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We place a molecular Bose-Einstein condensate in a 1D shaken lattice with a Floquet-engineered
dispersion, and observe the dynamics in both position and momentum space. At the initial condition
of zero momentum, our engineered dispersion is inverted, and therefore unstable. We observe
that the condensate is destabilized by the lattice shaking as expected, but rather than decaying
incoherently or producing jets, as in other unstable condensates, under our conditions the condensate
bifurcates into two portions in momentum space, with each portion subsequently following semi-
classical trajectories that suffer minimal spreading in momentum space as they evolve. We can model
the evolution with a Gross-Pitaevskii equation, which suggests the initial bifurcation is facilitate
by a nearly linear “inverted V”-shaped dispersion at the zone center, while the lack of spreading in
momentum space is facilitated by interactions, as in a soliton. We propose that this relatively clean
bifurcation in momentum space has applications for counter-diabatic preparation of exotic ground
states in many-body quantum simulation schemes.

Degenerate quantum gases of ultracold atoms have
emerged as powerful simulators of both equilibrium
and non-equilibrium properties. One method of non-
equilibrium simulation is to prepare Bose-Einstein con-
densates (BECs) with initial conditions far from the
ground state and study the resulting dynamics. In some
cases, the nominally unstable point can in fact be at least
quasi-stable, such as the recently observed soliton in an
inverted band [1] or many-body scar states [2] which lead
to anomalously long lifetimes for spin helices[3]. In other
cases, dramatic types of decay can be observed such as
the so-called Bose-Nova [4] and Bose Fireworks [5]. How-
ever, preparation of initial conditions with macroscopic
occupation of multiple points in phase space can be chal-
lenging using adiabatic preparation[6, 7], if the system
is not stable over the required ramp time. An alterna-
tive is to use counter-diabatic methods to move dynami-
cally across the transition[8]. In this work we show how
a shaken lattice can be used to rapidly prepare “bifur-
cated” condensates with macroscopic occupation of two
points in phase space.

The shaken lattice is a well-known technique capable
of modifying the energy-momentum dispersion relation of
the system’s effective Hamiltonian [9, 10] and has been
used to study dynamics by generating artificial interac-
tions [11–13], gauge fields [7, 14], or band topologies [15].
By coupling the lowest two bands with near-resonant pe-
riodic driving, one of the hybrid bands features two sta-
ble minima at tunable quasimomentum alongside the un-
stable Brillouin zone center, while stronger off-resonant
shaking yields an inverted band and negative mass.
These exotic band shape with tunable balance and sep-
aration in minima can simulate phase transitions and
domain dynamics [6, 7, 16–18]. This feature is pro-
posed to be used for generating complex Fermi sur-
faces and unconventional fermionic pairing [19–21], par-
ticularly the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO)
phases [22, 23], which are of great interest but challeng-
ing to observe [24–27]. Many of the proposed schemes

involve non-equilibrium loading in a shaken optical lat-
tice to simulate spin imbalance, as we demonstrate here.

We work with interacting molecular BECs of 6Li2 in
a 3D harmonic trap with a 1D shaken lattice tuned to
generate a double-well dispersion. We expect the same
physics to occur in atomic BECs, but we use molecu-
lar condensates in anticipation of ramping closer to the
Feshbach resonance to study strongly interacting Fermi
systems. We observe that in 2D momentum space, con-
densates initially at the unstable Brillouin zone center
break apart into two distinct portions (bifurcation), and
we categorize the two clusters as solitons given that they
each remain concentrated in the momentum density pro-
file during subsequent evolution. We conclude from sim-
ulations that this is enabled by interaction, and that
the trajectory of the solitons can be understood semi-
classically as damped movements in two deformed traps
(Fig. 1 b). Our dynamic soliton behavior happens under
the condition that the trap’s potential energy is compa-
rable to the initial kinetic energy when the BEC is at
the dispersion maximum, but not significantly smaller
than the interaction energy. Hence our experiment falls
in between the large trap limit, which causes chaotic de-
cay, and the no trap limit which yields the static Floquet
soliton at the maximum, both of which have been demon-
strated previously[1]. Compared to experiments that
form domains by ramping across the transition and ex-
hibit Kibble-Zurek scaling[6, 17] our preparation is fast,
does not require biasing procedures[7] to obtain repro-
ducible results, and works with much weaker overall lat-
tice depth, all of which support applications with more
strongly interacting systems where instability and heat-
ing will be more prominent.

Our ultracold molecular BEC (mBEC) of 6Li2 is loaded
in a 1D optical lattice created by a retro-reflected beam
of wavelength λL = 1064 nm, (lattice constant aL =
532 nm). We name the lattice direction the z axis. The
lattice’s returning beam is diffracted by a pair of acousto-
optic modulators (AOMs), each of which is in a double-
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FIG. 1. a Experimental setup, showing the lattice (red), dipole trapping (yellow), and imaging (violet) beams. b Illustration
of the initial profile in position and momentum space, with the contour lines depicting the potential and the dispersion close
to the zone center. c Typical observations from the experiment: an in-situ image taken at the end of the shaking period, and a
time-of-flight (TOF) image, reflecting the momentum space distribution. d Effective dispersion in the x− z plane. The arrows
indicate the typical symmetric trajectories of the solitons starting at q = 0, characterized by ∆q and θq. The line cut below
shows the dispersion of quasienergy along the z axis. The colored solid curve has the double-well feature, and is a hybrid of
the ground band (red) and 2nd band (blue) from the non-shaken dispersion (dashed).

pass configuration. One of the AOM input signals is mod-
ulated by an IQ modulator, where we mix in the shak-
ing signal. We characterize the shaking by the quadra-
ture component’s oscillation angular frequency ω and its
maximum amplitude relative to the static in-phase com-
ponent ξmax. This description is only approximate, how-
ever, due to the double-passing of the AOM (see sup-
plemental material). The system can be described by a
time-dependent Hamiltonian density

H = ψ̄

[︃
− ℏ2∇2

2m
− µ

]︃
ψ +

[︂
VL(t) + Vtrap

]︂
ψ̄ψ +

g

2
(ψ̄ψ)2,

(1)

where m is the mass of 6Li2 molecules, ψ is the bosonic
annihilation operator, µ the chemical potential, and g the
interaction strength. The lattice potential contains

VL(t) = VL

[︂
cos(2qLz) + ξmax cos

(︂
2qLz +

π

2

)︂
cos(ωt)

]︂
(2)

Vtrap represents the trapping potential, VL = 2.8ER,

where ER = h2

2mλ2
L
is the recoil energy for 6Li2 molecules,

h being the Planck constant and qL = 2π
λL

is the lattice
light wavevector. The shaking of the lattice allows the
first two lattice bands to couple, yielding an effective dis-
persion relation DVL,ω,ξmax(q), which can be calculated
numerically from the shaking parameters [16]. The dis-
persion relation used for the majority of this work is
shown in Fig. 1.

The details of our apparatus and the Fermi degener-
ate evaporation process have been described previously
[28, 29]. Fig. 1a shows the experimental setup. We
start with a6Li2 mBEC of approximately 12000 molecules

loaded in a harmonic potential formed by both dipole
traps and the lattice, which has trapping frequency
810Hz in y, and (210,500) Hz in the x− z plane. Our in-
teraction strength can be characterized by an initial peak
density of 6.9×1012 cm−3, and a molecule-molecule scat-
tering length aMM = 0.6 a = 491 a0, where a = 819a0 is
the two-body scattering length at 650G, a0 is the Bohr
radius. The lattice shaking is ramped on over 1.2ms
(see supplemental material). To prepare most of the
BEC in the ground band, the shaking frequency ramps
from 80 kHz to the target value ω = 2π × f , with f
between 45 kHz and 72 kHz, approximately matching the
band gap between the lowest two Bloch bands at the zone
center. At this point the condensate fraction is reduced
to about 27%. The lattice shaking is maintained for a
period of time tshake, before the molecules are released
from all traps and lattices. Our absorption imaging sys-
tem records the optical density integrated along the y
axis, which is perpendicular to the z axis and parallel to
gravity.

When held in the lattice without shaking, the mBEC
remains stable for more than 10ms, its spatial profile
|ψ(r)|2 fitting the contour of the overall potential, which
is of an elongated oval shape, with the long axis at an
angle with the lattice beams by θV = 53◦ (see Fig. 1c).
The size of the cloud along the z axis is about 23µm. If
the shaking is turned on, the zone center becomes a sad-
dle point, and the momentum space wavefunction ϕ(q)
lies across both sides of the saddle. Later, the condensate
divides into two clusters in momentum space, each half
having momentum in opposite directions along an axis
close to the direction of strongest confinement in the x−z
plane (see Fig. 2a). This can be understood by reversing
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FIG. 2. a In-situ (top) and time-of-flight (bottom) images
following shaking times tshake from 0.1ms to 0.6ms. Data
taken with ξmax = 0.5, f = 63 kHz, lattice depth VL = 2.8ER.
The image is cropped to the size of the first Brillouin zone
??. b colorized simulation (left) and backward-extrapolated
in-situ data fitted from (c) (right) showing the component
with +z momentum in red and that with −z momentum in
blue. (c). c Expansion of the mBEC for varying TOF with
tshake = 0.4ms (bottom) and their dual-peak Gaussian fits
(upper, resp. red and blue). All scale bars are 10µm.

the roles of the effective kinetic energy and the potential
energy, where the harmonic trap is seen as an anisotropic
parabolic dispersion, and the particles tend to slide down
away from the saddle point. The process is availed by a
sharp peak in the dispersion profile around qz = 0 (Fig.
1b), which results from a low lattice depth, so that most
of the cluster initially resides on a linear slope descend-
ing to either of the dispersion wells q∗, in contrast to the
stronger lattice case, where the initial cluster ϕ(q) con-
centrates on the negative mass region, which may lead to
a static soliton [1]. The velocity resulting from the dif-
ferent slopes in momentum space create a separation in
position space, which is reflected in the observation that
the condensate forms a low-density trench in the middle
of the sample that can be resolved in in-situ images, see
Fig. 2b. This can be confirmed by extrapolating the two
clusters to their original positions with various time of
flights (see Fig. 2c, supplemental material). Although
the gradient of the effective dispersion is along z, dur-
ing the bifurcation each cluster also acquires momentum
in the x direction, which results from anisotropic effec-
tive mass due to the elongated trap. Based on the trap’s
anisotropy and the angle θV , we can calculate the initial
bifurcating angle θq|t→0 to be close to 30◦ (See supple-
mentary materials), which agrees with our measurement.

The two clusters move continuously in momentum
space. We characterize the trajectory of the two clus-
ters by their separation ∆q and the their relative angle
to the z axis θq (See Fig. 1b). Subsequent evolution

shows that the two clusters will each follow a trajectory
resembling a damped oscillation around the correspond-
ing dispersion well. In real space the two clusters also
collide, corresponding to the vanishing of the trench in
the in-situ profiles after 0.5ms. At this point, a density
wave could be forming at a wavevector corresponding to
the separation ∆q, whose wavelength ∼ 1.2µm would be
beyond our resolution limit of 2µm. After collision, we
see loss of BEC density from heating and an imbalance of
the clusters’ molecule number. Although only a fraction
of the wavefunction remains condensed, we can still dis-
tinguish the two clusters up to 2.0ms of evolution, when
the clusters appear to end up around the potential min-
ima ±q∗. This would not happen in the non-interacting
case since the effective dispersion well and the trap poten-
tial are far from a harmonic condition and would result
in much density dispersion (See supplementary materi-
als Fig. S4), but the repulsive interaction enables the
formation of 2D solitons in momentum space.
We performed numeric simulation using a model with

an effective dispersion D̂VL,ω,ξmax(q) (see Fig. 3). The
evolution of the BEC wavefunction ψ(r) can be described
by the non-linear Gross-Pitaevskii equation derived from
(1):

iℏ
∂ψ

∂t
=

{︃
− ℏ2∇2

2m
+ Vtrap(r)) + g

⃓⃓
ψ2

⃓⃓
+ VL(t)

}︃
ψ. (3)

The trapping potential Vtrap for the simulation is ad-
justed to match the timescale of the experiment, which
corresponds with a 25% reduction of the trap fre-
quency [30]. The Hamiltonian is periodic in time
with period T = 2π

ω . Floquet theory tells us that
the solution to equation (3) will be in the form
|ψ(t)⟩ =

∑︁
n an |un(t)⟩ e−iϵnt/ℏ, where |un(t)⟩ are the

fast-changing Floquet modes. Each mode is t-dependent
and periodic in T . The method separates the evolution
into a fast-repeating micro-motion |un(t)⟩ and the slow-
evolving dynamic ϵn. The latter of these is where our
interest mainly lies, which is described by the effective
Hamiltonian (4).

Ĥτ0,Floq ≈ iℏ
T

log

τ0+T∏︂
τ0

exp

{︃
− i

ℏ

[︃
K̂ + V̂ 0 + V̂ π

2
ξ(t)

]︃
dt

}︃
+V̂ trap + g

⃓⃓
ψ2

⃓⃓
(4)

≈ D̂VL,ω,ξmax + V̂ trap + g
⃓⃓
ψ2

⃓⃓
(5)

To isolate the effective dispersion operator D̂VL,ω,ξmax
,

we take advantage of the fact that the fast changing
term in Ĥ will couple mostly with the kinetic term. In
(4), K̂ is the kinetic energy operator, V̂ 0 and V̂ π

2
are

lattice operators for lattices with the same depth VL
at phase 0 and π

2 , representing the static lattice and

shaken lattice respectively. D̂VL,ω,ξmax
is then calculated

numerically and results in the double-well form.
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FIG. 3. a Evolution of the momentum distribution, the top row is obtained from the 1st Brillouin Zone by TOF imaging, for
shaking times tshake = 0.2ms ∼ 2.0ms, the bottom row is from simulation under similar conditions. b Measurement of the peak
separation ∆q between the two clusters (points with error bars), together with the corresponding value from GP simulations
(solid lines). The lines correspond to results of the simulation with a range of initial sizes. c Measurement and GP simulation
results for the angle of separation, θq. d Evolution of the kinetic energy (red), trap potential energy (yellow), and interaction
energy (violet) from one of the simulations.

Our simulation starts at the approximate ground state
with VL = 0 with a cluster size of 16µm, which is em-
pirically chosen slightly smaller than the experimental
size to account for the 27% condensate fraction. We

then take a Trotter product of exp
{︂
−(i+ Γ)D̂∆t/ℏ

}︂
and

exp
{︂
−(i+ Γ)(V̂ trap + g

⃓⃓
ψ2

⃓⃓
)∆t/ℏ

}︂
by calculating their

matrix representations in momentum space and position
space respectively (see supplemental material), where Γ
is an empirical dissipation coefficient [31]. Unfortunately,
the single-band GP method fails to capture the inter-
action that exists between higher band states and the
ground band, that is it assumes the ground-to-first ex-
cited transition frequency is not affected by interactions.
In reality this frequency, or equivalently the phase ve-
locity of acoustic waves with the period of the lattice
spacing, is shifted for strongly interacting systems. To
correct for this, we introduce a modified recoil energy E′

R
acquired from the measured phase velocity in a Kapitsa-
Dirac experiment, which is about 10% larger than the
ER calculated from the molecular mass. This is con-
sistent with the observation that the shaking frequency
threshold for creating a momentum bifurcation is gener-
ally larger than the free particle band gap would allow
(See Fig. 4). The experiment and simulation under the
same nominal conditions shows the same trend of bifur-
cation and a similar subsequent trajectory for the pair
of solitons (Fig. 3). The simulation allows us to tune

a wider range of parameters. We discovered that other
than the sharp peak feature in the dispersion relation,
the clear bifurcation requires the initial potential energy
to be smaller than the total kinetic energy, which allows
for the following periodic conversion between the two,
corresponding to the oscillation in the trajectory. Our
result can serve as a cross-over region between the two
dynamical phases of chaotic decay at large confinement
and static soliton at no confinement [1] (See Fig. S5 in
supplementary materials).

By tuning the shaking frequency ω we effectively
change how much the second band protrudes into the
ground band in the Floquet picture, and the separa-
tion between the quasienergy minima 2|q∗|. At lower
frequencies, the momentum space clusters glide along a
longer slope and exhibits larger separation ∆q at the
same tshake. At higher frequencies, the target band is
not hybridized and q∗ = 0, the bifurcation will thus not
happen. Figure 4 displays the evolution at a range of f ,
which matches our simulation results. Increasing the am-
plitude of the shaking does not change the band shape
significantly for the conditions of our experiment, and
therefore does not affect the simulation results.

In conclusion, we have successfully loaded a strongly
interacting 6Li2 molecular BEC into a shaken lattice,
with a Floquet engineered double-well dispersion. The
resulting dynamics differs significantly from previous ob-
servations, featuring a bifurcation into two clusters in
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FIG. 4. Variation of the peak separation ∆q at tshake =
0.4ms for a range of shaking frequencies from f = 45 ∼
72 kHz (data points with error bars) together with results
from the GP simulation (solid lines). The inset images are
TOF momentum distributions from which ∆q is determined,
together with the calculated dispersion appropriate to that
frequency (from left to right: 48, 63, 70, 72kHz). The color
of the lines and data points indicate different shaken ampli-
tudes ξmax.

momentum space and a trench in the position space den-
sity. We can describe the dynamics semi-classically by
mapping it to a model featuring anisotropic mass and
reproduce it qualitatively with a Gross-Pitaevskii simu-
lation. We show that this phenomenon is enabled by the
repulsive interaction and occurs over a substantial range
of dispersion relations tuned via the lattice shaking fre-
quency. The rapid splitting into two clusters suggests
a novel method for preparing molecular-Bose or Fermi
systems in non-equilibrium states with exotic engineered
dispersions. For example, if after the initial splitting,
conditions could be altered by the appropriate counter-
diabatic protocol, one might produce a “soft-landing” for
the two clusters leaving them as quasi-stable domains.
In such a way even strongly interacting systems, such as
unitary Fermi gases, might be prepared in domain con-
figurations that couldn’t be achieved adiabatically due to
unwanted collisional heating [32–34].

ACKNOWLEDGMENTS

We acknowledge funding from NSF CAREER award
No. 1941985. We also thank Carlos Sa de Melo for com-
ments on the manuscript.

[1] M. Mitchell, A. Di Carli, G. Sinuco-León, A. La Rooij,
S. Kuhr, and E. Haller, Floquet solitons and dynamics of
periodically driven matter waves with negative effective
mass, Physical Review Letters 127, 243603 (2021).

[2] M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-
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