 HYPERCUBEMATCHING(f, ¢, 7)

1:

T =T7T10...0T log2/¢]

Given: Function f : {—1,1}" — [—1,1] given as succinct representation, weight threshold &, random seed

2: Qutput: Succinct representation of a high-weight matching on the violating pairs w.r.t. f

3: P < TRUNCATEDCUBE(n,)

4: M <— representation of a function that takes = and outputs

1
return M

otherwise

MATCHVIOLATIONS (P, f,e,7) —+/2nlog2/e < |z| < \/2nlog2/e

VI. ANALYSIS OF THE AGNOSTIC LEARNING
ALGORITHM

By inspecting algorithm MONOTONELEARNER (i.e.
Algorithm 2 on page 8), we see immediately that the run-
time is 29(V7/¢) We proceed to argue that the algorithm
indeed satisfies the guarantee of Theorem 1. First, we
will need the following standard proposition.

Claim VL1. For any positive integers n and d, real
e,6 € (0,1), and any function f : {+1}" — [-1,1],
let T be a collection of at least n°® - 1;’—20111;111%
i.i.d. uniformly random elements of {+1}". Then, with
probability at least 1 — 0

If = Pl ~ E_llf(@) - P@))| <e,

max
degree-d polynomial P

with || P]|, <1
Proof. See Appendix G for the proof of this proposition.
O

Now, in the following lemma we prove that subroutine
Oracle,, ,, . (P) (i.e. Algorithm 3 on page 9) satisfies
some precise specifications with high probability. Infor-
mally, we show that Oracle,, ,, .(P) either

o Certifies that the polynomial P is both close to

monotone in L; distance and has L; prediction
error of a4+ O(e).

o Outputs a hyperplane separating P from all such

polynomials.

Formally, we prove the following:

Lemma VL.2. For sufficiently large constant C' in Sec-
tion III and Section III of procedure Oracle,, , .(P),
sufficiently large integer n, any function f : {—1,1}" —
T—l, 1}, parameters e,a € (0,1), and a degree-

4-\/n 4 . . .
‘Tf log g—‘ polynomial P satisfying ||Pll, < 1 the
following is true. The procedure Oracle, ,, . (P) runs in
NG
time no(€) and will with probability at least 1 — 25%
conform to the following specification:

1) If Oracle, ,, - (P) outputs “yes”, then:

1160

a) The function Prrivmep =
1 if P(x) > 1,
-1 if P(x) < —1,
P(x) otherwise.

is 100e-close to monotone in Ly norm.
b) The Ly distance between P and the function f
is at most o+ 100e.
2) If Oracle,, ,, . (P) instead outputs ("No”, Qseparator),

where Qseparator is a degree- [@ log g—‘ polyno-

mial over R", then we have (P’,Qseparaior) <
(P, Qseparator) for any degree- [@ log g—‘ polyno-
mial P" with ||P'||, <1 that satisfies the following
two conditions:
o P is e-close in Ly distance to some monotone
function fronotone : {E£1}" — [~1,1] and
o P'is (a+¢)-close in Ly distance to the function
f which we are trying to learn.
In particular, this implies that if P itself is e-close in L
distance to some monotone function and is (a + £)-close
in Ly distance to the function f, then Oracle,,,, .(P)
will say “yes” with probability at least 1 — 21%

Proof. We use the union bound to conclude that with
probability at least 1 — 251n all the following events
hold:

(a) The LCA from Lemma V.4 works as advertised
and the weight W of the resulting matching satisfies

27 >0.1 diStl (PTRIMMED7 mono) —&.
Another way to write the same thing is

(Meparators Prrimven) > 0.1 dist (Prrivivep, mono) —e.

(2

From Lemma V.4 it follows that this holds with
probability at least 1 — 5.

(b) The estimate of <Mseparalor7 P TRIMMED> in

Section III is indeed e-close to the true value. From the

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

standard Hoeffding bound, this holds with probability
at least 1 — 21%

(c) It is the case that

Z Mseparalor(s)XS - Qseparator <e
ScCln]:
|SI< [+ 105 1] ,

Substituting the expression for Qseparaor» and using the
orthogonality of {xs} we see this is equivalent to

>

Scn): \S|§[@1ggﬂ

(M;[;or(s) - |711| Z [Mseparator(w) : XS(m)]>

xeT

1
2107

< en { € J in absolute value w.p. > via Hoeffding’s bound

<e

Overall, the above holds with probability at least
1- 29%1 by taking a Hoeffding bound for each individual
summand and taking a union bound over them.

(d) The set T' C {£1}" is such that

max
log §—| polynomial P" over {£1}"
with || P[], <1

If = P'lly = B pap~r [1f(@) = P@)]]| <e.)

It follows from Claim A.2 that this happens with
probability at least to 1 — 21%

Now, we argue that if these conditions indeed hold,
then Oracle,, ,, - (P) will satisfy the specification given.

First, suppose Oracle,, ,, () answered “yes”. Then,
since the estimate of (Meparator, Prrivmen) in Section III

is within € of its true value, we have

4-/n
degree- |VT

<Mseparator, PTRIMMED> S 6e.

Now, since we are assuming the matching LCA from
Lemma V.4 works as advertised, this means that

6e > <Msepa.rator7 P TRIMMED>
> 0.1- diStl(PTRIMMED7 HlOIlO) — &
which can be rewritten as

diStl(PTRIMMEDy IIlOIlO) S 70e S 1006,

which is one of the two things we wanted to show. The
other one was showing that the L; distance between P
and the function f, which we are trying to learn, is at
most « + 100e. Since the algorithm returned “yes”, it
has to be that in Section III we have

Egor [|f (@) — P(z)]] < a + 50e.

From Equation (3) it then follows that

|f = Plly < Eenr [|f(z) — P(x)|] + €
< a+5le < a+ 100e,

which is the other condition we wanted to show for the
case when the oracle says “yes”.

Now, assume the oracle outputs “no” along with some

4"5/5 log g—‘

polynomial Qgepararor and let P’ be a degree

polynomial with || P’||, < 1 that satisfies the following
two conditions'':

e P’ is e-close in L; distance to some monotone
function fionotone : {21} — [—1,1] and

e P’ is (a+¢)-close in L, distance to the function
f which we are trying to learn.

Here, again, there are two cases. First, suppose we have
the case where Qeparator i generated from Mgeparator. We
have that the oracle’s estimate of (Meparators PrRIMMED)
is at least 5e, which means that (Meparator, PrRIMMED) >
4e. We know that P’ is e-close in L; distance to some
monotone function fionotone : {£1}" — [—1,1]. Since
Mieparator 1s defined to be so for every matched pair
(xi,yi) with ; < y; we have Meparaor(®i) = 1
and Meparaor(yi) = —1 and is 0 otherwise, and for
each such pair fmonotone (wz) < frnonotone (yz) we have
(Meparator fmonotone) < 0. This allows us to conclude

0 > <Mseparat0r7 f monotone>
- <Mseparalora P ,> + <Mseparator> f monotone
<Msepa1at0r7 Pl>

- ma M. T _ Pl
(Qje{_l}’(l}n| Sepa.rator()|> ”fmonotone Hl

> <Mseparator; P,> -5

Py >

UTf no polynomial satisfying these conditions exists, the statement
we are seeking to prove holds vacuously.

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

which means
€ > <Mseparatorvp/>

(s

SC[n]

separalor (H fo)) >
ieS
|SI<[4% 10g 4]

- <Qseparatora Pl> -

— Q- Z
SCln]:
|51< 422 10g 4]

%eparator (H xz) ”P/”z

€S

2
Z <Qseparator7 Pl> —E&. (4)

On the other hand, the oracle’s estimate of
(Mgeparator, Prrivviep) s at least 5e, which means
that it is the case that (Meparator, Prrivmep) > 4e. This
allows us to conclude

Trimming the values of a function
only decreases weights of violated edges.

de S <Mseparator7 P TRIMMED> S <Mseparator7 P >

SCln): |SI<[4% 1og g]
S <Qseparat0ra P> +

Q- X
ScC[n]:
|SI<[4% 1og ¢ |

sepdrdtor (H xl) ||P||2

i€S
2
> <Qseparator7 P> +e. (5

Combining Equation 5 and Equation 4 we get

<Qseparator,P/> <2 <3< <Qseparator7P>

as required.

Finally, we consider the case when Qepararor 1S gen-
erated on Section III. Since P’ is (a + ¢)-close in L
distance to the function f, by Equation (3) we have that

ate<|flz) - P,
< B f@y~r [If(@) = P'(z)] -,
which we can rewrite as E 5 f(z))~7 [|.f(2) — P'(x)[] <
o + 2e. At the same time, we have

E(a, f@))~1 [|f(2) —
that

P(x)|] > a + 50e, which means

(1 (x) -

(, £ (m)) ~T

P(z)[] >

E(a,f(@)~r [|f (@) = P'()]].
Therefore, as the function mapping a polynomial H to
the value E; ()~ [|f(x) — H(x)[] is convex , it has
to be the case that'”

(Fer ¥ (g[Pens@

SCln] :
ISI< [+ 10g £

-sign(P(zx) — f(w))})XS>

(PP (B IH@ - @])]H:P>

< 0.

This implies that <Qseparator, P /> < <Qsepatatora P >a which
completes the proof. O

A. Finishing the proof of the Main Theorem (Theo-
rem 1).

Recall that earlier by inspecting Algorithm 2 we
N
concluded that this algorithm runs in time 2¢ . Here

we use Lemma VI.2 to finish the proof of Theorem 1 by
showing that with probability at least 1 — 2% the function
sign(PiaoNEn () — t*) is monotone and is opt+O(¢)-
close to f (where opt is the distance of f to the closest
monotone function).

We can further conclude that with probability at least

1- # the following events hold:

1) Every time an oracle Oracle, , . is invoked (for
various values of «), its behavior will conform to
the specifications in Lemma VI.2.

2) The algorithm HypercubeCorrector from Corol-
lary IV.7 used on line 11 works as advertised, so
the function PSSO rep @ {1} — [-1,1] is
monotone and we indeed have

| PeorrEcTen — Prriviven |4

< 10 - dist (PSOO e, mono) +&. (6)

2To be fully precise, the expression above is a subgra-
dient of the convex function mapping a polynomial H to

E(z,f())~7 [|f(2) — H(Z)|].

1162

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

3) In step (4), the function sign(PSSascrep (T) — t*)
satisfies the guarantee from Fact A.1, i.e.
Pry~q+1y» [Sign(Pg(())I?IgECTED(m) —t) # f]
S 2 H g(g)l?lg:CTED le +e (D)

We argue that each of these events takes place with
probability at least 1 — 51
« Note that the oracles Oracle, ,, . for various values

of « are invoked at most 20(@) times. There-
fore, Lemma VI.2 tells us that for each of this
invocations the algorithm Oracle,, ,, conforms to
its specification with probability at least 1 — 25n.
Via union bound we see that event (1) holds with
probability at least'? 1 —

24n *

o Event (2) holds with probability at least 1 — 24n via
Corollary IV.7.
o Event (3) holds with probability at least 1 — 24n via

Fact A.1

Via union bound, we see that with probability at least
1-— 23% all these events hold, which we will assume for
the rest of the proof.

Recall that opt stands for the distance of f to the clos-
est monotone function. We first claim that the algorithm
will break out of the loop in Section III for some value
a* < 2opt 4+ 150¢, which we argue as follows: If a* >
20pt+150¢, then for some'* o € [20pt+100s,20pt+150¢]
the ellipsoid algorithm failed to find some polynomial P
on which Oracle,, , . returns “Yes”. We claim that this

is impossible. Indeed, let Ceonvex be the set consisting
4v/n
g

log

of degree- [
that satisfies the following two conditions:

g‘ polynomials P’ with ||P'||, <1

e P’ is e-close in L; distance to some monotone
function fionotone : {1} — [—1,1], and

e P'is (aw+¢)-close in L; distance to the function
f which we are trying to learn.

We make the following observations:

o The set Ceonvex 18 @ convex set, because (a) the set of
all monotone functions fimonotone : {1} — [—1,1]
N

13We assume that ¢ is such that 20-17 exceeds the number 20(B)
of times that Oracley . is invoked (for different values of o.
Otherwise, the run-time budget is sufficient to store entire truth-tables
of functions over {—1,1}" and statement in Algorithm 7 is achieved
by the trivial algorithm that uses a linear program to fit the best
montone real-valued function and then rounds it to be {—1, 1}-valued.
See Appendix C for further details.

14Note that opt < 1/2, because the function f is at least 1/2-close
to either the all-ones or all-zeroes functions, which are both monotone.
Therefore some value of « in the range [2opt+100e,20pt+150e] is
necessarily considered by the algorithm as it is trying all values o =
e,26,3g,---1 —¢g,14 200¢.

1163

is convex, (b) the set of points (« + €)-close in
L, distance to some specific convex set is itself
convex, and (c) the intersection of two convex sets
is a convex set (in this case one convex set is the set
functions {+1}" — [—1,1] that are (« + €)-close
in L, distance a monotone functions and the other
convex set is is the set of all degree-“';/H log g‘

polynomials with with [|P’||, < 1).

The set Ceonvex contains an Lo ball of radius at
s |

-2

least € - n In other words, in Ceonyex

there is some degree['T‘/ﬁlogg polynomial F
such that any degree-[‘l'f logg polynomial P’

that is e-close to Py in Ly norm is also in Ceonyex-
Let fmonotone, optimal {il}n — {:l:l} be the
monotone function for which it is the case that

Prww{il}" [fmonotone, optimal(w) 7é f(iE)] = opt, and
4v/n

let Py be a degree-{ log g—‘ polynomial that
is e-close t0 fmonotone, optimat in L7 norm (such
polynomial has to exist by Fact II.1). Then, Py is
(20pt + ¢)-close to f in L; norm and e-close to
monotone in L1 norm. In other words, the set Ceonyex
contains an Lq-ball of radius . Via the standard
inequality between the L; and Lo norms, in d
dimensions every L; ball or radius £ contains an

L, ball of radius at most £/+v/d. Our claim follows,

since the space of degree- 4"8/77 log g—‘ over R has
. . CAVADR Ty
dimension at most n[= 8 5].

Since the procedure Oracle, ,, . is assumed to sat-
isfy the specifications given in Lemma VI.2 and for
this specific value of « it never gave the response
“yes”, then for every query P to Oracle, ., the
oracle returned some halfspace that separates P
from the convex set Ceonyex-

From Fact 1.2 we know that under these conditions the
ellipsoid algorithm will necessarily in time

géllog(R/T) = nO([%log%-‘)

find some polynomial P that is in Ceopyex. For this
particular polynomial, the specifications in Lemma VI.2
require the oracle Oracle, ,, . to give a response “yes”,
which gives us a contradiction. Thus, the function
PEOOD 5 will be O(g)-close to monotone in L; norm
and will satisfy ||Piduben — f|l; < 2opt + O(e).
Combining this with Equation (6) yields

poly <n (m o

|| PéorkEcten — f1l; <
20pt + O(e) + || Prkivven — gc())l?lgiCTEDHl
= 2opt + O(¢).

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

We know that || Piionen — Plorrecten; < O(€)

because Pionmen is O()-close to monotone by Equa-
tion (6). Now, combining the inequality above with
Equation 7 gives us

Prygs1)n [Sign(PCG(())l?lgECTED(w) —t*) £ f] <

2 | PS8R.cren — |, + = < opt + 0(e).

CORRECTED
Finally, we see that since the function

ng}?lgsCTED {£1}" — [-1,+1] is mongtone Erve) hav§
x)—t*

that the {£1}-valued function sign(PSSrecTED
is also monotone, which finishes our argument.

VII. ACKNOWLEDGMENTS

We thank Ronitt Rubinfeld and Mohsen Ghaffari
for helpful conversations about local computation algo-
rithms. We additionally thank Ronitt Rubinfeld for useful
comments regarding the manuscript and Adam Klivans
for a helpful discussion of the algorithm of [28]. Finally,
we thank Ephraim Linder for pointing out an inaccuracy
in a previous version of this work.

REFERENCES

[1] Nir Ailon, Bernard Chazelle, C. Seshadhri, and Ding Liu.
Estimating the distance to a monotone function. Ran-
dom Structures & Algorithms, 31(3):371-383, 2007. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rsa.20167.

Nir Ailon, Bernard Chazelle, C. Seshadhri, and Ding
Liu. Property-Preserving Data Reconstruction. Algorithmica,
51(2):160-182, 2008.

Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-
efficient Local Computation Algorithms. In Proceedings of the
2012 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), Proceedings, pages 1132-1139. Society for Industrial
and Applied Mathematics, January 2012.

Kazuyuki Amano and Akira Maruoka. On learning monotone
Boolean functions under the uniform distribution. Theor. Comput.
Sci., 350(1):3-12, 2006.

Dana Angluin. Queries and Concept Learning. Mach. Learn.,
2(4):319-342, April 1988. Place: USA Publisher: Kluwer Aca-
demic Publishers.

Rubi Arviv and Reut Levi. Improved LCAs for constructing
spanners. CoRR, abs/2105.04847, 2021.

Pranjal Awasthi, Madhav Jha, Marco Molinaro, and Sofya
Raskhodnikova. Limitations of local filters of Lipschitz and
monotone functions. ACM Transactions on Computation Theory,
7(1), December 2014. Publisher: Association for Computing
Machinery (ACM).

Aleksandrs Belovs and Eric Blais. A polynomial lower bound
for testing monotonicity. In Proceedings of ACM Symposium on
Theory of Computing (STOC), pages 1021-1032, 2016.

Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev.
SL_p-testing. In Proceedings of ACM Symposium on Theory of
Computing (STOC), pages 164—173, 2014.

Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Kyomin
Jung, Sofya Raskhodnikova, and David P. Woodruff. Lower
bounds for local monotonicity reconstruction from transitive-
closure spanners. In Approximation, Randomization, and Com-
binatorial Optimization, pages 448-461, 2010.

(2]

(3]

(4]

(6]
(71

(8]

[9]

[10]

1164

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. A o(d)
- polylog n Monotonicity Tester for Boolean Functions over the
Hypergrid [n]d. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,
New Orleans, LA, USA, January 7-10, 2018, pages 2133-2151.
SIAM, 2018.

Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. Do-
main Reduction for Monotonicity Testing: A o(d) Tester for
Boolean Functions in d-Dimensions. In Proceedings of ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1975—
1994, 2020.

Eric Blais, Clément L. Canonne, Igor C Oliveira, Rocco A Serve-
dio, and Li-Yang Tan. Learning Circuits with Few Negations.
Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, page 512, 2015.

Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan. Properly
learning decision trees in almost polynomial time. 202/ IEEE
62nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 920-929, 2022.

Avrim Blum, Carl Burch, and John Langford. On Learning
Monotone Boolean Functions. In 39th Annual Symposium on
Foundations of Computer Science, FOCS 98, November 8-
11, 1998, Palo Alto, California, USA, pages 408-415. IEEE
Computer Society, 1998.

Sebastian Brandt, Christoph Grunau, and Viaclav Rozhon. The
randomized local computation complexity of the Lovasz local
lemma. CoRR, abs/2103.16251, 2021.

Nader H Bshouty and Christino Tamon. On the Fourier spectrum
of monotone functions. Journal of the ACM (JACM), 43(4):747—
770, 1996. Publisher: ACM New York, NY, USA.

Clément L. Canonne, Elena Grigorescu, Siyao Guo, Akash
Kumar, and Karl Wimmer. Testing k-Monotonicity. CoRR,
abs/1609.00265, 2016.

Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds
for monotonicity and Lipschitz testing over hypercubes and
hypergrids. In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 419-428.
ACM, 2013.

Deeparnab Chakrabarty and C. Seshadhri. Adaptive Boolean
Monotonicity Testing in Total Influence Time. In Proceedings
of Innovations in Theoretical Computer Science (ITCS), pages
20:1-20:7, 2019.

Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto,
and Yufan Zheng. The Complexity of (\(\Delta\)+1) Coloring
in Congested Clique, Massively Parallel Computation, and Cen-
tralized Local Computation. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, PODC 2019,
Toronto, ON, Canada, July 29 - August 2, 2019, pages 471-480.
ACM, 2019.

Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New Algorithms
and Lower Bounds for Monotonicity Testing. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, October
2014.

Xi Chen and Erik Waingarten. Testing unateness nearly op-
timally. In Proceedings of ACM Symposium on Theory of
Computing (STOC), pages 547-558, 2019.

Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond Talagrand
functions: new lower bounds for testing monotonicity and unate-
ness. In Proceedings of the 49th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2017, New York, NY,
USA, June 2017. Association for Computing Machinery.
Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhod-
nikova, Dana Ron, and Alex Samorodnitsky. Improved Testing
Algorithms for Monotonicity. In RANDOM-APPROX’99, Berke-
ley, CA, USA, August 8-11, 1999, Proceedings, volume 1671
of Lecture Notes in Computer Science, pages 97-108. Springer,
1999.

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Guy Even, Reut Levi, Moti Medina, and Adi Rosén. Sublinear
Random Access Generators for Preferential Attachment Graphs.
ACM Trans. Algorithms, 17(4):28:1-28:26, 2021.

Guy Even, Moti Medina, and Dana Ron. Best of Two Local
Models: Local Centralized and Local Distributed Algorithms.
CoRR, abs/1402.3796, 2014. arXiv: 1402.3796.

Vitaly Feldman, Pravesh Kothari, and Jan Vondrdk. Tight bounds
on Il approximation and learning of self-bounding functions.
Theoretical Computer Science, 808:86-98, February 2020.
Mohsen Ghaffari. An Improved Distributed Algorithm for Max-
imal Independent Set. In Proceedings of the 2016 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), Proceedings,
pages 270-277. Society for Industrial and Applied Mathematics,
December 2015.

Mohsen Ghaffari. Local Computation of Maximal Independent
Set. In 2022 IEEE 62nd Annual Symposium on Foundations of
Computer Science, 2022.

Mohsen Ghaffari and Jara Uitto. Sparsifying Distributed Algo-
rithms with Ramifications in Massively Parallel Computation and
Centralized Local Computation. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages
1636-1653. SIAM, 2019.

Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property
Testing and its Connection to Learning and Approximation. J.
ACM, 45(4):653-750, 1998.

Jan Grebik and Viaclav Rozhon. Classification of Local Problems
on Paths from the Perspective of Descriptive Combinatorics.
CoRR, abs/2103.14112, 2021.

Mika G66s, Juho Hirvonen, Reut Levi, Moti Medina, and Jukka
Suomela. Non-Local Probes Do Not Help with Graph Problems.
CoRR, abs/1512.05411, 2015.

Jeffrey C. Jackson, Homin K. Lee, Rocco A. Servedio, and
Andrew Wan. Learning random monotone DNF. Discret. Appl.
Math., 159(5):259-271, 2011.

A. T. Kalai, A. R. Klivans, Yishay Mansour, and R. A. Servedio.
Agnostically learning halfspaces. In 46th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS’05), pages
11-20, October 2005.

Michael J. Kearns and Leslie G. Valiant. Cryptographic Limi-
tations on Learning Boolean Formulae and Finite Automata. In
Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washington, USA, pages
433-444. ACM, 1989.

Leonid G Khachiyan. Polynomial algorithms in linear pro-
gramming. USSR Computational Mathematics and Mathematical
Physics, 20(1):53-72, 1980.

Subhash Khot, Dor Minzer, and Muli Safra. On Monotonicity
Testing and Boolean Isoperimetric Type Theorems. In 2015 IEEE
56th Annual Symposium on Foundations of Computer Science,
October 2015.

Jane Lange, Ronitt Rubinfeld, and Arsen Vasilyan. Properly
learning monotone functions via local correction. In 2022 IEEE
63rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 75-86, October 2022. ISSN: 2575-8454.

Jane Lange, Ronitt Rubinfeld, and Arsen Vasilyan. Properly
learning monotone functions via local reconstruction, March
2023. arXiv:2204.11894 [cs].

Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster
cutting plane method and its implications for combinatorial and
convex optimization. In 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science, pages 1049-1065. IEEE,
2015.

Reut Levi, Dana Ron, and Ronitt Rubinfeld. Local Algorithms
for Sparse Spanning Graphs. Algorithmica, 82(4):747-786, 2020.

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]

Reut Levi, Ronitt Rubinfeld, and Anak Yodpinyanee. Local
Computation Algorithms for Graphs of Non-constant Degrees.
Algorithmica, 77(4):971-994, 2017.

Ryan O’Donnell and Karl Wimmer. KKL, Kruskal-Katona, and
Monotone Nets. In 50th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta,
Georgia, USA, pages 725-734. IEEE Computer Society, 2009.
Ramesh Krishnan S Pallavoor, Sofya Raskhodnikova, and Erik
Waingarten. Approximating the distance to monotonicity of
Boolean functions. Random Structures & Algorithms, 60(2):233—
260, 2022. Publisher: Wiley Online Library.

Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant prop-
erty testing and distance approximation. Electron. Colloquium
Comput. Complex., 2004.

Merav Parter, Ronitt Rubinfeld, Ali Vakilian, and Anak Yod-
pinyanee. Local Computation Algorithms for Spanners. In /0th
Innovations in Theoretical Computer Science Conference, ITCS
2019, January 10-12, 2019, San Diego, California, USA, volume
124 of LIPIcs, pages 58:1-58:21. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2019.

Omer Reingold and Shai Vardi. New techniques and tighter
bounds for local computation algorithms. J. Comput. Syst. Sci.,
82(7):1180-1200, 2016.

Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie.
Local Computation Algorithms. In ICS, 2011.

Michael Saks and C. Seshadhri. Local Monotonicity Reconstruc-
tion. SIAM J. Comput., 39:2897-2926, January 2010.

Liu Yang, Avrim Blum, and Jaime Carbonell. Learnability of
DNF with Representation-Specific Queries. In Proceedings of the
4th Conference on Innovations in Theoretical Computer Science,
ITCS ’13, pages 37-46, New York, NY, USA, 2013. Association
for Computing Machinery. event-place: Berkeley, California,
USA.

Fast

APPENDIX

A. Rounding of real-valued functions to Boolean.

1165

Fact A.1. Suppose we have two functions g : {+1}" —
R and f : {£1}" — {*1}. Let T be a set of at
least g log (g—g log %) i.i.d. uniformly random elements
of {—1,1}", and let ThresholdCandidates C [—1,1] be
a set of ?log% i.i.d. uniformly random elements of

[—1,1]. Let
t* = arg min = Z |sign(g(x) —t) — f(z)|
tEThresholdCandidates |T| zeT

Then, with probability at least 1 — § it is the case that

Pro g1y [sign(g(@) —t*) # f] < 5 |1f —gll, +e

Proof. We get that

Eino11) [Eangrnyn [Isign(g(®) —) — f(2)]]

< |If = glly

directly via linearity of expectation. Now, the random
variable Eq (411 (Isign(g() — 1) — f(a)]] (with ran-
domness taken over) is always in [0, 2] and has some

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

expectation £ € [0,2] which is at most ||f — g||,. By
Markov’s inequality, we have

[[sign(g(x) —t) — g()[] > E+e/2]

D) 2 €
< < <1-—-.
“E+4¢e/2 7 2+4¢/2 4

Pr [E
t~[=1,1] e~ {17

Since the set ThresholdCandidates consists of 2?0 log%
i.i.d. uniform elements in [—1, 1], then with probability
1—4 or more, some ¢ in ThresholdCandidates will satisfy
the condition that Eg 4 1y» [[sign(g(x) —t) — g(x)[] is
in [0, E 4 ¢/2].

Finally, from the Hoeffding bound and union bound
we observe that with probability at least 1 — g it is the
case that

7{| S Jsign(g(x) —t) — f()|

xcT

Em~{71,1}n |sign(g(x) —t) — f(x)|

max
t€ThresholdCandidates

€
< —.
4
Overall, we see that with probability at least 1 — ¢ it is
the case that

Prgg+1)n [sign(g(x) — t*) # f]

1) . €
S > Isign(g(x) —) — f(x)| + 1
xcT
<sIf—gll,+e
This finishes the proof. 0

B. Agnostic learning algorithms handling randomized
labels.

It is customary in the agnostic learning literature to
consider a setting that is slightly more general than the
one in Theorem 1. Specifically, one is given pairs of
i.i.d. elements {(z;,y;)} from a distribution Dirs, Where
the distribution of each x; by itself is uniform. The
aim here is to output an efficiently-evaluable succinct
representation of a function g for which

Pr(m’y)NDpairs [g(m) # y]
S min Pr(zvy)NDpairs [fm()n (m) # y] _'_0(8) .

monotone fion:
{(~11}">{~1.1}

®)

The only difference between this setting and the one in
Theorem 1 is that here the label y doesn’t have to be
a function of example z; it is possible to receive the
same example = twice accompanied by different labels.
Here we argue that Theorem 1 extends directly into this
slightly more general setting. Formally, we show that

Theorem 5. For all sufficiently large integers n the

following holds. There is an algorithm that runs in time
5(/7
20< :) and given i.i.d. samples of pairs {(x;,v;)} from

a distribution D, Where the marginal distribution
over x is uniform, does the following. With probability at
least 1 — 20% the algorithm outputs a representation of

. n o 00(*2)
a monotone function g : {£1}" — {£1} of size 2™\ ¢
that satisfies Equation (8).

C. Case 1: € is very small.

We will consider two cases. First of all, suppose ¢ is
so small that the run-time of the algorithm in Theorem 1
exceeds 20!, In this case, the following algorithm
runs in time poly(2™,1/¢) and outputs and efficiently-
evaluable succinct representation of a function g for
which Equation (8) holds:

1) Draw two sets 77 and Ty, each of 100n° - 2" /c?

example-label pairs from Dir.

2) For each o= € {-=1,1}" let h(z) be
|(wi,yi)€T11 stz = Z(Iiayi)eTl st zi=x Ji-

3) Via a size-2°(™) linear program, find the monotone
function ¢ : {—1,1}"™ — [—1, 1] that is closest to h
is /1 distance.

4) Output the function g defined so g(z) :=
sign(q(z) —t*), where t* is obtained as in Fact A.1
using the samples in T5.

The function g we output above with high probability
satisfies Theorem 1 for the following reason. First of
all, via the standard coupon-collector argument with
probability at least 1 — 2%” for every z € {—1,1}"
there will be at least 102 /2 elements in (z;,y;) in T for
which z; = x. Using the Hoeffding bound and the union

bound, we see that with probability at least 1 — 2% we

have
/ I €
W) = E(ar y)~ Dy {y z' = x} <5 O
Now, from steps (3) and (4) we have
h—
1P~ glly < idisty (h, mono) + ¢. (10)

2

Therefore, we can combine Equation (9) and Equa-
tion (10) to obtain

Pr ()~ Dy [9(T) # Y] <
Pr(m7y)NDpuirs [fmon(w) # y] + O(E))

min
monotone fmon:
{=11}"={-1,1}

Y

which finishes the proof for this case.

1166

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

D. Case 2: ¢ is not too small.

Now, we proceed to the other case when ¢ is not too
small and the algorithm in Theorem 1 runs in time at
most 2°1" (and therefore uses at most 2°-1" samples).
In this case, we claim that simply running the algorithm
in Theorem 1 will give an efficiently evaluable succinct
description of a function ¢ that satisfies the guarantee in
Equation (8).

We now proceed to show that the guarantee in
Equation (8) will indeed be achieved. Define a ran-
dom function fingom : {—1,1}"* — {—1,1}, so for
all z € {—1,1}" the value frndgom(x) is chosen in-
dependently such that frngom(z) = 1 with probabil-
ity Prig/ y)aDp, [V =1 | 2" =2] and frangom(z) =
—1 with probability Pr(y ynp,,. [y = 1] @ = z].
Consider the following two scenarios:

o Scenario I: The samples {(x;,y;)} given to the
algorithm from Theorem 1 are indeed i.i.d. samples
coming from Dpgig.

o Scenario II: The samples {(x;,y;)} given to the
algorithm from Theorem 1 are sampled as follows:
(i) @; are i.i.d. uniform from {—1,1}" (ii) y;
frandom(wi)~

First we argue that in Scenario II with probability at
least 1 — 2% the function g given by the algorithm from
Theorem 1 satisfies Equation (8), (here the probability
is over the choice of fingom, choice of the samples,
and the randomness of the algorithm itself). Indeed, let
fron be the function that minimizes the right side of
Equation (8). From the Hoeffding’s bound, it follows
that with probability at least' 1 — 55 over the choice of
frandom it is the case that

Pr
z~{—1,1}"

[frandom(a:) # f;on(m)] -
[

Pr

(12)
(mvy)NDpairs

fmon(®) # y]| <.

Now, Theorem 1| implies that with probability at least
1— 1

on

mN{}_){,l}n[g(‘”) # frandom ()] <

diStO(frandom, HIOHO) + 0(6) <

[frzon(w) 7& frandom(w)] + O(S) (13)

Pr
z~{—1,1}"
I5Here we used that & > é, because otherwise € would

v/n poly logn .
be too small and we would be in the other case when the run-time
of the algorithm in Theorem 1 exceeds 20-1n Algo, we note that a
much stronger bound can be deduced from the Hoeffding bound, but
we only need a bound of 1 — 2%

1167

Combining Equations 12 and 13 we we see that with
probability at least 1 — 2% the function ¢ given by
the algorithm from Theorem 1 satisfies Equation (8) in
Scenario II.

Finally, we argue that Equation (8) will be satisfied
also in Scenario I with probability at least 1 — ﬁ
for sufficiently large n. Conditioned on the absence of
sample pairs (x;,y;) and (x;,y;) with &; = x;, the
distributions over samples in Scenario I and Scenario
Il are the same, Hence it suffices to argue that the
collision probability is low, given that the value of ¢
is such that the algorithm from Theorem 1 uses at most
20-1n samples. By taking a union bound over all pairs
of samples, we bound the probability of such colli-
sion by 2025” = 27987 Thus, information-theoretically,
any algorithm can distinguish between Scenario I and
Scenario II with an advantage of only at most 27987,
In particular, this is true of the algorithm that checks
whether Equation (8) applies. Thus, indeed Equation (8)
will be satisfied also in Scenario I with probability at
least 1 — 2 — 555+ > 1 — 555, which finishes the
proof of Theorem 5.

E. Proofs deferred from Section 1V

Proof of Lemma IV.2. Let x and y be comparable ele-
ments of P; w.lo.g. x <p y. It is sufficient to show
that f(xz) > f(y) if and only if there is some i for
which <p, y and f;(z) > fi(y). We claim that this
i is the most significant bit in which f(x) and f(y)
differ. It is certainly true that f(z) > f(y) if and only if
fi(x) > fi(y) for this 4, and since f;(x) = f;(y) for all
j <1 by the choice of i, we have x <p, y as well. [

Proof of Lemma IV.3. Since m is monotone, certainly
m(z) < m(y), and since f violates monotonicity on this
pair, certainly f(z) > f(y) (and therefore g(y) > g(x)).
We will examine the contribution of x and y to each of
||f —ml||; and ||g — m||;. We have the following cases:

o f(y) < f(z) <m(x) < m(y): then

im(z) — f(z)| + [m(y) — f(y)|
=m(z) +m(y) — (f(z) + f(y))
=m(x) +m(y) — (9(z) + 9(y))
=|m(z) — g(@)| + Im(y) — g(y)|-

The distance of this pair does not change. The case
of m(x) <m(y) < f(x) < f(y) is symmetric.

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

(m(y) — fy
)+ (m(x) = fly
(z) —m(z)].

The distance of this pair does not increase. The case

of m(x) < f(y) < f(x) < m(y) is symmetric.
o f(y) <m(z) < f(x) <m(y): then

|
)
)

Im(z) — f(2)| + [m(y) — f(y)]
=(f(z) =m(z)) + (m(y) = f(y))
>(m(z) = f(y)) + (m(y) = ()

lg(z) —m(z)| + |g(y) —m(y)|.

The distance of this pair does not increase. The case
of m(x) < f(y) <m(y) < f(x) is symmetric.
O

Proof of Corollary IV.7. Let f: {—1,1}" — [-1,1] be
a-close to monotone in ¢; distance. We call the algo-
rithm HYPERCUBECORRECTOR(f, ,r) with a random
seed r of length 20(Vnlos(l/e)logn) " Rirct we set the
poset to be the truncated cube of width /2nlog 2/5,
which is a poset such that every element has at most
20(y/nlog(l/e)logn) predecessors and successors. The
representation of this poset (not its transitive closure) has
size poly(n,log(1/e)). Then we set f’ to be a function
that discretizes f to 2/ possible values. This representa-
tion has size O(ss /). Then we set f” to be a function
that computes the Hamming weight of z, then either
calls k-CORRECTOR or outputs a constant. So its size is
the size of the k-CORRECTOR representation times some
overhead that is polynomial in n and 1/e. Since the A
parameter for the truncated cube is 20(v/nlog(1/e)logn)
the h parameter is O(y/n), and the N parameter is < 2",
the worst-case running time and query complexity of
this instance of k-CORRECTOR is 20(vnlognlog™*(1/¢))
by Lemma IV.6. Thus the representation size of the
k-CORRECTOR instance is 26(\/ﬁ~1°g3/2(1/5)), and so
the representation size of f is 20(vnlog®?(1/2)) . Sf.
With the random seed of length 20(vnlog(l/e)logn) —
poly(Alog N), k-CORRECTOR succeeds with probabil-
ity N—lO < 2—1071'

O

F. Proofs deferred from Section V

Proof of Lemma V.1. The proof of dist;(f, mono) >
W/N is straightforward; for any edge (z,y), © < y
in the matching, any monotone function must have

1168

9(y) = g(x) and thus (f(z) — g(x)) + (9(y) — f(y)) =
f(z) — f(y). So the contribution of = and y to the ¢;
distance is at least the weight of (z,y).

For the other direction, we give a proof exactly
analogous to the max-weight matching characterization
of distance to the class of Lipschitz functions, presented
in [9]. Let g be the closest monotone function to f in
¢1-distance. We will partition the vertices of the cube
into three classes: V~ := {z | f(z) > g(x)}, V< :
{z | f(z) < g(a)}, and V= = {z | f(z) = g(x)}. We
will duplicate the vertices of V_ and group one copy with
V- and one copy with V_, to form vertex sets V> and
V<. The duplicated copies of = will be denoted x> and
x<. We define the bipartite graph By , to be the graph on
V> x V< with an edge (z,y) if z < y and g(z) = g(y).
The weight of the edge (x,y) is the same as it is in
viol(f); it is just f(x) — f(y). Intuitively, a matching in
By 4 will represent a set of edges along which some a
minimal amount of label mass is transferred to correct
monotonicity. First, we claim that By , has a matching
which matches every vertex in VS UV_.. This will follow
from Hall’s marriage theorem if we can show that for
every AC V5 or A C V., we have [A] < |N(A)|.

Suppose for contradiction that the marriage condition
is false, and without loss of generality let A be the largest
subset of V<. for which |A| > |N(A)|. We would like to
claim that for any 2 € AUN(A) and y ¢ AUN(A),
if z < y then g(x) < g(y). We consider four possible
cases:

a)Ifxe A yeVs, z <y, and g(z) = g(y), then

y € A as well, by the choice of A to be the largest

set that fails the marriage condition. This is because

N(y) € N(z): any neighbor z of y must have

g(z) = gly) = g(z), have = < y < z, and be

in V<, which makes it a neighbor of z.

If € N(A), y € Ve, x <y, and g(x) = g(y).

then g(y) = g(x) = ¢g(z) and z < = < y for some

ze€ A soye N(A).

c)Ifxe A, ye Ve, z <y, and g(z) = ¢(y), then
y € N(A).

d) Ifx € N(A),y € Vs, z <y, and g(z) = g(y),
then g(y) = g(z) = g(2) and z < x < y for some
z € A, so as in case (a) we have N(y) C N(z) and
therefore y € A.

b)

We have shown that for any 2 € AU N(A) and y ¢
AUN(A), if z < y then g(x) < g(y). Then there is
some d > 0 for which g(x) can be increased by ¢ for
every © € AU N(A) without breaking monotonicity.
This decreases ||f — g||1 by 6(|A| — N(A)|) > 0, which

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

contradicts the assumption that g is the closest monotone
function.

Having proven that By , contains a matching M’ on
all vertices in V5 UV, we will now show that its weight
is equal to N||f — g||1, using the fact that g(x) = g(y)
for all (z,y) € M":

Y @) - f)

(x,y)EM’
= Y fl@)—gl@)+9() - fy)
(@,y)EM’
= Y |f(x)—g@)| =NIf-glh
eV UV

We will now find a matching M in viol(f) of
equal weight. First replace each < and x> with z,
obtaining an edge set in viol(f) of equal weight that
is not necessarily a matching, but is a set of disjoint
paths. We replace each path with the edge between its
endpoints; i.e. if there is some pair of edges (y,z<)
and (z>,z), then we know that y < = < z and
f) = fz) = (fy) = f(@) + (f(x) = f(2)), so
the matching edge (y, z) has weight equal to the total
weight of the path it replaces. Then M is a matching in
viol(f) of weight equal to N||f — g||1, which is equal
to IV - disty (f, mono). O

Proof of Lemma V.2. Fix the random seed r and assume
all calls to the algorithm of [30] using r succeed. Let
M’ be a maximum-weight matching over viol(f), and
let M be a matching returned by MATCHVIOLATIONS.
We will use M to refer to the matching and its succinct
representation interchangeably. For each edge e € M,
let w, be the weight of e (i.e. the violation score of its
endpoints), and d. be the total weight of edges in M\ M’
that share an endpoint with e.

First we show by induction that at the start of each
iteration 4, M is maximal over the subgraph of T'C'(P)
induced by edges of weight greater than 2~(—1)_ In the
base case, M is initialized to be the empty matching,
which is maximal on the edges of weight > 2, as there
are no such edges. In the inductive case, we assume
the invariant is still true at the start of iteration <. Then
when FILTEREDGES (Section V-A) is called in iteration
i + 1, the vertices removed are exactly those that are
either already in M, or not incident to any edges of
weight greater than t = 27%. Then by the maximality
of the matching computed by GHAFFARIMATCHING on
the filtered subgraph, any edge not in that matching must
satisfy one of the following criteria:

o it has weight at most 27,

1169

o it has an endpoint in M,
o it shares an endpoint with another edge in GHAF-
FARIMATCHING.

So after the new edges of in GHAFFARIMATCHING
are added to M, M is maximal over the 2~ “-heavy edges
as desired.

Now we claim that §, > w,./2 for any edge e €
M\ M of weight at least €. This is because after the first
round for which ¢ < w,, M’ must be maximal over the
t-heavy edges. This ¢ is at least w, /2, so if e ¢ M, then
either it shares an endpoint with some edge of weight at
least w, /2 or its own weight is < . We then have

w(M') =w(M N M)+ Z We
c€M\M

<wMnNM)+ Z max(2d,, €)
e€M\M

<wMnM)+2 Y b.+eN
ee M'\M

We claim that }- g < 2 w(M \ M'). This is
because each edge in M \ M shares an endpoint with at
most 2 edges of M’ \ M, otherwise M’ would not be a
matching. Therefore,

wM)<wMnM)+4 > we+eN
e€ M\ M’
<4 -w(M)+eN

By Lemma V.1, w(M’) = N - dist; (f, mono); therefore
w(M) > N(;dist;(f, mono) — €) as desired.

We now bound the failure probability. When called
with a random seed of length poly(log N, loglog(1/¢))
the algorithm of [30] can be made to succeed with
probability 1 — (N~19/log(4/¢)). We use the random
seed on at most log(4/¢) different graphs, so by union
bound, with probability 1 — N 10 all the calls succeed.
By the same argument as in the proof of Theorem 2, we
may assume that log(1/e) < N, and so the randomness
complexity is poly(A,log N). O

G. Proof of Claim A.2.

Let us first recall the statement of the claim:

Claim A.2. For any positive integers n and d, real €, €
(0,1), and any function f : {£1}" — [-1,1], let T be
a collection of at least n°® - % In % In % i.i.d. uniformly
random elements of {£1}". Then, with probability at
least 1 — 0

max
degree-d polynomial P
with || Pl <1

If = Pl — _E_[If(@) - P@)]| <<,

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

First we bound the probability that the condition above
holds for one specific P with ||P||, < 1. The condition
|P||, < 1 implies that maxge 41y [P(x)| < n. This
implies, via the Hoeffding bound, that

P = Pl - E 7@ - P@l| > 2] <
e 1|
eXp <_32’]’]‘2d> .

We now move on to bounding the maximum over all
degree-d polynomials P over {£1}" with || P||, < 1. We
will need a collection C of degree d polynomials over
{£1}", such that |C| < exp (n? lng%d so for every

degree d polynomial P with ||P||, < 1 there is some
element Pyt € C for which it is the case that

max |P($) - Pclosest(w)‘ <

xwe{£l1}"

| ™

Also, the Lo norm of every element in C is at most

1. Such a set can be constructed by putting into C

all polynomials of the form » gcncs (xs(x)) with
|S|<d

the coefficients cg taking values in [—1,+1] rounded

to the nearest multiple of g=7, while discarding the

polynomials whose Ly norm is larger than 1. This way,
since xs(z) € {£1}, when we round the coefficients of
P to a multiple of g5; the value at any x € {£1}"
cannot change by more than 7, as there are at most
n? contributing monomials '°. The total number of such
L a\" n?
polynomials is at most (8%) = enIn 2=

Now, by taking a union bound on all elements of C
we get

choigng[I}Dlgé(Hf_PHl_
9
_ B <&l
op (@) P(wm_?] >
e |T| 4. 8nd
1—6Xp <_327’L2d +n 1H€>

Finally, if the above holds, by choosing a polynomial
Piiosest from C to minimize

16T have | Petosest ()] < [|P|l < 1 we should round to the
closest multiple of TEL - that is smaller in the absolute value of the
coefficient being rounded

1170

MaXzpe{+1}n |P(x) - PClosest(x)| we get that

Prchoice of T |: max ||f - P||1 -
degree-d polynomial P over {+1}"
with || P[], <1
Banr (@) - Ple)]| <] 2
g2 |T| 4. 4nd
1 —exp <_8712d+n 1n€> .

Substituting |7'| > n®?1% In 1 In } we see that the above
expression is at least 1 — 4.

Authorized licensed use limited to: MIT Libraries. Downloaded on March 06,2024 at 15:58:48 UTC from IEEE Xplore. Restrictions apply.

