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Abstract

When making decisions based on probabilistic outcomes, people guide their behavior using knowledge gathered through
both indirect descriptions and direct experience. Paradoxically, how people obtain information significantly impacts appar-
ent preferences. A ubiquitous example is the description-experience gap: individuals seemingly overweight low probability
events when probabilities are described yet underweight them when probabilities must be experienced firsthand. A leading
explanation for this fundamental gap in decision-making is that probabilities are weighted differently when learned through
description relative to experience, yet a formal theoretical account of the mechanism responsible for such weighting differ-
ences remains elusive. We demonstrate how various learning and memory retention models incorporating neuroscientifically
motivated learning mechanisms can explain why probability weighting and valuation parameters often are found to vary
across description and experience. In a simulation study, we show how learning through experience can lead to systematically
biased estimates of probability weighting when using a traditional cumulative prospect theory model. We then use hierarchi-
cal Bayesian modeling and Bayesian model comparison to show how various learning and memory retention models capture
participants’ behavior over and above changes in outcome valuation and probability weighting, accounting for description
and experience-based decisions in a within-subject experiment. We conclude with a discussion of how substantive models
of psychological processes can lead to insights that heuristic statistical models fail to capture.

Keywords Description-experience gap - Risky decision-making - Learning and memory - Cumulative prospect theory -
Bayesian statistics

In modern life, we make numerous decisions between com-
peting options despite probabilistic outcomes and incom-
plete knowledge surrounding their potential outcomes.
Indeed, whether we are deciding between movies, car
insurance plans, or even serious medical procedures, we
frequently seek out statistics to help evaluate the probabil-
ity of various good or bad outcomes. In these situations, in
the absence of prior experience and where probabilities are
explicitly described (description-based decisions or DBDs),
people appear to act as if they overestimate or overweight
low probability events. This has led to the idea that people
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assign weights to explicitly described likelihoods, result-
ing in risk-seeking choices for low-probability gains due to
overweighting of rare events and risk-averse behavior for
high-probability gains due to underweighting of common
events (Kahneman & Tversky, 1979; Scholten & Read,
2014). Notably, this probability weighting bias has long
been thought to play a primary role in how people evaluate
real-world phenomena, including the prevalence rates for
rare causes of death (Lichtenstein et al., 1978), the value
of insurance policies for rare events (Friedman & Savage,
1948), and changes in preferences for political and economic
policies (Quattrone & Tversky, 1988).

Recently, however, it has become clear that the format
in which probabilities are presented to us can dramatically
affect our apparent preferences. Specifically, people act as
if they underweight low probabilities when they are learned
through experience (experience-based decision or EBD), a
paradoxical reversal of traditional probability weighting bias
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now termed the description-experience gap (Barron & Erev,
2003; Hertwig et al., 2004; Ungemach et al., 2009; Weber
et al., 2004; Wulff et al., 2018). Drawing from the examples
above, we would expect more people to purchase rare event
insurance or opt out of a medical procedure with rare harm-
ful side effects if they are making a decision based purely on
described probabilities rather than based on their previous
experiences of these events.

As inference on parameters derived from computational
models of both DBD and EBD tasks becomes increasingly
common to assess clinical (Ahn & Busemeyer, 2016; Mon-
tague et al., 2012), social (Chung et al., 2015), affective
(Eldar et al., 2016; Etkin et al., 2015), developmental (Ste-
ingroever et al., 2019), and medical decision-making (Lejar-
raga et al., 2016), it is becoming increasingly important that
we identify the potential mechanism(s) that gives rise to
the description-experience gap to ensure that variation in
key model parameters is driven by individual characteris-
tics (e.g., cognitive development, clinical status, personality
traits) rather than task-specific design choices. Therefore,
given the importance of the description-experience gap
for understanding real-world, human decision-making, we
aimed to develop an explanatory cognitive mechanism link-
ing preferences in DBDs to those of EBDs.

Mechanisms of the description-experience
gap

Although many explanations of the gap have been proposed,
three mechanisms in particular have been the focus of much
prior research: (1) reliance on small samples and sampling
bias when learning probabilities (i.e., sampling error), (2)
reliance on more recently experienced samples, and (3)
changes in the psychological representation of probabil-
ity (Figure 1; Fox & Hadar, 2006; Hertwig & Erev, 2009).
Regarding (1), the format of the tasks used to assess EBDs
(i.e., sampling paradigms with optional stopping) is such
that some participants either never or less frequently encoun-
ter the “rare event” when drawing samples from a choice
option, which naturally leads to apparent underweighting
of low probability events once making a choice (Hau et al.,
2010; Hertwig et al., 2004). Such biased sampling occurs
because rare event frequency follows a binomial distribution,
which is heavily skewed when few samples are drawn (i.e.,
n is low), meaning that the actual experienced proportion of
encounters with a given outcome will often be biased rela-
tive to the true outcome probability (Hertwig et al., 2004).
For similar reasons, (2) can lead to an apparent underweight-
ing because higher probability outcomes are more likely to
be recently observed relative to lower probability outcomes
in small sample settings, and people tend to place higher
weight on more recent outcomes or simply ignore or forget
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less recent outcomes when making EBDs (Hertwig et al.,
2004). Finally, although less parsimonious than (1) or (2),
(3) suggests that people evaluate probabilities differently
between tasks, assigning less weight to low-probability out-
comes in EBDs relative to DBDs (see Fig. 1 for a graphic
example). Ungemach et al. (2009) showed that when using
an experimental design to eliminate sampling bias (by
matching the experienced proportion of each outcome to its
respective objective probability of occurring), cumulative
prospect theory modeling still revealed underweighting of
rare events in EBDs. Many studies have since followed suit,
and a recent meta-analysis of more than 6,000 individual
participants draws similar conclusions (Wulff et al., 2018).
Altogether, available evidence suggests that sampling
biases and recency contribute to the description-experience
gap but also that probabilities or rewards are fundamentally
different when evaluated based on description compared
to experience (Hertwig & Erev, 2009; Kellen et al., 2016;
Waulff et al., 2018). This begs the question—how does con-
text affect something as fundamental to preferential deci-
sion-making as the value of rewards and probabilities?

Modeling the gap

In one of the first studies of its kind, Glockner et al. (2016)
examined differences in CPT valuation parameters between
description and experience tasks from multiple previous
studies and found that rare events carried more weight for
EBDs relative to DBDs—a reversal of the typical descrip-
tion-experience gap. Follow-up analyses revealed that the
type of gamble was a significant moderator of the size and
direction of the gap, such that analyses of “reduced” gam-
bles, including at least one certain option produced a tradi-
tional gap, and “nonreduced” gambles containing no cer-
tain options predicted a reversal of the gap (Glockner et al.,
2016)." Using a within-subject design, Kellen et al. (2016)
replicated and expanded Glockner et al.’s (2016) findings of
areversed description-experience gap by using hierarchical
Bayesian modeling of CPT parameters across more than 100
participants who underwent the same set of 114 gambles
for both description and experience presentations, conclud-
ing that “Our results suggest that outcome and probability
information translate into systematically different subjec-
tive representations in description- versus experience-based
choice.” (Kellen et al., 2016, p. 126). These foundational

! It is worth noting that this moderation of the description-experience
gap by reduced versus nonreduced gambles was not calculated by
using CPT probability weighting. Instead, it was calculated by using a
heuristic method and therefore relies on all of the assumptions about
learning/memory outlined in the following section.
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Fig. 1 Description- versus experience-based decisions. Note. Exam-
ples of description- versus experience-based decisions for a gam-
ble between winning $4 with probability 0.8 ($0 with probability
0.2) versus $3 for certain. As depicted, people tend to choose the
safe option when the probability is given. Conversely, when people
must sample both options to learn the probabilities of each outcome
(i.e., sampling paradigm), they tend to choose the risky option. Such
preference differences often are interpreted as differences in evaluat-
ing the probability of rare events. Multiple mechanisms have been

applications of CPT to model the description-experience
gap—which moved away from heuristic methods of testing
hypotheses in favor of more formalized, substantive models
of psychological processes—led to novel and counterin-
tuitive insights into a previously well-replicated behavioral
phenomenon.

Learning and memory as causal mechanisms

Similar to Regenwetter and Robinson (2017), we argue that
the most commonly used method of modeling EBDs with
CPT relies on a set of strong assumptions that introduce bias
into the estimation of probability weighting due to model
mis-specification. Specifically, to control for participants’
unique learning history in EBDs, the probability of each
outcome is assumed to be equal to the experienced pro-
portion of outcomes observed for each participant-gamble
pair (Camilleri & Newell, 2011; Glockner et al., 2016; Kel-
len et al., 2016). For example, if a person draws samples
€ {$4,%4,%4,8%0} for gamble g, the probability for each
outcome j is heuristically set to the empirical proportion
of samples that it was observed before CPT modeling (if
Jj = lindicates $4, and j = 2 indicates $0, then p,; = 0.75
and p,, = 0.25). However, this heuristic method implicitly
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proposed to explain this difference, including sampling error and
recency, which will lead to experienced probabilities that are different
from the true probabilities when people draw low numbers of sam-
ples (e.g., ~20) before making a contingent choice (i.e., preference
judgement). Alternatively, people may actually weight probabilities
differently between task presentations, which can be captured by the
y parameter from cumulative prospect theory. Specifically, y < 1 indi-
cates overweighting of rare events, whereas y > 1 indicates under-
weighting of rare events

makes three strong assumptions, all of which are difficult to
reconcile with learning and memory research:

(1) Learning and memory for all past samples is perfect;

(2) There are no individual differences in trial-by-trial
learning across participants; and

(3) Learning occurs through a single, static mechanism.

These assumptions are easier to scrutinize if we formalize
the implicit learning and memory models underlying them.
Note that readers can refer to Table 1 for an overview of the
model terms and interpretations while reading through the
next section.

If we assume learning progresses through a strength-
based learning mechanism, the following delta learning
rule is implied as samples are experienced (a.k.a., simplified
Rescorla-Wagner updating rule; Rescorla & Wagner, 1972):

Pgj i= Pgj tAX U5 =Py ) (D

which can be rewritten as follows to better correspond to
memory models that we discuss later on:

Pyj = (= A)Xpyj+ AXy @
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Table 1. Competing models and assumptions

Model name Assumed differences (and details)
CPT Base None
ap Risk sensitivity
An Loss sensitivity
VA Probability weighting
Ap, Ap Risk sensitivity and loss sensitivity
TN Risk sensitivity and probability weighting
VNS AN Loss sensitivity and probability weighting
Ap, Aps VA Risk sensitivity, loss sensitivity, and probability weighting
Aps Aps Vs Do Risk sensitivity, loss sensitivity, probability weighting, and choice sensitivity
@5, Aps Vo Pas Oy ps O_a Risk sensitivity, loss sensitivity, probability weighting, choice sensitivity,
and probability elevation for gains/losses
RL-CPT App Strength-based learning of p, ; during experience
A, Ap, (with separate learning rates for positive/negative prediction errors)
Ay, b, Ap, (with separate learning rates for positive/negative prediction errors and
probability elevation for gains/losses)
IB-CPT A Instance-based memory decay determines p, ; during experience
A, b, A, (with probability elevation for gains/losses)

CPT models all assume that the probability of each outcome (p, ;) is the objective proportion of samples, which resulted in the respective out-
come (i.e., perfect learning/memory). They differ with respect to which CPT parameters differ within-subjects across DBDs and EBDs. RL-CPT
models all assume that all CPT parameters are constant within-subjects across DBDs and EBDs and instead assume that p, ; is learned through
sampling for EBDs. Consequently, RL-CPT models assume that differences in preference judgements are wholly attributable to individual dif-
ferences in learning rather than valuation. However, we tested variants of RL-CPT where valuation parameters are allowed to vary across DBDs
and EBDs as in the CPT models, which are denoted by A. + subscripts denote models with separate positive and negative learning rates. IB-
CPT models are akin to RL-CPT models but assume that p,; is determined by an instance-based memory decay mechanism as opposed to the

strength-based learning mechanism assumed by the RL-CPT

Ais alearning rate, j indicates the outcome within a given
gamble g, s indicates the sample number, and is an indicator
that equals 1 or O if outcome j is observed or unobserved
on the given sample, respectively (Ahn et al., 2012; Haines
et al., 2019). In this formulation, irrespective to the initial
value for p, ;, if the learning rate is set such that A = - ! then
P, Will always be equivalent to the proportion of times that
outcome j is observed up to sample s, resulting in the same
behavioral predictions (perfect knowledge and memory of
all previous outcomes) as the heuristic CPT implementation.

We could equivalently formalize the heuristic CPT analy-
ses with an instance-based memory model (Gonzalez et al.,
2011). For example, if we assume that each encounter with
an outcome leaves a memory trace of that outcome, that each
trace decays exponentially in time (indexed by sample num-
ber) and that the salience of each outcome is determined by
the relative strength of its memory traces compared to traces
for alternative outcomes within the given choice option, then
we can use the following simplified decay memory rule to
generate outcome probabilities:

Mg 1= (1=A) ng;+ 1,5

= (©)
Pei Zi:] Mgk
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Here, n,; indicates the number of times that outcome j
has been observed for gamble g up to the current sample
s, (1 —A) is a memory trace decay rate, J is the number of
different outcomes that can be observed within the given
gamble, and /, ; , is the same indicator as described above. If
1-A)=1, then n, ; will always equal the objective number
of times that outcome Jj has been observed up to sample s,
and the summation (i.e. “blending”) will subsequently return
the proportion of times that outcome j is observed across
trials, akin to the delta learning rule above. Note that in this
specific setting, the delta learning and decay memory rules
are equivalent except that in the decay memory rule, the
experienced outcome is given a weight of 1 as opposed to
being weighted in proportion to the learning rate. There are
more general relationships between the delta and decay rule,
but they are not relevant for the current analyses (Turner,
2019).

Given these formal definitions, we now turn back to
assumptions 1-3 listed above. Assumptions (1) and (2) imply
that either A = 2 or A = 0 for all participants in the case
of the delta learnlng or decay memory rules, respectively,
thus giving equivalent weight to all experienced outcomes
irrespective to the time at which they were experienced.
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However, it is well known that people place higher weight on
more recent samples when making EBDs and that there are
substantial individual differences in learning rate or mem-
ory decay between people. In fact, individual differences in
learning rate or memory decay during EBDs are associated
with neurodegenerative disease status (Busemeyer & Stout,
2002), delinquent behavior (Yechiam et al., 2005), and age-
related changes in impulsive decision-making (Wood et al.,
2005). More generally, there is an extensive and longstand-
ing literature on the basic psychological mechanisms under-
lying frequency or probability learning that reveals biases
(e.g., toward recently experienced outcomes, attention to
wins versus losses, etc.) in how people estimate probabili-
ties or assign salience to outcomes (Estes, 1976; Gonzalez,
2013; Zacks & Hasher, 2002).

Regarding assumption (3), there is growing evidence
that people learn at different rates for positive versus nega-
tive surprises (i.e., prediction errors) or outcomes, which
can lead to risk-seeking or risk-averse behavior (Christakou
et al., 2013; Daw et al., 2002; Doll et al., 2009; Gershman,
2015; Haines et al., 2018; Niv et al., 2012; Turner, 2019). In
fact, the magnitude of such individual differences in learning
rates is genetically linked to striatal dopamine functioning
(Cox et al., 2015; Frank et al., 2004, 2007). Moreover, learn-
ing from positive outcomes is associated with Striatal D1
receptor density, whereas learning from negative outcomes
is associated with D2 receptor binding. Although both are
modulated by dopamine, this dissociation implies that the
two components of learning—positive and negative—cor-
respond to physiologically (Cox et al., 2015) and genetically
(Frank et al., 2007) distinct processes. Converging evidence
from fMRI BOLD analyses showed that manipulations of
reward variance led to distinct prediction error signals in
nucleus accumbens corresponding to rates of positive and
negative prediction errors, favoring a model with distinct
positive and negative learning rates (Niv et al., 2012).

Current study

Altogether, most approaches to studying the description-expe-
rience gap assume that people have optimal learning rates,
decay-free memory representations of experienced outcome
frequencies (which we term “imperfect learning and mem-
ory”), and no individual differences in learning or decay rates.
These tenuous assumptions can both lead to biased inferences
on performance differences between DBDs and EBDs when
using the heuristic CPT method. Furthermore, there is grow-
ing neural and behavioral evidence that people learn asym-
metrically from positive versus negative predictions errors.
As demonstrated in Fig. 2, such biased learning can partially

explain changes in behavior consistent with the description-
experience gap, yet typical approaches to modeling the gap fail
to account for asymmetric learning.

We examined the consequences of removing these assump-
tions by integrating learning and memory models with deci-
sion-making theories. Our core argument is that, rather than
estimating additional parameters in the CPT utility function
to describe the description-experience gap, it is more fruitful
to explain the gap by identifying and modeling psychological
learning or memory mechanism(s) that lead to preference dif-
ferences across description and experience. To do so, we first
conduct a simulation study to determine how individual dif-
ferences in learning during the sampling phase of EBDs (and
asymmetric learning in particular) can bias CPT parameters
when using the heuristic method that assumes no learning or
memory effects. Next, we develop a variety of computational
models that instantiate different learning or memory mecha-
nisms and determine which model provides the best joint sta-
tistical account of behavior in DBDs and EBDs. This latter
model comparison approach allowed us to test specific hypoth-
eses regarding differences between DBD and EBD tasks,
including whether the proposed learning mechanism described
true behavior better than CPT models assuming differences in
probability weighting, risk aversion, or loss aversion in addi-
tion to other mechanism we describe below.

Inspired by the results of our simulation study, we next fit
a series of competing models to empirical within-subject data
collected from 104 participants across 114 unique descrip-
tion- and experience-based gambles to determine the degree to
which people engage in behavior consistent with the integrated
learning and decision-making models we propose.

Finally, we conclude with a discussion of how formaliz-
ing and quantitatively comparing competing hypotheses can
enhance our understanding of complex psychological phe-
nomena in a way not afforded by experimental design alone.
We begin below with a mathematical overview of the models
used throughout both our simulation and empirical study.

Mathematical models
Cumulative prospect theory

The core of CPT contains three main parameters, namely:
(1) probability weighting y(0 < y < 5), risk sensitivity
a(0 < a < 5), and loss sensitivity A(0 < A < 10). Note that
full CPT model typically includes separate probability
weighting and risk sensitivity parameters for losses versus
gains, but we use a single parameter across gain and loss
domains (i.e., restricted CPT) due to known parameter esti-
mation problems (Nilsson et al., 2011). Also, there are no
theoretical upper bounds on CPT parameters (y, a, 1). Practi-
cally, however, values greater than the upper bounds above

@ Springer
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Fig.2 Effect of asymmetric learning on probability estimation. Note.
Model-predicted probability of the high outcome [Pr(H)] occurring
for both the “reduced” gamble (i.e., one option is certain and the
other risky/probabilistic) exemplified in Fig. 1 and another “nonre-
duced” gamble (i.e., both options are probabilistic/risky). To gener-
ate sample-to-sample probabilities, we used a simple strength-based
reinforcement learning model with separate learning rates for posi-
tive (A,) and negative (A_) prediction errors (see Eq. 8 in the Method
section), where option A and B were sampled with equal probabil-
ity. All outcome probabilities are updated after each sample in pro-
portion to both the difference between the expected and actual out-
come (prediction error) and the learning rate—we show only Pr(H)

are rarely or never encountered (as parameter values further
exceed these bounds, model predictions remain the same), so
we set the bounds to make for more efficient estimation (see
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for visual purposes. Panels denote each combination of A, and A_
with values of 0.1, 0.3, and 0.5, and shaded intervals around predicted
values indicate +2 standard errors of the mean across repeated itera-
tions. The shaded region highlights the first 20 samples. Probability
estimates converge to true values for certain options (irrespective to
the learning rates), but converge to biased estimates when outcomes
are probabilistic and learning rates are not equivalent. Additionally,
effects of sampling error and recency are apparent even when learn-
ing rates are equivalent, where the random nature of the sampling
process has not yet allowed for learning to converge to the true out-
come probability and estimates are subsequently biased toward 0.5.
The Supplement details how we generated the above predictions

Nilsson et al., 2011). We show in Figure S4 that this choice
did not bias our results. Each parameter captures system-
atic deviations of an individual’s choices from the objective
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expected value of each gamble—which we refer to as the
subjective value (V,)—given as’:

Ve = Z W(ng ) Ulx,)) 4

J=1

P, and x ; are the probability (e.g., 0.8) and objective payoff
value (e.g., $4) for each possible outcome j within a given
gamble g. CPT assumes that people subjectively weight the
probability of each outcome such that:

Y
ng

Wp )= —
(SJ) PZ,J-"'(] _ng)V

&)

Here, values for y < 1 indicate overweighting of low-
probability events and values for y > 1indicate underweight-
ing of low probability events (Fig. 1). y has the opposite
interpretation for high probability events (Fig. 1). Note also
that Eq. 5 is a single-parameter version of Goldstein and Ein-
horn’s (1987) probability weighting function (Karmarkar,
1978; Gonzalez & Wu, 1999), which is different from the
original CPT probability weighting in that it is symmetric
around the objective probability (i.e., omitting the 1 /y expo-
nent on the denominator). We used this single-parameter
version, because we were most interested in changes in prob-
ability weighting rather than probability elevation. The sym-
metry allows for easier interpretation compared with CPT’s
original instantiation.’ Importantly, Eq. 5 is a key component
of CPT, which is necessary to capture the well-known four-
fold pattern of risk attitudes (Tversky & Kahneman, 1992).

Additionally, CPT assumes that payoff values are evalu-
ated nonlinearly such that the subjective utility of x,; is
given by

xgj if Xoj = 0
U(xgi) = N i
: _7”|xg,/‘| , otherwise

(6)

where values for @ < 1indicate risk-aversion (i.e., insensitiv-
ity to differences between large-magnitude values), and val-
ues for @ > 1 indicate risk-seeking behavior. Loss-aversion
is captured by 4 > 1 (i.e., losses are weighted more heavily

3 For modeling empirical data, we conducted a sensitivity analysis by
testing the classic probability weighting function of CPT (i.e., includ-
ing the 1/y exponent on the denominator). Results were consistent
with the original parameterization, but we report the symmetric ver-
sion here due to the more simplistic interpretation. We additionally
tested a model including probability elevation parameters for gains
and losses, which did not substantially improve model fit. Therefore,
we relegate discussion of models with probability elevation to the
Supplementary Text for brevity.

2 Note that we do not include problem and participant indices to
facilitate readability. Fully written out, the probability of outcome j,
within gamble g, within problem p, and for participant ., would be
indicated by p; , . !

than gains), whereas loss-seeking is captured by A < 1.
Hence, the subjective value V, in Eq. 4 is computed as a
weighted sum of probability weights and subjective utilities
for each gamble.

Although the original CPT model is deterministic, we
employ a commonly used probabilistic choice rule to con-
vert the subjective values for each option (from Eq. 4) to
expected choice probabilities that sum to one (Stott, 2006).
Specifically, we use a multinomial logistic function—also
known as the softmax function—which is closely related to
the Luce choice rule:

exp(¢p X V,)

Pr|Choice =g| = ————
[ ] Zi=1 exp(¢p X V)

(N

Here, the probability (Pr) of choosing gamble g is deter-
mined as a function of its subjective value V, relative to all
K gambles available within the current problem. Note that
we focus only on choices where two competing gambles are
considered. The choice sensitivity parameter ¢p(0 < ¢ < o0)
controls how deterministically (larger ¢») versus randomly
(smaller ¢) an individual makes choices according to the
subjective value V, of each gamble. For the simulation study,
we set ¢ = 1 for convenience and did not estimate it as a free
parameter. For the empirical study, we estimated ¢ as a free
parameter. Our use of the logistic choice rule as opposed to
the original Luce choice rule allows for the model to capture
individual differences in maximization behavior through the
use of the choice sensitivity parameter (¢). The Luce choice

rule of the form Pr [Choice = g] =3 ”'V is scale invariant,
k=1"k
such that multiplying each V term by a constant factor (i.e.

a choice sensitivity or inverse temperature parameter) has
no effect on the resulting probabilities. Additionally, the
logistic rule has many practical benefits—namely, it (1) is a
key component of many models of EBDs that generalize
well to novel data (Erev et al., 2010); (2) captures variation
in choice across multiple decision domains (Friedman &
Massaro, 1998); and (3) is a well-studied probabilistic exten-
sion of traditional CPT (Nilsson et al., 2011).

Reinforcement learning CPT hybrid model

The RL-CPT model extends CPT from pure description-
based tasks into experience-based tasks by assuming that the
probability (p, ;) for each choice outcome is learned through
experience during sampling for EBDs. Therefore, RL-CPT
assumes that traditional CPT parameters (y, a, 1) are equiva-
lent across DBDs and EBDs. Any differences in preferences
between tasks are captured by the effects of a dynamic learn-
ing mechanism. When Pej is given (i.e., DBDs), the RL-
CPT model simply reduces to traditional CPT, with a single
set of valuation parameters estimated for each participant.
Conversely, when p, ; is not given, the RL-CPT learns p, ;
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through repeated sampling using the strength-based learn-
ing rule described in the introduction (Egs. 1-2). Specifi-
cally, we assume that p,; = 0.5 once the given outcome is
observed—indicating maximum uncertainty—and is then
updated after each sample s with a different learning rate
depending on whether the observed outcome is better or
worse than expected. If outcome j is not observed while
sampling option g, then p, ; remains at 0 and the outcome
subsequently plays no role in the final preference judge-
ment. Additionally, we assumed that, if one outcome has
already been observed such that p, , has already taken on
some value different from O or 0.5, then upon observing
outcome p, , for the first time, updating begins from1 —p, ,
rather than from 0.5. Setting the initial values for p, ; in this
way assumes that people keep track of how likely various
outcomes within a given option are relative to one another,
such that if one outcome is very common, the other must be
rare and vice versa. Furthermore, this scheme ensures that
if people observe more than one outcome for a given option,
that the outcome probabilities sum to 1 (i.e., p, | +p,, = D).
The learning rule is then:

. - Apx (I,
VJEJ,ng '_pg‘j+{A_X (Ig’i’s

_ng>’ it PE>0
—ng), Otherwise ®)

A,(0<A, <1)and A_(0 < A_ < 1) are learning rates
for positive and negative prediction errors, respectively,
and PE = U(outcome,) — V, is the prediction error gen-
erated after observing the outcome of sample s. The first
term, U(outcome,), is the utility (Eq. 6) of the experienced
outcome upon drawing sample s. Then, V, is the expected
value (Eq. 4) for gamble g that was sampled. Intuitively, the
learning rule described by Eq. 8 assumes that people update
their expectations for how likely each outcome is to occur
differently based on whether the observed outcome was bet-
ter (PE > 0) or worse (PE < 0) than expected. If A, =A_,
then Eq. 8 is identical to the single learning rate learning
rule described in the introduction (Eq. 1). However, when
A, < A_, higher negative relative to positive learning rates
leads to an underestimation of the high outcome probability
and therefore produces risk-averse behavior.

After iterating through each sample a participant draws
before making a choice, the resulting p, ; estimates from
Eq. 8 are entered into Eq. 5. This explicit learning mecha-
nism contrasts the traditional heuristic analyses of EBDs,
where p,; is simply set to the experienced proportion of
each outcome (Glockner et al., 2016; Kellen et al., 2016).
As we described in detail in the introduction, the heuristic
method of setting p, ; to the experienced proportion of each
outcome is analytically equivalent to a special case of the
RL-CPT model wherein A, = A_ = 1 This mathematical
correspondence allows us to find evidence for traditional
probability weighting and mean-tracking models (described
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below) as special/nested cases of the RL-CPT model. All
other aspects of RL-CPT are equivalent to standard CPT.

The RL-CPT differs from other learning and memory
models of EBDs in two important ways. First, learning
and memory models including the scanning model (Estes,
1976), Value-updating Model (Hau et al., 2008), Decay-
reinforcement model (Erev & Roth, 1998), delta-rule learn-
ing model (Busemeyer & Myung, 1992), prospect valence
learning model (Ahn et al, 2008), and the ACT-R inspired
Instance-Based Learning model (Gonzalez et al., 2011) do
not directly estimate probabilities. Instead, they assume that
people either learn the expected average return of an option
(in the case of learning models) or sample memory traces
of previously encountered stimuli to evaluate the relative
frequency of potential outcomes (in the case of memory
models). By contrast, the RL-CPT model assumes that peo-
ple directly learn the probability of each outcome occur-
ring before integrating probabilities with their respective
outcome values (see also Haines et al., 2018). Despite mak-
ing different mechanistic assumptions, models that update
toward the average value of an option (e.g., the delta-rule
learning model) produce the same behavioral predictions
as a special case of the RL-CPT, where learning rates are
equivalent (A, =A_) and all CPT valuation parameters
(y,a, A) are set to 1. In this reduced case, the RL-CPT model
will update toward the objective expected value of an option.
More generally, the explicit tracking of probabilities in the
RL-CPT is necessary to both: (1) model DBDs, which ask
people to integrate potential outcomes with their explicitly
given probabilities; and (2) compare probability weighting
across DBDs and EBDs. Therefore, the RL-CPT can only
be compared with the above learning and memory models
in the context of EBDs, because other learning and memory
models do not make clear predictions for DBDs. However,
because memory decay is a reasonable competing expla-
nation for differences between DBDs and EBDs, we also
tested an instance-based model that estimates outcome prob-
abilities using a memory decay mechanism as a competing
mechanism to the RL-CPT model. We describe this model
in the next section.

Second, the RL-CPT includes a pair of learning rates to
account for asymmetric learning of positive versus negative
predictions errors (Gershman, 2015; Mihatsch & Neuneier,
2002; Niv et al., 2012), whereas the abovementioned mod-
els contain only a single learning or memory decay mecha-
nism. The asymmetric learning mechanism in the RL-CPT
is qualitatively different from attention mechanisms in other
models, which assume that people differentially attend to
gains versus losses (Busemeyer & Stout, 2002; Estes, 1976).
Specifically, because the learning rate is dependent on the
sign of the sample-to-sample prediction error rather than the
outcome domain (Eq. 8), a learning asymmetry can lead to
biased probability expectations within any domain (e.g., for
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gains, losses, or mixed gambles). Conversely, asymmetric
attention to gains versus losses is necessarily a between-
domain effect.

In summary, the RL-CPT can produce biased expecta-
tions of outcome probabilities (Fig. 2), which allows it to
account for preference differences between DBDs and EBDs
in a way that alternative models are unable to capture. Fur-
thermore, because traditional CPT characterizes risk sen-
sitivity through valuation parameters alone, it follows that
any changes in risky behavior resulting from an asymmetric
learning mechanism may lead to biased inferences in CPT
valuation parameters.

Instance-based memory CPT hybrid model

As a competing mechanism to strength-based updating
rule in the RL-CPT, we also developed an instance-based
memory and CPT hybrid model (IB-CPT) that estimates the
probability (p, ;) for each choice outcome in EBDs using
the memory decay plus normalization step described in the
introduction (Eq. 3). From the instance-based perspective,
P, is thought of as the memory salience of a given out-
come relative to other possible outcomes. All other aspects
of the IB-CPT model are equivalent to the RL-CPT model
described above—traditional CPT parameters (y, a, A) are
assumed to be equivalent across DBDs and EBDs, and dif-
ferences in preferences between contexts are captured by
the effects of the dynamic memory decay mechanism. As
described in the introduction, the memory decay rule in the
IB-CPT reduces to the heuristic CPT implementation when
the memory decay rate A is set to 0.

Despite sharing core features with other instance-based
models, the IB-CPT differs from other instance-based mod-
els in one important way. For example, the Instance-Based
Learning model is one extant model that assumes that peo-
ple multiply (i.e. “blend”) probabilities and their respective
outcomes to determine the subjective value for each gamble
(Gonzalez et al., 2011). The probabilities are determined by
sampling memory traces of experienced outcomes, which
allows the model to capture deviations of individuals’
choices from the objective expected value of each gamble—
the use of memory decay and “blending” to arrive at out-
come probabilities and expected values is equivalent to our
formulation of the IB-CPT. For DBDs, however, the mem-
ory trace sampling process in the Instance-Based Learning
model drops out of the equation (there are no prior experi-
ences to sample), reducing to a simple expected value model
which assumes that people make choices to maximize the
objective expected value of each pair of gambles. Because
this assumption is: (1) inconsistent with research on DBDs,
(2) is contained as a special case of the CPT model that we
tested (wheny = « = 4 = 1), and (3) extends to all instance-
based models described above, we did not test Gonzalez

et al.’s (2011) specific implementation of an instance-based
learning model in the current study, opting instead for the
formulation of the IB-CPT described above.

In summary, the traditional CPT, RL-CPT, and IB-CPT
models are all equivalent in the context of DBDs, but they
differ in how they assume people learn to integrate experi-
enced outcomes into their decision process in the context of
EBDs. Therefore, comparing the models allows us to deter-
mine how well each of the proposed learning and memory
mechanisms can account for the description-experience gap.
Before fitting the models to empirical data, however, we
conducted a simulation study to determine what the heuristic
CPT analyses will reveal if data are actually generated by the
learning model instantiated by the RL-CPT.

Simulation study

We focus our simulations on the RL-CPT due to the relation-
ships between asymmetric learning and risk aversion, which
could drive differences in probability weighting (and out-
come valuation more generally) between DBDs and EBDs.
However, we emphasize that memory decay in the IB-CPT
could give rise to similarly biased estimates.

For our simulation study, we first simulated both descrip-
tion- and experience-based choices from the RL-CPT model
by using a single set of CPT parameters with separate posi-
tive and negative learning rates. Next, we fit the simulated
data with a traditional CPT model by using the heuristic
method of setting p, ; to the experienced proportion of rare
events. The traditional CPT model assumed differences in
probability weighting (y), risk sensitivity (), and loss sen-
sitivity (1) between DBDs and EBDs, which is consistent
with previous computational analyses of the description-
experience gap (Glockner et al., 2016; Kellen et al., 2016).
With this design, any preference differences inferred across
DBDs and EBDs are wholly attributable to the proposed
learning mechanism as opposed to true differences in CPT
valuation parameters. Furthermore, by keeping the valua-
tion parameters constant while varying the learning rates,
we were able to determine exactly how much (and in what
direction) learning during EBDs could bias traditional CPT
valuation parameters in the context of EBDs.

Simulation experiment design

The problem set used for the simulation study was taken
directly from Kellen et al. (2016), and we refer the reader
to the original study for details (see Table S1 for all gam-
ble pairs). We used this specific problem set, because it
encompasses gambles used in many studies on both DBDs
and EBDs, many of which were selected for estimating
important parameters in CPT. Briefly, there are 114 differ-
ent gambles, where each gamble was used for description
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(i.e., a one-shot preference judgement) and experience (i.e.,
repeated sampling before preference judgement). Individual
gambles include those that were:

(1) wused in original studies on the description-experience
gap,

(2) randomly generated across gain, loss, and mixed gains
and loss domains,

(3) selected to measure loss and risk aversion,

(4) used in previous EBD studies,

(5) a mix between those with safe versus risky options
(reduced gambles), and

(6) those composed of two risky options (nonreduced gam-
bles).

Because previous studies suggest that the description-
experience gap may vary across reduced and nonreduced
gambles (Glockner et al., 2016), we ran separate simulations
for the reduced and nonreduced sets of gambles from Kel-
len et al. (2016) to determine whether asymmetric learning
could account for such differences.

Simulation model specification

We generated pseudo-participants’ person-level RL-
CPT valuation parameters by using random draws from
group-level normal distributions with means of «, = 0.88,
/1” =2.25, and Yu = 0.65, and with SDs of a, = 4, = 0.10
and y, =~ 0.3 (see Supplementary Text for full details).
Note that these specific group-level means were chosen to
match those estimated in the original CPT study (Tversky
& Kahneman, 1992), and SDs were chosen to ensure a real-
istic amount of variability across individuals. For learning
rates, we generated a grid of all possible combinations of
group-level learning rates for A, € {0.25,0.5,0.75} and
A_ €{0.05,0.15,...,0.95}, totaling 30 unique group-level
combinations. Additionally, we simulated choices (i.e., pref-
erence judgements in Fig. 1) after pseudo-subjects drew
either 19 or 99 total random samples from either choice
option, where Eq. 8 was used to update p, ; after each sam-
ple. We chose these specific sample sizes based on both
meta-analytic estimates of the number of samples typi-
cally drawn during free sampling (Wulff et al., 2018) and
to determine whether effects change when a larger number
of samples are drawn. Finally, we simulated data separately
for reduced (71,,4,..q = 19) and nonreduced (n,,,,,,guceq = 95)
sets of gambles. Altogether, the simulations amounted to a
30x 2 X 2 design (i.e., learning rates by sample size by gam-
ble type), where each cell is a full set of simulated choices
across 100 pseudo-participants. We refer the reader to the
Supplement for more specific details on simulation model
parameters.

@ Springer

Simulation results

Probability weighting Figure 3 shows that asymmet-
ric learning leads to biased estimates of CPT probability
weighting (y) when using the traditional heuristic method
of setting p, ; to the experienced proportion of outcomes
observed within participant-gamble pairs.* For reduced gam-
bles, probability weighting for EBDs—but not DBDs—is
significantly biased by asymmetric learning in small sample
settings, such that it is overestimated when learning occurs
more rapidly for positive prediction errors and underesti-
mated when learning occurs more rapidly for negative pre-
diction errors. Furthermore, as participants draw more sam-
ples, the effect reverses such that more rapid learning from
negative prediction errors leads to overestimation of prob-
ability weighting in EBDs. We did not observe this differen-
tial bias when both learning rates were closer to 1, in which
case EBD probability weighting (y) was more consistently
overestimated. Because the overestimate was close toy = 1,
these results may reflect uncertainty in estimates caused by
rapid updating (i.e., high variation) of the outcome probabil-
ity that, on average, will tend to drive estimates toward 0.5.

The results are different for nonreduced gambles, which lead
to more consistent overestimation of probability weighting
for EBDs in small sample settings (except when learning
rates are lower and equal, or A, = A_ = 0.25). In larger sam-
ples, however, nonreduced gambles tend to produce accurate
recovery of probability weighting estimates when learning
rates are equivalent, but biased estimates when learning is
asymmetric (where the direction of bias depends on the
strength of both learning rates).

Figure 3 suggests that if people do learn asymmetrically
from positive versus negative prediction errors, then (1) a
single pair of learning rates can lead to biased probability
weighting estimates for EBDs using traditional CPT mod-
eling, and (2) the same pair of learning rates has different
effects on probability weighting estimates across reduced
and nonreduced sets of gambles (i.e., “contextual” effects),
where the direction of the bias is dependent on the num-
ber of samples that participants draw. For example, in small
sample settings when both learning rates are approximately
0.5, traditional CPT modeling leads to linear probability
weighting (y = 1) for reduced gambles, but apparent over-
weighting of rare events (y < 1) for nonreduced gambles.

4 Effects of asymmetric learning on a and A are shown in Supplemen-
tary Figures S1 and S2.
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Fig. 3 Biases in experience-based CPT probability weighting (y) esti-
mates. Note. Estimates for group-level CPT probability weighting in
DBDs and EBDs when setting p,; to the experienced proportion of
rare events. Because y was left unchanged across all simulations of
the RL-CPT, all deviance between EBD probability estimates and the
true values reflect biases induced by the asymmetric learning mech-
anism (Eq. 8). For reduced gambles, when learning rates are gener-
ally lower (i.e. <0.5) and participants draw fewer samples, y is over-
estimated (underestimated) when learning occurs more rapidly for
positive (negative) prediction errors. Importantly, this effect reverses
in larger sample settings, revealing an interaction between learn-
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ing asymmetry and sample size. For nonreduced gambles, probabil-
ity weighting is more consistently overestimated across all levels of
learning rates relative to reduced gambles only (particularly in small
sample settings), leading to apparent underweighting of rare events
for EBDs relative to DBDs in the absence of a true difference in prob-
ability weighting. Therefore, the same pair of learning rates can lead
to different biases in probability weighting across reduced and nonre-
duced gambles for EBDs, particularly in small sample settings (cf. A,
=0.25 and A, = 0.5 across reduced and nonreduced gambles). Shad-
ing indicates the 95% HDI of the posterior estimate
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Risk aversion Figures S1 and S2 show traditional CPT esti-
mates of risk- and loss-aversion between description and
experience generated by participants who learn at different
rates for positive and negative prediction errors. For risk-
aversion, two general trends are worth noting. First, « is
consistently underestimated for experience-based decisions
(EBDs), whereas it is accurately estimated for description-
based decisions (DBDs). A small exception is that for non-
reduced gambles, there is a tendency for a to be slightly
underestimated even for DBDs. Second, across both reduced
and nonreduced sets of gambles, biased estimates of a are
most extreme when both learning rates are low (i.e., <0.25),
become less pronounced as learning rates become more
rapid (i.e. >0.25), and sometimes become more biased as
learning again becomes more rapid (i.e. both learning rates
>0.75). However, this latter trend is minor.

Loss aversion Results were different for loss-aversion. For
reduced gambles, A is consistently underestimated when
both learning rates are low (i.e., <0.25) but becomes bet-
ter estimated as the negative prediction error learning rate
(A_) becomes increasingly large. Furthermore, as the posi-
tive prediction error learning rate (A, ) increases, A becomes
increasingly underestimated irrespective to A_. Conversely,
for nonreduced gambles, A estimates showed the oppo-
site pattern, where 4 is increasingly underestimated as A_
becomes increasingly large. Overall, like for @, A is gener-
ally underestimated for EBDs, particularly for nonreduced
gambles where A often is estimated to be less than 1. In
fact, such apparent reversals of loss aversion (i.e., A < 1) in
nonreduced EBDs may explain the apparent loss-seeking
behavior found in studies that use prospect theory valuation
functions to model EBDs (Ahn et al., 2014).

Interim summary of simulation study

Our simulation study confirmed that if people do learn in a way
consistent with the RL-CPT while sampling gambles (i.e., they
are most sensitive to recent outcomes and update expectations
differently based on whether outcomes were better or worse
than expected), then heuristic applications of CPT are bound
to reveal differences in valuation parameters across DBDs and
EBDs even when there are no true differences in valuation.
Furthermore, the direction and magnitude of this bias is not
initially intuitive—it is dependent on both the average value
of learning rates, the magnitude of the difference in learning
from positive versus negative predictions errors, the number
of samples that a person draws, and features of the specific
gambles that people are given (i.e., reduced vs. nonreduced).
However, as opposed to designing an experimental manipu-
lation to control these various factors to explore the descrip-
tion-experience gap, we can explicitly model the learning and
memory mechanisms underlying EBDs to identify potential
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invariances in valuation between DBDs and EBDs. Without an
explicit model of learning, we risk misinterpreting CPT valu-
ation parameters estimated in the context of EBDs due to our
inability to experimentally control for complex learning and
memory effects. Following this rationale, we next conducted a
model comparison study using empirical data to determine the
extent to which asymmetric learning captures observed within-
person preference differences between DBDs and EBDs. For
empirical model comparisons, we include the IB-CPT model
as a competing learning/memory mechanism to the RL-CPT.

Empirical study
Participants and experiment

For the empirical study, we used actual participant data
from Kellen et al. (2016). A total of 104 participants under-
went all 114 description- and experience-based gambles
as described above (see Simulation Experiment). We refer
readers to the original study for more details on partici-
pants’ characteristics, and provide summary statistics for
the choice proportions within description and experience
for each pair of gambles in Table S1. For description-based
gambles, participants were presented with gamble pairs one
at a time, and they were instructed to choose the option that
they preferred. For experience-based gambles, participants
were allowed to sample from each option in whatever order
and for how ever many trials they preferred before mak-
ing a final preference judgement. Importantly, the order of
description and experience was counterbalanced across par-
ticipants, and the description and experience sessions were
separated by at least one full week within each participant
to minimize potential order effects. For EBDs, participants
drew an average of 21.04 (SD = 9.4) samples before mak-
ing a contingent choice (i.e., preference judgement). Previ-
ous CPT modeling of these data revealed an overweighting
of rare events in EBDs relative to DBDs (i.e., vz <7p < 1;
Kellen et al., 2016). Our simulations above indicated that an
asymmetric learning mechanism could produce this over-
weighting result if: (1) learning rates are both below 0.75;
(2) people learn more rapidly from negative relative to posi-
tive prediction errors; and (3) people draw around 20 sam-
ples on average (see the top row in Fig. 3). Conversely, the
traditional description-experience gap arising from appar-
ent underweighting of rare events in EBDs can occur if: (1)
learning rates are both >0.75, (2) people learn more rapidly
from positive relative to negative prediction errors and draw
around 20 samples (see the bottom panel in Fig. 3), or (3)
people learning more rapidly from negative prediction errors
and draw a large number (~100) of samples.

Although Kellen et al. (2016) found a reversal of the tra-
ditional description-experience gap in their aggregate data
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using CPT modeling, noncomputational analyses (i.e., those
relying on the heuristic prediction-focused method critiqued
by Regenwetter and Robinson 2017) of their data reveal the
traditional description-experience gap as reported by Her-
twig et al. (2004). As we described in our simulation study,
Kellen et al.’s dataset contains four distinct sets of gambles.
Waulff et al. (2018) showed in their meta-analysis that two of
these gamble sets show a traditional description-experience
gap when analyzed separately: (a) Set 1, which is comprised
of the gambles used in the original work by Hertwig et al.
(2004) on the description-experience gap, and (b) Set 3,
which is comprised of gambles that were chosen to optimize
estimation of risk and loss aversion.

This finding that the same exact participants show varia-
tion in both the magnitude and direction of the description-
experience gap across different sets of gambles is consistent
with our simulation study—the contextual nature of learning
during EBDs gives rise to apparent differences in valuation
across different sets of gambles despite the underlying cog-
nitive mechanisms being invariant. Although experimental
designs such as the matched sampling paradigm can partially
control for these factors, they still succumb to the unrealistic
assumptions described in the introduction (i.e., perfect learn-
ing and memory). Therefore, we compared various models
that make explicit assumptions about learning and memory
during sampling on the dataset as a whole and individually to
each of the four sets. We compared models both across and
within sets to determine whether the same model (or class of
model) could best capture performance across gambles that do
versus do not show the traditional description-experience gap.

Competing model specifications

We developed three classes of competing models to deter-
mine which cognitive mechanisms provided the best sta-
tistical account of within-person preference differences
between DBDs and EBDs. Table 1 describes each of the
models considered in the current study, which we describe
in more detail below.

CPT models First, we fit an array of traditional CPT models
using the heuristic method of setting p, ; to the proportion of
samples that it was experienced for the given participant. To
determine which particular valuation mechanism best accounted
for preference differences between DBDs and EBDs according
to traditional CPT, we developed models for each combination
of differences in probability weighting, risk sensitivity, loss sen-
sitivity, choice sensitivity, or probability elevation for positive
and negative outcomes (described in more detail below). We also
developed a base model that assumed CPT valuation parameters
were identical within-participants across tasks. Of the CPT mod-
els, we were particularly interested in the variant with different
valuation parameters across DBDs and EBDs (model a s, A4, ¥

in Table 1). This model is theoretically important because, as out-
lined in the introduction, prior research has suggested that differ-
ences in risk sensitivity, loss sensitivity, or probability weighting
could explain the description-experience gap.

RL-CPT models Second, we tested three different variants of
the RL-CPT model, including a version with a single learn-
ing rate for positive and negative prediction errors, a version
with a different learning rate for each positive and negative
prediction errors, and a version that includes probability
elevation parameters (see section below titled The Role of
Probability Elevation). Throughout our results, we focus
our attention on the RL-CPT variant used in our simulation
study (model A, in Table 1) due to its theoretical relevance.

IB-CPT models Third, we tested two variants of the IB-CPT
model, including the version described in the introduction
(i.e., a memory decay rate with a single set of valuation
parameters across description and experience; model A, in
Table 1) in addition to one with probability elevation param-
eters. As with the RL-CPT model, we focus attention on the
A, variant due to its theoretical relevance.

The role of probability elevation Although we did not con-
sider it in our simulation study, we tested variants of Kellen
et al.’s (2016) CPT formulation in our empirical model com-
parisons, which included a probability elevation parameter
in the CPT probability weighting function. In particular,
Eq. 5 can be expanded as follows:

5P,

Wip,,) = 9
( &1) (5pgj+ (1 _ng)}’) ( )

ws:where 6(0 < 6§ < +o0) is an added probability eleva-
tion parameter that often is interpreted as optimism (6 > 1)
versus pessimism (6 < 1) toward probabilistic outcomes.
Mathematically, when 6 > 1, the probability weighting
function is shifted upward, indicating a general overestima-
tion of the strength of probabilities (i.e., optimism); when
6 < 1, the function is shifted downward, indicating a general
underestimation (i.e., pessimism). Oftentimes, a separate 6
parameter is estimated for gains and losses to capture dif-
ferential optimism or pessimism towards gains versus losses.
Kellen et al. (2016) included probability elevation for gains
6,(0 < 6, < +00) and for losses 6_(0 < 6_ < +o0), accord-
ing to the following rule:

5= o+ ifngZO (10)
6— otherwise

which sets 6 from Eq. 10 to 6, when the potential out-
come x, ; for the respective probability p, ; is positive, and
to 6_ otherwise. We tested variants of the CPT, RL-CPT, and

@ Springer



Cognitive, Affective, & Behavioral Neuroscience

IB-CPT models that included differential probability eleva-
tion for gains versus losses that either varied or were set to
be the same across description and experience.

In addition to including probability elevation param-
eters, Kellen et al.’s (2016) CPT formulation assumed dif-
ferences in all parameters across DBDs and EBDs, includ-
ing all CPT valuation parameters and the choice sensitivity
parameter. We term this model the Saturated CPT model,
given that it includes both probability elevation param-
eters described above and assumes that all within-person
valuation and choice mechanisms vary across DBDs and
EBDs. Saturated CPT contains 12 parameters per person

(yDv }/Ea aDa aEa ADa AE7 6+D’ 6+E’ 5_D7 6—E7 (pD7 (pE)

Empirical model fitting

As with the simulated model fitting, we used hierarchi-
cal Bayesian modeling of all models listed in Table 1. We
assumed the same hierarchical structure, with person-level
parameters drawn from group-level normal distributions.
Likewise, we assumed that group-level means and stand-
ard deviations also followed normal distributions cen-
tered around 1 for valuation parameters (y, a, 4; Eq. 10),
and learning rates normally distributed around 0.5. We
parameterized learning rates using the same scheme as
described by Eq. 10, but with group-level means distributed
as py, ~ Normal(0,0.2) and o4, ~ half — Normal(0,0.2).
Unlike in the simulation study, we estimated the choice sen-
sitivity parameter (¢) for all empirical models, with priors
H, ~ Normal(-0.87,0.2) and o, ~ half — Normal(0, 0.2),
where person-level parameters followed the noncentered
parameterization described in Eq. 10 (but replacing the
inverse probit transform and scaling factor with the expo-
nential transform to ensure 0 < ¢ < +00). We used the same
prior distribution for a given parameter across all models in
order to minimize the potential effects of our choice of prior
distribution on model performance (e.g., the prior for ¢ was
the same for all models, etc.).

We fit each model using three sampling chains for 3,000
total iterations each, 1,000 of which were discarded from
each chain as warm-up samples, resulting in 6,000 total sam-
ples for each estimated posterior. To assess model conver-
gence, we visually checked traceplots, and ensured that all
R values were under 1.1 (Gelman & Rubin, 1992).

Empirical model comparison
We used the leave-one-out information criterion (LOOIC)
to determine which model provided the best fit to the data

while penalizing for model complexity (Vehtari et al.,
2017). LOOIC is a fully Bayesian information criterion
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that estimates true leave-one-out cross validation; LOOIC
is therefore an estimate of how well a model will perform
relative to competing models on out-of-sample data. To
compute LOOIC, we first computed the log-likelihood of
each participant’s choices given their estimated parameters
for each posterior sample (i.e., log pointwise predictive den-
sity or LPPD) and gamble (Ahn et al., 2017; Haines et al.,
2018). This procedure results in separate posterior sam-
ples by participant by gamble (S X N X G) LPPD arrays for
description- and experience-based gambles. We then com-
bined both arrays on the gamble dimension and input the
resulting array in the loo R package (Vehtari et al., 2017)
to estimate LOOIC across DBDs and EBDs. Lower relative
LOOIC values indicate better than expected out-of-sample
predictions for the given model. Alongside LOOIC, we cal-
culated Bayesian model averaging weights (pseudo-BMA+
weights per Yao, Vehtari, Simpson, and Gelman, 2018).
Pseudo-BMA weights asymptotically select the single model
among a set of models that best minimizes Kullback-Leibler
divergence, thus behaving similarly to Bayes Factors for
model selection.

We caution that a lower LOOIC (or higher pseudo-
BMA+ weights) does not indicate that a model is “true” or a
better representation of the cognitive processes of interest in
an absolute sense. Instead, we believe that such model com-
parison metrics are useful to compare the relative predic-
tive performance of various models, and that the theoretical
value of each model includes both predictive performance
and other more qualitative considerations (e.g., assumptions
they make about learning and memory, connections with the
broader literature; Navarro, 2019).

Empirical results

Model comparison Figure 4 shows the estimated differences
in model fit between the best fitting model and all competing
models, both across all 114 gambles and within each of the 4
gamble sets. Within each gamble set, LOOIC results showed
that learning and memory models (RL-CPT and IB-CPT
models) performed equal to or better than those assuming
perfect learning with changes in valuation parameters across
DBDs and EBDs (traditional CPT models). Across all sets,
the RL-CPT with asymmetric learning and a single set of
valuation and choice parameters across DBDs and EBDs
(model A, in Table 1) performed better than all variants
of CPT, including the most complex CPT model (i.e., the
Saturated CPT model with 12 free parameters per person).
Similarly, the IB-CPT model with probability elevation
parameters showed better performance than all CPT models,
although it performed worse than the RL-CPT model with
asymmetric learning rates. This latter finding demonstrates
the importance of asymmetric learning for predicting behav-
ior in EBDs.
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Fig.4 Comparison of competing models. Note. Relative difference
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ting model and all other models within each gamble set, where lower
LOOIC values indicate better model fit while penalizing for model
complexity (see Table 1 for model notation and descriptions). Num-
bers in each row indicate the pseudo-BMA+ weights for each model

Overall, our model comparison results offer strong evi-
dence that people do have imperfect learning and memory
while sampling during EBDs—asymmetric learning alone
(model A, in Table 1) can better capture within-person
changes in behavior across DBDs and EBDs than a model
assuming perfect learning/memory and changes in all valu-
ation and choice mechanisms (the Saturated CPT model).

Posterior Predictions To better understand the absolute
performance of the models, we focus attention on posterior
predictions derived from the model in each class that we
deemed most theoretically relevant given prior research on
the description-experience gap: (1) the a5, 4,, 7, variant of
CPT; (2) the A, variant of RL-CPT; and (3) the A variant
of IB-CPT. Despite these models not showing the best fit to
empirical data within a given gamble set, we believe they
best instantiate competing theories of the description-expe-
rience gap as detailed in the introduction. Figure 5 shows
the group-level predictive performance for each of the three
models. Notably, the models are almost indistinguishable in
the description condition, yet the RL-CPT shows generally
better predictive performance in the experience condition.
For a more fine-grained view of Fig. 5, Table S1 includes
the group-level observed and predicted choice proportions
for each individual gamble and for each model.

within the given set. Sets 1 and 3 show the traditional description-
experience gap, and Sets 2 and 4 show a reversed gap (see Partici-
pants and Experiment section; Wulff et al., 2018). Error bars reflect
+1 standard errors of the difference between the best fitting model
within each gamble set and the respective competing model

Interpreting Model Parameters The posterior distributions
for group- and person-level parameters from the A_ variant
of RL-CPT model are shown in Fig. 6. The group-level neg-
ative prediction error learning rate is larger than the group-
level positive prediction error learning rate (95% highest
density interval [HDI] of A_ — A =[0.13, 0.24]), which is
consistent with previous literature and indicates risk-averse
learning (Cox et al., 2015; Doll et al., 2009; Frank et al.,
2004, 2007; Gershman, 2015; Mihatsch & Neuneier, 2002;
Niv et al., 2012). Furthermore, the magnitudes of the learn-
ing rates for positive (95% HDI of A, = [0.19, 0.25]) and
negative (95% HDI of A_ = [0.35, 0.45]) prediction errors
were consistent with what our simulations predicted based
on previous studies. Specifically, traditional CPT modeling
would indicate more overweighting of rare events in EBDs
relative to DBDs given the absolute magnitude and the dif-
ferences between learning rates (Fig. 3, top panels), a find-
ing that is consistent with previous applications of CPT to
these data (Kellen et al., 2016). Lastly, the valuation param-
eters from the RL-CPT resemble those classically found for
DBDs—we found evidence for risk aversion (95% HDI of «
=1[0.61, 0.65]), loss aversion (95% HDI of A =[1.14, 1.35]),
and overweighting of rare events (95% HDI of y = [0.62,
0.72]). This indicates that the “traditional” overweighting of
rare events from CPT may still be present in EBDs but that
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Group-level Posterior Predictions vs Observed Data
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Fig.5 Posterior predictive distributions derived from CPT and RL-
CPT across description and experience. Note. Posterior predictive
distributions for both CPT (the a,, 4,, v, variant from Table 1), RL-
CPT (A, from Table 1), and IB-CPT (A, from Table 1) for each of
the 114 choice problems/gambles across description and experi-
ence. Pr(Choose B) indicates the proportion of participants choosing
option B for each gamble. The dark red points indicate the in-sample
(i.e., observed) Pr(Choose B). Note that gambles were reordered by
the observed Pr(Choose B) within each condition for interpret-

it is masked by the presence of asymmetric learning in the
sampling process. The person-level posterior distributions
demonstrate that there are strong individual differences in
learning rates and valuation parameters alike, which pro-
vides further evidence against the assumption that people
have perfect learning and memory during EBDs.

Discussion

In the current study, we used a combination of computa-
tional model simulations and empirical model fitting to show
that preference differences between description- and expe-
rience-based gambles can be attributed to an asymmetric
learning mechanism rather than context-dependent changes
in psychological valuation across tasks. We developed a
hybrid reinforcement learning and cumulative prospect

@ Springer

ability. Light red points and intervals indicate the model-predicted
means and 95% highest density intervals of Pr(Choose B), and the
annotated text in each panel is the posterior mean and 95% HDI (in
square brackets) for the correlation between observed and posterior-
predicted Pr(Choose B). The models are practically indistinguishable
in the description condition, yet the RL-CPT exhibits generally more
accurate predictions in the experience condition relative to both other
models.

theory (RL-CPT) model that used separate learning rates
for positive and negative prediction errors and assumed that
probabilities and outcomes are valued equivalently across
DBDs and EBDs. Through Bayesian model comparison, we
found that the A, variant of the RL-CPT model (Table 1)
provided a better account of within-subject differences in
DBDs versus EBDs compared with traditional CPT models
that assume perfect learning and memory with differences
in risk aversion, loss aversion, probability weighting, choice
sensitivity, and probability elevation for gains and losses
(i.e., saturated CPT).

Put together, the RL-CPT offers improved performance
for EBDs without compromising performance on DBDs
relative to traditional CPT models (Fig. 5). The RL-CPT
with asymmetric learning also performed better than
a competing instance-based memory model (A;; from
Table 1). While other studies have shown that learning
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Fig.6 Posterior distributions of group- and person-level RL-CPT
parameters. Note. Posterior distributions for each group- and person-
level parameter from the A, variant of the RL-CPT. The group-level
panels show the posterior density of the group-level mean for each
parameter. The annotation on each panel represents that posterior
mean and 95% HDI of the corresponding group-level mean param-
eter. Points and intervals for the bottom panel indicate the means and
95% HDI for each of the person-level parameters. The dashed gray

and memory models can account for EBDs (Busemeyer &
Myung, 1992; Erev & Roth, 1998; Estes, 1976; Gonzalez
et al., 2011; Hau et al., 2008), they did not demonstrate
any ability to capture the description-experience gap. To
our knowledge, this is the first study to directly and quan-
titatively compare a variety of computational models that
make explicit assumptions regarding how learning and
memory can give rise to preference differences between
DBDs and EBDs. This was only possible because the learn-
ing and memory models that we developed directly esti-
mate the payoff probabilities associated with each outcome,
which allows for them to simultaneously capture decisions
from both description- and experience-based tasks in a
straightforward manner.

The RL-CPT (A, variant) suggests that foundational
cognitive biases, including risk aversion, loss aversion, and
overweighting of rare events, hold true across both DBDs
and EBDs when asymmetric learning during sampling in
EBDs is accounted for (Fig. 6). Furthermore, our finding
that people learn more rapidly from negative as opposed to
positive predictions errors extends previous findings (Cox
etal., 2015; Doll et al., 2009; Frank et al., 2004, 2007; Ger-
shman, 2015). A higher learning rate for negative as opposed

line is simply included as a visual reference, indicating 0.5 for the
learning rates and 1 for the valuation/choice parameters. Note that the
group-level valuation parameters are in the same direction as those
found in Tversky and Kahneman’s (1992) original analyses of DBDs,
indicating risk aversion (a < 1), loss aversion (4 > 1), and over-
weighting of rare/low probability events (y < 1) across both DBDs
and EBDs.

to positive prediction errors produces “risk sensitive” deci-
sion-making (Mihatsch & Neuneier, 2002). Conceptually, it
follows that typical CPT valuation parameters—which also
capture risk sensitivity—could be poorly estimated in EBDs
if asymmetric learning occurs. Indeed, our simulations con-
firmed this quantitatively, predicting that more rapid learn-
ing of negative relative to positive prediction errors will lead
to an underestimation of probability weighting in EBDs rela-
tive to DBDs when using traditional CPT modeling (Fig. 3),
which can explain contextual effects of more overweight-
ing of rare events in EBDs compared with DBDs (Glockner
et al., 2016; Kellen et al., 2016). To the extent that these
learning rates vary across the lifespan, we might observe
apparent differences between older and younger adults that
are specific to experience-based decisions and physiologi-
cal measures (Rosenbaum et al., 2021). Responses to posi-
tive and negative surprises will impact not only probability
weighting and value sensitivity but also measures like pupil
dilation that are known to reflect the magnitude prediction
errors during learning on these types of tasks (Braem et al.,
2015; Lavin et al., 2014).

Given previous findings that people learn more rapidly
when experiencing intense negative rather than positive
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affect (Haines et al., 2019), future research may explore
the relationships between physiological states and learning
throughout EBDs. Such studies may reveal insights into
the known differences in risky decision-making between
healthy and clinical populations (Ahn et al., 2014; Maner
et al., 2007; Yechiam et al., 2005). Lastly, because both
valuation and learning mechanisms interact to produce
behavior, the competing effects of overweighting rare
events and risk-averse learning may produce the expected-
value maximizing behavior that often is observed in EBDs
(Wulff et al., 2018). Indeed, it is an open question why
people make more choices that maximize expected value
in EBDs relative to DBDs, and risk-averse learning mecha-
nisms may provide a partial explanation.

An important limitation of the current study is that the
RL-CPT model does not predict participant’s sampling
behavior, which means that it is not a full generative model
of how people behave during EBDs. Part of the reason for
this is that sampling behavior is intensely idiosyncratic, with
information search varying according to momentary fluctua-
tions in experienced sample variance, participants working
memory capacity, and sampling heuristics that vary widely
across participants or even within a session (Kopsacheilis,
2018). Despite this, models, including search or optional
stopping rules, show promising results (Busemeyer, 1985;
Markant et al., 2015; Wulff et al., 2019) and may be well-
suited to integrate with models, such as the RL-CPT. Nev-
ertheless, RL-CPT does account for variation in behavior
across participants by leveraging the information that they
gain across samples to estimate the learning rates (Eq. 8).
Furthermore, the learning mechanism of the RL-CPT is gen-
eralizable in the sense that it can be applied to both sampling
EBDs, repeated choice EBDs, and EBDs with more than two
choices. Specifically, if each sample that participants draw
is treated as a choice (i.e., preference judgement in Fig. 1),
the probability estimates and resulting expected values on
each sample (or trial in repeated choice tasks) can be used
to estimate the likelihood of repeated, trial-by-trial choices
for each choice option (Gershman, 2015; Haines et al.,
2019; Niv et al., 2012). Therefore, we view the addition of
an optional stopping rule as a task-specific extension, and
not a competing mechanism, of the RL-CPT.

In summary, our findings suggest that future research
on the description-experience gap should focus on learn-
ing, memory, search (i.e., during sampling), and optional
stopping mechanisms, all of which could lead to deeper
insights into human decision-making under risk. Addition-
ally, future studies could use experimental manipulations
that are known to influence learning rates to determine
if the RL-CPT can capture subsequent changes in risk
preferences. More broadly, our findings demonstrate the
benefits of using formal computational cognitive models
of behavior to understand how individual differences at
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one level-of-analysis (e.g., psychological mechanisms) can
affect inferences made at another level (e.g., behavioral
differences). Computational modeling allowed us to merge
different areas of research (i.e., reinforcement learning and
risky decision-making) in a formalized, straightforward
way, which led to circumscribed predictions regarding
the relationship between psychological mechanisms (i.e.,
probability and outcome valuation), neural mechanisms
(i.e., differential dopamine response to positive versus
negative prediction errors), and an observed behavioral
phenomenon (i.e., the description-experience gap). We
then leveraged Bayesian model comparison of multiple
competing theoretical models to determine which theory
was most consistent with the data. This work therefore
extends the past modeling work on the essential learning
component of EBDs (Busemeyer & Myung, 1992; Erev
& Roth, 1998; Gonzalez et al., 2011; Haines et al., 2018;
Hau et al., 2008) in a theoretically motivated way to solve
an empirical paradox.

Conclusions

Asymmetric learning offers causal mechanisms to explain
the apparent changes in probability weighting—and
valuation more generally—across both description- and
experience-based decisions and different forms of expe-
rience-based decisions. Classic findings of risk-aversion,
loss-aversion, and overweighting of rare events can apply
for both description- and experience-based decisions, but
only when asymmetric learning is appropriately incorpo-
rated. More work needs to be done to refine joint models of
description and experience that are both predictively power-
ful and psychologically realistic with regard to mechanisms
underlying learning and memory in addition to valuation
and action selection. More broadly, computational models
offer a formalized way to combine substantive theories from
different areas of research, which can reveal simple rules
underlying otherwise complex, context-dependent psycho-
logical effects inferred using theoretically inconsistent sta-
tistical procedures.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.3758/s13415-023-01099-z.
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