
Vol.:(0123456789)1 3

Cognitive, Affective, & Behavioral Neuroscience 
https://doi.org/10.3758/s13415-023-01099-z

SPECIAL ISSUE/UNCERTAINTY

Explaining the description‑experience gap in risky decision‑making: 
learning and memory retention during experience as causal 
mechanisms

Nathaniel Haines1,2   · Peter D. Kvam3 · Brandon M. Turner1

Accepted: 28 March 2023 
© The Psychonomic Society, Inc. 2023

Abstract
When making decisions based on probabilistic outcomes, people guide their behavior using knowledge gathered through 
both indirect descriptions and direct experience. Paradoxically, how people obtain information significantly impacts appar-
ent preferences. A ubiquitous example is the description-experience gap: individuals seemingly overweight low probability 
events when probabilities are described yet underweight them when probabilities must be experienced firsthand. A leading 
explanation for this fundamental gap in decision-making is that probabilities are weighted differently when learned through 
description relative to experience, yet a formal theoretical account of the mechanism responsible for such weighting differ-
ences remains elusive. We demonstrate how various learning and memory retention models incorporating neuroscientifically 
motivated learning mechanisms can explain why probability weighting and valuation parameters often are found to vary 
across description and experience. In a simulation study, we show how learning through experience can lead to systematically 
biased estimates of probability weighting when using a traditional cumulative prospect theory model. We then use hierarchi-
cal Bayesian modeling and Bayesian model comparison to show how various learning and memory retention models capture 
participants’ behavior over and above changes in outcome valuation and probability weighting, accounting for description 
and experience-based decisions in a within-subject experiment. We conclude with a discussion of how substantive models 
of psychological processes can lead to insights that heuristic statistical models fail to capture.

Keywords  Description-experience gap · Risky decision-making · Learning and memory · Cumulative prospect theory · 
Bayesian statistics

In modern life, we make numerous decisions between com-
peting options despite probabilistic outcomes and incom-
plete knowledge surrounding their potential outcomes. 
Indeed, whether we are deciding between movies, car 
insurance plans, or even serious medical procedures, we 
frequently seek out statistics to help evaluate the probabil-
ity of various good or bad outcomes. In these situations, in 
the absence of prior experience and where probabilities are 
explicitly described (description-based decisions or DBDs), 
people appear to act as if they overestimate or overweight 
low probability events. This has led to the idea that people 

assign weights to explicitly described likelihoods, result-
ing in risk-seeking choices for low-probability gains due to 
overweighting of rare events and risk-averse behavior for 
high-probability gains due to underweighting of common 
events (Kahneman & Tversky, 1979; Scholten & Read, 
2014). Notably, this probability weighting bias has long 
been thought to play a primary role in how people evaluate 
real-world phenomena, including the prevalence rates for 
rare causes of death (Lichtenstein et al., 1978), the value 
of insurance policies for rare events (Friedman & Savage, 
1948), and changes in preferences for political and economic 
policies (Quattrone & Tversky, 1988).

Recently, however, it has become clear that the format 
in which probabilities are presented to us can dramatically 
affect our apparent preferences. Specifically, people act as 
if they underweight low probabilities when they are learned 
through experience (experience-based decision or EBD), a 
paradoxical reversal of traditional probability weighting bias 
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now termed the description-experience gap (Barron & Erev, 
2003; Hertwig et al., 2004; Ungemach et al., 2009; Weber 
et al., 2004; Wulff et al., 2018). Drawing from the examples 
above, we would expect more people to purchase rare event 
insurance or opt out of a medical procedure with rare harm-
ful side effects if they are making a decision based purely on 
described probabilities rather than based on their previous 
experiences of these events.

As inference on parameters derived from computational 
models of both DBD and EBD tasks becomes increasingly 
common to assess clinical (Ahn & Busemeyer, 2016; Mon-
tague et al., 2012), social (Chung et al., 2015), affective 
(Eldar et al., 2016; Etkin et al., 2015), developmental (Ste-
ingroever et al., 2019), and medical decision-making (Lejar-
raga et al., 2016), it is becoming increasingly important that 
we identify the potential mechanism(s) that gives rise to 
the description-experience gap to ensure that variation in 
key model parameters is driven by individual characteris-
tics (e.g., cognitive development, clinical status, personality 
traits) rather than task-specific design choices. Therefore, 
given the importance of the description-experience gap 
for understanding real-world, human decision-making, we 
aimed to develop an explanatory cognitive mechanism link-
ing preferences in DBDs to those of EBDs.

Mechanisms of the description‑experience 
gap

Although many explanations of the gap have been proposed, 
three mechanisms in particular have been the focus of much 
prior research: (1) reliance on small samples and sampling 
bias when learning probabilities (i.e., sampling error), (2) 
reliance on more recently experienced samples, and (3) 
changes in the psychological representation of probabil-
ity (Figure 1; Fox & Hadar, 2006; Hertwig & Erev, 2009). 
Regarding (1), the format of the tasks used to assess EBDs 
(i.e., sampling paradigms with optional stopping) is such 
that some participants either never or less frequently encoun-
ter the “rare event” when drawing samples from a choice 
option, which naturally leads to apparent underweighting 
of low probability events once making a choice (Hau et al., 
2010; Hertwig et al., 2004). Such biased sampling occurs 
because rare event frequency follows a binomial distribution, 
which is heavily skewed when few samples are drawn (i.e., 
n is low), meaning that the actual experienced proportion of 
encounters with a given outcome will often be biased rela-
tive to the true outcome probability (Hertwig et al., 2004). 
For similar reasons, (2) can lead to an apparent underweight-
ing because higher probability outcomes are more likely to 
be recently observed relative to lower probability outcomes 
in small sample settings, and people tend to place higher 
weight on more recent outcomes or simply ignore or forget 

less recent outcomes when making EBDs (Hertwig et al., 
2004). Finally, although less parsimonious than (1) or (2), 
(3) suggests that people evaluate probabilities differently 
between tasks, assigning less weight to low-probability out-
comes in EBDs relative to DBDs (see Fig. 1 for a graphic 
example). Ungemach et al. (2009) showed that when using 
an experimental design to eliminate sampling bias (by 
matching the experienced proportion of each outcome to its 
respective objective probability of occurring), cumulative 
prospect theory modeling still revealed underweighting of 
rare events in EBDs. Many studies have since followed suit, 
and a recent meta-analysis of more than 6,000 individual 
participants draws similar conclusions (Wulff et al., 2018).

Altogether, available evidence suggests that sampling 
biases and recency contribute to the description-experience 
gap but also that probabilities or rewards are fundamentally 
different when evaluated based on description compared 
to experience (Hertwig & Erev, 2009; Kellen et al., 2016; 
Wulff et al., 2018). This begs the question—how does con-
text affect something as fundamental to preferential deci-
sion-making as the value of rewards and probabilities?

Modeling the gap

In one of the first studies of its kind, Glöckner et al. (2016) 
examined differences in CPT valuation parameters between 
description and experience tasks from multiple previous 
studies and found that rare events carried more weight for 
EBDs relative to DBDs—a reversal of the typical descrip-
tion-experience gap. Follow-up analyses revealed that the 
type of gamble was a significant moderator of the size and 
direction of the gap, such that analyses of “reduced” gam-
bles, including at least one certain option produced a tradi-
tional gap, and “nonreduced” gambles containing no cer-
tain options predicted a reversal of the gap (Glöckner et al., 
2016).1 Using a within-subject design, Kellen et al. (2016) 
replicated and expanded Glöckner et al.’s (2016) findings of 
a reversed description-experience gap by using hierarchical 
Bayesian modeling of CPT parameters across more than 100 
participants who underwent the same set of 114 gambles 
for both description and experience presentations, conclud-
ing that “Our results suggest that outcome and probability 
information translate into systematically different subjec-
tive representations in description- versus experience-based 
choice.” (Kellen et al., 2016, p. 126). These foundational 

1  It is worth noting that this moderation of the description-experience 
gap by reduced versus nonreduced gambles was not calculated by 
using CPT probability weighting. Instead, it was calculated by using a 
heuristic method and therefore relies on all of the assumptions about 
learning/memory outlined in the following section.
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applications of CPT to model the description-experience 
gap—which moved away from heuristic methods of testing 
hypotheses in favor of more formalized, substantive models 
of psychological processes—led to novel and counterin-
tuitive insights into a previously well-replicated behavioral 
phenomenon.

Learning and memory as causal mechanisms

Similar to Regenwetter and Robinson (2017), we argue that 
the most commonly used method of modeling EBDs with 
CPT relies on a set of strong assumptions that introduce bias 
into the estimation of probability weighting due to model 
mis-specification. Specifically, to control for participants’ 
unique learning history in EBDs, the probability of each 
outcome is assumed to be equal to the experienced pro-
portion of outcomes observed for each participant-gamble 
pair (Camilleri & Newell, 2011; Glöckner et al., 2016; Kel-
len et al., 2016). For example, if a person draws samples 
∈ {$4, $4, $4, $0} for gamble g , the probability for each 
outcome j is heuristically set to the empirical proportion 
of samples that it was observed before CPT modeling (if 
j = 1 indicates $4, and j = 2 indicates $0, then pg,1 = 0.75 
and pg,2 = 0.25 ). However, this heuristic method implicitly 

makes three strong assumptions, all of which are difficult to 
reconcile with learning and memory research:

(1)	 Learning and memory for all past samples is perfect;
(2)	 There are no individual differences in trial-by-trial 

learning across participants; and
(3)	 Learning occurs through a single, static mechanism.

These assumptions are easier to scrutinize if we formalize 
the implicit learning and memory models underlying them. 
Note that readers can refer to Table 1 for an overview of the 
model terms and interpretations while reading through the 
next section.

If we assume learning progresses through a strength-
based learning mechanism, the following delta learning 
rule is implied as samples are experienced (a.k.a., simplified 
Rescorla-Wagner updating rule; Rescorla & Wagner, 1972):

which can be rewritten as follows to better correspond to 
memory models that we discuss later on:

(1)pg,j ∶= pg,j + A × (Ig,j,s − pg,j)

(2)pg,j ∶= (1 − A) × pg,j + A × Ig,j,s

Fig. 1   Description- versus experience-based decisions. Note. Exam-
ples of description- versus experience-based decisions for a gam-
ble between winning $4 with probability 0.8 ($0 with probability 
0.2) versus $3 for certain. As depicted, people tend to choose the 
safe option when the probability is given. Conversely, when people 
must sample both options to learn the probabilities of each outcome 
(i.e., sampling paradigm), they tend to choose the risky option. Such 
preference differences often are interpreted as differences in evaluat-
ing the probability of rare events. Multiple mechanisms have been 

proposed to explain this difference, including sampling error and 
recency, which will lead to experienced probabilities that are different 
from the true probabilities when people draw low numbers of sam-
ples (e.g., ~20) before making a contingent choice (i.e., preference 
judgement). Alternatively, people may actually weight probabilities 
differently between task presentations, which can be captured by the 
� parameter from cumulative prospect theory. Specifically, 𝛾 < 1 indi-
cates overweighting of rare events, whereas 𝛾 > 1 indicates under-
weighting of rare events
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A is a learning rate, j indicates the outcome within a given 
gamble g , s indicates the sample number, and is an indicator 
that equals 1 or 0 if outcome j is observed or unobserved 
on the given sample, respectively (Ahn et al., 2012; Haines 
et al., 2019). In this formulation, irrespective to the initial 
value for pg,j , if the learning rate is set such that A =

1

s
 , then 

pg,j will always be equivalent to the proportion of times that 
outcome j is observed up to sample s , resulting in the same 
behavioral predictions (perfect knowledge and memory of 
all previous outcomes) as the heuristic CPT implementation.

We could equivalently formalize the heuristic CPT analy-
ses with an instance-based memory model (Gonzalez et al., 
2011). For example, if we assume that each encounter with 
an outcome leaves a memory trace of that outcome, that each 
trace decays exponentially in time (indexed by sample num-
ber) and that the salience of each outcome is determined by 
the relative strength of its memory traces compared to traces 
for alternative outcomes within the given choice option, then 
we can use the following simplified decay memory rule to 
generate outcome probabilities:

(3)
ng,j ∶= (1 − A) ⋅ ng,j + Ig,j, s

pg,j ∶=
ng,j

∑J

k=1
ng,k

Here, ng,j indicates the number of times that outcome j 
has been observed for gamble g up to the current sample 
s , (1 − A) is a memory trace decay rate, J is the number of 
different outcomes that can be observed within the given 
gamble, and Ig,j,s is the same indicator as described above. If 
(1 − A) = 1 , then ng,j will always equal the objective number 
of times that outcome j has been observed up to sample s , 
and the summation (i.e. “blending”) will subsequently return 
the proportion of times that outcome j is observed across 
trials, akin to the delta learning rule above. Note that in this 
specific setting, the delta learning and decay memory rules 
are equivalent except that in the decay memory rule, the 
experienced outcome is given a weight of 1 as opposed to 
being weighted in proportion to the learning rate. There are 
more general relationships between the delta and decay rule, 
but they are not relevant for the current analyses (Turner, 
2019).

Given these formal definitions, we now turn back to 
assumptions 1-3 listed above. Assumptions (1) and (2) imply 
that either A =

1

s
 or A = 0 for all participants in the case 

of the delta learning or decay memory rules, respectively, 
thus giving equivalent weight to all experienced outcomes 
irrespective to the time at which they were experienced. 

Table 1.   Competing models and assumptions

CPT models all assume that the probability of each outcome ( pg,j ) is the objective proportion of samples, which resulted in the respective out-
come (i.e., perfect learning/memory). They differ with respect to which CPT parameters differ within-subjects across DBDs and EBDs. RL-CPT 
models all assume that all CPT parameters are constant within-subjects across DBDs and EBDs and instead assume that pg,j is learned through 
sampling for EBDs. Consequently, RL-CPT models assume that differences in preference judgements are wholly attributable to individual dif-
ferences in learning rather than valuation. However, we tested variants of RL-CPT where valuation parameters are allowed to vary across DBDs 
and EBDs as in the CPT models, which are denoted by Δ . ± subscripts denote models with separate positive and negative learning rates. IB-
CPT models are akin to RL-CPT models but assume that pg,j is determined by an instance-based memory decay mechanism as opposed to the 
strength-based learning mechanism assumed by the RL-CPT

Model name Assumed differences (and details)

CPT Base None
�Δ Risk sensitivity
�Δ Loss sensitivity
�Δ Probability weighting
�Δ , �Δ Risk sensitivity and loss sensitivity
�Δ , �Δ Risk sensitivity and probability weighting
�Δ , �Δ Loss sensitivity and probability weighting
�Δ,  �Δ, �Δ Risk sensitivity, loss sensitivity, and probability weighting
�Δ , �Δ , �Δ, �Δ Risk sensitivity, loss sensitivity, probability weighting, and choice sensitivity
�Δ , �Δ , �Δ, �Δ, �+Δ, �−Δ Risk sensitivity, loss sensitivity, probability weighting, choice sensitivity, 

and probability elevation for gains/losses
RL-CPT ARL Strength-based learning of pg,j during experience

A± ARL (with separate learning rates for positive/negative prediction errors)
A± , �± ARL (with separate learning rates for positive/negative prediction errors and 

probability elevation for gains/losses)
IB-CPT AIB Instance-based memory decay determines pg,j during experience

A , �± AIB (with probability elevation for gains/losses)
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However, it is well known that people place higher weight on 
more recent samples when making EBDs and that there are 
substantial individual differences in learning rate or mem-
ory decay between people. In fact, individual differences in 
learning rate or memory decay during EBDs are associated 
with neurodegenerative disease status (Busemeyer & Stout, 
2002), delinquent behavior (Yechiam et al., 2005), and age-
related changes in impulsive decision-making (Wood et al., 
2005). More generally, there is an extensive and longstand-
ing literature on the basic psychological mechanisms under-
lying frequency or probability learning that reveals biases 
(e.g., toward recently experienced outcomes, attention to 
wins versus losses, etc.) in how people estimate probabili-
ties or assign salience to outcomes (Estes, 1976; Gonzalez, 
2013; Zacks & Hasher, 2002).

Regarding assumption (3), there is growing evidence 
that people learn at different rates for positive versus nega-
tive surprises (i.e., prediction errors) or outcomes, which 
can lead to risk-seeking or risk-averse behavior (Christakou 
et al., 2013; Daw et al., 2002; Doll et al., 2009; Gershman, 
2015; Haines et al., 2018; Niv et al., 2012; Turner, 2019). In 
fact, the magnitude of such individual differences in learning 
rates is genetically linked to striatal dopamine functioning 
(Cox et al., 2015; Frank et al., 2004, 2007). Moreover, learn-
ing from positive outcomes is associated with Striatal D1 
receptor density, whereas learning from negative outcomes 
is associated with D2 receptor binding. Although both are 
modulated by dopamine, this dissociation implies that the 
two components of learning—positive and negative—cor-
respond to physiologically (Cox et al., 2015) and genetically 
(Frank et al., 2007) distinct processes. Converging evidence 
from fMRI BOLD analyses showed that manipulations of 
reward variance led to distinct prediction error signals in 
nucleus accumbens corresponding to rates of positive and 
negative prediction errors, favoring a model with distinct 
positive and negative learning rates (Niv et al., 2012).

Current study

Altogether, most approaches to studying the description-expe-
rience gap assume that people have optimal learning rates, 
decay-free memory representations of experienced outcome 
frequencies (which we term “imperfect learning and mem-
ory”), and no individual differences in learning or decay rates. 
These tenuous assumptions can both lead to biased inferences 
on performance differences between DBDs and EBDs when 
using the heuristic CPT method. Furthermore, there is grow-
ing neural and behavioral evidence that people learn asym-
metrically from positive versus negative predictions errors. 
As demonstrated in Fig. 2, such biased learning can partially 

explain changes in behavior consistent with the description-
experience gap, yet typical approaches to modeling the gap fail 
to account for asymmetric learning.

We examined the consequences of removing these assump-
tions by integrating learning and memory models with deci-
sion-making theories. Our core argument is that, rather than 
estimating additional parameters in the CPT utility function 
to describe the description-experience gap, it is more fruitful 
to explain the gap by identifying and modeling psychological 
learning or memory mechanism(s) that lead to preference dif-
ferences across description and experience. To do so, we first 
conduct a simulation study to determine how individual dif-
ferences in learning during the sampling phase of EBDs (and 
asymmetric learning in particular) can bias CPT parameters 
when using the heuristic method that assumes no learning or 
memory effects. Next, we develop a variety of computational 
models that instantiate different learning or memory mecha-
nisms and determine which model provides the best joint sta-
tistical account of behavior in DBDs and EBDs. This latter 
model comparison approach allowed us to test specific hypoth-
eses regarding differences between DBD and EBD tasks, 
including whether the proposed learning mechanism described 
true behavior better than CPT models assuming differences in 
probability weighting, risk aversion, or loss aversion in addi-
tion to other mechanism we describe below.

Inspired by the results of our simulation study, we next fit 
a series of competing models to empirical within-subject data 
collected from 104 participants across 114 unique descrip-
tion- and experience-based gambles to determine the degree to 
which people engage in behavior consistent with the integrated 
learning and decision-making models we propose.

Finally, we conclude with a discussion of how formaliz-
ing and quantitatively comparing competing hypotheses can 
enhance our understanding of complex psychological phe-
nomena in a way not afforded by experimental design alone. 
We begin below with a mathematical overview of the models 
used throughout both our simulation and empirical study.

Mathematical models

Cumulative prospect theory

The core of CPT contains three main parameters, namely: 
(1) probability weighting 𝛾(0 < 𝛾 < 5) , risk sensitivity 
𝛼(0 < 𝛼 < 5) , and loss sensitivity 𝜆(0 < 𝜆 < 10) . Note that 
full CPT model typically includes separate probability 
weighting and risk sensitivity parameters for losses versus 
gains, but we use a single parameter across gain and loss 
domains (i.e., restricted CPT) due to known parameter esti-
mation problems (Nilsson et al., 2011). Also, there are no 
theoretical upper bounds on CPT parameters ( � , �, � ). Practi-
cally, however, values greater than the upper bounds above 
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are rarely or never encountered (as parameter values further 
exceed these bounds, model predictions remain the same), so 
we set the bounds to make for more efficient estimation (see 

Nilsson et al., 2011). We show in Figure S4 that this choice 
did not bias our results. Each parameter captures system-
atic deviations of an individual’s choices from the objective 

Fig. 2   Effect of asymmetric learning on probability estimation. Note. 
Model-predicted probability of the high outcome [Pr(H)] occurring 
for both the “reduced” gamble (i.e., one option is certain and the 
other risky/probabilistic) exemplified in Fig.  1 and another “nonre-
duced” gamble (i.e., both options are probabilistic/risky). To gener-
ate sample-to-sample probabilities, we used a simple strength-based 
reinforcement learning model with separate learning rates for posi-
tive ( A+ ) and negative ( A− ) prediction errors (see Eq. 8 in the Method 
section), where option A and B were sampled with equal probabil-
ity. All outcome probabilities are updated after each sample in pro-
portion to both the difference between the expected and actual out-
come (prediction error) and the learning rate—we show only Pr(H) 

for visual purposes. Panels denote each combination of A+ and A− 
with values of 0.1, 0.3, and 0.5, and shaded intervals around predicted 
values indicate ±2 standard errors of the mean across repeated itera-
tions. The shaded region highlights the first 20 samples. Probability 
estimates converge to true values for certain options (irrespective to 
the learning rates), but converge to biased estimates when outcomes 
are probabilistic and learning rates are not equivalent. Additionally, 
effects of sampling error and recency are apparent even when learn-
ing rates are equivalent, where the random nature of the sampling 
process has not yet allowed for learning to converge to the true out-
come probability and estimates are subsequently biased toward 0.5. 
The Supplement details how we generated the above predictions
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expected value of each gamble—which we refer to as the 
subjective value ( Vg)—given as2:

pg,j and xg,j are the probability (e.g., 0.8) and objective payoff 
value (e.g., $4) for each possible outcome j within a given 
gamble g . CPT assumes that people subjectively weight the 
probability of each outcome such that:

Here, values for 𝛾 < 1 indicate overweighting of low-
probability events and values for 𝛾 > 1 indicate underweight-
ing of low probability events (Fig. 1). � has the opposite 
interpretation for high probability events (Fig. 1). Note also 
that Eq. 5 is a single-parameter version of Goldstein and Ein-
horn’s (1987) probability weighting function (Karmarkar, 
1978; Gonzalez & Wu, 1999), which is different from the 
original CPT probability weighting in that it is symmetric 
around the objective probability (i.e., omitting the 1∕� expo-
nent on the denominator). We used this single-parameter 
version, because we were most interested in changes in prob-
ability weighting rather than probability elevation. The sym-
metry allows for easier interpretation compared with CPT’s 
original instantiation.3 Importantly, Eq. 5 is a key component 
of CPT, which is necessary to capture the well-known four-
fold pattern of risk attitudes (Tversky & Kahneman, 1992).

Additionally, CPT assumes that payoff values are evalu-
ated nonlinearly such that the subjective utility of xg,j is 
given by

where values for 𝛼 < 1 indicate risk-aversion (i.e., insensitiv-
ity to differences between large-magnitude values), and val-
ues for 𝛼 > 1 indicate risk-seeking behavior. Loss-aversion 
is captured by 𝜆 > 1 (i.e., losses are weighted more heavily 

(4)Vg =

J∑

j=1

W
(
pg,j

)
U(xg,j)

(5)W
(
pg,j

)
=

p
�

g,j

p
�

g,j
+ (1 − pg,j)

�

(6)U
(
xg,j

)
=

{
x�
g,j

if xg,j ≥ 0

−λ
||
|
xg,j

||
|

�

, otherwise

than gains), whereas loss-seeking is captured by 𝜆 < 1 . 
Hence, the subjective value Vg in Eq. 4 is computed as a 
weighted sum of probability weights and subjective utilities 
for each gamble.

Although the original CPT model is deterministic, we 
employ a commonly used probabilistic choice rule to con-
vert the subjective values for each option (from Eq. 4) to 
expected choice probabilities that sum to one (Stott, 2006). 
Specifically, we use a multinomial logistic function—also 
known as the softmax function—which is closely related to 
the Luce choice rule:

Here, the probability ( Pr ) of choosing gamble g is deter-
mined as a function of its subjective value Vg relative to all 
K gambles available within the current problem. Note that 
we focus only on choices where two competing gambles are 
considered. The choice sensitivity parameter 𝜙(0 < 𝜙 < ∞) 
controls how deterministically (larger � ) versus randomly 
(smaller � ) an individual makes choices according to the 
subjective value Vg of each gamble. For the simulation study, 
we set � = 1 for convenience and did not estimate it as a free 
parameter. For the empirical study, we estimated � as a free 
parameter. Our use of the logistic choice rule as opposed to 
the original Luce choice rule allows for the model to capture 
individual differences in maximization behavior through the 
use of the choice sensitivity parameter ( � ). The Luce choice 
rule of the form Pr

�
Choice = g

�
=

Vg
∑2

k=1
Vk

 is scale invariant, 

such that multiplying each V  term by a constant factor (i.e. 
a choice sensitivity or inverse temperature parameter) has 
no effect on the resulting probabilities. Additionally, the 
logistic rule has many practical benefits—namely, it (1) is a 
key component of many models of EBDs that generalize 
well to novel data (Erev et al., 2010); (2) captures variation 
in choice across multiple decision domains (Friedman & 
Massaro, 1998); and (3) is a well-studied probabilistic exten-
sion of traditional CPT (Nilsson et al., 2011).

Reinforcement learning CPT hybrid model

The RL-CPT model extends CPT from pure description-
based tasks into experience-based tasks by assuming that the 
probability ( pg,j ) for each choice outcome is learned through 
experience during sampling for EBDs. Therefore, RL-CPT 
assumes that traditional CPT parameters ( � , �, � ) are equiva-
lent across DBDs and EBDs. Any differences in preferences 
between tasks are captured by the effects of a dynamic learn-
ing mechanism. When pg,j is given (i.e., DBDs), the RL-
CPT model simply reduces to traditional CPT, with a single 
set of valuation parameters estimated for each participant. 
Conversely, when pg,j is not given, the RL-CPT learns pg,j 

(7)Pr
�
Choice = g

�
=

exp(� × Vg)
∑2

k=1
exp(� × Vk)

2  Note that we do not include problem and participant indices to 
facilitate readability. Fully written out, the probability of outcome j , 
within gamble g , within problem p , and for participant 

i
 , would be 

indicated by pi,p,g,j.

3  For modeling empirical data, we conducted a sensitivity analysis by 
testing the classic probability weighting function of CPT (i.e., includ-
ing the 1∕� exponent on the denominator). Results were consistent 
with the original parameterization, but we report the symmetric ver-
sion here due to the more simplistic interpretation. We additionally 
tested a model including probability elevation parameters for gains 
and losses, which did not substantially improve model fit. Therefore, 
we relegate discussion of models with probability elevation to the 
Supplementary Text for brevity.
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through repeated sampling using the strength-based learn-
ing rule described in the introduction (Eqs. 1-2). Specifi-
cally, we assume that pg,j = 0.5 once the given outcome is 
observed—indicating maximum uncertainty—and is then 
updated after each sample s with a different learning rate 
depending on whether the observed outcome is better or 
worse than expected. If outcome j is not observed while 
sampling option g , then pg,j remains at 0 and the outcome 
subsequently plays no role in the final preference judge-
ment. Additionally, we assumed that, if one outcome has 
already been observed such that pg,1 has already taken on 
some value different from 0 or 0.5, then upon observing 
outcome pg,2 for the first time, updating begins from 1 − pg,1 
rather than from 0.5 . Setting the initial values for pg,j in this 
way assumes that people keep track of how likely various 
outcomes within a given option are relative to one another, 
such that if one outcome is very common, the other must be 
rare and vice versa. Furthermore, this scheme ensures that 
if people observe more than one outcome for a given option, 
that the outcome probabilities sum to 1 (i.e., pg,1 + pg,2 = 1 ). 
The learning rule is then:

A+(0 < A+ < 1) and A−(0 < A− < 1) are learning rates 
for positive and negative prediction errors, respectively, 
and PE = U

(
outcomes

)
− Vg is the prediction error gen-

erated after observing the outcome of sample s . The first 
term, U(outcomes) , is the utility (Eq. 6) of the experienced 
outcome upon drawing sample s . Then, Vg is the expected 
value (Eq. 4) for gamble g that was sampled. Intuitively, the 
learning rule described by Eq. 8 assumes that people update 
their expectations for how likely each outcome is to occur 
differently based on whether the observed outcome was bet-
ter ( PE ≥ 0 ) or worse ( PE < 0 ) than expected. If A+ = A− , 
then Eq. 8 is identical to the single learning rate learning 
rule described in the introduction (Eq. 1). However, when 
A+ < A− , higher negative relative to positive learning rates 
leads to an underestimation of the high outcome probability 
and therefore produces risk-averse behavior.

After iterating through each sample a participant draws 
before making a choice, the resulting pg,j estimates from 
Eq. 8 are entered into Eq. 5. This explicit learning mecha-
nism contrasts the traditional heuristic analyses of EBDs, 
where pg,j is simply set to the experienced proportion of 
each outcome (Glöckner et al., 2016; Kellen et al., 2016). 
As we described in detail in the introduction, the heuristic 
method of setting pg,j to the experienced proportion of each 
outcome is analytically equivalent to a special case of the 
RL-CPT model wherein A+ = A− =

1

s
 . This mathematical 

correspondence allows us to find evidence for traditional 
probability weighting and mean-tracking models (described 

(8)∀j ∈ J, pg,j ∶= pg,j +

{
A+×

(
Ig,j,s − pg,j

)
, if PE ≥ 0

A−×
(
Ig,j,s − pg,j

)
, Otherwise

below) as special/nested cases of the RL-CPT model. All 
other aspects of RL-CPT are equivalent to standard CPT.

The RL-CPT differs from other learning and memory 
models of EBDs in two important ways. First, learning 
and memory models including the scanning model (Estes, 
1976), Value-updating Model (Hau et al., 2008), Decay-
reinforcement model (Erev & Roth, 1998), delta-rule learn-
ing model (Busemeyer & Myung, 1992), prospect valence 
learning model (Ahn et al, 2008), and the ACT-R inspired 
Instance-Based Learning model (Gonzalez et al., 2011) do 
not directly estimate probabilities. Instead, they assume that 
people either learn the expected average return of an option 
(in the case of learning models) or sample memory traces 
of previously encountered stimuli to evaluate the relative 
frequency of potential outcomes (in the case of memory 
models). By contrast, the RL-CPT model assumes that peo-
ple directly learn the probability of each outcome occur-
ring before integrating probabilities with their respective 
outcome values (see also Haines et al., 2018). Despite mak-
ing different mechanistic assumptions, models that update 
toward the average value of an option (e.g., the delta-rule 
learning model) produce the same behavioral predictions 
as a special case of the RL-CPT, where learning rates are 
equivalent ( A+ = A− ) and all CPT valuation parameters 
( � , �, � ) are set to 1. In this reduced case, the RL-CPT model 
will update toward the objective expected value of an option. 
More generally, the explicit tracking of probabilities in the 
RL-CPT is necessary to both: (1) model DBDs, which ask 
people to integrate potential outcomes with their explicitly 
given probabilities; and (2) compare probability weighting 
across DBDs and EBDs. Therefore, the RL-CPT can only 
be compared with the above learning and memory models 
in the context of EBDs, because other learning and memory 
models do not make clear predictions for DBDs. However, 
because memory decay is a reasonable competing expla-
nation for differences between DBDs and EBDs, we also 
tested an instance-based model that estimates outcome prob-
abilities using a memory decay mechanism as a competing 
mechanism to the RL-CPT model. We describe this model 
in the next section.

Second, the RL-CPT includes a pair of learning rates to 
account for asymmetric learning of positive versus negative 
predictions errors (Gershman, 2015; Mihatsch & Neuneier, 
2002; Niv et al., 2012), whereas the abovementioned mod-
els contain only a single learning or memory decay mecha-
nism. The asymmetric learning mechanism in the RL-CPT 
is qualitatively different from attention mechanisms in other 
models, which assume that people differentially attend to 
gains versus losses (Busemeyer & Stout, 2002; Estes, 1976). 
Specifically, because the learning rate is dependent on the 
sign of the sample-to-sample prediction error rather than the 
outcome domain (Eq. 8), a learning asymmetry can lead to 
biased probability expectations within any domain (e.g., for 
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gains, losses, or mixed gambles). Conversely, asymmetric 
attention to gains versus losses is necessarily a between-
domain effect.

In summary, the RL-CPT can produce biased expecta-
tions of outcome probabilities (Fig. 2), which allows it to 
account for preference differences between DBDs and EBDs 
in a way that alternative models are unable to capture. Fur-
thermore, because traditional CPT characterizes risk sen-
sitivity through valuation parameters alone, it follows that 
any changes in risky behavior resulting from an asymmetric 
learning mechanism may lead to biased inferences in CPT 
valuation parameters.

Instance‑based memory CPT hybrid model

As a competing mechanism to strength-based updating 
rule in the RL-CPT, we also developed an instance-based 
memory and CPT hybrid model (IB-CPT) that estimates the 
probability ( pg,j ) for each choice outcome in EBDs using 
the memory decay plus normalization step described in the 
introduction (Eq. 3). From the instance-based perspective, 
pg,j is thought of as the memory salience of a given out-
come relative to other possible outcomes. All other aspects 
of the IB-CPT model are equivalent to the RL-CPT model 
described above—traditional CPT parameters ( � , �, � ) are 
assumed to be equivalent across DBDs and EBDs, and dif-
ferences in preferences between contexts are captured by 
the effects of the dynamic memory decay mechanism. As 
described in the introduction, the memory decay rule in the 
IB-CPT reduces to the heuristic CPT implementation when 
the memory decay rate A is set to 0.

Despite sharing core features with other instance-based 
models, the IB-CPT differs from other instance-based mod-
els in one important way. For example, the Instance-Based 
Learning model is one extant model that assumes that peo-
ple multiply (i.e. “blend”) probabilities and their respective 
outcomes to determine the subjective value for each gamble 
(Gonzalez et al., 2011). The probabilities are determined by 
sampling memory traces of experienced outcomes, which 
allows the model to capture deviations of individuals’ 
choices from the objective expected value of each gamble—
the use of memory decay and “blending” to arrive at out-
come probabilities and expected values is equivalent to our 
formulation of the IB-CPT. For DBDs, however, the mem-
ory trace sampling process in the Instance-Based Learning 
model drops out of the equation (there are no prior experi-
ences to sample), reducing to a simple expected value model 
which assumes that people make choices to maximize the 
objective expected value of each pair of gambles. Because 
this assumption is: (1) inconsistent with research on DBDs, 
(2) is contained as a special case of the CPT model that we 
tested (when � = � = � = 1 ), and (3) extends to all instance-
based models described above, we did not test Gonzalez 

et al.’s (2011) specific implementation of an instance-based 
learning model in the current study, opting instead for the 
formulation of the IB-CPT described above.

In summary, the traditional CPT, RL-CPT, and IB-CPT 
models are all equivalent in the context of DBDs, but they 
differ in how they assume people learn to integrate experi-
enced outcomes into their decision process in the context of 
EBDs. Therefore, comparing the models allows us to deter-
mine how well each of the proposed learning and memory 
mechanisms can account for the description-experience gap. 
Before fitting the models to empirical data, however, we 
conducted a simulation study to determine what the heuristic 
CPT analyses will reveal if data are actually generated by the 
learning model instantiated by the RL-CPT.

Simulation study

We focus our simulations on the RL-CPT due to the relation-
ships between asymmetric learning and risk aversion, which 
could drive differences in probability weighting (and out-
come valuation more generally) between DBDs and EBDs. 
However, we emphasize that memory decay in the IB-CPT 
could give rise to similarly biased estimates.

For our simulation study, we first simulated both descrip-
tion- and experience-based choices from the RL-CPT model 
by using a single set of CPT parameters with separate posi-
tive and negative learning rates. Next, we fit the simulated 
data with a traditional CPT model by using the heuristic 
method of setting pg,j to the experienced proportion of rare 
events. The traditional CPT model assumed differences in 
probability weighting ( � ), risk sensitivity ( � ), and loss sen-
sitivity ( � ) between DBDs and EBDs, which is consistent 
with previous computational analyses of the description-
experience gap (Glöckner et al., 2016; Kellen et al., 2016). 
With this design, any preference differences inferred across 
DBDs and EBDs are wholly attributable to the proposed 
learning mechanism as opposed to true differences in CPT 
valuation parameters. Furthermore, by keeping the valua-
tion parameters constant while varying the learning rates, 
we were able to determine exactly how much (and in what 
direction) learning during EBDs could bias traditional CPT 
valuation parameters in the context of EBDs.

Simulation experiment design

The problem set used for the simulation study was taken 
directly from Kellen et al. (2016), and we refer the reader 
to the original study for details (see Table S1 for all gam-
ble pairs). We used this specific problem set, because it 
encompasses gambles used in many studies on both DBDs 
and EBDs, many of which were selected for estimating 
important parameters in CPT. Briefly, there are 114 differ-
ent gambles, where each gamble was used for description 
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(i.e., a one-shot preference judgement) and experience (i.e., 
repeated sampling before preference judgement). Individual 
gambles include those that were:

(1)	 used in original studies on the description-experience 
gap,

(2)	 randomly generated across gain, loss, and mixed gains 
and loss domains,

(3)	 selected to measure loss and risk aversion,
(4)	 used in previous EBD studies,
(5)	 a mix between those with safe versus risky options 

(reduced gambles), and
(6)	 those composed of two risky options (nonreduced gam-

bles).

Because previous studies suggest that the description-
experience gap may vary across reduced and nonreduced 
gambles (Glöckner et al., 2016), we ran separate simulations 
for the reduced and nonreduced sets of gambles from Kel-
len et al. (2016) to determine whether asymmetric learning 
could account for such differences.

Simulation model specification

We generated pseudo-participants’ person-level RL-
CPT valuation parameters by using random draws from 
group-level normal distributions with means of �� = 0.88 , 
�� = 2.25 , and �� = 0.65 , and with SDs of  �� ≈ �� ≈ 0.10 
and �� ≈ 0.3 (see Supplementary Text for full details). 
Note that these specific group-level means were chosen to 
match those estimated in the original CPT study (Tversky 
& Kahneman, 1992), and SDs were chosen to ensure a real-
istic amount of variability across individuals. For learning 
rates, we generated a grid of all possible combinations of 
group-level learning rates for A+ ∈ {0.25, 0.5, 0.75} and 
A− ∈ {0.05, 0.15,… , 0.95} , totaling 30 unique group-level 
combinations. Additionally, we simulated choices (i.e., pref-
erence judgements in Fig. 1) after pseudo-subjects drew 
either 19 or 99 total random samples from either choice 
option, where Eq. 8 was used to update pg,j after each sam-
ple. We chose these specific sample sizes based on both 
meta-analytic estimates of the number of samples typi-
cally drawn during free sampling (Wulff et al., 2018) and 
to determine whether effects change when a larger number 
of samples are drawn. Finally, we simulated data separately 
for reduced (nreduced = 19) and nonreduced (nnonreduced = 95) 
sets of gambles. Altogether, the simulations amounted to a 
30 × 2 × 2 design (i.e., learning rates by sample size by gam-
ble type), where each cell is a full set of simulated choices 
across 100 pseudo-participants. We refer the reader to the 
Supplement for more specific details on simulation model 
parameters.

Simulation results

Probability weighting  Figure  3 shows that asymmet-
ric learning leads to biased estimates of CPT probability 
weighting ( � ) when using the traditional heuristic method 
of setting pg,j to the experienced proportion of outcomes 
observed within participant-gamble pairs.4 For reduced gam-
bles, probability weighting for EBDs—but not DBDs—is 
significantly biased by asymmetric learning in small sample 
settings, such that it is overestimated when learning occurs 
more rapidly for positive prediction errors and underesti-
mated when learning occurs more rapidly for negative pre-
diction errors. Furthermore, as participants draw more sam-
ples, the effect reverses such that more rapid learning from 
negative prediction errors leads to overestimation of prob-
ability weighting in EBDs. We did not observe this differen-
tial bias when both learning rates were closer to 1, in which 
case EBD probability weighting ( � ) was more consistently 
overestimated. Because the overestimate was close to � = 1 , 
these results may reflect uncertainty in estimates caused by 
rapid updating (i.e., high variation) of the outcome probabil-
ity that, on average, will tend to drive estimates toward 0.5.

The results are different for nonreduced gambles, which lead 
to more consistent overestimation of probability weighting 
for EBDs in small sample settings (except when learning 
rates are lower and equal, or A+ = A− ≈ 0.25 ). In larger sam-
ples, however, nonreduced gambles tend to produce accurate 
recovery of probability weighting estimates when learning 
rates are equivalent, but biased estimates when learning is 
asymmetric (where the direction of bias depends on the 
strength of both learning rates).

Figure 3 suggests that if people do learn asymmetrically 
from positive versus negative prediction errors, then (1) a 
single pair of learning rates can lead to biased probability 
weighting estimates for EBDs using traditional CPT mod-
eling, and (2) the same pair of learning rates has different 
effects on probability weighting estimates across reduced 
and nonreduced sets of gambles (i.e., “contextual” effects), 
where the direction of the bias is dependent on the num-
ber of samples that participants draw. For example, in small 
sample settings when both learning rates are approximately 
0.5, traditional CPT modeling leads to linear probability 
weighting ( � ≈ 1 ) for reduced gambles, but apparent over-
weighting of rare events ( 𝛾 < 1 ) for nonreduced gambles.

4  Effects of asymmetric learning on � and � are shown in Supplemen-
tary Figures S1 and S2.
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Fig. 3   Biases in experience-based CPT probability weighting ( � ) esti-
mates. Note. Estimates for group-level CPT probability weighting in 
DBDs and EBDs when setting pg,j to the experienced proportion of 
rare events. Because � was left unchanged across all simulations of 
the RL-CPT, all deviance between EBD probability estimates and the 
true values reflect biases induced by the asymmetric learning mech-
anism (Eq. 8). For reduced gambles, when learning rates are gener-
ally lower (i.e. <0.5) and participants draw fewer samples, � is over-
estimated (underestimated) when learning occurs more rapidly for 
positive (negative) prediction errors. Importantly, this effect reverses 
in larger sample settings, revealing an interaction between learn-

ing asymmetry and sample size. For nonreduced gambles, probabil-
ity weighting is more consistently overestimated across all levels of 
learning rates relative to reduced gambles only (particularly in small 
sample settings), leading to apparent underweighting of rare events 
for EBDs relative to DBDs in the absence of a true difference in prob-
ability weighting. Therefore, the same pair of learning rates can lead 
to different biases in probability weighting across reduced and nonre-
duced gambles for EBDs, particularly in small sample settings (cf. A+ 
= 0.25 and A+ = 0.5 across reduced and nonreduced gambles). Shad-
ing indicates the 95% HDI of the posterior estimate
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Risk aversion  Figures S1 and S2 show traditional CPT esti-
mates of risk- and loss-aversion between description and 
experience generated by participants who learn at different 
rates for positive and negative prediction errors. For risk-
aversion, two general trends are worth noting. First, � is 
consistently underestimated for experience-based decisions 
(EBDs), whereas it is accurately estimated for description-
based decisions (DBDs). A small exception is that for non-
reduced gambles, there is a tendency for � to be slightly 
underestimated even for DBDs. Second, across both reduced 
and nonreduced sets of gambles, biased estimates of � are 
most extreme when both learning rates are low (i.e., <0.25), 
become less pronounced as learning rates become more 
rapid (i.e. >0.25), and sometimes become more biased as 
learning again becomes more rapid (i.e. both learning rates 
>0.75). However, this latter trend is minor.

Loss aversion  Results were different for loss-aversion. For 
reduced gambles, � is consistently underestimated when 
both learning rates are low (i.e., <0.25) but becomes bet-
ter estimated as the negative prediction error learning rate 
( A− ) becomes increasingly large. Furthermore, as the posi-
tive prediction error learning rate ( A+ ) increases, � becomes 
increasingly underestimated irrespective to A− . Conversely, 
for nonreduced gambles, � estimates showed the oppo-
site pattern, where � is increasingly underestimated as A− 
becomes increasingly large. Overall, like for � , � is gener-
ally underestimated for EBDs, particularly for nonreduced 
gambles where � often is estimated to be less than 1. In 
fact, such apparent reversals of loss aversion (i.e., 𝜆 < 1 ) in 
nonreduced EBDs may explain the apparent loss-seeking 
behavior found in studies that use prospect theory valuation 
functions to model EBDs (Ahn et al., 2014).

Interim summary of simulation study

Our simulation study confirmed that if people do learn in a way 
consistent with the RL-CPT while sampling gambles (i.e., they 
are most sensitive to recent outcomes and update expectations 
differently based on whether outcomes were better or worse 
than expected), then heuristic applications of CPT are bound 
to reveal differences in valuation parameters across DBDs and 
EBDs even when there are no true differences in valuation. 
Furthermore, the direction and magnitude of this bias is not 
initially intuitive—it is dependent on both the average value 
of learning rates, the magnitude of the difference in learning 
from positive versus negative predictions errors, the number 
of samples that a person draws, and features of the specific 
gambles that people are given (i.e., reduced vs. nonreduced). 
However, as opposed to designing an experimental manipu-
lation to control these various factors to explore the descrip-
tion-experience gap, we can explicitly model the learning and 
memory mechanisms underlying EBDs to identify potential 

invariances in valuation between DBDs and EBDs. Without an 
explicit model of learning, we risk misinterpreting CPT valu-
ation parameters estimated in the context of EBDs due to our 
inability to experimentally control for complex learning and 
memory effects. Following this rationale, we next conducted a 
model comparison study using empirical data to determine the 
extent to which asymmetric learning captures observed within-
person preference differences between DBDs and EBDs. For 
empirical model comparisons, we include the IB-CPT model 
as a competing learning/memory mechanism to the RL-CPT.

Empirical study

Participants and experiment

For the empirical study, we used actual participant data 
from Kellen et al. (2016). A total of 104 participants under-
went all 114 description- and experience-based gambles 
as described above (see Simulation Experiment). We refer 
readers to the original study for more details on partici-
pants’ characteristics, and provide summary statistics for 
the choice proportions within description and experience 
for each pair of gambles in Table S1. For description-based 
gambles, participants were presented with gamble pairs one 
at a time, and they were instructed to choose the option that 
they preferred. For experience-based gambles, participants 
were allowed to sample from each option in whatever order 
and for how ever many trials they preferred before mak-
ing a final preference judgement. Importantly, the order of 
description and experience was counterbalanced across par-
ticipants, and the description and experience sessions were 
separated by at least one full week within each participant 
to minimize potential order effects. For EBDs, participants 
drew an average of 21.04 (SD = 9.4) samples before mak-
ing a contingent choice (i.e., preference judgement). Previ-
ous CPT modeling of these data revealed an overweighting 
of rare events in EBDs relative to DBDs (i.e., 𝛾E < 𝛾D < 1 ; 
Kellen et al., 2016). Our simulations above indicated that an 
asymmetric learning mechanism could produce this over-
weighting result if: (1) learning rates are both below 0.75; 
(2) people learn more rapidly from negative relative to posi-
tive prediction errors; and (3) people draw around 20 sam-
ples on average (see the top row in Fig. 3). Conversely, the 
traditional description-experience gap arising from appar-
ent underweighting of rare events in EBDs can occur if: (1) 
learning rates are both >0.75, (2) people learn more rapidly 
from positive relative to negative prediction errors and draw 
around 20 samples (see the bottom panel in Fig. 3), or (3) 
people learning more rapidly from negative prediction errors 
and draw a large number (~100) of samples.

Although Kellen et al. (2016) found a reversal of the tra-
ditional description-experience gap in their aggregate data 
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using CPT modeling, noncomputational analyses (i.e., those 
relying on the heuristic prediction-focused method critiqued 
by Regenwetter and Robinson 2017) of their data reveal the 
traditional description-experience gap as reported by Her-
twig et al. (2004). As we described in our simulation study, 
Kellen et al.’s dataset contains four distinct sets of gambles. 
Wulff et al. (2018) showed in their meta-analysis that two of 
these gamble sets show a traditional description-experience 
gap when analyzed separately: (a) Set 1, which is comprised 
of the gambles used in the original work by Hertwig et al. 
(2004) on the description-experience gap, and (b) Set 3, 
which is comprised of gambles that were chosen to optimize 
estimation of risk and loss aversion.

This finding that the same exact participants show varia-
tion in both the magnitude and direction of the description-
experience gap across different sets of gambles is consistent 
with our simulation study—the contextual nature of learning 
during EBDs gives rise to apparent differences in valuation 
across different sets of gambles despite the underlying cog-
nitive mechanisms being invariant. Although experimental 
designs such as the matched sampling paradigm can partially 
control for these factors, they still succumb to the unrealistic 
assumptions described in the introduction (i.e., perfect learn-
ing and memory). Therefore, we compared various models 
that make explicit assumptions about learning and memory 
during sampling on the dataset as a whole and individually to 
each of the four sets. We compared models both across and 
within sets to determine whether the same model (or class of 
model) could best capture performance across gambles that do 
versus do not show the traditional description-experience gap.

Competing model specifications

We developed three classes of competing models to deter-
mine which cognitive mechanisms provided the best sta-
tistical account of within-person preference differences 
between DBDs and EBDs. Table 1 describes each of the 
models considered in the current study, which we describe 
in more detail below.

CPT models  First, we fit an array of traditional CPT models 
using the heuristic method of setting pg,j to the proportion of 
samples that it was experienced for the given participant. To 
determine which particular valuation mechanism best accounted 
for preference differences between DBDs and EBDs according 
to traditional CPT, we developed models for each combination 
of differences in probability weighting, risk sensitivity, loss sen-
sitivity, choice sensitivity, or probability elevation for positive 
and negative outcomes (described in more detail below). We also 
developed a base model that assumed CPT valuation parameters 
were identical within-participants across tasks. Of the CPT mod-
els, we were particularly interested in the variant with different 
valuation parameters across DBDs and EBDs (model �Δ, �Δ, �Δ 

in Table 1). This model is theoretically important because, as out-
lined in the introduction, prior research has suggested that differ-
ences in risk sensitivity, loss sensitivity, or probability weighting 
could explain the description-experience gap.

RL‑CPT models  Second, we tested three different variants of 
the RL-CPT model, including a version with a single learn-
ing rate for positive and negative prediction errors, a version 
with a different learning rate for each positive and negative 
prediction errors, and a version that includes probability 
elevation parameters (see section below titled The Role of 
Probability Elevation). Throughout our results, we focus 
our attention on the RL-CPT variant used in our simulation 
study (model A± in Table 1) due to its theoretical relevance.

IB‑CPT models  Third, we tested two variants of the IB-CPT 
model, including the version described in the introduction 
(i.e., a memory decay rate with a single set of valuation 
parameters across description and experience; model AIB in 
Table 1) in addition to one with probability elevation param-
eters. As with the RL-CPT model, we focus attention on the 
AIB variant due to its theoretical relevance.

The role of probability elevation  Although we did not con-
sider it in our simulation study, we tested variants of Kellen 
et al.’s (2016) CPT formulation in our empirical model com-
parisons, which included a probability elevation parameter 
in the CPT probability weighting function. In particular, 
Eq. 5 can be expanded as follows:

ws:where 𝛿(0 < 𝛿 < +∞) is an added probability eleva-
tion parameter that often is interpreted as optimism ( 𝛿 > 1 ) 
versus pessimism ( 𝛿 < 1 ) toward probabilistic outcomes. 
Mathematically, when 𝛿 > 1 , the probability weighting 
function is shifted upward, indicating a general overestima-
tion of the strength of probabilities (i.e., optimism); when 
𝛿 < 1 , the function is shifted downward, indicating a general 
underestimation (i.e., pessimism). Oftentimes, a separate � 
parameter is estimated for gains and losses to capture dif-
ferential optimism or pessimism towards gains versus losses. 
Kellen et al. (2016) included probability elevation for gains 
𝛿+(0 < 𝛿+ < +∞) and for losses 𝛿−(0 < 𝛿− < +∞) , accord-
ing to the following rule:

which sets � from Eq. 10 to �+ when the potential out-
come xg,j for the respective probability pg,j is positive, and 
to �− otherwise. We tested variants of the CPT, RL-CPT, and 
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IB-CPT models that included differential probability eleva-
tion for gains versus losses that either varied or were set to 
be the same across description and experience.

In addition to including probability elevation param-
eters, Kellen et al.’s (2016) CPT formulation assumed dif-
ferences in all parameters across DBDs and EBDs, includ-
ing all CPT valuation parameters and the choice sensitivity 
parameter. We term this model the Saturated CPT model, 
given that it includes both probability elevation param-
eters described above and assumes that all within-person 
valuation and choice mechanisms vary across DBDs and 
EBDs. Saturated CPT contains 12 parameters per person 
( �D, �E, �D, �E, �D, �E, �+D

, �+E
, �−D, �−E,�D,�E).

Empirical model fitting

As with the simulated model fitting, we used hierarchi-
cal Bayesian modeling of all models listed in Table 1. We 
assumed the same hierarchical structure, with person-level 
parameters drawn from group-level normal distributions. 
Likewise, we assumed that group-level means and stand-
ard deviations also followed normal distributions cen-
tered around 1 for valuation parameters ( � , �, � ; Eq. 10), 
and learning rates normally distributed around 0.5. We 
parameterized learning rates using the same scheme as 
described by Eq. 10, but with group-level means distributed 
as �A+ ∼ Normal(0, 0.2) and �A+ ∼ half − Normal(0, 0.2) . 
Unlike in the simulation study, we estimated the choice sen-
sitivity parameter ( � ) for all empirical models, with priors 
�� ∼ Normal(−0.87, 0.2) and �� ∼ half − Normal(0, 0.2) , 
where person-level parameters followed the noncentered 
parameterization described in Eq. 10 (but replacing the 
inverse probit transform and scaling factor with the expo-
nential transform to ensure 0 < 𝜑 < +∞ ). We used the same 
prior distribution for a given parameter across all models in 
order to minimize the potential effects of our choice of prior 
distribution on model performance (e.g., the prior for � was 
the same for all models, etc.).

We fit each model using three sampling chains for 3,000 
total iterations each, 1,000 of which were discarded from 
each chain as warm-up samples, resulting in 6,000 total sam-
ples for each estimated posterior. To assess model conver-
gence, we visually checked traceplots, and ensured that all 
R̂ values were under 1.1 (Gelman & Rubin, 1992).

Empirical model comparison

We used the leave-one-out information criterion (LOOIC) 
to determine which model provided the best fit to the data 
while penalizing for model complexity (Vehtari et  al., 
2017). LOOIC is a fully Bayesian information criterion 

that estimates true leave-one-out cross validation; LOOIC 
is therefore an estimate of how well a model will perform 
relative to competing models on out-of-sample data. To 
compute LOOIC, we first computed the log-likelihood of 
each participant’s choices given their estimated parameters 
for each posterior sample (i.e., log pointwise predictive den-
sity or LPPD) and gamble (Ahn et al., 2017; Haines et al., 
2018). This procedure results in separate posterior sam-
ples by participant by gamble ( S × N × G) LPPD arrays for 
description- and experience-based gambles. We then com-
bined both arrays on the gamble dimension and input the 
resulting array in the loo R package (Vehtari et al., 2017) 
to estimate LOOIC across DBDs and EBDs. Lower relative 
LOOIC values indicate better than expected out-of-sample 
predictions for the given model. Alongside LOOIC, we cal-
culated Bayesian model averaging weights (pseudo-BMA+ 
weights per Yao, Vehtari, Simpson, and Gelman, 2018). 
Pseudo-BMA weights asymptotically select the single model 
among a set of models that best minimizes Kullback-Leibler 
divergence, thus behaving similarly to Bayes Factors for 
model selection.

We caution that a lower LOOIC (or higher pseudo-
BMA+ weights) does not indicate that a model is “true” or a 
better representation of the cognitive processes of interest in 
an absolute sense. Instead, we believe that such model com-
parison metrics are useful to compare the relative predic-
tive performance of various models, and that the theoretical 
value of each model includes both predictive performance 
and other more qualitative considerations (e.g., assumptions 
they make about learning and memory, connections with the 
broader literature; Navarro, 2019).

Empirical results

Model comparison  Figure 4 shows the estimated differences 
in model fit between the best fitting model and all competing 
models, both across all 114 gambles and within each of the 4 
gamble sets. Within each gamble set, LOOIC results showed 
that learning and memory models (RL-CPT and IB-CPT 
models) performed equal to or better than those assuming 
perfect learning with changes in valuation parameters across 
DBDs and EBDs (traditional CPT models). Across all sets, 
the RL-CPT with asymmetric learning and a single set of 
valuation and choice parameters across DBDs and EBDs 
(model A± in Table 1) performed better than all variants 
of CPT, including the most complex CPT model (i.e., the 
Saturated CPT model with 12 free parameters per person). 
Similarly, the IB-CPT model with probability elevation 
parameters showed better performance than all CPT models, 
although it performed worse than the RL-CPT model with 
asymmetric learning rates. This latter finding demonstrates 
the importance of asymmetric learning for predicting behav-
ior in EBDs.
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Overall, our model comparison results offer strong evi-
dence that people do have imperfect learning and memory 
while sampling during EBDs—asymmetric learning alone 
(model A± in Table 1) can better capture within-person 
changes in behavior across DBDs and EBDs than a model 
assuming perfect learning/memory and changes in all valu-
ation and choice mechanisms (the Saturated CPT model).

Posterior Predictions  To better understand the absolute 
performance of the models, we focus attention on posterior 
predictions derived from the model in each class that we 
deemed most theoretically relevant given prior research on 
the description-experience gap: (1) the �Δ , �Δ , �Δ variant of 
CPT; (2) the A± variant of RL-CPT; and (3) the AIB variant 
of IB-CPT. Despite these models not showing the best fit to 
empirical data within a given gamble set, we believe they 
best instantiate competing theories of the description-expe-
rience gap as detailed in the introduction. Figure 5 shows 
the group-level predictive performance for each of the three 
models. Notably, the models are almost indistinguishable in 
the description condition, yet the RL-CPT shows generally 
better predictive performance in the experience condition. 
For a more fine-grained view of Fig. 5, Table S1 includes 
the group-level observed and predicted choice proportions 
for each individual gamble and for each model.

Interpreting Model Parameters  The posterior distributions 
for group- and person-level parameters from the A± variant 
of RL-CPT model are shown in Fig. 6. The group-level neg-
ative prediction error learning rate is larger than the group-
level positive prediction error learning rate (95% highest 
density interval [HDI] of A− − A+ = [0.13, 0.24]), which is 
consistent with previous literature and indicates risk-averse 
learning (Cox et al., 2015; Doll et al., 2009; Frank et al., 
2004, 2007; Gershman, 2015; Mihatsch & Neuneier, 2002; 
Niv et al., 2012). Furthermore, the magnitudes of the learn-
ing rates for positive (95% HDI of A+ = [0.19, 0.25]) and 
negative (95% HDI of A− = [0.35, 0.45]) prediction errors 
were consistent with what our simulations predicted based 
on previous studies. Specifically, traditional CPT modeling 
would indicate more overweighting of rare events in EBDs 
relative to DBDs given the absolute magnitude and the dif-
ferences between learning rates (Fig. 3, top panels), a find-
ing that is consistent with previous applications of CPT to 
these data (Kellen et al., 2016). Lastly, the valuation param-
eters from the RL-CPT resemble those classically found for 
DBDs—we found evidence for risk aversion (95% HDI of � 
= [0.61, 0.65]), loss aversion (95% HDI of � = [1.14, 1.35]), 
and overweighting of rare events (95% HDI of � = [0.62, 
0.72]). This indicates that the “traditional” overweighting of 
rare events from CPT may still be present in EBDs but that 
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Fig. 4   Comparison of competing models. Note. Relative difference 
in leave-one-out information criterion (LOOIC) between the best fit-
ting model and all other models within each gamble set, where lower 
LOOIC values indicate better model fit while penalizing for model 
complexity (see Table 1 for model notation and descriptions). Num-
bers in each row indicate the pseudo-BMA+ weights for each model 

within the given set. Sets 1 and 3 show the traditional description-
experience gap, and Sets 2 and 4 show a reversed gap (see Partici-
pants and Experiment section; Wulff et al., 2018). Error bars reflect 
±1 standard errors of the difference between the best fitting model 
within each gamble set and the respective competing model
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it is masked by the presence of asymmetric learning in the 
sampling process. The person-level posterior distributions 
demonstrate that there are strong individual differences in 
learning rates and valuation parameters alike, which pro-
vides further evidence against the assumption that people 
have perfect learning and memory during EBDs.

Discussion

In the current study, we used a combination of computa-
tional model simulations and empirical model fitting to show 
that preference differences between description- and expe-
rience-based gambles can be attributed to an asymmetric 
learning mechanism rather than context-dependent changes 
in psychological valuation across tasks. We developed a 
hybrid reinforcement learning and cumulative prospect 

theory (RL-CPT) model that used separate learning rates 
for positive and negative prediction errors and assumed that 
probabilities and outcomes are valued equivalently across 
DBDs and EBDs. Through Bayesian model comparison, we 
found that the A± variant of the RL-CPT model (Table 1) 
provided a better account of within-subject differences in 
DBDs versus EBDs compared with traditional CPT models 
that assume perfect learning and memory with differences 
in risk aversion, loss aversion, probability weighting, choice 
sensitivity, and probability elevation for gains and losses 
(i.e., saturated CPT).

Put together, the RL-CPT offers improved performance 
for EBDs without compromising performance on DBDs 
relative to traditional CPT models (Fig. 5). The RL-CPT 
with asymmetric learning also performed better than 
a competing instance-based memory model ( AIB from 
Table 1). While other studies have shown that learning 

Fig. 5   Posterior predictive distributions derived from CPT and RL-
CPT across description and experience. Note. Posterior predictive 
distributions for both CPT (the �Δ , �Δ , �Δ variant from Table 1), RL-
CPT ( A± from Table 1), and IB-CPT ( AIB from Table 1) for each of 
the 114 choice problems/gambles across description and experi-
ence. Pr(Choose B) indicates the proportion of participants choosing 
option B for each gamble. The dark red points indicate the in-sample 
(i.e., observed) Pr(Choose B). Note that gambles were reordered by 
the observed Pr(Choose B) within each condition for interpret-

ability. Light red points and intervals indicate the model-predicted 
means and 95% highest density intervals of Pr(Choose B), and the 
annotated text in each panel is the posterior mean and 95% HDI (in 
square brackets) for the correlation between observed and posterior-
predicted Pr(Choose B). The models are practically indistinguishable 
in the description condition, yet the RL-CPT exhibits generally more 
accurate predictions in the experience condition relative to both other 
models.
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and memory models can account for EBDs (Busemeyer & 
Myung, 1992; Erev & Roth, 1998; Estes, 1976; Gonzalez 
et al., 2011; Hau et al., 2008), they did not demonstrate 
any ability to capture the description-experience gap. To 
our knowledge, this is the first study to directly and quan-
titatively compare a variety of computational models that 
make explicit assumptions regarding how learning and 
memory can give rise to preference differences between 
DBDs and EBDs. This was only possible because the learn-
ing and memory models that we developed directly esti-
mate the payoff probabilities associated with each outcome, 
which allows for them to simultaneously capture decisions 
from both description- and experience-based tasks in a 
straightforward manner.

The RL-CPT ( A± variant) suggests that foundational 
cognitive biases, including risk aversion, loss aversion, and 
overweighting of rare events, hold true across both DBDs 
and EBDs when asymmetric learning during sampling in 
EBDs is accounted for (Fig. 6). Furthermore, our finding 
that people learn more rapidly from negative as opposed to 
positive predictions errors extends previous findings (Cox 
et al., 2015; Doll et al., 2009; Frank et al., 2004, 2007; Ger-
shman, 2015). A higher learning rate for negative as opposed 

to positive prediction errors produces “risk sensitive” deci-
sion-making (Mihatsch & Neuneier, 2002). Conceptually, it 
follows that typical CPT valuation parameters—which also 
capture risk sensitivity—could be poorly estimated in EBDs 
if asymmetric learning occurs. Indeed, our simulations con-
firmed this quantitatively, predicting that more rapid learn-
ing of negative relative to positive prediction errors will lead 
to an underestimation of probability weighting in EBDs rela-
tive to DBDs when using traditional CPT modeling (Fig. 3), 
which can explain contextual effects of more overweight-
ing of rare events in EBDs compared with DBDs (Glöckner 
et al., 2016; Kellen et al., 2016). To the extent that these 
learning rates vary across the lifespan, we might observe 
apparent differences between older and younger adults that 
are specific to experience-based decisions and physiologi-
cal measures (Rosenbaum et al., 2021). Responses to posi-
tive and negative surprises will impact not only probability 
weighting and value sensitivity but also measures like pupil 
dilation that are known to reflect the magnitude prediction 
errors during learning on these types of tasks (Braem et al., 
2015; Lavín et al., 2014).

Given previous findings that people learn more rapidly 
when experiencing intense negative rather than positive 

Fig. 6   Posterior distributions of group- and person-level RL-CPT 
parameters. Note. Posterior distributions for each group- and person-
level parameter from the A± variant of the RL-CPT. The group-level 
panels show the posterior density of the group-level mean for each 
parameter. The annotation on each panel represents that posterior 
mean and 95% HDI of the corresponding group-level mean param-
eter. Points and intervals for the bottom panel indicate the means and 
95% HDI for each of the person-level parameters. The dashed gray 

line is simply included as a visual reference, indicating 0.5 for the 
learning rates and 1 for the valuation/choice parameters. Note that the 
group-level valuation parameters are in the same direction as those 
found in Tversky and Kahneman’s (1992) original analyses of DBDs, 
indicating risk aversion ( 𝛼 < 1 ), loss aversion ( 𝜆 > 1 ), and over-
weighting of rare/low probability events ( 𝛾 < 1 ) across both DBDs 
and EBDs.
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affect (Haines et al., 2019), future research may explore 
the relationships between physiological states and learning 
throughout EBDs. Such studies may reveal insights into 
the known differences in risky decision-making between 
healthy and clinical populations (Ahn et al., 2014; Maner 
et al., 2007; Yechiam et al., 2005). Lastly, because both 
valuation and learning mechanisms interact to produce 
behavior, the competing effects of overweighting rare 
events and risk-averse learning may produce the expected-
value maximizing behavior that often is observed in EBDs 
(Wulff et al., 2018). Indeed, it is an open question why 
people make more choices that maximize expected value 
in EBDs relative to DBDs, and risk-averse learning mecha-
nisms may provide a partial explanation.

An important limitation of the current study is that the 
RL-CPT model does not predict participant’s sampling 
behavior, which means that it is not a full generative model 
of how people behave during EBDs. Part of the reason for 
this is that sampling behavior is intensely idiosyncratic, with 
information search varying according to momentary fluctua-
tions in experienced sample variance, participants working 
memory capacity, and sampling heuristics that vary widely 
across participants or even within a session (Kopsacheilis, 
2018). Despite this, models, including search or optional 
stopping rules, show promising results (Busemeyer, 1985; 
Markant et al., 2015; Wulff et al., 2019) and may be well-
suited to integrate with models, such as the RL-CPT. Nev-
ertheless, RL-CPT does account for variation in behavior 
across participants by leveraging the information that they 
gain across samples to estimate the learning rates (Eq. 8). 
Furthermore, the learning mechanism of the RL-CPT is gen-
eralizable in the sense that it can be applied to both sampling 
EBDs, repeated choice EBDs, and EBDs with more than two 
choices. Specifically, if each sample that participants draw 
is treated as a choice (i.e., preference judgement in Fig. 1), 
the probability estimates and resulting expected values on 
each sample (or trial in repeated choice tasks) can be used 
to estimate the likelihood of repeated, trial-by-trial choices 
for each choice option (Gershman, 2015; Haines et  al., 
2019; Niv et al., 2012). Therefore, we view the addition of 
an optional stopping rule as a task-specific extension, and 
not a competing mechanism, of the RL-CPT.

In summary, our findings suggest that future research 
on the description-experience gap should focus on learn-
ing, memory, search (i.e., during sampling), and optional 
stopping mechanisms, all of which could lead to deeper 
insights into human decision-making under risk. Addition-
ally, future studies could use experimental manipulations 
that are known to influence learning rates to determine 
if the RL-CPT can capture subsequent changes in risk 
preferences. More broadly, our findings demonstrate the 
benefits of using formal computational cognitive models 
of behavior to understand how individual differences at 

one level-of-analysis (e.g., psychological mechanisms) can 
affect inferences made at another level (e.g., behavioral 
differences). Computational modeling allowed us to merge 
different areas of research (i.e., reinforcement learning and 
risky decision-making) in a formalized, straightforward 
way, which led to circumscribed predictions regarding 
the relationship between psychological mechanisms (i.e., 
probability and outcome valuation), neural mechanisms 
(i.e., differential dopamine response to positive versus 
negative prediction errors), and an observed behavioral 
phenomenon (i.e., the description-experience gap). We 
then leveraged Bayesian model comparison of multiple 
competing theoretical models to determine which theory 
was most consistent with the data. This work therefore 
extends the past modeling work on the essential learning 
component of EBDs (Busemeyer & Myung, 1992; Erev 
& Roth, 1998; Gonzalez et al., 2011; Haines et al., 2018; 
Hau et al., 2008) in a theoretically motivated way to solve 
an empirical paradox.

Conclusions

Asymmetric learning offers causal mechanisms to explain 
the apparent changes in probability weighting—and 
valuation more generally—across both description- and 
experience-based decisions and different forms of expe-
rience-based decisions. Classic findings of risk-aversion, 
loss-aversion, and overweighting of rare events can apply 
for both description- and experience-based decisions, but 
only when asymmetric learning is appropriately incorpo-
rated. More work needs to be done to refine joint models of 
description and experience that are both predictively power-
ful and psychologically realistic with regard to mechanisms 
underlying learning and memory in addition to valuation 
and action selection. More broadly, computational models 
offer a formalized way to combine substantive theories from 
different areas of research, which can reveal simple rules 
underlying otherwise complex, context-dependent psycho-
logical effects inferred using theoretically inconsistent sta-
tistical procedures.
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